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Abstract:
Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical
course is variable, multiple genes are mutated with no unifying mechanism, essential regulatory pathways
and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by
resolving different subgroups and their underlying genomic abnormalities, pathway signatures and
microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL
spleen samples collected through the IELSG46 multicenter, international study (NCT02945319) by using a
multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized
signatures, validated the findings in independent primary tumor meta-data and in genetically modified
mouse models, and determined correlations with outcome data. We identified two prominent genetic
clusters in SMZL, termed NNK (58% of cases, harboring NF-κB, NOTCH and KLF2 modules) and DMT (32% of
cases, with DNA-damage response, MAPK and TLR modules). Genetic aberrations in multiple genes as well as
cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not
only have distinct underpinning biology, as judged by differences in gene-expression signatures, but
also different outcome, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling
segregated two basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of
cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50%
of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical
connotations. In summary, we propose a nosology of SMZL that can implement its classification and also
aid in the development of rationally targeted treatments.
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Key Points 

 SMZL comprises four distinct genetically defined molecular clusters, and two 
distinct phenotypically defined immune-microenvironment classes 

 The molecular-based nosology of SMZL can improve disease classification and 
the discovery of novel biomarkers and therapeutic vulnerabilities 
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ABSTRACT 

Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological 

entity. The clinical course is variable, multiple genes are mutated with no unifying 

mechanism, essential regulatory pathways and surrounding microenvironments are 

diverse. We sought to clarify the heterogeneity of SMZL by resolving different 

subgroups and their underlying genomic abnormalities, pathway signatures and 

microenvironment compositions to uncover biomarkers and therapeutic 

vulnerabilities. We studied 303 SMZL spleen samples collected through the 

IELSG46 multicenter, international study (NCT02945319) by using a multiplatform 

approach. We carried out genetic and phenotypic analyses, defined self-organized 

signatures, validated the findings in independent primary tumor meta-data and in 

genetically modified mouse models, and determined correlations with outcome data. 

We identified two prominent genetic clusters in SMZL, termed NNK (58% of cases, 

harboring NF-κB, NOTCH and KLF2 modules) and DMT (32% of cases, with DNA-

damage response, MAPK and TLR modules). Genetic aberrations in multiple genes 

as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-

SMZLs. These genetic clusters not only have distinct underpinning biology, as 

judged by differences in gene-expression signatures, but also different outcome, with 

inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated two 

basic types of SMZL immune microenvironments termed immune-suppressive SMZL 

(50% of cases, associated with inflammatory cells and immune checkpoint 

activation) and immune-silent SMZL (50% of cases, associated with an immune-

excluded phenotype) with distinct mutational and clinical connotations. In summary, 

we propose a nosology of SMZL that can implement its classification and also aid in 

the development of rationally targeted treatments.   
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Keywords: marginal zone, lymphoma, spleen, classification, genetics, 
microenvironment 

  

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2021012386/1828773/blood.2021012386.pdf by guest on 10 N

ovem
ber 2021



6 

 

INTRODUCTION 

Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell neoplasm 

deriving from lymphocytes of the splenic marginal zone and affecting the spleen, 

bone marrow and peripheral blood.  

The incidence of SMZL is increasing, mainly because of improved diagnostic 

techniques resulting in more patients being diagnosed every year. However, in 

parallel, life expectancy of patients with SMZL is not improving. Compared to other 

indolent B-cell neoplasms, the survival of patients with SMZL is unsatisfactory (5-

year relative survival ~79%)1-3, and no breakthrough treatment advances have been 

seen3.  

SMZL is heterogeneous at multiple levels. The clinical course is variable, with 

some patients having prolonged survival and a proportion (~20%) experiencing 

rapidly progressive disease and survival less than 5 years4. SMZL lacks a unifying 

genetic lesion. Multiple mutated genes have been identified, which are restricted to a 

fraction of cases.5-11 Inflammatory cells are expanded in a subset of SMZL12, 

suggesting the existence of different microenvironments. Clinical trials evaluating 

novel agents provide glimpse into signaling pathways that are essential for SMZL, 

but sensitivity to these agents is not always observed13-15.  

The IELSG46 study (NCT02945319) is a multicenter, international, 

retrospective, observational study that aims at resolving the heterogeneity of SMZL 

into subgroups by using a multiplatform approach, with the belief that it might yield a 

nosology of SMZL that could be implemented for disease classification, and result in 

the discovery of novel biomarkers and therapeutic vulnerabilities. 
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METHODS 

Patients 

Inclusion criteria of the IELSG46 study were: i) age >18 years; ii) SMZL 

diagnosis by spleen histopathologic examination; iii) availability of tumor material 

from spleen collected before initiation of medical therapy; iv) availability of baseline 

and follow-up annotations. Patients who received any anti-tumor medical therapy 

before splenectomy were excluded. The study was conducted in accordance with the 

Declaration of Helsinki and principles of Good Clinical Practice. The study was 

approved by the Ethic Committee (ID: 2016-01978) and patients provided written 

informed consent. Coded health-related patient data and tumor biological samples 

were collected from eligible patients (Supplementary Methods). 

