
 
 
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
 

Year : 2020 

 

 
Converted wave tomography: Developing a new inversion 

method for 3-D crustal shear wave velocities, with application 
to the Central Alps 

 
Colavitti Leonardo 

 
 
 
 
 
 
Colavitti Leonardo, 2020, Converted wave tomography: Developing a new inversion 
method for 3-D crustal shear wave velocities, with application to the Central Alps 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_FE83A10B9F0B0 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�


 
 

CONVERTED WAVE TOMOGRAPHY: 
DEVELOPING A NEW INVERSION METHOD FOR 

3-D CRUSTAL SHEAR WAVE VELOCITIES, 
WITH APPLICATION TO THE CENTRAL ALPS 

	

	

	

Thesis for the degree of Doctor of Philosophy 

 
presented by  

 

LEONARDO COLAVITTI 
 
 

Defence on 26 June 2020 in the presence of the jury composed of  

 

 

 
 

Mr.  György HETÉNYI  University of Lausanne  Thesis supervisor 

Mrs. Christel TIBERI  University of Montpellier  External expert 

Mr.  Tobias DIEHL  Swiss Seismological Service External expert 

Mr.  James IRVING  University of Lausanne  Internal expert 

Mr.  Jean-Luc EPARD  University of Lausanne  President 
 

 

 



 



Alla mia famiglia/To my family



Abstract

Passive seismological investigations typically image the Earth’s crust with direct P-waves or

ambient noise correlation yielding S-wave information. While the first method requires local

earthquakes to achieve high resolution, in the second method the depth penetration strongly

depends on the recording network’s aperture.

In this thesis I develop a new inversion method and implement the related software in

which teleseismic P-to-S converted waves (receiver functions) are exploited to construct a fully

3-D structural and shear-wave velocity model of the crust. This method does not require

local earthquakes, nor a large aperture seismic network, but a dense array of 3-component

sensors with a station spacing similar to the expected crustal thickness. This new technique

is first applied to the Central Alps, a tectonically complex area where imaging in 3-D is of

pivotal interest.

The new method is composed of the following main elements. (1) An accurate ray prop-

agator, which respects Snell’s law in 3-D at any interface geometry, and allows P-to-S con-

verted ray-paths to reach the recording station at <0.1 km accuracy. (2) A new model

parameterization, with horizontally fixed but vertically flexible-position nodes, and layer-

wise two velocity points defined to accommodate mapping both sharp discontinuities and

gradients across layers. (3) A stochastic inversion procedure, combining simulated annealing

and a pattern search algorithm, to find discontinuity depths and velocities across the crust

by fitting grouped converted waves with synthetics. This inversion is performed locally for

each point and its neighbours; it covers the entire study area step-wise with an overlap and

at least two iterations.

The application to the Central Alps uses 20 years of high-quality data from permanent

broad-band stations and from the temporary AlpArray Seismic Network. The initial model

includes a Moho depth map and a 3-D P wave velocity model derived from past investigations.

The 3-D inversion results at 25 km horizontal resolution provide a series of maps and cross-

sections. The crustal thickness generally reflects well the roots of the Alpine orogen, and its

jump between the European and Adriatic plates, including the Ivrea Geophysical Body. The

lower crustal thickness is less well resolved, yet appears fairly constant. Average crustal Vp/Vs
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ratios are relatively higher beneath the orogen. A low-Vp/Vs area in the European foreland

correlates with lower crustal earthquakes, which we interpret as mechanical differences in

rock properties, most likely inherited.

Our results are generally similar to those found by 3-D ambient noise tomography in the

area. The new method inherently performs better at localizing discontinuities, and less well

at imaging bulk anomalies. Thanks to sub-vertically propagating rays, our method maps the

full crustal structure across the entire area of a seismic network. Future developments can

incorporate joint inversions with gravity or other seismological tomography methods.



Résumé

La sismologie passive image la croûte terrestre typiquement par des ondes P directes ou des

ondes S basées sur la corrélation du bruit ambiant. Si la première méthode requiert des

séismes locaux pour une imagerie haute résolution, la deuxième méthode est limitée dans sa

pénétration en profondeur par l’ouverture du réseau enregistrant des signaux.

Dans cette thèse je développe une nouvelle méthode d’inversion et j’implémente le logiciel

correspondant pour exploiter des ondes converties P-en-S (fonctions récepteurs) pour con-

struire un modèle 3-D structural et de vitesse d’onde S de la croûte. Cette méthode requiert

ni séisme local, ni une grande ouverture du réseau, mais un déploiement dense de capteurs

3-composantes à un espacement comparable à l’épaisseur attendue de la croûte. La pre-

mière application de cette nouvelle technique se focalise sur les Alpes Centrales, une région

tectonique complexe où l’imagerie 3-D est un but important.

La nouvelle méthode se compose des éléments principaux suivants. (1) Un propagateur de

rai exact, qui respecte la loi de Snell en 3-D à une géométrie d’interface quelconque, et permet

aux rais convertis P-en-S d’arriver à <0.1 km de la station. (2) Un nouveau paramétrage

de modèle, avec des nœuds horizontalement fixes mais verticalement flexibles, et deux points

de définition des vitesses par couche pour permettre à la fois l’imagerie des discontinuités et

celle des gradients dans les couches. (3) Une procédure d’inversion stochastique, combinant

recuit simulé et un recherche de motifs, pour trouver la profondeur des discontinuités et des

vitesses à travers la croûte en ajustant des synthétiques à des groupes d’ondes converties.

Cette inversion est appliquée localement à chaque point et ses voisins, la procédure couvre

toute la zone d’étude pas-à-pas avec un recouvrement et au moins deux itérations.

L’application aux Alpes Centrales utilise des données de haute qualité enregistrées sur

plus de 20 ans par des stations large-bandes permanentes et par le du réseau temporaire du

projet AlpArray. Le modèle initial inclut une carte de profondeur du Moho et un modèle

3-D en vitesse d’onde P d’études précédentes. Le résultat de l’inversion 3-D, à une résolution

horizontale de 25 km, inclut une série de cartes et de profils. L’épaisseur de la croûte reflète

bien la racine de l’orogène alpin, et le saut entre les plaques européenne et adriatique, y

compris le corps d’Ivrée. L’épaisseur de la croûte inférieure est moins bien résolue mais
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paraît relativement constante. Le rapport Vp/Vs moyenne de la croûte est relativement plus

élevé sous la chaîne. Une zone de Vp/Vs faible dans l’avant-pays européen coïncide avec des

séismes dans la croûte inférieure, ce que nous interprétons comme une différence dans les

propriétés mécaniques des roches, probablement héritée.

Nos résultats sont généralement similaires à ceux trouvés par tomographie 3-D du bruit

ambiant dans la région. La nouvelle méthode est plus performante à localiser des discontinu-

ités, et moins bien pour l’imagerie des anomalies volumétriques. Grâce aux rais sub-verticaux,

notre méthode image la structure de toute la croûte sous l’ensemble du réseau sismologique.

Des développements futurs peuvent inclure des inversions conjointes avec la gravimétrie ou

d’autres types de tomographies sismologiques.



Riassunto

In genere le indagini sismologiche di tipo passivo permettono di ottenere una immagine

della crosta terrestre attraverso l’arrivo delle onde P dirette oppure mediante la correlazione

del rumore ambientale da onde S. Mentre il primo metodo richiede l’utilizzo di terremoti

locali per garantire un’alta risoluzione, nel secondo metodo la profondità di indagine dipende

fortemente da quella che è l’apertura della rete sismica.

In questa tesi ho sviluppato un nuovo metodo di inversione ed il software associato dove

le onde convertite da P ad S (funzione ricevitore) registrate da telesismi vengono utilizzate

per la costruzione di un modello tridimensionale della crosta e delle onde di taglio. Questo

metodo non richiede né l’utilizzo di terremoti locali, né una grande apertura di rete sismica,

ma un denso sistema di sensori sismici a 3 componenti con uno spazio simile a quello dello

spessore crostale atteso. Questa tecnica innovativa è stata applicata in primo luogo alle Alpi

Centrali, un’area complessa dal punto di vista tettonico dove l’immagine 3-D del sottosuolo

è di fondamentale interesse.

Il nuovo metodo si compone dei seguenti elementi principali. (1) Un propagatore di raggi

accurato, che rispetta la legge di Snell in 3-D per ciascuna geometria di interfaccia, e permette

ai percorsi dei raggi di onde convertite da P ad S di raggiungere la stazione corrispondente

con una precisone <0.1 km. (2) Una nuova parametrizzazione del modello, con una posizione

dei nodi fissata orizzontalmente ma variabile verticalmente, e 2 valori di velocità definite per

ciascun strato mappando sia discontinuità nette sia gradienti di velocità attraverso gli strati.

(3) Una procedura di inversione di tipo stocastico, che coniuga un processo di ricottura sim-

ulata ed un algoritmo di ricerca par affinare la soluzione, allo scopo di scoprire le profondità

delle discontinuità e le velocità della crosta attraverso una corrispondenza tra i dati osservati

delle onde convertite con quelli sintetici. L’inversione viene eseguita per ciascun nodo del

modello e per i suoi vicini; in questo modo l’area di studio viene via via coperta con una

sovrapposizione di almeno due iterazioni.

L’applicazione alle Alpi Centrali utilizza 20 anni di dati sismici ad alta qualità ottenuta sia

da stazioni sismiche permanenti a banda larga sia da stazioni temporanee relative al progetto

AlpArray. Il modello iniziale comprende una mappa della Moho ed un modello di velocità 3-D
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di onde P ottenuto da precedenti studi. I risultati della nostra inversione 3-D con risoluzione

orizzontale di 25 km forniscono una serie di mappe e di profili verticali. In generale lo

spessore crostale riflette bene quelle che sono le radici della catena alpina, ed i relativi balzi

in profondità della placca Europea e di quella Adriatica, compreso il corpo di Ivrea. La

struttura della crosta inferiore non è così ben definita, anche se sembra essere abbastanza

costante. Il valore Vp/Vs mediato sull’intera crosta risulta essere relativamente più alto

al di sotto dell’arco alpino. Una zona con valori di Vp/Vs bassi nell’avampaese europeo

coincide con i terremoti avvenuti nella crosta profonda: ciò può essere interpretato come una

differenza del comportamento meccanico nelle proprietà delle rocce, molto probabilmente

eredita da processi preesistenti.

I nostri risultati sono in generale simili a quelli trovati da un altro studio 3-D di tomografia

sismica da rumore ambientale condotto nell’area in esame. Per sua stessa natura, il nuovo

metodo è più sensibile all’individuazione delle discontinuità, mentre risolve meno bene le

anomalie di velocità. Grazie ai raggi pressoché sub-verticali, la nostra tecnica ci consente

di mappare l’intera struttura della crosta lungo tutta l’area interessata dalla rete sismica.

Sviluppi futuri potranno incorporare metodi di inversione combinando studi di gravità o

altre tecniche di tomografia sismica.
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Motivation

The goal of this work is to develop a new seismological tool to construct a fully 3-D shear-wave

velocity model of the Earth’s crust. The approach I implement is an inversion method based

on seismic waves from remote natural earthquakes that convert from compressional (P) to

shear (S) waves at the base of the crust. In this introductory part, I focus on the importance

of a consistent 3-D model of the Earth’s interior, on the role of S-waves in geophysics, and

why this new technique is first applied on the Central Alps.

Three-dimensional models are very important and significant in all branches of Earth

Sciences because geological structures can be very complicated, especially in subduction zones

or in orogenic contexts. While it is needless to say that such structures are 3-D in reality,

geoscientists are often constrained to build 1-D or 2-D models due to the lack of sufficient

information regarding the Earth interior exploration, or decide do to so to simplify the under-

standing of a system. Yet, scientists have been building 3-D geological models of the Earth

for over a century: the first models were conceived as tools to analyze and communicate the

geometric shapes of subsurface geological features (Barringer, 1892; Cadman, 1927). At the

same time, physical models were still being designed at the dawn of the digital era (Anstey,

1976). Once digital 3-D geological modelling took over from its physical predecessors, their

usefulness expanded from the challenging task of 3-D geological visualization (Tipper, 1976),

providing inputs for geophysical inversion schemes as well (Cordell and Henderson, 1968).

Therefore, to feed such models and inversions with field data, whether they are collected

in 1-D, 2-D, 3-D or 4-D manners, the need to step away from simplified representations of

the Earth’s interior and to build realistic 3-D spatial models increased. This was followed by

improvements in 3-D modelling software and a reduction in their complexity and cost, so that

this technology became widely accessible to the Earth science community. Following from

the field of exploration geophysics, 3-D models are also more and more common in academic

research, and, when sufficient data are available, 3-D imaging is the best approach to pursue.
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Focusing on shear (S) waves is the other significant point of great importance in this

work. Shear-waves are often put in the second line after P waves as they are most difficult

to detect or pick on a seismogram or trace, they do not travel in liquids, are more difficult

to generate in active surveys, and may even split due to material birefringence in anisotropic

media which further complicates their use. Nevertheless, because S waves depend only on one

of the Lamé parameters (the shear modulus µ) and P-waves depend on both Lamé constant

(on µ and also on λ), the shear-waves carry complementary information with respect to

P-wave alone and therefore give us a better idea of lithologies in a study area. Shear-

waves exhibit different sensitivity to fluid content, partial melt and anisotropy, which can

be connected to various geological processes occurring in sedimentary basins and in the

lithosphere. The correlation between seismic waves’ velocity and density have commonly

been measured in the laboratory on real rock samples, which allows to infer the subsurface

geometry of geological units and the bulk physical and chemical properties of the Earth’s

crust (Christensen and Mooney, 1995; Christensen, 1996; Brocher, 2005). Both structures

and properties play a role in fundamental and applied research, ranging from geodynamics to

earthquake hazard assessment (site effects) and geothermal exploration. The links between

P wave velocities, S wave velocities and densities continue to be investigated, as they reveal

interesting and useful correlations with lithology, such as the example shown on the figure

below between Vp and Vs (Brocher, 2005). Shear-waves have already been used in exploration

geophysics (Tatham and Stewart, 1993) and also in academic research (see section 1.3.4

and 1.3.5), nevertheless I consider they are underused compared to their potential and that

therefore, further efforts to exploit S-waves should be done.
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Vs as a function of Vp for common lithologies (from Brocher, 2005). Solid circles represent samples from
Northern and Central California; unfilled circles represent other samples. Largest sizes represent averages of
individual laboratory measurements, intermediate sizes show individual laboratory measurements, small sizes
correspond to individual borehole measurements, and the smallest sizes correspond to USGS 30-m VsPs.

The application of my newly developed approach in the Central Alps is both a challenge

and comes in a suitable context. The challenge is that the Alpine domain constitutes a very

complex zone from a geological and structural point of view, and the imaging of dipping

structures at depth is not straightforward. Numerous active and passive geophysical studies

have been conducted in the past to explore the Alps. The currently most common techniques

to achieve 3-D models are local earthquake tomography (LET), which requires local sources

that are well distributed as well as a robust S-wave picker, and the ambient noise tomography

(ANT), which requires a large aperture seismic network. Further details and examples are

described in Chapter 1. While the P-wave velocity model from LET will serve as an impor-

tant base for this study, here I aim at developing a 3-D S-wave velocity model across the

entire depth range of the crust beneath a seismic array, which is the suitable context of this

thesis. Beyond 20 years of high-quality data from permanent seismic broad-band stations,

the AlpArray Seismic Network (Hetényi et al., 2018b) provides the needed coverage over the

entire study area to implement and test the new inversion approach. This method differs

from ANT and LET in that the exploited ray paths are closer to vertical and allow mapping

the full crustal thickness beneath the array, without using local earthquakes, but simply a

sufficiently dense array of 3-component seismometers.



Chapter 1

Geological framework of the Alps

The geology of the Alps has been studied for over 200 years, during which a large amount

of knowledge and information became available including geological maps, cross-sections and

geophysical investigations. All these studies provide a unique natural laboratory to improve

our understanding of orogenesis and its relationship to present and past crust dynamics.

In this chapter I summarize the evolution of the Alps, focusing in particular on the genesis

of the orogen, then on the structural framework and finally describing some of the existing

geophysical studies. Regarding the geophysical investigations, I emphasize those conducted

with passive methods, including receiver function studies and tomographic investigations

since the main purpose of this work is to develop a new method to build a 3-D shear-wave

velocity model of the crust with converted wave tomography.

18



CHAPTER 1. GEOLOGICAL FRAMEWORK OF THE ALPS 19

1.1 Geological evolution

The Alps represent a collisional belt generated by the Cretaceous to present convergence of

the Adriatic continental plate and a subducting plate including the Mesozoic Ocean and the

European passive continental margin. The Alpine orogeny began in the eastern Austroalpine

domain and involved the entire Tethys Ocean1, gradually progressing from internal to external

domains (Festa et al., 2019).

In the period between Late Triassic and Early Jurassic (200-175 Ma), the Tethys Ocean

started to form between North America and Eurasia from one side and Africa and South

America from the other side (Figure 1.1.1). The oceanic crust formed in this process the

Piemont-Liguria Ocean, which is a part of the Tethys Ocean. At that time, a promontory

of continental crust of the African plate called Adria plate was involved in subdividing the

Tethys and in early Alps formation.

Figure 1.1.1: (B) Onset of the continental break-up (dotted blue lines) at Late Triassic, showing its close

relation with the strike-slip faults inherited from the Early Permian tectonics (dashed red lines). (C) Location

of the active rifting of the future Alpine Tethys and continental crust thinning at Early Jurassic (images

modified from Stampfli et al., 2002; Schettino and Turco, 2011).

