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The first gene profiling study of cancer-specific CD8+ T-cells demonstrates that lymphocyte dysfunction in cancer tissue
is due to multiple molecular alterations,1 similar as in “exhausted” T-cells in chronic infection.2 The data suggest novel
drug targets, and show that T-cell exhaustion is reversible and limited to anatomical sites of disease.

Until the 1990s, it was thought that clonal
deletion eliminates most cancer-specific
T-cells by negative selection in the thymus.
Indeed, mature high-affinity CD8+ T-cells
specific for self/cancer-antigens are rela-
tively infrequent. Nevertheless, one can
find large numbers of mature cancer-
specific T-cells in cancer patients, in part
with good functional avidity conferring
efficient cancer cell recognition. These
T-cells can reach high functional com-
petence, in patients treated with state-of-
the-art cancer vaccines3 or after adoptive
T-cell transfer.4 Several studies have shown
that CD8+ T-cells have the potential to
effectively destroy cancer and stroma cells.
However, in the tumor microenvironment,
cancer-specific T-cells become dysfunc-
tional, showing insufficient cytokine pro-
duction when analyzed directly ex vivo.1,5

Major research efforts are undertaken
to identify the reasons for T-cell dysfunc-
tion in cancer tissues. It has long been
discussed whether it is due to cellular
senescence, and/or resembles features
described in models of T-cell anergy or
T-cell exhaustion. Mechanisms of T-cell
dysfunction have primarily been charac-
terized in infectious diseases. As compared
with cancer-specific T-cells, virus-specific
T-cells are more frequent and more active,
allowing in depth investigations. Infection
of mice with the Armstrong strain of
the Lymphocytic Chorio-Meningitis Virus
(LCMV) causes acute viral infection, and
induces fully functional cytotoxic CD8+

T-cells that are capable of rapid virus

elimination. In contrast, infection with
LCMV clone-13 leads to chronic/protracted
infection. Here, T-cells are also activated
but rapidly become dysfunctional pre-
cluding viral clearance. T-cell dysfunction
is characterized by the progressive loss of
production capabilities, first of IL-2, then
TNFa and finally IFNc.6-8

Studying mice infected with LCMV
clone-13 facilitated the characterization
of important negative regulatory T-cell
pathways. Inhibitory lymphocyte recep-
tors (such as PD-1) play prominent roles,
but immune regulatory cells and soluble
factors are also involved (reviewed in
ref. 9). Studies in patients with infectious
diseases demonstrated that similar mecha-
nisms are responsible for T-cell dysfunc-
tion in HIV and HCV patients, providing
important insight in situations of immune
deficiency causing major pathology. These
results emphasize the need for a profound
understanding of T-cell dysfunction. In
2007, Wherry et al. published a molecular
“resource” paper presenting the results
from gene expression profiling studies of
T cells from mice infected with LCMV
clone-13.2 This data provided a molecular
“exhaustion profile” and showed that
T-cell exhaustion has numerous charac-
teristics, beyond deficient effector functions
and enhanced expression of inhibitory
lymphocyte receptors. Indeed, exhausted
virus-specific T cells show multiple mole-
cular alterations, affecting genes regulating
chemotaxis, adhesion, co-receptors, migra-
tion, metabolism and energy household.

Until recently, much less was known
about mechanisms of cancer-specific
T-cell dysfunction. In order to obtain
comprehensive insight in T cells from
cancer patients, we performed gene expres-
sion profiling of antigen-specific T cells
directly ex vivo.1 Previously, we had
validated an approach for gene expression
profiling of low numbers of sorted human
T cells. Good reproducibility of micro-
array data was obtained with numbers as
low as 100 to 1000 lymphocytes. With
this technique, we sorted 1000 antigen-
specific T-cells per sample, directly ex
vivo, from 19 melanoma patients and
four healthy donors. In parallel to cancer-
antigen (Melan-A/MART-1) specific
T cells, we analyzed T cells specific for
two herpes viruses (Epstein-Barr Virus
and Cytomegalovirus), and naïve CD8+