 

Pathology review and tissue microarray 

A pathology expert panel reviewed the cases (G.Bh., E.C, L.D.L., S.Dirn, L.M., 

S.A.P., M.A.P., M.Pa, M.Po., A.T.G.). Diagnoses were based on the WHO 

classification16. Cases were assembled on tissue microarrays (A.Tz) as described 

with slight modifications17. IGHV analysis was performed in two different ways 

according to quality/quantity of the starting material (Supplementary Methods).  

 

LyV3.0 CAncer Personalized Profiling by deep Sequencing Assay 

A CAPP-seq protocol was used for mutation and copy number abnormality 

(CNA) analysis. Libraries derived from tumor genomic DNA of FFPE (n=246) or 
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frozen tissues (n=57). No patient-matched normal specimens were available. The 

assay limit of quantification was calculated as the mean allele frequency of non-SNP 

variants from normal FFPE spleen “blank” samples. The assay analytical sensitivity 

was established by generating limiting dilutions of FFPE gDNA from one patient with 

active lymphoma into normal gDNA of FFPE spleen samples, resulting in expected 

tumor fractions between 100% and 0.2%. The number of the libraries loaded in the 

sequencer was tailored to obtain a coverage >2000× in >80% of the region of 

interest. A tumor-only, background error-suppressed approach was used for variant 

and copy number calling (Supplementary Methods). 

 

RNA-seq 

RNA-seq (TruSeq Stranded mRNA kit, Illumina Technology) of 45 fresh 

biopsy samples was used to identify gene fusions. Gene expression was assessed in 

FFPE biopsy samples by using HTG EdgeSeq Precision Immuno-Oncology (HTG-

PIO) and HTG EdgeSeq Oncology Biomarker (HTG-OBP) Panels (HTG Molecular 

Diagnostics) (Supplementary Methods). 

 

Bioinformatics and medical statistics 

The following bioinformatics approaches are described in Supplementary 

Methods: mutation calling, CNA detection, pathway-driven clustering of mutation 

data, gene fusion detection, gene expression analysis, signature enrichment testing, 

microenvironment signatures definition and clustering, deconvolution of cell 

percentages from bulk transcriptomes. Overall survival (OS) was measured from 

date of initial presentation to date of death from any cause (event) or last follow-up 
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(censoring). Survival analysis was performed by Kaplan-Meier method. Relative 

survival, defined as the ratio between actuarial survival observed in patients and 

expected survival of the general population matched to by geographical origin, sex, 

age, and calendar year of diagnosis, was calculated using the Ederer II method. 

Categorical variables were compared by χ2 test and Fisher’s exact test when 

appropriate. Continuous variables were compared by ANOVA and t-student tests 

when appropriate. Statistical tests were 2-sided and significance was defined 

as p <0.05, after correction for multiplicity where appropriate. Analyses were 

performed with R (http://www.r-project.org).  

 

RESULTS 

Patient characteristics 

Patients diagnosed with SMZL on splenic resections were registered in the 

IELSG46 study by 28 centers in Europe and the US. A total of 373 patients were 

initially identified. Seventy cases were excluded due to alternative diagnoses on 

central pathology review or insufficient material (Supplementary Figure 1A). Table 1 

lists the clinical characteristics of the 303 patients with confirmed SMZLs. Deletion 7q 

and use of IGHV1-2*04 allele, which are recurrent in SMZL18,19, were detected in 

26.4% and 33.9% of cases, respectively. Based on the percentage of IGHV gene 

identity to the germline, 11.1% of cases were ‘truly unmutated’ (100% homology) 

(Supplementary Table 1). Median follow‐up after splenectomy was 10.6 years, with 

86 deaths. At ten years, overall survival was 68.5% and relative survival compared to 

the matched general population was 82.1% (Supplementary Figure 1B). After 

splenectomy, which counted as first line therapy, 10.6% of patients received 
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additional treatment, including chemotherapy (5%) or rituximab +/- chemotherapy 

(5.6%).  