When the Atlantic Ocean formed between Africa and South America (about 140 Ma),

Africa started moving northeast. During the Cretaceous, a first continental collision took

place as the northern part of the Adriatic plate collided with Europe in a phase that is

known as Eo-Alpine phase. The Alpine orogen formed during a long process of convergence

and collision between the European and Adria continental domains during Mesozoic and

Cenozoic times (Le Pichon et al., 1988; Dewey et al., 1989; Escher and Beaumont, 1997) and

is represented in Figure 1.1.2.

1The Tethys Ocean was an ocean originated during the Mesozoic Era between the ancient continents of
Gondwana and Laurasia, before the opening of the Atlantic Ocean, during the Cretaceous Period.
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When the Piemont-Liguria Ocean had completely subducted beneath the Adriatic plate

in the Paleocene, the Briançonnais microcontinent, arrived at the subduction zone. This

material later became the Penninic nappes2, but a large part of the Briançonnais terrains

subducted into the mantle and were lost. Meanwhile, the upper crust of the Adriatic plate

was thrusted over the European crust and this is known as the main collisional phase in the

Alps formation.

Figure 1.1.2: Paleogeographic reconstruction of the Western Mediterranean zone at 131 Ma, 94 Ma, 35 Ma

and 20 Ma (from Bousquet et al., 2012b).

When the subducting slab broke off, the crust started moving up and led to the uplift of

the thickened continental crust that evolved to extension. For the Alps, this extension could

only occur in a West-East direction because the Adriatic plate was still converging from the

South and a huge thrust zone evolved that would later become the Periadriatic Line3. With

the exception of Austroalpine material, this thrust evolved at the boundary of the Adriatic

and European plates while the central zones of the Alps rose and were subsequently eroded,

with the formation of the High Tauern window (for details see Stampfli and Borel, 2004).

2In geology, a nappe is a large body of rock that has been moved more than 2 or 5 km above a thrust
fault from its original position. These formations are characteristic in compressional tectonic settings like
continental collision zones or on the overriding plate in subduction zones.

3The Adriatic plate is thought to still move independently of the Eurasian Plate in NNE direction with
a small component of counter-clockwise rotation (Devoti et al., 2002). The fault zone that separates the
Adriatic and Eurasian plate is the Periadriatic Line, that runs through the Alps.
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1.2 Tectonic framework and geological division

From a geographic point of view, the Alps span from the Gulf of Genoa to Vienna, through

the French-Italian Western Alpine arc and the East-West-oriented Central and Eastern Alps.

At the South of Genoa, the Alpine range disappears, because it collapsed and was fragmented

during the Late Neogene opening of the Tyrrenian basin, even if some segments of the Alpine

belt are preserved in Corsica and Calabria (Dal Piaz et al., 2003). For more details about

regional investigations for each country, see Michard et al. (1996) and Dal Piaz (1999) for the

French-Italian Alps, Trumpy (1980)for Switzerland, Plöchinger (1995) and Neubauer (2000)

for Austria, Castellarin et al. (1992)for Southern Alps.

From a geological point of view, the Alps are often divided into Eastern, Central and

Western, even if these subdivisions are rather arbitrary (Figure 1.2.1). The division between

the Eastern and Central Alps is approximately the line between St. Margrethen, Chur

and Sondrio, while the division between the Central and Western Alps remains still unclear

(Pfiffner, 2014).

Figure 1.2.1: Simplified tectonic map of the Alps and surrounding areas showing the major tectonic features

and faults, modified from Schmid et al. (2004) and Bousquet et al. (2012a). Geographic subdivision of the Alps:

WA – Western Alps, CA – Central Alps, EA – Eastern Alps, SA – Southern Alps. Tectonic plates/blocks:

EU – Eurasia, ADR – Adria, LIG – Liguria, PAN – Pannonia, CS – Corso-Sardinia. Basins: LP – Liguro-

Provençal, TS – Tyrrhenian, PO – Po, VF – Venetian-Friuli, MB – Molasse, PB – Pannonian, SB –

Styrian, VB – Vienna. Graben: RBG – Rhône-Bresse, RHG – Rhine. Mountains and mountain belts: AP

– Apennines, PY – Pyrenees, DI – Dinarides, JM – Jura, MC – Massif Central. Label pr identifies the

Periadriatic Line.

In Figure 1.2.2 I show a tectonic map of the Central Alps, which is the focus area of our

investigation with seismological tools to map the 3-D structure of the crust.
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Figure 1.2.2: Tectonic map of the Central Alps. For the color legend of different units, see Bousquet et al.

(2012b).

The main strike-slip Fault in the Alps is the Periadriatic Line that runs through the

Alps from East to West. This represents the boundary between materials from the former

European and Adriatic plates; at the South of this line we can find folded and thrusted units

of the Southern Alps. North of the Periadriatic Line, rocks from three main paleogeographic

“domains” are found: the Helvetic or Dauphinois, the Penninic and the Austroalpine domains.

This subdivision is made according to rocks origin’s: the Helvetic Zone contains mate-

rial from the European plate, the Austroalpine Zone material from the Adriatic plate, the

Penninic Zone material from the domains that existed in between the two plates.

1.2.1 The Austroalpine thrust units

The Austroalpine is subdivided into two sectors, based on contrasting distribution, structural

position and main deformation age: western and eastern. The western Austroalpine consists

of the Sesia-Lanzo zone where the units are partly interleaved with the ophiolitic Piedmont

zone, which as mentioned above, represents the major remnant of the Mesozoic Ocean. The

eastern Austroalpine is a thick pile of cover and basement nappes which goes from the Swiss-

Austrian border to the Pannonian Basin.
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1.2.2 The Penninic zone

The Penninic is the classical name used to group the continental and oceanic nappes is-

sued from the distal European continental margin and the Mesozoic Ocean, belonging to

the subducting lower plate. The Penninic zone contains high-grade metamorphic rocks of

different paleogeographic origins; these lithologies were deposited as sediments on the crust

that existed between the European and Apulian plates before the Alps were formed.

1.2.3 The Helvetic-Dauphinois zone

The Helvetic and Dauphinois zone in the French part consists of crystalline duplexes4,

sedimentary cover units, and nappes. This domain was strongly deformed from the Late

Oligocene onwards, when the orogeny propagated onto the proximal European margin. In

this specific zone, rift faults were largely reactivated and inverted. Basement and cover units

were accreted in front of the exhumed Austroalpine-Penninic collisional wedge.

1.2.4 The Southern Alps

The Southern Alps are the typical example of a deformed passive continental margin in a

mountain range (Bertotti et al., 1993). From the Neogene, the South Alpine thrust-and-fold

belt developed and progressively propagated towards the Adriatic foreland, mainly reactivat-

ing Mesozoic extensional faults (Castellarin et al., 1992). The crystalline basement includes

various kinds of Variscan metamorphic rocks derived from sedimentary and igneous pro-

toliths, later intruded by igneous bodies of Permian age, among them there the famous Ivrea

gabbro batholith, which was emplaced at the base of a gneissic crust.

4In structural geology, a duplex is a system of thrusts that branch off from a single fault below and merge
with a thrust fault above. Duplexes form stacks of thrust-bounded rock bodies, which are bounded by roof
and floor thrusts.



CHAPTER 1. GEOLOGICAL FRAMEWORK OF THE ALPS 24

1.3 Geophysical studies in the Alps

The final goal of my work is to develop a new method where teleseismic P-to-S converted

waves are used to map and construct a fully 3-D shear-wave velocity model of the crust. The

method differs from ambient noise tomography and local earthquake tomography in its ray-

paths being closer to vertical. In this section, I summarize the most important investigations

performed in the Alps in recent years, considering both active and passive seismic studies

(RFs, tomographic investigations), Moho map information and gravity studies, taking into

account that some of these contributions will be used as the input of the initial model.

1.3.1 Active geophysical investigations

Most of our knowledge of the Alpine crust comes from active studies, through several controlled-

source seismic campaigns (CSS ). For a general overview of these active investigations, I refer

to the work of Prodehl and Mooney (2012). The earliest seismic observations were performed

by Reich (1952) and a first campaign was done in the zone of the Western Alps by Coron

et al. (1963), followed in the seventies by the ALP75 (Miller et al., 1976).
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Figure 1.3.1: Location of some temporary seismological projects in the Alpine area (from Hetényi et al.,

2018a). Active seismic campaigns are shown as solid lines. Past passive seismological networks are shown

as symbols (broadband: large triangles, short period: small circles, mixed: small triangles). AlpArray com-

plementary experiments are shown as squares.

Thanks to international collaboration, a lot of seismic studies were performed the last

thirty years like the the French-Italian Étude Continentale et Oceanique par Reflexion et

Refraction Simique or Progetto Strategico Crosta Profonda ECORS-CROP (Nicolas et al.,

1990; Thouvenot et al., 1990), the European Geotraverse EGT (Blundell et al., 1992), the

Swiss National Research Project 20 Pfiffner et al. (1997), the ALP2002 (Brückl and Bleibin-

haus, 2003) and the East-Alpine Reflection Seismic Traverse TRANSALP (Kummerow et al.,

2004). Some of these investigations are listed in Figure 1.3.1.
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1.3.2 Moho depth map

The Mohorovičić discontinuity, named after the pioneering Croatian seismologist Andrija

Mohorovičić and commonly referred as the Moho, represent the boundary between the Earth’s

crust and the mantle. It is defined by the distinct change in velocity of seismological waves

as they pass through changing densities of rock (Rudnick and Gao, 2003)5.

The depth to the crust-mantle boundary in the Alpine region has been estimated by

different seismic methods, which leads to a large set of published Moho map models in the

Alpine region (e.g. Waldhauser et al., 1998; Stehly et al., 2009; Di Stefano et al., 2011; Spada

et al., 2013; Molinari et al., 2015). Figure 1.3.2 shows a comprehensive compilation definition

of the Moho depth with information about the uncertainties from the Alpine-Mediterranean

region from the work of Spada et al. (2013), who proposed to combine in a quantitative way

Controlled Source Seismology (CSS), Local Earthquake Tomography (LET) and Receiver

Functions (RF) data.

5The Mohorovičić discontinuity was first identified in 1909 by Andria Mohorovičić, when he observed that
seismograms from shallow-focus earthquakes had 2 sets of P and S waves, one that followed a direct path
near the Earth’s surface and the other refracted by a high-velocity medium (McLeish, 1992).
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Figure 1.3.2: On the left, map describing the Moho topography for the European, Adriatic and Ligurian

plates. Transparent areas denote regions of reduced reliability of interpolation results due to the presence of no

reliable Moho data. On the right, CSS and RF Moho information for the three plates including their relative

uncertainties used for the interpolation of the Moho map. Circles refer to CSS, triangles refer to high-quality

RF and squares refer to RF where 2 Mohos are identified (figure from Spada et al., 2013).

The European Moho shows a typical thickness of a continental crust in the northern

Alpine foreland (around 32 km) and a dipping Moho toward South-East in the Central Alps

and toward South in the Eastern Alps. The deepest values with more than 55 km are observed

in the central Alps along the southern plate boundaries, while in the Eastern Alps, CSS and

RF information show a smoothly shallowing European Moho toward east from about 50 km

beneath the Tauern window. Along the Western and Central Alps, the European Moho

descends beneath the Ivrea body and the Adriatic Moho. The Ligurian plate is characterized

by different kind of lithospheres in different stages of evolution from North to South and from

West to East in the Ligurian Sea.

In the region of the Adriatic Sea, as in the European Moho, we find a typical depth of

the continental crust for the Adriatic Moho (around 32 km). In the continental region, the

Adriatic Moho is dipping towards the plate boundary with Liguria. Greater depths (∼48 km)

at the plate boundary characterize the northern Apennines and the Calabrian Arc, while in

the centre part of the Apennines we observe a maximum of about 40 km. In the north, the

Adriatic Moho smoothly dips from a typical young continental depth (∼32 km) along the
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axis of the Po plain to 40 km and more in the southern Alps.

On the West side, along the Europe-Adria plate boundary, the Adriatic Moho marks the

top of Ivrea body, that in some places is located at depths less than 12 km.

The Moho uncertainties in the Spada et al. (2013) model is defined taking into account

Fresnel volume and sampling geometries, following a new quality weighting scheme based

on uncertainty of RF data, specifically designed to match the criteria in Waldhauser et al.

(1998) for the CSS information. In order to provide an approximate quantitative description

of the uncertainties of RF results, they divide, based on quality criteria, the data sets into

four different classes from 0 (top) to 3 (not to be used), and two special (4 and 2M) for

additional information.

The top Class 0 includes a clear identification of the Ps (Moho) phase, a very high back-

azimuth coverage (greater than 180°) and an uncertainty of ±3 km, class 1 with an azimuthal

coverage between 150° and 180° with a less clear identification and an uncertainty of ±6 km,

class 2 with a back-azimuth coverage between 90 and 150° with an uncertainty of ±10 km

and class 3 includes the rejected stations with poorly identifiable Moho and back-azimuth

coverage ≤ 90°. The two special classes include all stations with Moho signals that show the

presence of specify additional interfaces.

The resulting Moho map denotes the simplest smoothest topography with the least num-

ber of separate interfaces that fits all available CSS and RF data within their respective

individual uncertainty limits.

1.3.3 Receiver function studies

The receiver function (RF) technique is a way to image the inner structure of the Earth and

its internal discontinuities by using the information from teleseismic earthquakes recorded

at a three-component seismograph. A teleseismic P-wave will generate P-to-S conversions

at boundaries, such as the Moho (crust-mantle boundary), beneath the seismograph; the

difference in travel time between the generated S-wave and P-wave contains informations

about the depth to the boundary and regarding the P- and S- wave velocities. If further

reverberations are included more detailed structure can be resolved (Vinnik, 1977). For

details about the Receiver Function method, see Chapter 2.

Recently in the Alpine context, investigations with RFs in Eastern Alps and Pannonian

Basin took place (Bianchi and Bokelmann, 2014; Kalmár et al., 2018). In the Western Alps

the most important study performed so far with the RF method is the work of Lombardi

et al. (2008) based on permanent stations. The goal was to establish a well-constrained

Moho depth and crustal Poisson’s ratios based on the H − κ technique (Zhu and Kanamori,

2000). In this work, the receiver functions image a gently southeast dipping European Moho
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beneath the northern Alpine foreland (depth ≤ 40 km). The dip increases from 5-10° to

about 15° towards the suture zone where the Moho depth reaches a maximum value around

55 km. South of the Periadriatic Line, the Adriatic Moho reaches a depth around 40-45 km

possibly dipping N-NE. Main results in terms of Moho depth in the Western part of the Alps

are shown in the Figure 1.3.3.

Figure 1.3.3: Moho depth variation in the Western–Central Alps. Reverse triangles represent Moho depth

from H − κ technique, squares depth from Ps times and
Vp

Vs

= 1.75. Stations without reliably identifiable Ps

phase are shown as open circles: the symbols overlay Moho depth isolines and high-quality seismic profiles

(dotted lines) with associated uncertainties smaller a 5 km from a CSS based model (from Lombardi et al.,

2008).

Regarding Poisson’s ratios, units in the Alpine foreland show a normal value near 0.25,

the Helvetic nappes and Southern Alps have a lower average ratio of 0.22, which the authors

attribute to upper-crustal thickening, while low ratios are in the southern Western Alps,

compared to sites in the north, imply a discontinuity of the deep crustal structure of the

Western Alps. A more detailed comparison between Lombardi’s work and our results using

the H − κ approach will be discussed in Chapter 2.4.3.
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1.3.4 Local earthquake tomography

Seismic tomography6 is a technique for imaging the Earth’s interior in 2-D or 3-D with

seismic waves produced by earthquakes or explosions (Iyer and Hirahara, 1993; Rawlinson

et al., 2010; Nolet, 2012).

In a technique similar to Computerized Tomography (CT ) scans, where doctors use to-

mography scans to image the organs and bones, seismologists use seismic waves to create

images of the Earth’s interior. The energy is typically released from the focus of an earth-

quake as seismic waves that spread outwards in all directions and travel through the Earth’s

interior until it reaches the surface, where is recorded on seismograms. By recording the

seismograms of many earthquakes, seismologists are able to create high-resolution images

of Earth’s interior using the method of seismic tomography. Using the travel distance of

the wave from the epicenter of the earthquake to the seismometer at the recording station,

seismologists can invert the average velocity distribution of the seismic waves. The speed of

the seismic waves depends on the type of rock materials, the temperature of the rocks (hot,

partially molten rocks or cold rocks) and the “stability” of the area, tectonically active or

intra-plate zone (Ammon et al., 2010). Many rock physics parameters contribute to changes

in seismic velocities of rocks in addition to mineralogy, porosity, and in situ stress conditions

such as pore fluid properties, which in turn depend on temperature and pressure (Birch, 1960;

Spencer Jr and Nur, 1976; Toksoz et al., 1976; Christensen and Yuen, 1985; Wang et al.,

1989; Dvorkin et al., 1999). High-frequency modeling of ultrasonic laboratory data (Mavko

and Vanorio, 2010) suggests that frequency-dependent pore-fluid effects can impact observed

effective stress coefficients for seismic velocities.

Unlike teleseismic tomography (Aki et al., 1977) that uses waves from distant earthquakes

that deflect upwards to a local seismic array, Local Earthquake Tomography (LET) depends

on earthquake sources within the volume to investigate. To do this, a possibly homoge-

neous distribution of stations is very important, as otherwise the model is not sampled in

a homogeneous way and artifacts can be introduced into the solution (Luckett and Baptie,

2015). Figure 1.3.4 points out the importance of having a good coverage in the tomographic

approach.

6The term tomography is derived from the Greek word tomos, which means “slice” or “section” and graphe
meaning “drawing”.
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Figure 1.3.4: Importance of good coverage in the tomographic approach: by increasing the number

of the recording stations (panels from 1 to 3), one gets much more data which will lead to image the

shape and the size of the structures reducing the uncertainty in the tomographic results (image from

http://www.iris.edu/USArray).