T cells for comparison. These T cells
were isolated from peripheral blood, after
vaccination of patients with Melan-A
peptide and CpG-oligodeoxynucleotides.
In addition, we recovered large T-cell
numbers directly ex vivo from melanoma
metastases (i.e., from tumor-infiltrated
lymph nodes), enabling the analysis of
cancer-specific T cells from the tumor
microenvironment. As expected, cluster
analysis of molecular data revealed that
gene expression differences between naïve
T cells and antigen experienced T cells
were much larger than between antigen
experienced T cells specific for viral vs.
cancer antigens. More importantly, clus-
tering was “clean” (i.e., with complete
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segregations) also for the T-cell popula-
tions specific for cancer vs. viral antigens,
and of cancer-specific T cells from peri-
pheral blood vs. metastases. These results
were remarkable, given the high genetic
heterogeneity in humans.

In cancer-specific T cells from blood vs.
metastases, we found differential expres-
sion of 332 genes.1 Detailed comparative
analysis with the microarray data from
mice infected with LCMV clone-13 virus
showed that the gene set described for
exhausted murine T cells2 was significantly
enriched in cancer-specific T cells from
metastases from melanoma patients. Our
data represent the first comprehensive
molecular characterization of functional
T-cell impairment in cancer tissue of
any species, and provide mechanistic
explanation for T-cell immune deficiency
in cancer. Moreover, the similarity to a
well-defined animal model offers new
opportunities to identify essential path-
ways and novel drug target candidates.

While the gene expression profile of
metastases derived cancer-specific T-cells
was characteristic for exhaustion, there
was only insignificant overlap with what
was found in models of T-cell anergy or
cellular senescence.1 Furthermore, the data
are compatible with previous findings
showing that loss of cancer-specific T-cell
clonotypes was rare in melanoma patients,
and occurred due to passive attrition
(competition) rather than active attrition
(cellular senescence).10

Exhaustion of cancer-specific T cells
seems largely reversible.1,5 Very interest-
ingly, it occurs primarily in metastases,
whereas cancer-specific T cells in circula-
tion become fully functional after appro-
priate immunotherapy,3 demonstrating
a striking co-existence of “unfit” and
“fit” T cells in the same patient (Fig. 1).
These findings further support the
notion that powerful vaccination can
mobilize T cells up to the level where
they become clinically useful for cancer
patients. At present, developing efficient

T-cell vaccines still remains a great
challenge. Most clinically available vac-
cines activate T cells much less efficiently
than natural infection or the rare live
replicating vaccines (essentially smallpox
and yellow fever vaccines). Recently,
we and others found that novel formula-
tions of synthetic vaccines can overcome
this deficit. For example, vaccines with
antigen and CpG-oligodeoxynucleotides
are capable of inducing CD8+ T-cell
responses with similar properties as pro-
tective virus-specific T cells. Preliminary
data suggest that these T-cells may be
clinically beneficial for melanoma
patients.3

Strong T-cell inhibition is conferred by
the inhibitory receptor CTLA-4, but there
are conflicting data with regard to the
role of CTLA-4 in T-cell exhaustion.9

Nevertheless, the recent clinical success
and FDA/EMA approval of treating
melanoma patients with anti-CTLA-4
blocking antibody emphasizes the high
potential of T-cell based cancer therapy.
Unfortunately, patients with metastatic
disease frequently become therapy-resist-
ant, calling for better understanding and
more efficient treatments. Public availabi-
lity of basic and clinical data, and intense
bio-medical research and development
will enhance and accelerate innovation.

Figure 1. Functional competence vs. deficiency of virus- and cancer-specific CD8+ T cells. Once
naive T-cells are activated, most of their progeny become protective effector T cells, such as in mice
acutely infected with LCMV Armstrong strain, or humans infected with cytomegalovirus (CMV).
Cancer (Melan-A/MART-1)-specific T cells induced by vaccination or after adoptive T-cell transfer
can also become fully functional effector cells in peripheral blood, much like CMV-specific T cells.
In chronic infection such as in mice infected with LCMV clone-13, T cells are functionally impaired
(“exhausted”). Cancer-specific T cells from metastases show a similar exhaustion profile,
with numerous molecular alterations of multiple cellular systems, resulting in impairment of T-cell
function and local immune deficiency.
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