These data confirmed the representativeness of the study cohort and the lack 

of biases due to the inclusion of splenectomized patients.3,20,21 

  

A genetic classifier for SMZL  

We investigated mutations using the LyV3.0 CAPP-seq assay, which targeted 

~280 kb of genomic space by deep sequencing and that has been specifically 

designed to cover the majority of coding regions known to be recurrently mutated in 

mature B-cell neoplasms (Supplementary Table 2). To validate the LyV3.0 CAPP-

seq assay, we compared in silico the enrichment of somatic mutations by LyV3.0 

CAPP-seq with whole exome sequencing (WES) after simulating mutation detection 

using data from 32 individual SMZLs reported in the literature22. LyV3.0 CAPP-seq 

yielded a 23-fold increase of variant detection per sample per sequenced base pair 

compared to WES (Supplementary Table 3). For coding mutations, minimal increase 

in the mutation recovery from SMZL samples was expected by enlarging the probed 

genomic space over that included in LyV3.0 CAPP-seq. When applied to DNA 

samples from 8 FFPE tissues of normal spleen (“blank” samples) the limit of 

quantification of LyV3.0 CAPP-seq was 0.3%, which represented the analytical 

background noise threshold (Supplementary Figure 2A). When gDNA samples from 

3 FFPE tissues of SMZL were diluted with control gDNA from FFPE tissues of 

normal spleen, the analytical sensitivity of LyV3.0 CAPP-seq was 2%, representing 

the lowest detectable allele frequency (Supplementary Figure 2B). 
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A stringent computational method designed for tumor-only samples was used 

to filter out artifacts, putative germline variants, variants of unknown significance and 

variants known to be benign or likely benign. Individual non-synonymous mutations 

discovered by LyV3.0 CAPP-seq (Supplementary Table 4) and recurring in >1% of 

SMZLs are shown in Figure 1A. The number of mutations in each individual sample 

was not affected by the age of the biopsy (Supplementary Figure 2C). The most 

frequently mutated genes were NOTCH2, KLF2, KMT2D, TNFAIP3, NOTCH1 and 

TP53. Consistent with the diagnosis of SMZL, the rare MYD88 mutations mapped 

outside the p.265 hotspot. No fusions were detected by RNA-seq. Mutations in MYC, 

BCL2 and BCL6, which are surrogates for translocation of these genes adjacent to 

immunoglobulin genes23, were extremely rare (Supplementary Table 4).  

To segregate SMZLs into discrete genetic classes supported by coordinated 

mutational profiles, we started with a set of pathway-driven seed modules comprising 

components of several B-cell programs (Supplementary Table 5). Genes were 

assigned to a module based on published literature and database annotations23-27. 

Genes that were attributed to multiple modules (eg, KLF2) were not assigned and 

seeded individually. Unsupervised analysis of mutational co-occurrence between all 

lesion pairs revealed overall significantly stronger exclusivity between intra-pathway 

lesions (Figure 1B). Mutual exclusivity of mutations within a pathway could reflect 

functional redundancy and supported their aggregation within a seed (Figure 1C). 

We then applied hierarchical clustering on principal components (HCPC) and 

discovered four groups of tumors (clusters) with discrete genetic signatures overall 

accounting for 86.4% of cases, and an additional subset without detectable 

mutations in the interrogated genomic space (13.6% of cases) (Figure 2A). The 

algorithm converged on genetic clusters that for simplicity were termed NNK (58.2% 
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of cases, for NF-κB, NOTCH and KLF2 modules), DMT (32.8% of cases, for DNA-

damage response, MAPK and TLR modules), CBS (4.8% of cases, for cytokine, B-

cell receptor signaling, and spliceosome modules) and PA (4.2% of cases, for 

PI3K/AKT module). Application of the same approach to an independent meta-

dataset of SMZLs profiled by WES22 produced overlapping genetic clusters 

(Supplementary Figure 3A), thus supporting the robustness of the classification and 

excluding biases related to the hypothesis driven design of the genomic space we 

used for sequencing.  

The minimal set that allowed to classify patients with SMZL into NNK and 

DMT clusters included 14 genes (TP53, ATM, KLF2, TNFAIP3, NOTCH2, BRAF, 

MYD88, SPEN, CARD11, NOTCH1, PTPN11, CHD2, SAMHD1 and NFKBIE) and 

performed with an accuracy of 90% in the training set and of 89% in the validation 

set. The model was further validated in a completely independent metadataset,22 

yielding a comparable accuracy (73%) (Supplementary Figure 4). 

Overall, 99.4% mutations discovered in the spleen were concordantly 

detected in synchronous peripheral/marrow blood, including 100% of mutations 

affecting the minimal set of genes. This observation indicates that molecular cluster 

assignment can leverage on “liquid biopsies” (Supplementary Figure 5). 

NNK and DMT clusters together accounted for the vast majority (91.0%) of 

SMZLs with detectable mutations. NNK-SMZLs were dominated by mutations 

affecting NF-κB (eg, TNFAIP3), including non-canonical pathway genes (eg, TRAF3, 

BIRC3), NOTCH (eg, NOTCH2, NOTCH1, SPEN) and KLF2. KLF2 mutations co-

occurred with NOTCH mutations in 21.8% of NNK-SMZL, and with NF-kB mutations 

in 18.6% of cases (Figure 2B). These observations, along with the fact that NOTCH, 