In panel 1) of Figure 1.3.4 we have two seismometers on the surface and only one recorded

wave passes through part of one of the structures with different structures and scientists

examining the recorded seismograms would infer that only one structure is present instead

of two. In 2), when more seismometers are added, seismologists can detect two structures

from the recorded seismographs, but they cannot determine the size and shape of each. In

3) with six seismometers catch enough recorded waves to start determining the borders of

the structure.

During last 20 years, the structure of the Alpine crust was investigated using LET with

several studies, e.g. Paul et al. (2001), Diehl et al. (2009) and Solarino et al. (2018). Here I

focus in particular on the work of Diehl et al. (2009) which represents the best existing model

of 3-D P-wave velocity structure of our study area in terms of resolution and high quality-

data, as shown in Figure 1.3.5. In good agreement with previous 2-D CSS investigations, the

Moho interface and the Ivrea body are well resolved, moreover a detailed analysis of focal

depths in the 3-D P-wave model shows that all investigated earthquakes in the northern

foreland have occurred within the European crust.
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Figure 1.3.5: On the left, Moho depth map from Spada et al. (2013), on the right a cross-section of the

3-D P-velocity model from Diehl et al. (2009). The red line on the map represents the section Basel-Chiasso,

where the P-velocity model is extracted. High velocity structure at shallow depth around 225 km along X axis

represents the Ivrea Body. Vertical exaggeration for the Vp cross section is 2:1.

For this work, I decide to take the 3-D P-wave velocity model from Diehl et al. (2009)

as a P-wave local velocity starting model. The choice of this model as the initial one is that

it features both large aerial coverage over the Alps and the best resolution available in that

domain: 25*25*15 km in the two horizontal and the vertical directions, and it has successfully

imaged several known zones of the Alpine orogen.

1.3.5 Ambient noise tomography

The Ambient Noise Tomography (ANT ) method provides a powerful tool for sampling the

Earth’s shear-wave velocity structure Vs (Campillo and Paul, 2003; Shapiro et al., 2005; Yang

et al., 2007). In ANT low amplitude seismic “noise” is used, which is present at all seismic

stations, generated from a wide ranges of sources like waves and wind along shorelines and

local man-made activities.

Correlation of noise between pairs of stations at tens of km spacing, stacked over many

months, provide Green’s function of wave propagation between the stations, largely surface

waves (see Figure 1.3.6). It has been proved (Weaver, 2005) that these signals are more

robust at 5-20 s periods, where fundamental-mode Rayleigh waves sample the crust and the

upper mantle, allowing 3-D imaging at these depths. ANT investigations are particularly

useful in seismic areas, e.g. continental interiors, where LET is not feasible. However, depth

penetration remains limited by the seismic network aperture. and wave propagation is mostly

horizontal.
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Figure 1.3.6: When a diffuse wave field is generated by distant sources, stations (detectors) report random

signals. It can happen that a ray (for example, the one shown in red) passes through both detectors. As a

result, the signals are weakly correlated (from Weaver, 2005).

Investigations by ambient noise tomography are particularly useful in aseismic areas, e.g.

continental interiors. In the Alpine context, several studies were performed in the last 10

years (Stehly et al., 2009; Li et al., 2010; Verbeke et al., 2012; Molinari et al., 2015; Guidarelli

et al., 2017) and one recent work with a large dataset and a high-resolution 3-D shear-wave

velocity model of the crust (Figure 1.3.7) is published by Lu et al. (2018).
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Figure 1.3.7: Depth slices with more than 10 crossing ray paths at 8 s period for the final Vs model at 10

km (a), and 30 km (b) for the model performed by Lu et al., 2018. The resolution of the area is 0.3° at 8 s.

I plot only cells crossed by more than 10 paths. The black dashed lines enclose the well-resolved area.

Focusing on the interpretation of the Central Alps, we can observe that in the upper crust

(10 km), the areas of lowest velocities (2.5−2.9 km/s) correspond to thick sedimentary basins

such as the Po plain and the Adriatic basin, while the Moesian platform is not well resolved.

At 30 km depth, variations in crustal thickness dominates the picture with lower velocities

around 3.5 km/s in the crustal root of the mountain belts like the Alps, and high velocities

(more than 4.1 km/s) in the areas sampling the mantle in the European plate foreland.

As we will see in the last chapter, the final 3-D crustal model based on P-to-S converted

waves with a ray-paths sampling closer to vertical, is compared along profiles from the 3-D

ambient noise tomography by Lu et al. (2018) to have a consistent comparison between 3-D

structures obtained by different methods.
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1.3.6 Gravity studies

Gravity studies are used to detect and identify subsurface bodies and anomalies within the

Earth. These investigations are based on the density differences of rock bodies and their

effect on the gravity acceleration. The intensity of the force of gravity due to a buried,

anomalous mass is superimposed on the larger force of gravity due to the total mass of the

Earth. Therefore, two components of gravity forces are measured at the Earth’s surface:

first, a general and relatively uniform component due to the total Earth and second, a

component of much smaller size that varies due to lateral density change, which is called

gravity anomaly (Telford et al., 1990). Usually, the observed raw gravity data is corrected

for Earth rotation, latitude, tidal effects and gravity meter fluctuations to obtain the local

gravity value. The free air gravity anomaly is further corrected for the gravity effect caused

by the elevation difference between the station and sea level and is a common correction

for oceanic gravity interpretation. The Bouguer gravity anomaly is further corrected for

the mass that may exist between sea level. A simple-Bouguer anomaly has undergone a

simplified removal of topographic effects, which suffices in relatively flat areas; a complete-

Bouguer anomaly contains a terrain correction that uses a more complete representation of

the local topography, which is necessary for accurate gravity anomaly values in mountainous

area.

Over the last 45 years, both the Eastern (Granser et al., 1989; Ebbing et al., 2001) and

the Western Alps (Kahle et al., 1976; Kissling, 1980; Kissling et al., 1983; Schreiber et al.,

2010) have been studied by several gravity investigations. One of the first investigation in

the Alps is from Rybach et al., 1980 where the so called “Swiss Geotraverse Basel-Chiasso”

(same profile of the Figure 1.3.5) has been analyzed in detail (see Figure 1.3.8).
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Figure 1.3.8: Swiss Geotraverse Basel-Chiasso. 1- Rhinegraben, 2- Jura mountains and undeformed fore-

land cover, 3- Molasse basin and Subalpine Molasse, 4- Helvetic nappes and remnants of Penninic cover

rocks, 5- External massifs, 6- Subpenninic, Penninic and Austroalpine units, 7- South-Alpine basement with

Ivrea zone, 8- South-Alpine cover (from Rybach et al., 1980).

This section across Central Switzerland crosses most of the main geologic units perpendic-

ularly to their general strike. At first glance the Bouguer map of the Central Alps shows two

main features: the distinct gravity low of the Alps due to the thickened orogenic root and the

well-known positive anomaly due to the dense and shallow-lying rocks of the Ivrea-Verbano

Zone (IVZ). The sediments of the Molasse basin have a significant effect to be taken into ac-

count in the study of the deeper crust (Kissling, 1980). Other tectonic units, for example the

Quaternary sediments, produce anomalies of only a few mGals in amplitude or have a short

spatial wavelength (Kissling et al., 1983). Based on the available geophysical and geological

information, Kissling (1980) computed the negative gravity anomaly of the sediments of the

Molasse basin and the positive gravity anomaly of the Ivrea-Verbano zone using a 3-D model

(Figure 1.3.9).
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Figure 1.3.9: Gravity anomalies (curves 1 to 6) along the profile Basel-Chiasso (see Figure 1.3.8). Curve

1: Bouguer anomaly. A: effect of the Ivrea body. Curve 2: Gravity anomaly after elimination of the effects

of the Ivrea body and of the Molasse sediments. Curve 3: Curve 2 without the local anomaly of Ticino (B).

Curve 4: Bouguer anomaly after Kahle and Werner (1980), in which no mantle effects are taken into account.

The average density contrast crust/mantle in this model is 0.37 g/cm3. Curve 5: the new synthetic curve

with a density contrast of 0.50 g/cm3. Curve 6: the difference between curves 4 and 5. Image from Kissling

et al. (1983).

Curve 2 of Figure 1.3.9 shows the corrected gravity profile along the transverse from

Basel-Chiasso; the bulge on the southern end of the gravity profile is due to a local positive

anomaly in southern Switzerland (Canton Ticino). This gravity anomaly along the Swiss

Geotraverse has been interpreted in terms of a multi-layered crust in direct relationship to

the established seismic models along the same profile.

In general, the most profitable results are obtained from the integrative interpretation of

the gravity and seismic data (Robertsson et al., 2011). Even the reliability of the gravity

modeling depends on additional data used in the interpretation, therefore it is necessary to

bring together data from various geophysical techniques, which might be used in construc-

tion of integrative interpretation models. In light of this work, gravity data obtained from

potential methods can contribute to the integration and the interpretation of the 3-D crustal

model obtained with the proposed technique of the converted wave tomography.



Chapter 2

Receiver function method and dataset

In this chapter I describe briefly the fundamentals of the receiver function (RF) technique,

then I introduce the dataset used in this work with the qualitative control. At the end, in

order to determine the first order discontinuities, I compare the results I obtained for the

crustal thicknesses and the Vp/Vs ratio using the H − κ grid search (Zhu and Kanamori,

2000) with a previous work that used the same method for the Central Alps (Lombardi et al.,

2008).

38
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2.1 Fundamentals of receiver functions

The receiver function (RF) method has been broadly used in the last 30 years to retrieve infor-

mation about discontinuities in the crust and in the upper mantle beneath three-component

seismic stations, using natural earthquakes as sources. By using the elimination of the com-

mon characteristics from the seismic source, we are able to obtain the impulse response of

the Earth just beneath the station. This technique was originally developed for single station

analysis (Langston (1977b); Langston (1977a); Langston (1979)) and then was improved for

different aspects, from the deconvolution to the inversion and applied on station networks.

Some of these important developments on the technique are given in the studies of Owens

and Crosson (1988), Ammon et al. (1990), Cassidy (1992), Sambridge (1999a), Frederiksen

and Bostock (2000), Park and Levin (2000) and Zhu and Kanamori (2000). The main goal

of this method is to locate sharp interfaces on the receiver side of the propagating waves.

Figure 2.1.1 shows the direct waves propagating through the Earth and arriving at a

seismic station are clearly observable, in the meantime the impinging waves that undergo a

phase conversion at a discontinuity are also visible, when the conversion occurs below the

receiver. This conversion can be P-to-S or S-to-P.

Figure 2.1.1: Above, example of synthetic receiver function showing the direct P-wave and the converted

phases with a positive impendence contrast increasing with depth at an interface below the station. Below,

corresponding path of the different phases from an incident wave (figure from Hetényi, 2007).
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RFs are observable if a P-wave hits the interface at an angle close to the vertical (∼20°

- 40°), which limits the range of useful epicentral distances to about 30° - 90°. In practice,

this means that earthquakes have to reach a certain magnitude to be detected, generally

M > 5.0− 5.5.

Beyond a P-to-S conversion, reverberations in the upper layer, called multiples, are also

produced. These wave phases arrive later compared to the P-to-S conversion; the role of

the multiples are very important because they provide additional information on the velocity

structure above the interface.

Several RF investigations using advanced migration and different inversion strategy (Ron-

denay et al., 2005; Abe et al., 2011) were performed to image the Moho in different orogenic

contexts with respect to the Alps (e.g. Himalaya, see Singer et al., 2017; Subedi et al., 2018).

2.1.1 RFs as a convolutional model

From a mathematical point of view, the recorded wavefield at a station on the Earth’s

surface can be described through a convolutional model. One can compose a seismogram

as a combination of the source time function of the earthquake S(t), the Earth’s structure

impulse response E(t) and the instrument’s impulse response I(t). For a three-component

seismogram, this can be written for the vertical, radial and tangential components, as:

Z(t) = S(t) ∗ EZ(t) ∗ I(t), (2.1.1)

R(t) = S(t) ∗ ER(t) ∗ I(t), (2.1.2)

T (t) = S(t) ∗ ET (t) ∗ I(t). (2.1.3)

where * represents convolution, R(t) and T (t) are the radial and transverse components

of the seismogram which are obtained by rotating the original Z-N-E component data into

a coordinate system pointing towards the earthquake, and indexes Z, R and T refer to the

vertical, radial and transverse component of the Earth structure E. The goal of the converted-

wave seismology is to retrieve ER(t) and ET (t) from the original data, which are respectively

called the radial and transverse (or tangential) receiver functions.

A general approximation to obtain RFs is that the observed vertical component Z(t)

represents well-enough the convolution of the earthquake’s source time function with the

instrument’s response (Burdick and Helmberger, 1978):
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S(t) ∗ I(t) ≃ Z(t) (2.1.4)

or, in other words, that EZ(t) ≃ 1. Therefore, by deconvolving the radial and tangential

components from the vertical component seismogram, one obtains the wanted radial and

tangential receiver functions ER(t) and ET (t).

In RF techniques, two deconvolution methods are commonly used: the frequency-domain

spectral deconvolution, and the time-domain iterative deconvolution.

2.1.2 Spectral deconvolution (frequency domain)

Convolution and deconvolution are performed in the frequency domain as multiplication and

division, using Fourier-transforms. In the case of receiver functions:

ER(f) =
R(f)

I(f) ∗ S(f) ≃ R(f)

Z(f)
, (2.1.5)

ET (f) =
T (f)

I(f) ∗ S(f) ≃ T (f)

Z(f)
, (2.1.6)

Due to the limited bandwidth of the signals, the equation is not numerically stable

(Langston, 1979). Clayton and Wiggins (1976) proposed to fill the troughs of the above

spectral division to a minimum water level, which is usually 10−4. Filtering is achieved by

a Gaussian filter in the frequency domain applied to the result of the spectral division. The

advantage of the method is that it is relatively quick, however it may produce sidelobes or

long-period artifacts.

2.1.3 Iterative deconvolution (time domain)

Ligorria and Ammon (1999) presented an alternative deconvolution technique, following an

iterative scheme. This approach determines by cross-correlation of the vertical component

and the original horizontal component signal the location of the maximum correlation, and

considers this location as a spike on the receiver function. The convolved effect of this spike

is subtracted from the original horizontal component, and the procedure starts again. In this

way, the difference between predicted and observed horizontal seismogram is minimized in

the least square sense. The iteration is stopped either at a preset number, or at a given value

of fit. At the end of the iterations the series of spikes represent the best transfer function

between the vertical and horizontal signals, thus the receiver function.
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The iterative deconvolution has the advantage of finding the “simplest” receiver function

with high-frequency content but without side-lobe artifacts or long-period instability, and

is therefore better adapted to map sharp interfaces, such as the ones in the lithosphere.

However, the computation time is somewhat longer. Filtering is achieved on the original raw

data. The ultimately obtained spike series must be convolved by a time-domain Gaussian to

obtain RFs with the same frequency content as the filtered data.

2.1.4 Example of a seismic record and a RF computation

In Figure 2.1.2 I show an example of a seismic record and the corresponding RF computation

at a station in Switzerland for the Chiapas earthquake, in Mexico (2017-09-08, 04:49:19 UTC,

Mw 8.2).
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Figure 2.1.2: Vertical component recorded for the Chiapas earthquake, Mexico (2017-09-08, 04:49:19 UTC)

at the station ZUR.
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Figure 2.1.3: Above: original components, below: radial and transverse component after the rotation for

the sample event.

For each event I saved 1 minute before the P-arrival and 2.5 minutes after. Radial and

tangential components are oriented parallel and perpendicular to the direction of the incident

wave, and are obtained through rotation of the original North N and East E component

records. In the Figure 2.1.3 the original (N and E) and the rotational components (R and

T ) are shown for the same event of Figure 2.1.2.

For my work, I decided to use the iterative time domain deconvolution computed using

the algorithm by Ligorria and Ammon (1999) using 100 iterations, a gaussian filter of order 2

to convolve the traces for a frequency band between 0.125 Hz and 0.5 Hz. This deconvolution

method is used in several crustal investigations, e.g. Beck and Zandt (2002), Zor et al. (2003),

Abt et al. (2010). The result for the sample event is shown in Figure 2.1.4.
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Figure 2.1.4: Radial and Tangential RF computed for the Chiapas event at station ZUR.
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2.2 Database construction

I collect data to compute RFs in the zone of the Central Alps (which is a very complex area

from a geological point of view, see Chapter 1) in a rectangular box from 5° to 12° E and 45°

to 48.5° N where a dense network of stations is available. I consider both permanent broad-

band stations from Switzerland and for the surrounding countries and the temporary stations

of the AlpArray project’s seismic network (Hetényi et al., 2018b); permanent stations are

provided by nine agencies (Figure 2.2.1).
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Figure 2.2.1: Stations used in the studied area. Two-letter abbreviation in the legend are seismic network

codes of stations.

Temporary stations are part of the AlpArray project (Hetényi et al., 2018b), which rep-

resents a European consortium to advance our understanding of orogenesis. The AlpArray

Seismic Network has been deployed with contributions from 36 institutions from 11 countries

to achieve high-resolution geophysical images of structures from the surface down to the base

of the mantle transition zone.

For our study, I consider all the teleseismic events from the website of U.S. Geological
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Survey with M > 5.2 occurred from May 1995 (start of the earliest selected station) to June

2018, that has epicentral distance between 25° and 95° with respect to the reference point

located in Lausanne, Switzerland. The distribution of the earthquakes considered for this

work are represented in Figure 2.2.2.

Reference point
Shallow depth (0−70 km) Intermediate depth (70−300 km) Very deep (> 300 km)

M 5.2−5.9 M 6.0−6.9 M 7.0−7.9 M 8.0−8.9 M>9.0

Figure 2.2.2: Distribution of earthquakes considered for this study. With yellow star is shown the reference

point located in Lausanne, Switzerland.

The seismic sources originate from a broad area and back-azimuth range, including Cali-

fornia in the West and Japan in the East; only the southernmost back-azimuth has few usable

earthquakes. As we can see, from our location we can cover a broad range of events in terms

of back-azimuth, including the earthquakes from California in the West until the teleseismic

events in Japan in the East.

To collect data, we used arclink_fetch and FDSNWS (the international Federation of

Digital Seismograph Networks Web Services) method, which allows us to request and obtain
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data from several servers. In total, I have collected data from 6 450 events at 150 stations,

yielding a total of 287 414 three-component records, in miniSEED format.

2.3 Quality Control

Considering the amount of data to analyze, it is impossible to perform a visual investigation

of the entire dataset at each trace. For this reason, a semi-automatic approach proposed by

Hetényi (2007) is used to select higher quality seismic records, both on Z-N-E components

and in RFs.

2.3.1 QC on ZNE components

I applied first a quality control on the three-component of Z-N-E data. All traces are cut

30 seconds before and 150 seconds after the direct P-wave arrival and filtered according the

frequency band that will be used for the computation of the RFs, which is between 0.125 Hz

and 0.5 Hz.

For each single trace, I compute the following values:

• rmsall, root mean square (rms) of the whole trace;

• rmsbg, root mean square of the background signal, between 30 and 5 seconds before

the P-arrival;

• maxbg, maximum of the background;

• maxpk, maximum of the peak, between -5 and 20 seconds with respect to the P-arrival.

The quality of a trace is measured using four control parameters, C1 to C4. A trace is of

good quality if it respects the following criteria:

• It looks similar to other traces acquired at other stations for the same event (represented

by the median):

median ∗ C1 ≥ rmsall ≥ median/C2 (2.3.1)

• It has a high signal to noise ratio (SNR) in amplitude:

maxpk ≥ maxbg ∗ C3 (2.3.2)
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• It has a high SNR compared to the background noise:

maxpk ≥ rmsbg ∗
√
2 ∗ C4 (2.3.3)

When the value of C1 and C2 increases, the range of acceptable traces increases. When

C3 and C4 decrease, there are more traces included in the selection. Examples are shown in

Figure 2.3.1 and 2.3.2.

Figure 2.3.1: Quality control on East, North and Z component. Blue line represents the sorted values of

RMS for each component, while the band defined by the red lines show the range where the ratio rmsall
median

is

between C1 and 1

C2
.

Figure 2.3.2: On the left, the blue line represents the ratio maxpk
maxbg

while C3 is in red; on the right the ratio
maxbg
maxpk

against
√
2 ∗ C4.
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2.3.2 QC on RF

I applied a second set of criteria that allows to select RFs to avoid low quality data, which

can be produced for distant, low magnitude earthquakes or noisy recordings. A preliminary

selection of RFs was performed based on the characteristics of the P-wave arrival. The

position of the maximum absolute amplitude sample is chosen tp along with its amplitude

Ap and these should satisfy:

| tp |≤ 2sec (2.3.4)

0.05 ≤ Ap ≤ 0.9 (2.3.5)

These criteria eliminate traces where the P-wave does not emerge from the background

or where there are timing problems.

The effectiveness of the quality control is shown in Table 2.1. With increasing restrictivity

of the first quality control (on the Z-N-E components), the second (on the RFs) eliminates

less and less data and confirms the trend of the first quality control.

List name C1 C2 C3 C4 QC1 (%) QC2 QC2 / QC1 (%)
Whole Dataset 287 414 100

Weak 4 4 1.1 1.5 186 693 65.0 45 777 24.5
Medium 2 2 2 3.5 70 801 24.6 33 292 47.0
Strong 2 2 10 15 13 055 4.5 10 046 77.0

This work 2 2 1.5 2 116 804 40.6 28 494 24.4

Table 2.1: Statistics on the efficiency of the quality control procedures.

For our dataset, I applied different quality control procedures in order to have a good

selection of data. After tuning the parameters, I have 28 494 traces, which represent about

the 10% of our initial dataset.

Figure 2.3.3 shows the flowchart of all the phases of the pre-processing from data download

to the final quality control.
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Figure 2.3.3: Flowchart of data preprocessing used in this work.
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2.4 H-κ Method

One of the primary goals of this study is to determine the first-order discontinuities and

define the main properties of the Earth’s lithosphere. For this reason, in order to have a

first idea of crustal thicknesses and average crustal Vp/Vs, I applied the simple stacking

algorithm proposed by Zhu and Kanamori (2000) in our area. This technique has been

extensively used in several seismic investigations (e.g. Nair et al., 2006; Lombardi et al.,

2008; Piana Agostinetti and Amato, 2009; Licciardi et al., 2014).

2.4.1 Basis of the Zhu-Kanamori technique

Through a grid search in the H -Vp/Vs domain, I look for the values of H and Vp/Vs that

maximize the stacking function:

S(H, V p/V s) =
N
∑

j=1

w1rj(t1) + w2rj(t2)− w3rj(t3), (2.4.1)

where N is the total number of RFs for that station, rj is the jth observed radial RF at

times t1, t2, t3, the predicted arrival times for phases Ps, PpPs and PpSs + PsPs, respectively,

calculated using the current values of (H, V p/V s), while w1,w2 and w3 are the weighting

factors associated with each phase.

In the RF stacking algorithm proposed by Zhu and Kanamori (2000), the existing trade-

off between crustal thickness and velocity is strongly reduced by including in the analysis

additional multiple phases PpSs + PsPs. In this way, more robust estimates of crustal

thickness and Vp/Vs-ratio can be obtained.

Although H − κ method is broadly used and its implementation is straightforward to

process automatically a large number of RFs and the possibility to estimate uncertainties

associated with the results, it has several drawbacks:

• one has to assign a priori value for Vp;

• the weights w1, w2, w3, associated with the amplitudes Ps, PpPs and PpSs + PsPs,

are often chosen ad-hoc;

• it works well in regions with nearly flat discontinuities and sharp velocity jumps.

I employ this method in our study area to compare with the results of Lombardi et al. (2008)

using the same approach.
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2.4.2 Preliminary results in the Central Alps

I applied the H − κ method to the stations (Figure 2.4.1) that are in the reference study

performed by Lombardi et al. (2008).
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Figure 2.4.1: Stations in which I applied the H − κ technique. Country borders are plotted with dashed

lines.

To be consistent with this previous study, I compute RFs in a frequency band between 1

and 10 Hz and I adopt the same quality control procedure I described before. An example

of stacked RFs is shown in the Figure 2.4.2 for the station HASLI (Hasliberg, Switzerland),

which is in the center of our study zone.
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Figure 2.4.2: Radial component of RFs stack for the station HASLI (Hasliberg, Switzerland).
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From the radial component, we can observe that the PSMoho is 5 sec, while PpSs multiple

phases appear between 10 and 14 sec. Figure 2.4.3 shows the back-azimuthal variation of

RFs for the same station.
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Figure 2.4.3: Above: examples of receiver function at the station HASLI plotted as a function of backaz-

imuth where the RFs are stacked in bins of 20°. Below: RFs plotted as a function of epicentral distance. Red

is used for drawing positive amplitude (increase of velocity with depth), blue for negative, numbers on the

right are the number of RFs in a certain range of backazimuth or epicentral distance.
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To compute the H−κ result below each station, I selected only the events with magnitude

M > 6.0, epicentral distance between 30° and 90°, assuming a crustal velocity of Vp = 6.1

km/s and I fixed the same weights for Ps and the multiples at 0.3 (same scheme as in

Lombardi et al., 2008). The H − κ stacking results for station MUO is shown in Figure

2.4.4. The identification of the maximum peak is not always univocal and often also has a

considerable uncertainties, especially in the recognition of the Vp/Vs ratio.
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Figure 2.4.4: H −κ stacking results for station MUO. Stacking function for a fixed crustal Vp = 6.1 km/s.

Color scale represents the amplitude of the stacking function expressed as a percentage of the absolute value.

White star represent the most likely peak in the H − κ grid. Uncertainty is defined at 90% of the stacking

function.

In this study, we have not considered the effects of seismic anisotropy nor the dipping

interfaces on the back-azimuthal variation of RFs, although several studies both theoretically

(Crampin, 1977; Levin and Park, 1997; Levin and Park, 1998) and by field investigations

(Peng and Humphreys, 1997; Savage, 1998; Eckhardt and Rabbel, 2011; Ozacar and Zandt,

2004; Lucente et al., 2005) have shown the importance of these parameters in the RF analysis.

In fact, in many cases the inversion process shows a trade-off between variable parameters,

for instance, between layer dip and tilt of the anisotropic symmetry axis or between layer

thickness and the type and amount of anisotropy (Baker et al., 1996; Savage et al., 2007; Li

et al., 2007).

However, dipping interfaces are included in the new tool and are part of the model pa-

rameterization and ray tracing procedures are outlined in the following chapters.
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2.4.3 Comparison with Lombardi et al., 2008

I applied the Zhu-Kanamori technique for the stations showed in Figure 2.4.1 and then I

compared the results with the ones obtained by Lombardi et al. (2008). Results for Moho

thickness are shown in Figure 2.4.5.

In both studies a general trend is recognizable, with some exceptions. In fact, I found

high Moho depth values (>=35 km) in the zone inside the orogenic arc, and lower crustal

thickness outside this area. This reflects the principle of isostasy and the presence of a crustal

roots beneath collisional orogens (Fischer, 2002). Results for the average crustal Vp/Vs ratio

are represented in Figure 2.4.6.

In the study zone, Vp/Vs values have a wide variability and with this technique we are

not able to distinguish clearly the different geological domains (European basement, Mesozoic

cover, Molasse, European margin and Austroalpine units). Main differences (Table 2.2) we

found at each station are explained by the fact that in the work of Lombardi et al. (2008) is

taken into account the correction of the local Moho dip.

To step forward from 1-D approaches and to take advantage of the new, dense station

coverage with more data, I attach the 3-D problem for the construction of a velocity model

that takes into account the lateral variations of geometries and velocities in the Earth’s

lithosphere.
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Figure 2.4.5: Comparison between Moho depth values obtained by H − κ grid search from the work of

Lombardi et al., 2008 (top), my work (center) and difference (bottom). Filled circles represent the Moho

thickness below each station; in grey is shown the smoothed 800 m altitude line of the Alps. See Table 2.2 for

details and uncertainties.
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Figure 2.4.6: Comparison between Vp/Vs-ratio of the entire crust obtained by grid search from the work

of Lombardi et al., 2008 (top), my work (center) and difference (bottom). Filled circles represent the Vp/Vs-

ratio below each station; in grey is shown the smoothed 800 m altitude line of the Alps. See Table 2.2 for

details and uncertainties.
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Station Numb. RFs Numb. RFs Moho (km) Moho (km) Vp/Vs Vp/Vs

ACB 32 375 27±4 27±4 1.71±0.05 1.72±0.05

AIGLE 90 1433 38±5 39+5
−3 1.67±0.09 1.70+0.05

−0.07

BALST 91 1635 27±4 27±3 1.73±0.05 1.72±0.05

BERNI 90 2068 53±7 47±4 1.75±0.06 1.81±0.09

BFO 112 653 26±4 25±2 1.68±0.05 1.73±0.06

BNALP 83 1292 37±5 33±3 1.74±0.07 1.81+0.03
−0.09

BNI 66 628 53±5 49±2 1.72±0.05 1.76±0.05

BOURR 72 1380 27±4 28±2 1.76±0.05 1.75±0.05

BRANT 32 980 28±4 28±3 1.87±0.06 1.84+0.05
−0.07

DAVA 102 180 39±4 38±3 1.71±0.06 1.73±0.05

DAVOX 65 1554 50±7 45±5 1.79±0.06 1.71±0.08

DIX 79 1483 46±6 46±2 1.76±0.10 1.82±0.05

EMV 89 914 39±4 36±2 1.79±0.06 1.79±0.04

FUORN 103 1599 58±8 50+7
−3 1.86±0.09 1.89±0.09

GIMEL 59 950 29±4 28±3 1.72±0.07 1.73±0.10

HASLI 105 1726 40±4 38±3 1.67±0.05 1.72±0.06

LKBD 22 320 41±4 37±5 1.71±0.06 1.66±0.06

LKBD2 29 182 41±5 33±6 1.72±0.09 1.67±0.06

LLS 132 1643 43±4 40±5 1.59±0.05 1.55±0.05

MABI 23 568 38±5 33+6
−3 1.64±0.05 1.73+0.06

−0.10

MDI 29 398 33±4 33±2 1.67±0.07 1.63±0.04

MMK 85 1640 51±7 53±2 1.72±0.08 1.69±0.05

MUGIO 56 1576 35±5 37±2 1.75±0.06 1.70±0.06

MUO 97 1883 34±5 38±5 1.67±0.06 1.67±0.05

PLONS 107 1739 40±4 39±2 1.66±0.05 1.71±0.05

RSL 32 351 38±5 43±3 1.90±0.07 1.73±0.07

SENIN 64 1163 41±4 38±2 1.66±0.06 1.74±0.04

SLE 73 1487 27±4 27±4 1.67±0.05 1.71±0.05

SULZ 82 1724 25±4 25±3 1.78±0.06 1.80±0.07

TORNY 58 1309 31±4 31±3 1.76±0.05 1.77±0.05

VDL 113 1829 49±6 54±5 1.69±0.06 1.67±0.10

WILA 63 1532 32±4 24±8 1.70±0.05 1.80±0.10

WIMIS 51 1238 40±4 41±5 1.54±0.05 1.54±0.05

WTTA 67 203 51±5 54±3 1.79±0.07 1.71+0.10
−0.02

ZUR 74 1526 30±4 29±5 1.72±0.04 1.73±0.05

Table 2.2: Summary table of comparison between our results and those of Lombardi et al. (2008) using

a grid search method. Results obtained in this work are the ones in the 3rd, 5th and 7th column, in red.

Uncertainty is defined at 90% of the relative stacked function.



Chapter 3

3-D ray tracing in heterogeneous media

Forward modeling in geophysics is a fundamental operation that governs the equations re-

lating the model and the observation. Here I describe the ray tracing procedure I implement

in the Alpine context.

At the beginning of the chapter I provide an overview of a few approaches used in seis-

mology for ray tracing, from the shooting method to grid based schemes. Then I illustrate

step-by-step the local 3-D implementation I apply based on an existing global tool in 1-D

considering a local Moho model (Spada et al., 2013) and a local 3-D P-velocity model (Diehl

et al., 2009) for the Central Alps. In the construction of an accurate tool for the propagation

of a P-to-S converted wave, I focus on the P-wave shooting, the interface discretization which

respects Snell’s law in 3-D and takes into account the Moho local dip, the S-wave shooting

and the correction needed to reach accurate results. In the last part, I illustrate through

some images the goodness and reliability of the shooting method.

59
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3.1 Shooting schemes

Although 1-D Earth models are an acceptable approximation in some applications, lateral

heterogeneity is significant in many regions of the Earth, like the Alpine area.

In the past few decades, the growing need for fast and accurate prediction of high fre-

quency wave properties in 2-D and 3-D media has spawned a prolific number of grid and

ray based solvers. One of the most common method has been ray tracing (Julian, 1977;

Virieux and Farra, 1991; Cerveny, 2005), in which the trajectory of paths corresponding to

wavefront normals are computed between two points. This approach is often highly accurate

and efficient and naturally lends itself to the prediction of various seismic wave properties.

We can group ray tracing methods in two broad categories: shooting and bending.

3.1.1 Shooting method

In the shooting methods, the ray path is computed applying Snell’s law at the presence of

any interface. Shooting methods of ray tracing are widely used in seismology due to their

conceptual simplicity and for high accuracy and efficiency.

The two point problem of finding a source-receiver path becomes an inverse problem in

which the unknown is the initial direction of the ray and the function to be minimized is

a measure of the distance between the ray end point and the receiver (Rawlinson et al.,

2008). The main challenge that this class of methods faces is the non-linearity of the inverse

problem, which increases proportional by the complexity of the medium.

The appropriate form of the equation required to solve the initial value problem depends

on the choice of parameterization used to represent velocity variations. For example, in a

medium described by constant velocity blocks, the ray path is described by a piecewise set

of straight line segments; all that is required to solve the initial value problem is a repeated

application of Snell’s law at cell boundaries.

Shooting methods of ray tracing usually solve the boundary value problem by probing

the medium with initial value ray paths and then exploiting information from the computed

paths to better target the receiver. Figure 3.1.1 represents the basic concept in 2-D.
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Figure 3.1.1: Principle of the shooting methods. The initial trajectory is updated until it converges at the

receiver (from Rawlinson et al., 2008).

3.1.2 Bending method

The principle of the bending methods of ray tracing is to adjust iteratively the geometry of

an initial arbitrary path that joins source and receiver until it becomes a true ray path, i.e.,

it satisfies Fermat’s principle of minimum time, as shown in Figure 3.1.2.

A common approach to implement the bending method is to derive a boundary value

formulation of the kinematic ray tracing equations which can be solved iteratively (Rawlinson

et al., 2008).

Figure 3.1.2: Principle of the bending method. In this case, an initial two point path is perturbed until it

satisfies Fermat’s principle (from Rawlinson et al., 2008).



CHAPTER 3. 3-D RAY TRACING IN HETEROGENEOUS MEDIA 62

A slightly different approach is represented by pseudo-bending method which avoid direct

solution of the ray equations (Rawlinson et al., 2008). One of the most common pseudo-

bending schemes is based upon the ray path being represented by a set of linearly interpolated

points. Given some initial arbitrary path, the aim of the pseudo-bending method is to adjust

sequentially the location of each point so that the path better satisfies the ray equations.

Um and Thurber (1987) apply the update scheme simultaneously from both end points

of the ray path to the central point. This process is repeated until a convergence criterion

is met. An initial path can be approximated in various ways, but one simple option is to

begin with a three point ray joining source and receiver. Once the central point has been

perturbed, two new points are introduced that bisect each line segment.