NF-κB and KLF2 regulate MZ B-cell differentiation28, and that KLF2 is a master 
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regulator of both NOTCH and NF-κB29 signaling, suggested a pervasive oncogenic 

cooperation between these genetic lesions in NNK-SMZLs to hijack the MZ B-cell 

differentiation program. DMT-SMZLs were characterized by mutations in DNA 

damage response genes (eg, TP53, ATM). Mutations in MAPK (eg, BRAF) and TLR 

genes (eg, MYD88) were also enriched in DMT-SMZLs (Figure 2B). CBS-SMZLs 

harbored mutations in cytokine signaling (eg, STAT6, STAT3, PTPN1, PTPRD), B-

cell receptor signaling (eg, CD79A, BTK) and spliceosome (eg, SF3B1, RBMX) 

genes. PA-SMZLs harbored mutations in PIK3CA, ITPKB, a non-canonical inhibitor 

of AKT30, and RRAGC, an mTORC1-regulator31 (Figure 2B).  

Molecular clusters were correlated with immunogenetic features and CNA to 

find specific associations (Figure 2C Supplementary Table 1 and 6). NNK-SMZLs 

were enriched in IGHV1-2*04 usage and 7q deletion, while conversely DMT-SMZLs 

showed depletion of both (Figure 2C, Supplementary Table 7).  

 

Phenotypic differences among SMZL clusters 

We applied gene expression profiling to FFPE tissue samples to explore 

phenotypic differences among SMZL clusters. The concordance between expression 

profiling of FFPE tissues and gold standard RNA-seq was validated in 57 cases with 

available paired frozen and FFPE SMZL specimens (Supplementary Figure 2D and 

E). We analyzed the entire study cohort for the expression of 2559 genes focusing 

on oncogenic signaling, and used 18 signatures, selected from public databases and 

the literature according to the genes and pathways related to the mutation signatures 

(Supplementary Table 8), and reflecting distinct biological processes and 

differentiation programs of B-cells (Supplementary Table 8 and 9). For each 
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signature, we calculated an activity score that is directly associated with the 

magnitude of a particular effect among populations of cells32. We then analyzed the 

correlation between the NNK- and DMT-SMZL clusters and the signatures (Figure 

3A). NNK-SMZLs expressed significantly higher levels of genes belonging to the 

NOTCH2 pathway and of genes that are activated by non-canonical NF-κB 

transcription factors33. A proliferation signature also characterized NNK-SMZLs. 

Conversely, DMT-SMZLs had a signature of impaired TP53 and apoptosis functions.  

We used immunohistochemistry to comparatively screen NNK-SMZLs vs 

DMT-SMZLs for evidence of NOTCH and NF-κB biochemical activation (Figure 3B 

and C; Supplementary Table 10). Consistent with the high incidence of NOTCH and 

NF-κB pathway mutations in NNK-SMZLs, they frequently showed nuclear staining 

for NOTCH, canonical- and non-canonical NF-κB proteins, while nuclear TP53 

expression strongly correlated with DMT-SMZLs (Figure 3B and C).  

Paired bone marrow biopsies of 96 patients were revised by the local 

pathologists. The bone marrow morphology was typical (i.e. nodular or nodular-

interstitial pattern, with or without intrasinusoidal infiltration) in 85 cases (88.5%) and 

atypical (i.e. paratrabecular or diffuse patterns without intrasinusoidal infiltration) in 

the remaining 11 cases (11.5%). With the limitations imposed by the sample size, the 

majority of cases showing an atypical bone marrow morphology belonged to the 

DMT molecular cluster, while cases belonging to the NNK, CBS and PA molecular 

clusters preferentially or exclusively showed a typical bone marrow morphology 

(Supplementary Table 11).  

 

Immune microenvironment of SMZL  
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The immune-microenvironment of SMZL is poorly understood. We thus 

profiled the expression of 1402 genes focusing on tumor/immune interactions, and 

used 16 signatures (Supplementary Table 12), reflecting distinct immune cell 

subtypes and immune cell programs, to virtually reconstruct the spleen 

microenvironment of SMZL34. We analyzed the relationship of each signature among 

samples by applying an unsupervised clustering algorithm and obtained two major 

classes of predicted spleen microenvironment in SMZL (Figure 4A, Supplementary 

Table 13). One class, accounting for 50% SMZLs, was dominated by macrophage 

(eg, CD163), cytokine (eg, BAFF, IL6, IL10), chemokine (eg, CXCR335, CXCL936,37, 

CCL5, CX3CR138), T-cell (eg, CD3), and regulatory T-cell (eg, FOXP3) signatures, 

along with an expected immune-suppressive checkpoint milieu (eg, inhibitory 

receptors CTLA4, TIM3, PD-1, BTLA, TIGIT, LAG3 associated with T-cell 

exhaustion, and low expression of MHC-I genes) indicative of an immune-evasion 

profile (immune-suppressive class). A second class, accounting for the other 50% of 

SMZLs, had a microenvironment where the B-cell signatures of obvious tumor origin 

dominated (eg, CD19, CD20, CD79A/B, PAX5) similar to observations in immune-

excluded lymphomas (immune-silent class)39. Application of the same approach to 

an independent meta-dataset of spleen samples of SMZL40 produced overlapping 

phenotypic clusters even with a smaller sample size (Supplementary Figure 3B), thus 

supporting the robustness of the classification.  