Figure 3.1.3: Principle of the pseudo-bending method (from Rawlinson et al., 2008).

In the schematic example of Figure 3.1.3, an initial ray is defined by three points. The

center point is perturbed to satisfy Fermat’s principle of stationary time. The number of

path segments is then doubled and the process repeated until a suitably accurate path is

obtained.

3.1.3 Grid based schemes

An alternative strategy to trace rays between source and receiver is to compute the traveltime

of the wavefront at all points of a grid which spans the medium (Rawlinson et al., 2008).

Compared to conventional shooting methods, grid based traveltime schemes have a number

of clear advantages:

1. Most are capable of computing traveltimes to all points of a medium, and will locate

diffractions in ray shadow zones;
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2. The non-linearity of both ray shooting and bending means that they may fail to con-

verge to a true two-point path, whereas most grid based schemes are highly stable and

will find the correct solution even in strongly heterogeneous media;

3. Grid based schemes can be very efficient in computing traveltime and path information

to the level of accuracy required by practical problems. Ray tracing schemes can be

inefficient if solution non-linearity is significant;

4. Most grid-based schemes consistently find first-arrivals in continuous media

Despite these advantages, grid based schemes have a number of limitations that should be

considered prior to application. These include:

1. Accuracy is a function of grid spacing in 3-D halving the spacing of a grid will increase

computation time by at least a factor of 8. Thus, computation time may become

unacceptable if highly accurate traveltimes are required;

2. Most practical schemes compute first-arrivals only - thus, features such as wavefront

triplications cannot be predicted;

3. Quantities other than traveltime (such as amplitude) are difficult to compute accurately

without first extracting path geometry and applying ray based techniques.

3.1.3.1 Fast Marching Method

Despite these advantages, grid based schemes have several limitations. These include that

the accuracy is a function of grid spacing: in 3-D, halving the spacing of a grid will increase

computation time by at least a factor of 8. Thus, computation time may become unacceptable

if highly accurate traveltimes are required.

One of the more recently developed grid based schemes is the so called Fast Marching

Method (Sethian, 1999; Popovici and Sethian, 2002). The term Fast Marching Method,

usually abbreviated with FMM, was originally developed in the field of computational math-

ematics for solving various types of interface evolution problems.

In seismology, FMM has been used in the migration of coincident reflection profiles

(Popovici and Sethian, 2002) and teleseismic tomography (Rawlinson et al., 2006a; Rawl-

inson et al., 2006b). A common feature of first-arrival traveltime fields is that they are not

spatially differentiable at every point. The FMM stencil describes how to calculate new trav-

eltimes using known traveltimes from neighbouring grid points, but in order to populate a

grid of nodes with traveltime values, the order in which nodes are updated must be consistent

with the direction of flow of information. FMM achieves this by systematically constructing
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traveltimes in a downwind fashion from known values upwind by employing a narrow band

approach. This is illustrated in Figure 3.1.4.

Figure 3.1.4: Narrow band evolution scheme used by the FMM for the ordered update of grid points (left).

The narrow band advances from the close point with minimum traveltime (right). Figure from Rawlinson

et al., 2008.

Alive points have their values correctly computed, close points lie within the narrow band

and have trial values with alive points only, and far points have no values calculated. The

narrow band is evolved by identifying the close point with minimum traveltime, tagging it as

alive and then updating any adjacent close or far point, the latter being re-tagged as close.

Using this approach, the shape of the narrow band approximates the shape of the first-arrival

wavefront, and the idea is to propagate the band through the grid until all points become

alive. Further FMM examples and detailed analysis of computational efficiency can be found

in Rawlinson and Sambridge (2004a) and Rawlinson and Sambridge (2004b).

3.1.3.2 Shortest path ray tracing

Shortest path ray tracing or SPR (Nakanishi and Yamaguchi, 1986; Moser, 1991; Cheng

and House, 1996) is another common method for determining first-arrival traveltimes of a

velocity field. Rather than solving a differential equation, a network is formed by connecting

neighbouring nodes with traveltime path segments.

The shortest time path between two points corresponds to a true ray path. Shortest path

networks are commonly defined in terms of either a cell or a grid centered framework. A

particular way of creating a network is to use a regular grid of velocity nodes and to form

linear connections between adjacent velocity nodes (Moser, 1991), as shown in Figure 3.1.5.
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Figure 3.1.5: Shortest path network built on a grid of velocity modes (Moser, 1991). a) Use of a stencil

with at most 8 connections per node; b) 16-node stencil, which allows smaller path deviations. Figure from

Rawlinson et al., 2008.

The advantage of a grid formalism for the shortest path network is that varying velocity

fields can be more accurately represented and interfaces are more easily inserted. Once a

network structure and method of traveltime determination between node pairs has been

chosen, the next step is to use a shortest path algorithm to compute the full traveltime field

and associated ray paths.

The basic approach is conceptually simple, with nodes divided into two groups: a set of P

nodes with known traveltimes, and a set of Q nodes with unknown traveltimes Moser (1991).

Initially, Q contains M elements and P is empty, with the traveltimes of nodes in Q set to

an arbitrary large value. The scheme is initiated from a source node by adding it to P, and

then computing traveltimes to all neighbouring nodes as defined by the forward star (Figure

3.1.6).

Figure 3.1.6: Three iterations of a simple shortest path scheme using an initial star with 8 connections

Grey dots have known traveltimes, black dots have trial traveltimes and white dots are yet to have traveltime

computed. Figure from Rawlinson et al. (2008).

These constitute trial traveltime values, and the method proceeds by choosing the trial
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node with minimum traveltime, adding it to P and then computing trial times to all neigh-

bouring nodes in Q. If the node in Q already has a trial value from a previous iteration,

then the one with minimum traveltime is selected. The complete traveltime field is found

in exactly M iterations, and ray paths are obtained by simply recording the update order of

nodes.

In this work, I decide to use a shooting method of ray tracing because is relatively simple

to implement and it shows a high accuracy.

3.2 Ray Tracing Implementation in this work

P-to-S ray tracing in 3-D represents a very delicate operation as it is necessary to take into

account the lateral variations of the velocity structures and the local dip of the discontinuities

in order to build an accurate tool of ray propagation for converted waves. The scheme I follow

is summarized in the flowchart of the Figure 3.2.1.

START

END
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MODEL

PIERCING POINTS 

DETECTION AT THE MOHO

LOCAL MOHO DIP

S-WAVE ARRIVAL 
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ACCURATE P-S 

RAY TRACER
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PIERCING POINTS

P-S RAY 

TRACER

P RAY TRACER

Are you satisfied from the X distance?

Figure 3.2.1: Flowchart used for the ray tracing procedure I implement in this work. Each block

corresponds to a script I develop in my tool. Start and end points are represented by an oval, par-

allelograms represent an input (green) or an output (red), rectangles represent a process, a diamond

indicates a decision.
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First, I do a P-ray propagation from a source (in this study represented by an earthquake)

to a station in 1-D spherical global velocity model. For this propagation I use the MatLab

software TTBOX (Knapmeyer, 2004; Knapmeyer, 2005) and as input model the global ve-

locity model IASP91 (Kennett and Engdahl, 1991). After this operation, I go back along

that ray considering the actual Moho dip (for the Alps, reference Moho model is given by

Spada et al., 2013): in this I we obtain a map of the piercing point at the local Moho. Then,

in order to simulate the P-to-S conversion, I go forward in the propagation to a station from

that piercing point with a S-wave considering a local velocity model (for the Alps, reference

velocity is given by Diehl et al., 2009). Finally I adjust the ray parameter to make the

S-waves arrive at the station. All these steps are explained in detail in the sections below.

3.2.1 P shooting in a global velocity model

For propagation of the P-wave in a global velocity model, I decide to use a shooting scheme,

implementing an existing software, called TTBOX (Knapmeyer, 2004; Knapmeyer, 2005),

which is a useful and very efficient tool for the computation of teleseismic travel time in 1-D

models. In the original version, this software presents several constraints, since ray paths

and travel times are computed for a 1-D spherical isotropic velocity model. Under these

assumptions, the propagation of seismic rays can be computed applying Snell’s law, which

describes ray geometry by seismic velocity and the ray parameter.

Figure 3.2.2: Geometry of Snell’s law for spherical Earth (from Stein and Wysession, 2003).
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Considering Figure 3.2.2, if v1 and v2 represent the velocities above and below r1 and i1,

i′1, and i2 are the angles shown, by Snell’s law:

r1sini1
v1

=
r2sini

′

1

v2
(3.2.1)

Because both equal the length ON, we can write:

r1sini1
v1

=
r2sini2

v2
(3.2.2)

Therefore, the ray parameter p for a spherical Earth is:

p =
rnsinin

vn
(3.2.3)

where

r is the radial distance from the center of the Earth,

v is the velocity of that point,

n is the number of the nth discontinuity,

i is the incidence angle between the ray path and the radius vector.

3.2.1.1 TTBOX accuracy

TTBOX uses the flat Earth transformations to evaluate both epicentral distance and travel

time as functions of ray parameter. This allows to replace a spherical symmetric model for

the crust by a Cartesian one and avoid the complications of polar coordinates. The accuracy

of the solution therefore depends on the quality of the depth sampling (Knapmeyer, 2005):

in fact, velocity models may be defined by a list of depth samples or piecewise continuously

by layer polynomials that are discretized into a list of samples before computing paths and

times.

TTBOX supports two kinds of depth sampling: equidistant in spherical Earth and equidis-

tant in flat Earth (Cartesian) coordinates; rays are computing using a shooting method.

The ray parameter needed to arrive at a given epicentral distance, and is determined by

a three-stage optimization process.

1. The epicentral distance as a function of ray parameter is approximately computed by

shooting lots of rays;
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2. This approximation of the ray-parameter function ∆p is checked for approximate solu-

tions;

3. The solutions found at the step 2 are refined by a binary search algorithm, that finds

the position of a target value within a sorted array.

A ray parameter is returned which allows hitting the target distance within ±0.001°.

To speed up the time spent for running the P ray tracing, I compute a table which give

us the ray parameter p knowing the depth and the epicentral distance (see Figure 3.2.3).
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Figure 3.2.3: Pre-computed table generated with TTBOX of ray parameter pin function of depth and

epicentral distance.

3.2.2 Local dip of Moho

Since the 1-D model is too simplistic as it is thought in the original version of the software, in

order to move in a 3-D context, I develop my own ray tracing using the first P-to-S conversion

in a local model. First, I need initial information about the Moho map in the Alps, which

represents the main interface where the wave conversion takes place. For the application

to the Central Alps, I decide to use the Moho map from the work of Spada et al. (2013).

We choose this model that uses a combination of CSS and LET (Waldhauser et al., 1998;
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Wagner et al., 2012) because it presents a new quality classification based on uncertainty of

RF data. We preferred the Spada et al. (2013) model with respect to the one we computed

in the second chapter derived by Zhu and Kanamori (2000) because the H − κ has several

limitations since it assumes a simple one-layer crustal model with a well-defined horizontal

Moho interface and a fixed P-wave velocity values across the entire crust.

I convert the initial map in longitude and latitude (Figure 3.2.4) into a Cartesian system

centered at 10° E, 46° N and in km towards E and N, respectively (Figure 3.2.4).
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Figure 3.2.4: Spherical (left) and Cartesian (right) Moho map of Europe (red), Adria (blue) and Liguria

(green) plates. The black rectangle is my area of investigation. The origin of the system (10°, 46°) is indicated

with a white star. Plate division and Moho depth values taken from Spada et al. (2013).

In our area (5-12° E, 45-48.5° N), I take each element of the Moho map to define Delaunay

triangles, in order to calculate the local Moho dip and its orientation (Figure 3.2.5).

We can observe that dip values vary from small values (0-5°) up to angles of about 20°

at the Adria-Europe plate jump. Moreover, in the European plate, intermediate values of

the dip (around 10-12°) seem to follow the shape of the Alpine arc. These figures illustrate

the importance of taking into account the significant changes of dip within relatively small

distances in the ray tracing phase. To speed up the calculation, for each station I consider

a cylinder (Figure 3.2.6) and I reconstruct the local dip of each element of our initial Moho

model.
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Figure 3.2.5: Moho dip orientation (top) and local dip (bottom) in the study area. The Europe-Adria plate

boundary is clearly visible (white stripe).

Figure 3.2.6: Map of the cylinders of Moho considered for the study area.
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3.2.3 P-to-S piercing points detection

Since in the original version of the software, converted waves are not supported, I decide

to compute the piercing points between the P-wave traveltimes and the discretized surface

which represents the local Moho from Spada et al. (2013). Figure 3.2.7 (plan view in Figure

3.2.8) shows the global P rays arriving at the station ZUR (Zürich) which lies completely on

European plate.
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Figure 3.2.7: P-wave shooting considering a global velocity model for the station ZUR. The surface dis-

cretized in triangles represents the local Moho model from Spada et al. (2013).

To find the coordinates of the piercing points at the Moho in Cartesian space, I used the

Möller-Trumbore ray-triangle intersection algorithm (Möller and Trumbore, 2005), which is

a fast method for computing the intersection of a ray (our P-wave raypaths) and a triangle

(the smallest element in which the Moho surface can be divided) in 3-D without needing

pre-computation of the plane equation of the plane containing the triangle.
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Figure 3.2.8: Piercing points at the local Moho after first shooting of P-to-S conversion for the station

ZUR.

A limitation of our ray tracing tool is that while it takes into account the local dip of

any discontinuities (Moho, Conrad) to properly simulate the shooting of P-to-S conversion,

it does not follow the full ray-path of multiples. That would require a more complex ray

propagator, which is feasible, and to consider that the amplitude of multiples need to be

spread to three conversions or reflections, which is a separate, large, problem.

Given the piercing points, the next fundamental step is the construction of an S-wave

propagator from the Moho interface to the surface.

3.2.3.1 Quality Control on the piercing points

As already mentioned above, the Central Alps represent a very complex area in terms of

Moho geometry. For this reason, in areas at a plate boundary, as in the case of the station

ABSI, some rays cross the Moho surface between the Adria and the Europe plates (Figure

3.2.9), in a “wall” that is physically not a Moho discontinuity.
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Figure 3.2.9: P-wave shooting considering a global velocity model for the station ABSI. The surface dis-

cretized in triangles represents the local Moho model from Spada et al. (2013). Note the plate jump that

creates a “wall”, which does not represent a Moho discontinuity.

In such cases the intersection algorithm between the raypaths and the Moho surface, yields

piercing point that don’t make sense since the surface inside the plate margin is only an effect

of the point cloud interpolation. Piercing points that lie in such areas are eliminated, both in

the first and in the corrected (second) shooting based on the local Moho dip compared to the

maximum dip in our study area for any plate. This control on the piercing points reduced

the dataset by about 15% (from 28 494 to 24 148 traces).

3.2.4 S shooting in a local velocity model

As the initial local shear-wave velocity structure, I took the 3-D P-wave velocity model

from Diehl et al. (2009) and divided it by a classical value of Vp/Vs = 1.73. Then, given the

velocities around the raypath, I used an interpolation with inverse squared distance weighting

of the 4 enclosing neighbour points where we know the velocity to obtain the local Vs at the

ray. In this way I am able to propagate an S-wave from the bottom to the top of the crust to

reach the corresponding station accurately. Starting from the depth of the piercing point at

the Moho and moving towards the surface, I take into account the nearest upper neighbour
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plane in depth of Diehl et al. (2009) and then we consider staggered grids at the midpoint

of the tomographic model. With this approximation, I expect to know velocities at the grid

mid-points with respect to the tomographic work. For example, if we know velocities at

45, 30, 15, 0 km at depth from tomographic investigation, in our S-propagation I will have

velocity values at 37.5, 22.5 and 7.5 km at depth (Figure 3.2.10). For the shallowest part,

between surface and station elevation, I interpolate velocities in the layer between 0 and 5

km above the surface, which are also part of the tomographic grid Diehl et al. (2009).

Figure 3.2.10: Example of piercing point positions after S-wave propagation considering the 3-D velocity

model from Diehl et al. (2009) and my own ray tracing implementation.

3.2.5 Shooting correction

In order to produce the P-to-S conversion, I test a way to see how much I have to decrease

the ray parameter p (or increase the epicentral distance ∆), so that the P-S converted wave

hits the same point at the P-wave. In other words, our goal is to minimize the distance

X = dP − dS, as shown in Figure 3.2.11.
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Figure 3.2.11: Graphical representation of the distance calculation between P direct wave and P-S converted

wave. The earthquake focus (further away) is represented with a red star, while the station is a reverse triangle.

In other words, for the final shooting, the ray parameter is corrected proportionally to the

value of the distance X, simulating that the station is not anymore at the original position

but in a new position considering the addition of X, in the opposite direction from the arrival

of the first shooting. In the Figure 3.2.12 we can observe how the X distance changes with

respect to the ray parameter p and the epicentral distance △.
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Figure 3.2.12: Distance between P-S converted wave and P-wave arriving at the surface as a function of

the ray parameter and the epicentral distance for a source at 30 km depth using the global 1-D velocity model

IASP91.

As we can see, the X distance is minimum for small values of p (minimum X around at
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4 km for a value of p = 4.692 sec/°) and for large epicentral distances (△ ≈ 89°). As we

observed in Figure 3.2.13 after the first shooting, we have to adjust the ray parameter to

make the crustal S-waves arrive at the station.
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Figure 3.2.13: Example of correct P-to-S wave shooting. Blue thick line represents first shooting of global

P-wave, red thin line first shooting of P-to-S conversion. Blue thin line is the second shooting of global

P-wave, and red thick line is the second shooting of P-to-S wave, reaching the station.

After this correction, I shoot again a P-wave in the global model using the original tool

of Knapmeyer, 2004 (where I find also a slightly different set of piercing points computed

previously) and then I use the S-wave shooting procedure I develop and I described before

considering the local velocity model from Diehl et al. (2009) including local Moho dip.

Figure 3.2.14 shows the improvement in the ray tracing of P-to-S wave between first and

second shooting as the ray arrives to the surface.
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Figure 3.2.14: P-to-S-wave arrival at a station: first shooting (left), second shooting (right) after correction,

at the station ZUR.

We can observe that the distance of the ray arrival from the station in Figure 3.2.13

decreases from mean values around 3 km to distances around 80 m for the examined case at

station ZUR.

The graph in Figure 3.2.15 shows the improvement of this distance from the station

between the first and the second shooting using local Moho model from Spada et al. (2013)

and local velocity model from Diehl et al., 2009.
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Figure 3.2.15: Comparison between first and second shooting using local Moho model from Spada et al.,

2013 and local velocity model from Diehl et al., 2009.

Considering all the selected traces, the first shooting between the arriving S-wave and

the station has a mean of 3 km (with a median of 2.4 km); after the adjustment of the ray

parameter, the mean of this distance decreases to 180 m (median of 60 m), which represents

a very good accuracy for our shooting tool. Meanwhile, the computation time remained very

reasonable (13 minutes for the computation of the whole dataset, 0.04 sec for 1 trace).

3.2.6 Performances and shooting results

In this section I describe the accuracy of the ray tracing procedure I implemented. Figure

3.2.16 represents the shooting’s distribution in our area.
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Figure 3.2.16: Shooting’s distribution in our study area. Green dots represent S-arrival at the station,

black double line plate boundary between European and Adriatic plate.

The position of the dots have a perfect match with respect to the position of the stations

in the study area.

In Figures 3.2.17, 3.2.18 and 3.2.19 I represent the location of the rays at depth planes

used for ray tracing in the 3-D space, respectively at 7.5, 22.5 and 37.5 km.
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Figure 3.2.17: Depth slice at 7.5 km. Green circles represent the position of the S-ray, blue points belong

to European Moho, red points to Adriatic Moho.

-400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150

Easting [km]

-150

-100

-50

0

50

100

150

200

250

300

N
o

rt
h

in
g
 [

k
m

]

Figure 3.2.18: Depth slice at 22.5 km. Green circles represent the position of the S-rays, blue points belong

to European Moho, red points to Adriatic Moho.
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Figure 3.2.19: Depth slice at 37.5 km. Green circles represent the position of the S-rays, blue points belong

to European Moho, red points to Adriatic Moho. Black line shows the Alpine arc’s smoothed 800 m altitude

line.

In particular, Figure 3.2.19 shows that the deepest piercing points of the S-waves are

located inside the Alpine arc, where the crust in the assumed model is thicker. A good

indication regarding the limit of the seismic resolution is shown in Figure 3.2.20, where ray

coverage at the local Moho depth is shown with the corresponding Fresnel zone. This con-

siders the volume within which the waves are sensitive to velocity variations. The dimension

of the Fresnel zone can be calculated by simple geometry (Sheriff, 1996).
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Figure 3.2.20: Moho depth map according to the model of Spada et al. (2013) and ray coverage of my final

dataset. White shaded circles represent the position of piercing points for the final crustal S-wave. Dimension

of the radius of each circle is proportional to the Fresnel zone.

The Fresnel zone radius depends on the wavelength, which is itself a function of frequency

and velocity of the wave. Applying the calculation of the Fresnel zone for the S-wave in the

Central Alps case, the frequency I refer to is the maximum frequency at which I computed

the RFs fmax = 0.5 Hz and for the S-velocity I use typical velocities derived from the IASP91

model at the depths of the piercing points at the initial Moho model from Spada et al. (2013).

For example, if the depth of a piercing point at the Moho is z = 30 km, the corresponding

S-wave velocity Vsiasp91 is 3.75 km/s and the Fresnel zone F is:

F =

√

z ∗ V siasp91
2 ∗ fmax

(3.2.4)

F ∼= 10.6 km, which represents a typical Fresnel zone at the Moho depth. Considering all

the depths of the piercing points for the Figure 3.2.20 the range of variation of the Fresnel

radius goes between 9.3 and 15 km. Overall, the coverage of the crustal volume by P-to-S

waves in the Central Alps is very good, and shows that a densely spaced network is suitable

for mapping Vs using receiver function method.



Chapter 4

Model Parameterization

In seismology the model parameterization is a simplified representation of a seismic structure

by a set of model parameters. A new important contribution of this study is that I define

in depth a flexible model with separate velocities above and below each discontinuity. This

flexibility allows to accommodate a velocity gradient within each layer and investigate a

velocity jumps across discontinuities.

In the second part, I describe the use of a velocity gradient across a layer in the compu-

tation of individual ray paths and how I extract the corresponding 1-D velocities model from

the 3-D to compute synthetic receiver functions. The new model parameterization is applied

to the context of the Central Alps.

84
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4.1 Model parameterization in classical tomography

In this section, I discuss the model parameterization in tomography, which is the way of mod-

eling and representing the subsurface structure of the Earth (Tong et al., 2019). The factors

that affect the choice of a particular model parameterization include forward solvers, inverse

algorithms, a priori knowledge of Earth’s structure and resolution capability of available data

set (Kissling et al., 2001). Different functions have been used to express the 3-D structure

of the Earth’s interior (Rawlinson et al., 2010; Zhao, 2015), where blocks and grids are the

most basic forms of parameterization. In relation to the accuracy of the forward model, the

initial velocity and its updates are usually discretized on small blocks or fine grids and this

approach (with some variants) have become very popular in local earthquake tomography as

well as in teleseismic tomography (Zhao et al., 1992; Thurber and Eberhart-Phillips, 1999;

Zhao, 2009). The typical parameterization used in classical tomography for a 3-D domain is

shown in Figure 4.1.1.
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Legend
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Figure 4.1.1: 3-D Sketch of typical model parameterization used in classical tomography. Block boundaries

are fixed in space. Velocity values represent a volume.

In this approach velocity is defined inside each block and has usually a constant value.

Even tough interfaces in reality may vary in depth, the block geometries are usually fixed.

Such grids are typically linearly interpolated to obtain velocities in other points of the 3-D

space. The main drawback of this type of parameterization is that sharp changes in velocity

and interfaces (e.g. Conrad or Moho) depth are poorly resolved. Therefore, it may be too

simplistic to represent the geological complexity of a given study area.
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4.2 Model parameterization for 3-D converted wave

In order to surmount these drawbacks and to aim at images which better reflect the complex-

ity of the Earth’s interior, I define a new model parameterization, which is shown in detail

in Figure 4.2.1.
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Figure 4.2.1: 3-D model parameterization used in this work for RF tomography. Layer boundaries are

flexible in depth. Velocity profiles belong to a grid node (a point in map view).

Taking advantage of one of the features of the RF technique, which is more sensitive

to the geometry of discontinuities with respect to tomography, I parameterize a multi-layer

crustal model with a flexible nodes along the vertical direction. Moreover, I define a velocity

above and below each interface and this allows us to accommodate fixed nodes in horizontal

direction but with both velocity jumps between adjacent layers and velocity gradients across

layers.

Expressing this in terms of variables:

• NX, NY , NZ, are the number of the nodes in the x, y, z directions;

• CX, CY , CZ, are the coordinates along the x, y, z directions.

At each interface:

• V Pabove, P-wave velocity above the interface;

• V Pbelow, P-wave velocity below the interface;
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• V Sabove, S-wave velocity above the interface;

• V Sbelow, S-wave velocity below the interface;

For the implementation in the Alps context, I define Vs from Diehl’s Vp using a constant

initial Vp/Vs = 1.73. Considering that the velocity value above the surface is not used for

RF calculation, and below the Moho is kept fixed at the mantle value of the IASP91 model,

I reduced the number of independent variables at each node to 4.

4.2.1 Ray tracing accuracy using new model parameterization

Once the new model parameterization has been defined, I adapt the ray shooting tool that I

developed for this work, considering the lateral variations of the velocity structures and the

local dip of the discontinuities in the Alpine region. Figure 4.2.2 shows the improvement from

the first to the second corrected shooting considering the model parameterization described

above, in terms of distance of S-wave arrival at the surface from the station.
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Figure 4.2.2: Distance of S-wave piercing point at the surface from the station. Comparison between

first and second shooting using the new model parameterization.

Considering all the selected traces, the first shooting between the arriving S-wave and

the station has a mean of 3.3 km (with a median of 3.0 km), and after the adjustment of

the ray parameter the mean distance drastically decreases to 60 m (median 33 m), which
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confirms the goodness of the shooting implementation and its accuracy already shown in the

previous chapter. Figure 4.2.3 shows the comparison between the final corrected shooting

considering the model parameterization used in classical tomography and the new model

parameterization developed in this work.
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Figure 4.2.3: Comparison between the final shooting of the ray tracer I develop with the model parameter-

ization used in tomography (blue points) and new model parameterization defined in this work (red points).

In particular, the graph shows that the distance from the station becomes even smaller

if I use the model parameterization defined in this work (mean of distances 180 m) as input

model with respect to the model parameterization defined in classical tomography (mean of

distances 60 m). The improvement is due to the higher number of defined velocity nodes,

that reflects a better approximations of reality.

4.3 New model parameterization applied to the Alps

In this section I define the initial setup of the model geometry and velocities in the Central

Alpine context, using the new model parameterization formulation.
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4.3.1 Setup of the initial model geometry

It is known that the crust is not homogeneous but has a vertically layered structure. In 1925

the seismologist Victor Conrad separated arrivals from a Tauern (Eastern Alps) earthquake

of 1923 into Pg and Sg waves in an upper crustal layer and faster P ∗ and S∗ waves that

travelled with velocities 6.29 km/s and 3.57 km/s, respectively, in a deeper layer.

Because the P ∗ and S∗ velocities are significantly slower than corresponding upper mantle

velocities, Conrad deduced that they were head waves from a lower crustal layer. The inter-

face separating the continental crust into an upper crustal layer and a lower crustal layer is

called the Conrad discontinuity, in honour of Victor Conrad. Influenced by early petrological

model of crustal composition and by comparison with seismic velocities in known materials,

seismologists referred to the upper and lower crustal layers as the granitic layer and the

basaltic layer, respectively.

This petrological separation is now known to be simplistic as more gradual changes within

the crust occur as a result of a regional tectonic and metamorphic history. In contrast to the

Moho, which is a primary discontinuity and is usually sharp, the Conrad discontinuity may

be poorly defined or absent in some areas.

4.3.1.1 Conrad discontinuity in the Alps

In the Alpine domain, a continuous layer between the granitic layer and the Moho was not

consistently found by seismic observations. Most geophysicists take for granted the existence

of a so-called “intermediate” layer (Hart, 1969), that can often be subdivided into 2 parts.

In some areas, the intermediate layer seems to begin with high velocities. The range in

which a velocity of 6.3 km/s is found with a positive velocity gradient can be defined as a top

of the intermediate layer. In and outside Alps, the Conrad discontinuities lies between 15

and 20 km (Hart, 1969). Exceptions are known, especially the gravity highs at the southern

inner margin of the Alps (Ivrea Zone, Garda Lake). The inner structure of the intermediate

layer seems to vary remarkably. The greatest thickness of the intermediate layer has been

found in the Central Alps in Switzerland and in Western Austria Closs (1965).

Figure 4.3.1 shows the interpreted ECORS-CROP transect and the variability in crustal

thicknesses not only between European and Adriatic plate, but also of the upper and lower

crust within the same plate.
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Figure 4.3.1: ECORS-CROP transect by Schmid et al. (2017). The section is superimposed with and partly

based on vertical cross sections across the P-wave velocity model of Diehl et al. (2009) indicated by red dashed

iso-velocity contours. The Moho (blue line) is taken from a combination of controlled source seismology, local

earthquake tomography and receiver function analysis (Spada et al., 2013).

The geological interpretation of the P-wave velocity model of Diehl et al. (2009) allows

new details concerning the outlines of the Adriatic mantle wedge and integrates its outline

into the structure of the Alps. The interpretation of these findings reveal that the upper plate

of the Eastern Alps is defined by the Austroalpine nappe system, while the upper plate of

the Western Alps is formed by non-metamorphic klippen of the Piedmont-Ligurian Oceanic

crust and lithosphere (Molli et al., 2010).

In general, a subdivision of upper and lower crust by a well-defined boundary is often,

but not always seen on interpreted cross-sections. However, as Escher et al. (1997) point it

out, the mid-crustal structure is clearly less constrained than the near-surface geology and

the Moho (Figure 4.3.2).



CHAPTER 4. MODEL PARAMETERIZATION 91

Figure 4.3.2: Schematic geological profile through the Western Swiss-Italian Alps from the Mont Tendre

(Jura) in the northwest to the Val Sesia in the southeast. It is based partly on the results of seismic data. The

overall interpreted structure shows that the main response to compressional stress was the subduction of the

European (and Briançonnais) lithosphere. It also suggests that the deformation and stacking of nappes took

place within the upper part of the downgoing continental crust, while the lower crust subducted in a passive

way together with the lithospheric mantle (modified after Escher et al., 1997).

Based on these geological models and geophysical a priori information, I define the initial

geometry of the Conrad discontinuity in my model with respect to the Moho depth model

of Spada et al. (2013), and consider a lower crustal thickness of 12 km everywhere (Figure

4.3.3).
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Figure 4.3.3: Model geometry of our study area in 3-D. Small green nodes represent velocity according to

the local earthquake tomography by Diehl et al. (2009). Bigger dots in black, blue and red represent respectively

surface, Conrad and Moho interface. Vertical axis is exaggerated.

During the inversion, the Conrad geometry will be able to evolve independently. For

the definition of the surface, the elevation of the highest station (at 3 000 m above sea

level) is chosen to define velocities, but rays only propagated to the actual elevation of the

corresponding station.

4.3.2 Setup of the initial velocity model

To construct the initial model for the Central Alps, I build a 2-layer model of the crust and

consider 3 interfaces: the surface, an intra-crustal boundary (possible Conrad discontinuity)

and the Moho discontinuity. Regarding Moho model, I decide to use the same geometry of

Spada et al. (2013) as initial model. For the velocity model parameterization, I decide to

introduce a P-velocity jump ∆VPI91
derived from the IASP91 model (Kennett and Engdahl,

1991), equal to 0.7 km/s. In Figure 4.3.4 I show the P-wave velocity values at the depth slice

of 15-km given by the model of local earthquake tomography by Diehl et al. (2009).
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Figure 4.3.4: P-wave velocity at 15-km depth from the local earthquake tomography model of Diehl et al.

(2009). The red box is our study area; thin double line indicates the plate boundary.

I resample the starting model defining velocities every 25*25 km, and then apply the new

model parameterization, which considers a velocity value above and below each discontinuity.

In the case of 2 layers with variable velocities and 3 interfaces bounding them, the number

of independent P-wave velocity variables is 4:

• V PBELOW−SURFACE, P-velocity below the surface;

• V PABOV E−CONRAD, P-velocity above the Conrad discontinuity;

• V PBELOW−CONRAD, P-velocity below the Conrad discontinuity;

• V PABOV E−MOHO, P-velocity above the Moho discontinuity.

Figure 4.3.5 and Figure 4.3.6 represent respectively the P-wave velocity derived from the local

earthquake tomography model by Diehl et al. (2009) and considering our parameterization at

the depth slice of 15-km (one of the plane where we know the velocity from the tomography

model by Diehl et al. (2009)).
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Figure 4.3.5: P-wave velocity model defined above 15 km depth according to our model parameterization.

-300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350

Easting [km]

-200

-150

-100

-50

0

50

100

150

200

250

300

350

N
o

rt
h

in
g
 [

k
m

]

5

5.25

5.5

5.75

6

6.25

6.5

6.75

7

7.25

V
p

 [
k

m
/s

]

Figure 4.3.6: P-wave velocity model defined below 15 km depth according to our model parameterization.
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As expected, both of the figures show a little perturbation with respect to the starting

model given by tomography presented in Figure 4.3.4, with velocity values increasing from

above to below by definition of our parameterization.

4.4 Extraction of 3-D velocity model

For each observed trace, synthetic RFs are computed using 1-D velocity models which are

extracted from the 3-D velocity model along the raypath using the ray tracing procedure

described in Chapter 3. Figure 4.4.1 shows an example of extraction of the S-velocity along

a raypath for the station ZUR and its profile.
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Figure 4.4.1: On the left, example of extraction of the velocity along a ray-path for the station ZUR. Green

points shown the position where velocities value are known from the tomography of Diehl et al. (2009); red

points define the step from the Moho to the surface; blue points (at Moho, Conrad and surface, overlapped

by the station) were new velocity model is defined considering a weighted mean at the enclosing mesh nodes.

On the right, example of the Vs profile according to our parameterization for the same trace.

In the 3-D approach, the local crustal velocity is obtained using a weighted mean based

on the inverse of the square of the distance from the 8 enclosing neighbour nodes, 4 below
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and 4 above with respect to the point, where we know the velocity from our input model.

The local S-wave velocity is initially set by dividing the P-wave velocity model by a constant

Vp/Vs of 1.73. This approach is compatible with the S-wave propagator that I developed in

Chapter 3. The ray and the 1-D velocity model are sampled at regular intervals in depth,

within a layer, and then at interfaces. In the example shown in Figure 4.4.1 I use 4 km depth

sampling.

With this scheme I retrieve a 1-D velocity for each trace, and then I generate the cor-

responding synthetic RF. This waveform is then compared with the corresponding observed

RF. An example of this comparison is shown in Figure 4.4.2.

Figure 4.4.2: Comparison between observed (black) and synthetic (red) RF for the Chiapas earthquake,

Mexico (2017-09-08, 04:49:19 UTC) at the station ZUR.

The difference between the observed and the synthetic RF will be optimized through

inversion, by choosing an objective function to minimize. Full details will be discussed in

Chapter 5.