To confirm the different composition of the “immune-suppressive” and 

‘immune-silent’’ SMZL classes, we applied digital cytometry deconvolution41, which 

inferred a heterogeneous and microenvironment-rich composition in the “immune-

suppressive’ class of SMZL, and a high ratio of neoplastic-to-microenvironmental 

cells in the ‘immune-silent’ class (Figure 5A, Supplementary Table 14). 
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Orthogonal validation by immuno-phenotypical analysis confirmed the 

microenvironment tissue contexture derived from gene expression and digital 

cytometry deconvolution (Figure 5 B and C; Supplementary Tale 10). The “immune-

suppressive” class of SMZL had higher intra-tumoral CD3+ T-cells, CD4+ T-cells, 

CD8+ T-cells, FOXP3+ T-cells, CD163+ (M2) macrophages, and CD68+ 

macrophages than the “immune-silent’’ class. The “immune-suppressive” class of 

SMZL also had higher intra-tumoral PD1+ cells, and PD-L1+ cells, than “immune-

silent’’ SMZL. PD1 expression co-localized with T-follicular helper cells in tumors 

containing germinal centers and with tumor-infiltrating T-cells in areas devoid of 

germinal centers. PD-L1 expression co-localized with tumor-infiltrating macrophages 

(Figure 5D). The immune-microenvironment classes were evenly distributed between 

cases with typical and atypical bone marrow morphology (Supplementary Table 11).  

The immune microenvironment classes of SMZL were equally distributed 

across the molecular clusters (Figure 4B). Taken together these data indicated that 

in SMZL, such as in DLBCL, microenvironment signatures provide additional 

information that is not fully captured by a multi-gene mutational signature23. In 

DLBCL, individual gene mutations rather than molecular signatures provided 

mechanistic insights into the interaction between lymphoma cells and the immune 

microenvironment42-47. To understand at a more granular level the mechanisms by 

which SMZL might induce specific microenvironment patterning, we comparatively 

assessed the spectra of the most recurrent mutations between the “immune-

suppressive” vs the “immune-silent’’ classes of SMZL. KLF2 mutations were enriched 

in the “immune-suppressive” class of SMZL and depleted in the ‘immune-silent’’ 

class (Figure 4C). The tumor mutational burden, that is an approximation for 

neoantigen load and corresponds to the number of non-synonymous mutations per 
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coding area of the target region, was also higher in the “immune-suppressive” vs the 

“immune-silent’’ classes of SMZL (1.012 mutation/Mb vs 0.826mutation/Mb, p= 

0.019).  

 

 

Clinical course of the SMZL clusters 

Baseline clinical features distributed evenly across molecular clusters and 

immune microenvironment classes of SMZL (Supplementary Table 15). To 

understand whether any molecular cluster or immune microenvironment class of 

SMZL was more aggressive than the others, we correlated these variables with 

relative survival. Lymphoma‐specific deaths accounts for less than one‐half of total 

deaths in SMZL3. Accordingly, relative survival provides a more accurate measure of 

excess mortality experienced by patients than overall survival, without requiring 

cause of death information. When the demographic effects of age, sex, and year of 

diagnosis were compensated, the 10-year life expectancies of patients with NNK-, 

DMT- and “immune-suppressive”-SMZLs were 79.0% 85.5% and 79.6% of those 

expected in the matched general population (Figure 6 and Supplementary Figure 4). 

Conversely, the 10-year life expectancy of patients with CBS-, PA- or ‘immune-

silent’’-SMZL was not significantly lower than that expected in the matched general 

population. The combination of molecular and phenotypic profiling allowed us to sort 

out a high-risk clinical subset whose lymphoma was characterized by having both the 

NNK genotype and ‘’immune-suppressive’’ microenvironment, and associated with 

an excess mortality (10 years relative survival: 70.8%) compared to the matched 

general population (Figure 6 and Supplementary Figure 6).  
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Among baseline clinical biomarkers that are known to be associated with 

SMZL patients’s outcome, only low Hb and albumin significantly impacted relative 

survival (Supplementary Figure 7). Of note, neither low Hb, nor low albumin 

associated with any molecular or microenvironmental SMZL subtypes, making it 

unlikely that they can act as confounders in the inferior relative survival of NNK and 

immune-suppressive SMZL (Supplementary Table 15). 

 DISCUSSION 

Our study highlights the complexity of SMZL, which comprises four distinct 

genetically defined molecular clusters, and two distinct phenotypically defined 

immune-microenvironment classes. The molecular framework for SMZL that we 

present here provides an evolving understanding of its pathogenesis, and can be 

regarded as a building block for further refining the classification of small B-cell 

lymphoproliferative diseases involving the spleen.  

NNK and DMT clusters together contain the vast majority of SMZLs. NNK-

SMZLs differ from DMT-SMZLs genetically, phenotypically, and clinically. The NNK 

cluster accounts for ~60% of SMZLs and is characterized by genetic changes that 

have been previously associated with the disease, such as NOTCH2 mutations, 

KLF2 mutations, 7q deletion and IGHV1-2*4 usage5,6,18,19. The DMT cluster accounts 

for ~30% of SMZLs and is characterized by mutations in genes that are broadly 

affected in different B-cell lymphoproliferative disorders, such as TP53, ATM, BRAF 

and MYD88. The enrichment of nuclear expression of NOTCH and NF-κB 

transcription factors and of their gene expression signatures in NKK-SMZLs, and the 

complementary enrichment of signatures marking dysfunction of TP53 and apoptosis 

in DMT-SMZLs support the biological validity of these molecular clusters. From a 

clinical perspective, NNK- and DMT-SMZLs show different outcomes.  
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The existence of NNK- and DMT-SMZLs was externally validated in 

independent cohorts and by genetically modified mouse models of SMZL. The 

robustness of the NNK and DMT molecular clusters is supported by their 

identification in the Oquendo et al.22 meta-dataset of SMZL genotypes, despite its 

heterogeneous source of tumor DNA (eg, blood, marrow, spleen), sequencing 

strategy, and variant calling pipeline. In vivo murine models mimicking SMZL confirm 

that Notch2/Nf-κB activation and Tp53 disruption in committed/mature B-cells are 

distinct and sufficient mechanisms of neoplastic transformation48,49. Therefore, our 

results strongly support the conclusion that SMZLs exist as at least two molecularly 

distinct subtypes that are resolvable by genomic analysis. The CBS and PA 

molecular clusters account for a minority of SMZL (~10%) and warrant further 

validations.  

Splenectomy was the first line therapy in all patients of the IELSG46 cohort. 

Currently, splenectomy is less frequently used as first-line therapy in SMZL, and has 

progressively been replaced by rituximab3. Evaluation of the relationship between 

SMZL genetic subtypes and outcome in additional cohorts and in the setting of 

rituximab-based treatment will be important to confirm and extend these findings. 

Lymphoma treatment is an evolving field and a number of pathway inhibitors have 

recently been approved50,51. The results of our study nominate genetic subtypes of 

SMZL where pathway inhibitors could be tested. For example, drugs that target B-

cell receptor-dependent NF-κB activation (eg, BTK inhibitors) could be investigated in 

NNK-SMZLs, drugs target the PI3K/AKT/mTOR pathway (eg, PI3K inhibitors) could 

be investigated in PA-SMZLs, while drugs that activate the apoptotic machinery 

when the DNA damage response pathway is disrupted (eg, BCL2 inhibitors) could be 

investigated in DMT-SMZLs. 
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Gene expression signatures and in situ profiling segregate two basic types of 

SMZLs immune microenvironments with distinct mutational and clinical connotations. 

The “immune-suppressive” class of SMZL accounts for ~50% of cases, strongly 

correlates with tumor-infiltrating lymphocytes and macrophage recruitment, as well 

as with immune checkpoint activation, ultimately suggesting the potential role of 

checkpoint-inhibitors in this subset of SMZLs14. The “immune-suppressive” class of 

SMZLs mimics the signatures of the “host response” class of diffuse large B-cell 

lymphoma (DLBCL), which notably expresses high levels of molecules also observed 

in SMZL52, and frequently involves the spleen. This observation establishes a new 

link between SMZL and DLBCL in addition to the recently discovered BN2/C1 

genotype of DLBCL23,53, which shares NOTCH2 mutations with SMZL.  

We highlight the enrichment of KLF2 inactivating mutations within the 

“immune-suppressive” class of SMZL. As KLF2 is a transcription factor involved in 

regulating several immune responses, it is likely that a constitutive dysregulated 

gene-expression/epigenetic program drives immune-evasion in KLF2 mutated 

SMZLs. Deregulated transcription of lymphoma cells has already been associated 

with modifications of the tumor- microenvironment interactions resulting in immune 

cell recruitment, immune cell reprogramming, and immune evasion in other 

lymphoma types42,45,46. The precise mechanisms linking KLF2 mutations with 

reshaping of the immune microenvironment remain to be established.  

Gene expression and immune cell topography indicate that “immune-silent” 

SMZLs can be categorized as a “cold” tumor. In this setting, therapeutic strategies 

harnessing the killing power of T-cells in a TCR independent manner and redirecting 

T-cells into close proximity of target cells to form a cytolytic synapse (eg, bispecific T-

cell engagers or CAR T-cells) could be investigated. 
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Our study has some limitations. It lacks data on gene translocations and the 

extent of assessable CNA is restricted to the target regions of the sequencing assay. 