4.5 Computation of synthetic RF

For the synthetic RF computation, the model parameters in each layer are the thickness,

the S-wave velocity at the upper boundary, the S-wave velocity at the lower boundary, and
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the velocity ratio between P and S waves (Vp/Vs). The S-wave velocity in each layer is

constructed by linearly connecting the values at the upper and lower boundaries, to give a

sequence of constant velocity gradient segments separated by velocity discontinuities as the

full crustal velocity model. For RF calculation, I use the code of Shibutani et al. (1996) based

on frequency domain deconvolution.

Table 4.1 shows respectively the 1-D input velocity structure for an example of velocity

model used in this work.

Layer H (km) Vs1 (km/s) Vs2 (km/s) Vp/Vs Qp Qs

Upper Crust 20 3.20 3.40 1.73 1450 600
Lower Crust 12 3.60 3.70 1.73 1450 600

Mantle Half-space 4.47 4.47 1.80 1450 600

Table 4.1: Input velocity model for receiver function calculation considering this section.

As we already mentioned in the first part of this chapter, the model parameterization

that uses different velocities within each layer, has the possibility to accommodate velocity

gradients between nearby layers. Since in this study the primary focus is not the signal’s

amplitude, I keep the default value for the seismic attenuation Qp and Qs at 1450 and 600

respectively. Figure 4.5.1 shows the synthetic RF generated by the models with and without

a velocity gradient.
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Figure 4.5.1: Synthetic RF generated by a model without velocity gradient (IASP91) in black and with a

velocity gradient (input in Table 4.1) in red. P-wave arrival is at 1 sec.

The influence of the each parameter (crustal thicknesses, Vp/Vs ratio and velocity gradi-

ent) on the RF waveform, affecting the arrival times of the Ps phase and the multiples, will

be discussed in section 4.5.

4.5.1 The Gaussian convolution

In order to obtain receiver function waveforms from the series of spikes from the iterative

deconvolution, a convolution with a Gaussian is necessary. The width of the Gaussian de-

pends on the maximum frequency content of the seismograms before deconvolution. Ammon

(1997) has determined parameter for the Gaussian function to produce curves of the required

width, which I report in Table 4.2.
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agauss f (Hz) Pulse Width (s)

10 4.8 0.50
5 2.4 0.75

2.5 1.2 1.00
1.25 0.6 1.50
1 0.5 1.67

0.625 0.3 2.10
0.5 0.24 2.36
0.4 0.2 2.64
0.2 0.1 3.73

Table 4.2: Value of the Gauss filter (first column). The frequency at which the value G(f) corresponds to

the 10% of the passing signal and the pulse width is the time domain (Ammon, 1997).

In practice, the following equation relates the input Gauss parameter agauss and the

highest frequency content fmax.

agauss = (2 ∗
√
2 ∗ ln2)2 ∗ fmax (4.5.1)

where ln is the natural logarithm and fmax is the maximum frequency to which the RFs

are computed. In our case, fmax being 0.5 Hz, the value of the agauss parameter is 2.7726.
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4.6 Receiver function sensitivity on inversion parameters

It is useful to know what are the effects of perturbations of model parameters (thicknesses

and velocities) on the receiver function waveforms. To visualize these, I compute a series of

synthetic tests, considering the 1-D IASP91 velocity model (Kennett and Engdahl, 1991) as

initial structure (Figure 4.6.1).
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Figure 4.6.1: Crustal velocities in the IASP91 model (Kennett and Engdahl, 1991): P-waves in blue,

S-waves in red.

I perturb the initial velocity model by varying one parameter at a time, to clearly see the

effects on the receiver functions.

4.6.1 Thicknesses

Figure 4.6.2 represent the situation the Conrad depth is varied, from the initial 20 km value

(thick line in the plot).
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Figure 4.6.2: Synthetic test varying the depth of the Conrad discontinuity. Thickest line shows the initial

value with the Conrad at 20 km depth. Direct P-wave arrival is at 1 sec.

What is observed is that the arrival time for the Ps conversion from the Conrad and the

corresponding multiples PpPs and PpSs increase as the Conrad depth increases.

The same pattern is observed when the Conrad depth is kept fix but the Moho depth is

varied (Figure 4.6.3).
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Figure 4.6.3: Synthetic test varying the depth of the Moho discontinuity. Thickest line shows the initial

value with the Moho at 35 km depth. Direct P-wave arrival is at 1 sec.

In both cases shown above, there is also a variation in the amplitude of the peaks, but is

negligible compared to the variation observed in arrival time.

4.6.2 Velocities

I performed similar tests varying one velocity value at a time. Figure 4.6.4 shows the synthetic

test when the upper crustal Vp/Vs is varied, from the initial value of 1.73 (default value taken

from IASP91 model). The general effect is that all the wave conversions are delayed in time

with increasing Vp/Vs and slightly increase their peak amplitude.

Similar results are obtained when perturbing the Vp/Vs in the lower crust (Figure 4.6.5),

now using a value of 1.78 as reference (Zandt and Ammon, 1995). The main difference

observed is that the converted phases for the intra-crustal layer remain at the same arrival

times, and only the Moho conversions are delayed. The amplitude change is still small, its

trend is the same for the Moho conversion, but opposite for the Conrad, as the velocity

variation across it is decreased.
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Figure 4.6.4: Synthetic test varying the Vp/Vs in the upper crust. Thickest line shows the initial value.
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Figure 4.6.5: Synthetic test varying the Vp/Vs in the lower crust. Thickest line shows the initial value.
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The new model parameterization with different velocity values above and below each

discontinuity allows to investigate the velocity jump between layers. Moreover, it constitutes

a simplification in the a priori Vp model replacing the 2 absolute values by the Vp jump (1

parameter), at the cost of fixing the mid-point of the jump. When we look at the variation of

the velocity jump across the Conrad, the change in the amplitude of the waveforms is further

emphasized with respect to the other parameters (Figure 4.6.6).

The change in amplitude is further emphasized when the velocity jump across the Conrad

is varied (Figure 4.6.6).

In the case where △VpConrad = 0, I do not observe any Conrad conversion, in this case

the velocity profile is continuous from the top of the upper crust to the top of the lower crust.

When negative velocity jumps are tested, a low velocity zone is created and this results in a

negative amplitude Ps Conrad conversion and also flipped polarity multiples.
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Figure 4.6.6: Synthetic test varying the velocity jump between upper and lower crust.



Chapter 5

Inversion strategy and setup

In this chapter I describe briefly the literature on global optimization methods, from determin-

istic techniques to the stochastic approaches with a particular focus on Monte Carlo methods

that are currently popular in geophysics. To justify the choice of the method adopted for this

study and before applying the inversion strategy to the seismic data, I show the efficiency of

some inversion techniques considering an analytical function with several local minima.

For the application to the Central Alps the 3-D inversion of crustal structure by converted

waves proceeds iteratively, by visiting every node on the map following a traveling salesman

path (TSP). At each node, receiver function rays in the surrounding volume are considered for

inversion, and are bundled into sub-blocks and ranges of back-azimuth. The velocity model

at the given node is inverted using the technique of simulated annealing (SA), followed by a

pattern search algorithm to avoid falling in a local minimum.

The main parameters in the inversion process (e.g. the number of iterations to use) have

been tuned by simulating observations with a priori known models, which also allows to

verify the accuracy and the applicability of the approach.

105
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5.1 Inversion: optimization method

Inversion of geophysical data involves searching for optimal sets of Earth model parameters

that can be used to compute synthetic data that match with observations (Sen and Stoffa,

2013). The data misfit (or fitness) is generally measured by a suitably defined objective

function. Therefore, the essential elements of a model-based inversion algorithm include

data, model, forward problem, objective function and optimization method.

We will restrict ourselves to discrete data d and model m defined by the following vectors:

d = [d1d2d3 . . . dN ]
T (5.1.1)

m = [m1m2m3 . . .mM ]T (5.1.2)

where, in general, N 6= M that means that the number of data parameters is different

with respect to the model parameters.

Physical laws allow us to make predictions: given a complete description of a physical

system, we can predict the results of measurements. This is the forward problem described

in Chapter 3 that can be represented by the following equation:

dsyn = G(m) (5.1.3)

where G is a nonlinear forward modeling operator that works on the model vector to

generate synthetic data vector dsyn.

The inverse problem uses the actual results of measurements to infer the parameters that

characterize the system. The traditional interaction between forward and inverse problems

is schematized in Figure 5.1.1.
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MODEL

Forward problem

Inverse problem

DATA
m d

Figure 5.1.1: Interaction between forward and inverse problems. In an inverse problem, the characteristics

of an unknown system are estimated based on its observed output data.

The main equation for the inverse problem is:

m = G−1(d) (5.1.4)

where G−1 represents the inverse problem operator that is able to estimate the model m

given the data d.

The next step is to define an objective function that measures a misfit between the

observed and synthetic data using a suitably defined norm. The data residual is given by:

△d = dobs − dsyn (5.1.5)

where dobs is the observed data vector and the data misfit norm can be written as:

‖ △d ‖p= [
N
∑

i=1

| △di |p]
1

p (5.1.6)

where p is an integer representing the order of the norm. The most commonly used norm

is an L2 norm for which p = 2 resulting in a minimization of the mean square error.

In a general inversion approach, synthetic data are generated for an assumed model and

compared with the observed data. If the match between observed and synthetic data is

acceptable, the model is accepted as the solution, otherwise, the model is changed and the

synthetics are recomputed and again compared with the observations. This iterative forward

modeling procedure is repeated until an acceptable match is obtained between data and

synthetics. Thus in this approach, inversion is viewed as an optimization process in which a

model is sought that best explains the observations (Figure 5.1.2).
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Figure 5.1.2: Principle of model-based inversion by optimization.

Typical examples in geophysics can be given in the gravity or seismological domain. In

the first case, the density distribution of the rocks is the source of the gravity field; in

the second scenario, the goal is to estimate the location and type of seismic source and a

structure from the observed seismic field. The inverse problem whose goal is to estimate

Earth model parameters from observations is nontrivial due to the fact that data are almost

always inadequate, inconsistent and insufficient.

In the solution of any inverse problem, there are three important questions arising:

1. Does the solution exist?

2. Is this solution unique?

3. Is it stable?

The question of the existence of a solution is related to the mathematical formulation of the

inverse problem. From the physical point of view, there should be some solution because the

application is the real geological structure inside the Earth. However, from a mathematical

point of view, there may be no suitable numerical model to fit our observed data on a given

set of models.

The concept regarding the uniqueness of the solution can be illustrated by the following

formula. Suppose we have 2 different models, m1 and m2, and two different sources, s1 and

s2, that produce the same data d0:
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A(m1, s1) = d0, A(m2, s2) = d0 (5.1.7)

In this case, it is impossible to distinguish the two models, m1, m2, from the given data.

The problem of the non uniqueness of the solution in the inverse problem was shown for

the first time in Backus and Gilbert (1967), that represents the foundations of geophysical

inverse theory.

The last question of solution stability is also a key issue in inversion theory since geophys-

ical data are always contaminated by some noise δd: the problem is whether the difference

in the response of different modes is greater than noise level.

According to Hadamard (1902), if all three questions mentioned above have a positive an-

swer, then a mathematical problem can be expressed correctly. Therefore, the mathematical

problem is considered to be well-posed, if its solution exists, is unique and is stable; however,

unfortunately, most natural science problems are ill-posed. Tikhonov and Arsenin (1977)

develop the basis of the theory of ill-posed problem solutions, introducing a regularization

method to approximate an ill-posed problem by a number of well-posed problems.

Applications of inverse theory in the Earth Sciences are discussed in many books and

reviews including Aki and Richards (1980), Parker (1994), Sen and Stoffa (2013), Tarantola

(2005), Moorkamp et al. (2016) and Menke (2018). Here I give a brief overview based on the

considerations for 3-D converted wave tomography.

5.1.1 Deterministic global optimization

The goal of an optimization algorithm is to search for the minimum of an objective function1.

Deterministic global optimization is a branch of numerical optimization which focuses on

finding the global solutions of an optimization problem (Neumaier, 2004). Deterministic

algorithms can handle millions of data and model parameters using advanced simulation

tools; these algorithms, based on the concept that future behavior can be predicted precisely

from the past behavior of a set of data, provide one final model, where the error is a function of

the chosen regularization operator. Most of the local optimization methods are deterministic

in nature and the success is largely dictated by the choice of the starting model. Only if

the starting model is close to the globally optimal model can we expect to reach the global

minimum using local optimization methods.

One of the most common deterministic techniques to find a local minimum of a function

is the gradient (or steepest) descent (Robbins and Monro, 1951; Gill and Murray, 1981),

1The objective function can have multiple local minima; the minimum of all the local minima is called a
global minimum. In most applications, once an objective function has been defined, the goal is to find the
global minimum.
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where some steps are taken proportional to the negative of the gradient of the function to

minimize at the current point. A more sophisticated evolution of this method is the conju-

gate gradient method (Liu and Storey, 1991), that is useful for the optimization of both

linear and non-linear systems. The approach is generally used as an iterative algorithm,

applicable to sparse systems that are too large to be managed by a direct search implemen-

tation. Figure 5.1.3 shows the evolution path of the gradient sampling algorithm on a typical

non-smooth objective function, as compared to the behavior of the classical steepest descent

algorithm (Vanbiervliet et al., 2008).

Figure 5.1.3: Comparison of the behavior of the classical steepest descent method (dashed line) and the

gradient sampling algorithm (full line) on a typical non-smooth 2-D function (figure from Vanbiervliet et al.,

2008).

It is seen that the steepest descent, showed with a dashed line, indeed strands upon

reaching a ridge of non-smooth points, whereas the solid line representing the gradient sam-

pling algorithm, is able to proceed towards the non smooth local minimum by following the

steepest descent direction.

Another gradient method of optimization includes the Newton method (Fischer, 1992)
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that corresponds to obtaining at the current point mn the paraboloid that is tangent to the

function S(m) and that has the same local curvature, and jumping to the point where this

tangent paraboloid reaches its minimum (Figure 5.1.4).

Figure 5.1.4: The Newton method provides the minimum of the parabola that is tangent to the 1-D function

to be minimized (from Tarantola, 2005). Red dot indicates the current point.

The main advantage of the gradient-based method is that, when it works, it can be very

efficient. The disadvantage is that the local properties of the function to be optimized may

be of little interest if the function is complex (Tarantola, 2005).

Deterministic algorithms also include Tabu search (Glover, 1986) that uses a local or

neighborhood search procedure to iteratively move from one potential solution x to an im-

proved solution x′ in the neighborhood of x, until some stopping criterion has been satisfied.

At each step worsening moves can be accepted if no improving move is available; moreover,

prohibitions are introduced to discourage the search from coming back to previously visited

solutions. The implementations of tabu search use memory structures that describe the vis-

ited solutions. If a potential solution has been previously visited within a certain short-term

period or if it has violated a rule, it is marked as tabu (forbidden), so that algorithm does

not consider that possibility repeatedly.

Finally, there is another class of algorithms, called uniform cost search which operates

in a brute-force way. These algorithms represent the best solution for a search problem

which does not involve the use of heuristics2. In particular, grid search methods represent

2A heuristic method is an approach to find a solution to a problem. The name comes from the ancient
Greek word “eurisko”, meaning to “find”, “search” or “discover”.
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a manually specified subset of the hyperparameter space of a learning algorithm (Claesen

and De Moor, 2015). Since these methods evaluate the objective function at every point in

the parameter space, they require an high computational cost. One example of a grid search

method is the Zhu and Kanamori (2000) technique, as already mentioned in Chapter 2. For

such methods, a solution is possible for a reduced parameter space, but not in the case of

more complex problem like the one regarding the Central Alps.

5.1.2 Stochastic optimization

Stochastic optimization methods include randomness, such as generating and using random.

In these approaches, the global minimum of a multimodal objective function is measured by

a probability density function (PDF ). The global maximum of this function corresponds to

the best data fit model, and locating it would be unfeasible with techniques based on gradient

methods or matrix inversion, unless one started near the solution.

Monte Carlo (MC) methods are a broad class of computational algorithms that rely on

repeated random sampling to obtain results. Most of the Monte Carlo approaches are com-

monly associated with a Bayesian probability, and perform a random search of a parameter

space, which is a multidimensional region describing the set of all possible values that Earth

models can take: each point in the parameter space represents an Earth model (Sambridge

and Mosegaard, 2002). For general probability distributions, Monte Carlo3 methods repre-

sent a good solution to perform an extensive exploration of the model space. Monte Carlo

sampling aims to solve 2 problems of a probability distribution in a large-dimensional space:

1. Locating the regions of significant probability.

2. Sampling the whole of the regions densely enough.

Discovering the location of the regions is the most difficult problem, and due to the great

emptiness of large-dimensional spaces, mathematics alone cannot solve it; it is the particular

geometry of the problem that may help (Tarantola, 2005). Once one has been able to come

close to one of these regions, some techniques as Gibbs sampler or Metropolis algorithm4 are

able to perform a random walk, which consists in a perturbative sequence of random changes

to a point in a multidimensional space.

3These methods were called Monte Carlo by the team at Los Alamos that was at the origin of the
Metropolis sampling algorithm.

4Gibbs sampler (Geman and Geman, 1987) is a Markov chain Monte Carlo (MCMC) algorithm for ob-
taining a sequence of observations which are approximately from a specified multivariate probability distri-
bution, when direct sampling is difficult. The Metropolis (or Metropolis-Hastings) algorithm was developed
by Metropolis and Ulam (1949), Metropolis et al. (1953) and Hastings (1970). It is a Markov chain Monte
Carlo (MCMC) method and has no memory, in the sense that each step depends only on the previous step.
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5.1.2.1 Simulated annealing

Simulated annealing (SA) approach was originally developed to simulate the statistical me-

chanics of systems in equilibrium but very quickly gained attention as a general purpose

global optimization method. Physically, annealing consists of heating a solid until thermal

stresses are released, then cooling it very slowly in the ambient temperature. Ideally, the

substance is heated until it melts, and then cooled very slowly until a perfect crystal is

formed.