Such biases are however largely mitigated. First, our gene panel covers all the 

genomic regions implicated in recurrent CNA that were previously reported in SNP 

array studies of SMZL, including 1q, 3q, 6q, 7q, 8p, 12q, 17p, and 18q54. Second, 

contrary to DLBCL, SMZL has low genomic complexity and lacks recurrent 

translocations6,55,56. Third, no novel recurrent fusions were detected by RNA-seq. 

Fourth, mutations in MYC, BCL2 and BCL6, which are a surrogate of their 

translocations with an immunoglobulin gene partner,23 were extremely rare in the 

cohort, consistent with the knowledge that such structural variants are virtually 

absent in SMZL55,56.  

Our study was entirely based on spleen tissue samples. Currently, SMZL can 

be diagnosed without the need for splenectomy by integrating bone marrow histology 

with cell morphology and immunophenotype in the blood and bone marrow57. This 

notion prompts the question on as to how can we identify the molecular clusters and 

microenvironmental classes of SMZL with a minimally invasive approach (i.e. without 

splenectomy). The almost universal dissemination of lymphoma cells in the blood 

allows the use of “liquid biopsy” approaches for characterizing the genetics of SMZL. 

The validity of this approach is confirmed by the evidence that the molecular profile 

of circulating SMZL cells matches that of cells residing in the spleen6. Efforts to 

profile tumor-infiltrating immune cells in SMZL have inherent limitations if 

splenectomy is not performed for diagnostic or therapeutic purposes. The 

comparison of paired bone marrow and spleen histology may inform whether bone 

marrow biopsy can be used to classify SMZL according to the microenvironmental 

classes. Multi-parametric phenotyping of immune cells led to new lines of inquiry and 
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assessment of the tumor microenvironment from peripheral blood samples58,59. The 

abundance of tumor cells in SMZL in both blood and marrow also provides an 

opportunity of profiling at the same time both sides of the tumor-immune cell 

interactome.  

In summary, our multiplatform genomic analysis elucidates SMZL 

pathogenesis, and provides a conceptual edifice to advance the classification and 

development of precision therapies for SMZL. 
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FIGURE LEGENDS 

 

Figure 1. Mutation landscape of SMZL. (A) The heatmap shows genes mutated in 

≥1% of SMZL cases. In the heatmap, each row represents a gene and each column 

represents a SMZL case. The heatmap is manually clustered to emphasize 

mutational co-occurrence. The number and type of somatic mutations in any given 

gene is plotted in the histogram on the right of the heatmap. On the top of the 

heatmap are shown the cytogenetic and immunogenetic features for each SMZL 

sample. (B) The heatmap shows pairwise Pearson correlation coefficients between 

each pair of genes mutated in SMZL. Red cells indicate positive correlation, blue 

cells indicate negative correlation. (C) Pathways that are recurrently mutated in 

newly diagnosed SMZL. In the heatmap, rows correspond to genes and columns 

represent individual patients. Color coding is based on gene alteration status (gray, 

wild type; red, mutated). The heat map was manually clustered to emphasize 

mutational co-occurrence. 

 

Figure 2. Pathway-driven clustering of SMZL mutations. (A) Heatmap showing 

SMZL mutations collapsed into pathways and clustered using hierarchical clustering 

on principal components (HCPC) in the SMZL cohort. (B) Heatmap showing genes 

entering the clustering analysis. The genes are color coded according to the 

assigned cluster and ordered according to the relative enrichment in the specific 

cluster represented as a bar on the right. Only genes with mutation rate > 0.01 are 

shown). (C) The heatmap shows the enrichment of IGHV mutational status and 

recurrent CNA in the molecular clusters. Size and color intensities of the circles are 
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proportional to the prevalence of each variable in the molecular cluster. The asterisk 

shows statistical significant differences (Fisher’s exact test p <0.05) 

 

Figure 3. Biological attributes of the molecular clusters. (A) Barplot showing 

differential gene expression signature enrichment between NNK and DMT cluster. 

Statistical significance was determined using pairwise Student’s t-test on scaled 

activity score values and was <0.05 for all the genesets. (NF-κB noncanonical 

activated, p=0.004; NOTCH2 signaling, p=0.043; Apoptosis, p=0.009; p53 signaling, 

p=0.028; B-cell proliferation, p=0.014; IL6/JAK/STAT3 signaling, p=0.003. (B) The 

heatmap shows the distribution of TMA markers in NNK and DMT molecular 

clusters. A red color indicates the positivity of the marker, a white color indicates 

negativity of the markers, and grey color indicates missing data. The barplot on the 

left shows the -log10 p-value of a one-sided Fisher’s Exact test between the two 

clusters for each marker. (C) TP53, NOTCH2 and p50 expression in TMA cores from 

SMZL spleen sections.  

 

Figure 4. Resolution of the tumor microenvironment by gene expression 

analysis. (A) Heatmap of scaled activity score values related to microenvironment 

signatures. HCPC clustering reveals two major microenvironment classes (“immune-

suppressive” and “immune-silent”) in the SMZL cohort . The differential expression of 

the microenvironment signatures is also represented as density plots on the right. 

(B) Alluvial plot showing samples distribution among microenvironment classes and 

mutational clusters. (C) The heatmap shows the percentages patients mutated for 

the top mutated genes in the two microenvironment classes. Size and color 

intensities of the circles are proportional to the prevalence of each variable in the 
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microenvironment class. The asterisk shows statistical significant differences 

(Fisher’s exact test p <0.05) 

 

Figure 5. Orthogonal validations of the microenvironment composition. (A) 

Digital cytometry experiments. Gene expression data was used to infer the cell 

composition (covering 22 hematopoietic cellular populations) of spleen tissues. 

Staked barplots represent the individual cell compositions (scaled to a total of 

100%). Samples (on the x axis) are ordered according to the two major 

microenvironment classes. (B) The heatmap shows the distribution of selected TMA 

markers across the two microenvironment classes. A red color indicates the positivity 

of the marker, a white color indicates negativity of the markers, and grey color 

indicates missing data. The barplot on the left shows the -log10 p-value of a one-

sided Fisher’s Exact test between the two classes for each marker. (C) CD3 (T-cell), 

CD163 (M2 macrophages), CD21 (FDC), PD1, PDL1 expression in TMA cores from 

SMZL spleen section. (D) The heatmap shows pairwise Pearson correlation 

coefficients between TMA markers. Red cells indicate negative correlation, blue cells 

indicate positive correlation. 

 

Figure 6. Relative survival of SMZL patients. Relative survival rates are presented 

for the two major mutational clusters (A), for the two major microenvironment classes 

(B) and for all their combinations (C).  
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Table 1. Patients’ characteristics 

Female:male ratio 55.1:44.9 

Median Age 64 (IQR=17) 

Period of diagnosis   
-        < 1990 1 (0.3%) 
-        1990-1994 11 (3.6%) 
-        1995-1999 32 (10.6%) 
-        2000-2004 75 (24.8%) 
-        2005-2009 142 (46.9%) 
-        2010-2014 32 (10.6%) 
-        >2015 10 (3.3%) 
ECOG scale   
-        0-1 191 (63.0%) 
-        >1 16 (5.3%) 
-        missing 96 (31.7%) 

Ann Arbor Stage   
-        I 0 
-        II 0 
-        III 0 
-        IV 272 (89.8%) 
-        missing 31 (10.2%) 

B symptoms   
-        Yes 54 (17.8%) 
-        No 181 (59.7%) 
-        Missing  68 (22.5%) 

Extra hilar lymph node   
-        Yes 61 (20.1%) 
-        No 156 (51.5%) 
-        Missing 86 (28.4%) 

Median hemoglobin 11.6 g/dl (IQR=2.9) 
-        HPLL (< 9.5 g/dl) 41 (13.5%) 
-        ILL (< 12 g/dl) 142 (46.9%) 
-        Low (< 10 g/dl) 56 (18.5%) 
-        Missing  54 (17.8%) 

Median platelets 125 ×10
9
/l (IQR=70) 

-        Low (< 80 ×10
9
/l) 33 (10.9%) 

-        Missing  62 (20.5%) 

Median lymphocytes 3.3 ×10
9
/l (IQR=7.65) 

-        High (> 5.0 ×10
9
/l) 84 (27.7%) 

-        Normal 135 (44.6) 
-        Missing 84 (27.7%) 

Median LDH 387.5 U/l (IQR=249) 
-        High (> ULN) 87 (28.7%) 
-        Normal 113 (37.3%) 
-        Missing  103 (34.0%) 

Median albumin 40 g/l (IQR=6.0) 
-        Low (< 35 g/l) 23 (7.6%) 
-        Normal 131 (43.2%) 
-        Missing 149 (49.2%) 

Median β2-microglobulin 3.6 mg/l (IQR=2.07) 
-        High (> 2.5 mg/l) 96 (31.7%) 
-        Normal 34 (11.2%) 
-        Missing 173 (57.1%) 

HCV    
-        Positive 12 (4.0%) 
-        Negative 175 (57.7%) 
-        Missing 116 (38.3%) 

Serum monoclonal component   
-        Yes 61 (20.1%) 

- IgG  21(34.5%) 
- IgM 39 (63.9%) 
- Missing 1 (1.6%) 

-        No 138 (45.6%) 
-        Missing 104 (34.3%) 
HPLL, Hb threshold by the Splenic Marginal Zone Lymphoma Study Group (HPLL) score; IIL, Hb threshold by the Interguppo Italiano Linfomi (IIL) 
score; Extra hilar lymph nodes were regional in all cases and affected the celiac region.  
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