Simulated annealing (Kirkpatrick et al., 1983; Geman and Geman, 1987) is a numerical

method based on Metropolis sampling algorithm of Metropolis et al. (1953), using an analogy

between the process of physical annealing and the mathematical problem of obtaining the

global minimum of a function that may have local minima. The power of simulated annealing

is that it can be used in cases where the model-data relationship is highly nonlinear and

produces multimodal data misfit functions.

The SA technique begins with an initial model m0, with associated error, or energy

E(m0). It draws a new model mnew from a flat distribution of models within the predefined

limits. The associated energy E(mnew) is then computed, and compared against E(m0). If

the energy of the new state is less than the initial state, the new state is considered to be

good. In this case, the new model is accepted and replaces the initial model unconditionally.

However, if the energy of the new state is larger than the initial state, mnew is accepted

with the probability of e(−(E(mnew)−E(m0))/T ), where T is a control parameter called annealing

temperature that controls if the “bad” model should be carried over to the new model (see

section 5.2.2). The same process is repeated for a large number of times, with the annealing

temperature gradually decreasing according to a predefined scheme.

5.1.2.2 Genetic algorithms

Genetic algorithms (GA) were first used by geophysicists in the early 1990s and fall into the

class of Monte Carlo techniques, since they also use random numbers to control components of

the search. Like simulated annealing, the metaphor underlying genetic algorithms is a natural

optimization process, in this case biological evolution Goldberg (1989). In contrast to the

basic form of simulated annealing, which keeps one set of parameters that are continually

updated, GA works on an ensemble of sets of parameters, with less emphasis placed on any

particular member (Sambridge and Mosegaard, 2002).
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5.1.2.3 Neighbourhood Algorithm

Neighbourhood algorithm (NA, Sambridge, 1999a; Sambridge, 1999b) represents a Monte

Carlo direct search technique, developed specifically for sampling in geophysical inverse prob-

lems. The approach makes use of concepts from the field of computational geometry and

bears little resemblance to genetic algorithms and simulated annealing. The main idea with

this method is to generate a set of samples, at each generation, whose sampling density

function is built from all previously selected model using the neighbourhood approximation.

Figure 5.1.5: Voronoi cells drawn around the sampling produced by a neighbourhood algorithm example

(Sambridge, 1999a) for a simple 2-D problem. a) 10 quasi-uniform random points and their Voronoi cells.

b) The Voronoi cells about the first 100 samples generated by a Gibbs sampler using the neighbourhood

approximation. c) Similar to b), but for 1000 samples. d) Contours of the test objective function. Note

the higher concentration of Voronoi cells in the darker regions where the fit is high (figure from Sambridge,

1999a).

This is a partition of parameter space into Voronoi cells about each of the previous models;

in this way the information in the previous samples drives the search for new models. At
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regular intervals the approximation is updated, and sampling can concentrate in multiple

regions. The number of vertices of Voronoi cells grows exponentially as the dimension of the

parameter space increases, because of the curse of dimensionality (Sambridge, 1999a). Figure

5.1.5 shows an example of the neighbouring sampling algorithm.

At each iteration a choice must be made on how to sample from the current approximate

fitness function. Like a genetic algorithm, the neighbourhood approach updates a population

of models at each iteration but does so using the Voronoi cell concept to identify “promising

regions” of the parameter space.

5.1.3 Deterministic vs stochastic approaches

One important question to address is whether a Monte Carlo technique (like SA, GA, NA) or a

linearized approach (based on matrix inversion) is more appropriate for a particular problem.

The answer depends on the nature of the relationship between data and model, the number

of unknowns the available computational resources (Sambridge and Mosegaard, 2002). As

the data-model relationship becomes more complex, the misfit function will also increase in

complexity and Monte Carlo techniques will be more advantageous for two reasons. The

first is that they avoid local minima better with respect to the deterministic approaches, the

second is that Monte Carlo techniques are usually more reliable in appraising the solution,

because they avoid derivates, and they estimate uncertainty by means of model variance

and resolution matrix. A very useful framework for comparing different search algorithms is

to consider the trade-off between exploration and exploitation (Sambridge and Mosegaard,

2002).

The term exploration indicates the improvement in the objective function looking in

different regions and different amount of coverage of the parameter space. Exploitation is

perpendicular to this: we make decisions of where to sample next by only using the previous

sampling and sometimes just the current best fit model. Figure 5.1.6 shows an attempt to

classify various techniques according to these definitions.
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Figure 5.1.6: A schematic representation of various search/optimization algorithms in terms of the degrees

to which they explore the parameter space and exploit information. Shaded borders indicate a deterministic

method (from Sambridge and Mosegaard, 2002).

Regarding optimization, the rule of thumb is that the more explorative an algorithm is,

the less likely it will fall into local minima, but the less efficient it will be at converging on

a solution. Conversely, the exploitative algorithms will be more efficient at convergence but

prone to entrapment, and hence the final result will depend on the starting point. Examples of

methods that lie at the extremes would be a uniform search, which is completely explorative,

and a steepest descent algorithm, which is completely exploitative.

5.1.4 Example of nonlinear optimization for an analytical function

Before applying the inversion strategy to the seismic data, in this section I show the efficiency

of a few inversion techniques on an analytical function that has more than one minima. In

the MatLab software, the command peaks produces a highly nonlinear function in 2-D that

has many peaks and sinks. This function has the following analytical form:

f(x, y) = 3 ∗ (1− x)2 ∗ e−x2
−(y+1)2 − 10 ∗ (x/5− x3 − y5) ∗ e−x2

−y2 − 1/3 ∗ e−(x+1)2−y2
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5.1.4.1 Optimization using Gradient Solver

The function above represents a challenging surface to minimize using a gradient based solver.

This represents a very challenging surface to minimize using a gradient based solver.

Let’s first consider a starting point at x0 = [0, 1.5]. Using the gradient method I find the

right solution as reported in Figure 5.1.7.
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Figure 5.1.7: Minimization of the “peaks” function using a gradient method. In the x-y plane, the green

point is the starting point [0, 1.5], while the red point shows the global minimum.

The top plot is a surface plot of the peaks function, while the lower plot is a contour plot

of the upper plot, with the constrained boundary in grey. If I move the starting point in

another region, for example assuming x0 = [−3, 3], the solution finds a local minimum, as

represented in Figure 5.1.8.
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Figure 5.1.8: Minimization of the “peaks” function using gradient method. In the x-y plane, green point is

the starting point [−3, 3], while red point shows global minimum.

This is because the gradient solver does not guarantee a global solution for nonlinear

optimization problems like this one.

5.1.4.2 MultiStart Optimization

Multistart optimization is a typical approach when we suspect that the problem is nonlinear

and we attempt to get around this issue by using multiple starting points: for example, by

generating 4 random starting points. In this case the global minimum was found at least

once: for this reason, multistart can be an effective method (Figure 5.1.9).
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Figure 5.1.9: Minimization of the “peaks” function using MultiStart optimization. On the right, the suc-

cessful case where the global minimum was found.

5.1.4.3 Optimization using Genetic Algorithms

One of the advantages of the solvers in the Genetic Algorithm is that they are useful for

highly non linear problems, but they have the drawback that they are expensive in terms of

computational cost and are limited to solving problems of relatively smaller size.
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Figure 5.1.10: Minimization of the “peaks” function using the genetic algorithm method. In the x-y plane,

green points are the starting points, while ’End’ shows the global minimum.

Figure 5.1.10 shows how the GA progresses towards a solution. It uses a stochastic search,
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based on an initial population of points (green), and then selects a subpopulation for creating

a new population to evaluate. At the end of this process, the global minimum is found.

5.1.4.4 Optimization using Simulated Annealing

The Simulated Annealing solver samples randomly the domain and reduces gradually the

search radius around a found minimum; periodically, the solver will reset and start to search

in a wider radius. This is the mechanism that allows this solver to jump out of a local

minimum and to ultimately find the global minimum (see Figure 5.1.11).

Figure 5.1.11: Minimization of the “peaks” function using the simulated annealing approach. The starting

point is in green and the global minimum is shown in red. Black dots represent the tested points.

5.1.4.5 Optimization using Pattern Search

Pattern search (or direct search) is a family of numerical optimization methods that does

not require a gradient (Hooke and Jeeves, 1962). Pattern search solver starts from an initial

point provided for the input and contracts the search radius as it explores the domain for the

maximum value; this algorithm is very efficient on a highly rough surface like this current

example (Figure 5.1.12), on which gradient based solvers do not work well.
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Figure 5.1.12: Minimization of the “peaks” function using the pattern search method. In the x-y plane, the

green point is the starting point [−3, 3] and the red point shows the global minimum.

5.1.4.6 Choice of the Solver

Table 5.1 shows the performance and cost overview of various solvers on an analytical function

example. It is clear that gradient based solver is the best approach, at least for non-linear

functions. However, as shown in section 5.1.4.1, the right solution is not always found. Note

that even if run with a random starting point, it is still faster than other methods and often

results in fewer function calls.

Among the gradient-free methods, we can see that the order of preference in terms of

function calls is PS, SA, GA. And if we considered time to solution, it would be SA, PS and

then GA.

Solver Function calls Time (s)

Gradient (lucky guess) 47 0.174108
Gradient (random start) 189 0.843512

Genetic Algorithm 5220 17.886585
Simulated Annealing 2406 1.226381

Pattern Search 453 3.991359

Table 5.1: Results from different optimization solvers on an analytical functions.
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A good recommendation is that if you think you have a nonlinear problem (like the

receiver function minimization), you can’t use a gradient based solver. From the results of

this analytical example, we find out that simulating annealing is a good compromise between

PS and GA. In this analytical example, simulated annealing is a good compromise between

PS and GA, taking into account both solution accuracy and computational cost.

5.2 Setup for 3-D converted wave tomography

In this section I describe the practical implementation of the inversion of converted rays to

retrieve 3-D crustal structure. The main elements, discussed by section, are the following:

• Spatial separation of the inverse problem: since the matrix linking the model to the

data is sparse, i.e. only the nearest receiver functions affect the structure and velocity

of a given node, I proceed to a node-wise inversion visiting every node in a consecutive

order. This is performed using a Traveling Salesman itinerary, and multiple rounds are

performed to let the inversion result stabilize.

• Inversion at each node: the corresponding structure and velocity parameters are in-

verted, to minimize the objective function between observed and synthetic data. Syn-

thetic tests are performed to assess the performance of the inversion and to set its

parameters.

• Spatial grouping of rays: during the inversion, receiver functions following similar ray-

paths are grouped into a bundle.

• Synthetic model recovery test : before applying this approach to real data in the Alpine

area, I test the method and its limitations simulating observations with a known syn-

thetic model, to verify that the approach is able to reconstruct it.

5.2.1 Spatial separation of the inverse problem

The inversion method I propose takes advantage of the fact that the matrix G linking model

to the data is sparse; this is because only the nearest receiver functions affect the model

properties at a given node. Therefore, as the matrix is sparse, so most of its elements are

zero, I can run inversion locally at each node, instead of a large inversion for the entire model

domain. This requires visiting every node going neighbour by neighbours, and to do at least

2 rounds to stabilize the results.
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I divide the model space into a 25x25 km mesh in map-view (Figure 5.2.1), and those

nodes to which at least one RF raypaths belongs. At this mesh size, any RF path across the

crust remains within an area bounded by 2-by-2 mesh elements.
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Figure 5.2.1: Grid node map at Moho depth in the study area for the real dataset. Black nodes indicate at

least 1 ray, white nodes have no data available. Origin is at 10° E, 46° N.

In order to visit every node only once and to visit all nodes by the end of the tour, I

adopt the traveling salesman problem (TSP). This is a non-deterministic polynomial-time

hardness problem in combinatorial optimization (Biggs, 1986) and is important in operations

of research and theoretical computer science. TSP solves for the most efficient trajectory

possible given a set of points and distances that must all be visited5. In our case, the problem

can be applied to the most efficient route to travel between various nodes going neighbour

to neighbours. Figure 5.2.2 represents a possible path applying the TSP algorithm to the

grid of the study area. In this case, I first run the inversion at a selected initial node with

available data, and then I move up and right in clockwise sense until I reach the center of

the grid.

5The origins of the traveling salesman problem are unclear A handbook for traveling salesman from 1832
mentions the problem and includes example of tours of cities through Germany and Switzerland, but contains
no mathematical treatment (Voigt, 1831).
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Figure 5.2.2: Possible path applying the TSP algorithm to our grid. In this case, the path chosen is a kind

of spiral which starts at the bottom left corner (green point) and converges to the center of the grid.

For our purposes, I applied the TSP following different paths at each round of the in-

version, so that the final inversion result is not influenced by the order of the nodes visited

during the same inversion tour.

5.2.2 Inversion at a node

As mentioned in section 5.1, I adopt the simulated annealing technique where, at each iter-

ation, a new point is generated randomly. The distance of the new point from the current

is based on a probability distribution proportional to the temperature. The simulated an-

nealing algorithm accepts all new points that have a lower value of the objective function as

currently, but also, with a certain probability, points that raise the objective function value.

In the MatLab implementation of the simulating annealing, the option temperature spec-

ifies how the temperature will be lowered at each iteration over the course of the algorithm.

• Initial Temperature represents the start of the algorithm. The initial temperature can

be a vector with the same length of unknowns. I set this parameter to T0 (standard

value), as I do not have a priori constraints.

• Temperature Function is the function used to update the temperature schedule. Let T0
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be the initial temperature and k denote the annealing parameter (which is the same as

the iteration number until reannealing), the possible options are:

– @temperatureexp = T0 ∗ 0.95k

– @temperaturefast = T0/k

– @temperatureboltz = T0/ln(k)

These options are shown in Figure 5.2.3.
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Figure 5.2.3: Graph of the temperature in the SA algorithm that shows the behavior of the current temper-

ature as a function of the annealing parameter k.

For the application in this study, since I do not have a priori information, I choose the

temperature function @temperaturefast, which is the default value in MatLab.

5.2.2.1 Repeatability test on synthetic model

Before application to the observed data (Chapter 6), I first tune the parameters for the

inversion in order to understand the limits and the repeatability of the outcomes. I consider

a synthetic 1-D velocity (with depths taken from IASP91 but different velocity values) to

produce a synthetic RF with 5 parameters.

x0 = [35, 20, 1.73, 1.78, 0.35]
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where the elements of the vector are respectively the Moho depth [km], Conrad depth

[km], Vp/Vs of the upper crust, Vp/Vs of the lower crust and △VPConrad [km/s].
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Figure 5.2.4: Comparison between L2-norm and cross-correlation. a) Moho; b) Conrad; c) Vp/Vs ratio

at the upper crust; d) Vp/Vs ratio at the lower crust; e) △VpConrad.

This represents the solution to reach if the data are not affected by noise or algorithm
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problems. In order to test the repeatability of the results, I performed several tests using the

vector xi = [37, 15, 1.75, 1.80, 0] as a starting point, and considering as lower bound the values

lb = [29, 9, 1.63, 1.73,−0.35] and, as upper bound the vector ub = [41, 21, 1.83, 1.93, 1.05]. The

target of the objective function is to minimize a misfit between theory and observations (Igel,

2017), and to measure waveform fitting I test 2 norms: the L2-norm and the cross-correlation

norm. Figure 5.2.4 show the recovered values of the 5 variables in x0 obtained using the two

norms in 10 synthetic tests.

For the discontinuity depths (Figure 5.2.4 a and b), the average values for the Moho

are respectively 35.73 km for L2-norm and 35.37 for cross-correlation (real value is 35 km),

while the average value for the Conrad is 20.18 km and 19.42 (real value is 20 km). During

the 10 tests, only one value deviates significantly from the true value (test n.6, which has a

particular effect on the Conrad thickness when using the cross-correlation norm).

Regarding the velocity values (Figs. 5.2.4 c, d and e), the spectrum of variations seems to

be wider with respect to the spectrum of thickness variations, and the recovery of the Vp/Vs

and △VpConrad values is not really satisfactory. Several other tests have been carried out

considering no velocity jump at the Conrad for the synthetic model whether the technique is

capable of verify that the obtained results show similar patterns as above.

In light of these results, I decide to expand the inversion algorithm to a potentially better

approach, and, for that, to use the L2-norm as objective function.

5.2.2.2 Adding Pattern Search

As mentioned in section 5.1, using the patternsearch solver after the Simulating Annealing

algorithm, makes the solution more stable. Pattern search methods (Powell, 1973; Lewis and

Torczon, 1999) are derivative-free methods were the current iterate is updated by sampling

the objective function at a finite number of points along a suitable set of search directions,

and the aim of the sampling is to find a decrease of the function value. More details of the

pattern search algorithm adopted in this work are described in the section 5.2.2.3.

To demonstrate the progress of the solution quality when applying this solver as well, I

performed several tests with a synthetic model, as in the previous sub-section, with x0 =

[35, 20, 1.73, 1.78, 0]. The results and the trade-off of the parameters are shown on Figure

5.2.5.
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Figure 5.2.5: Solution of ten 1-D synthetic recovery tests (from a to j) for 5 parameters, using simulating

annealing alone (blue) and simulating annealing combined with pattern search algorithm (red). See axes labels

for shown parameters.

The results on these 10 tests clearly demonstrate that the pattern search algorithm ef-

ficiently improves the RF inversion. Moho and Conrad depth are recovered well within 0.5

km, and Vp/Vs within 0.01. The solution computed with SA+PS solver is always closer to

the real value I want to replicate than SA alone. For this reason, I decide to use a pattern

search solver after the simulated annealing computation in the implemented new algorithm.

5.2.2.3 Pattern Search and its polling description

The pattern search algorithms starts from an initial point in the parameter space, and polls

its neighbourhood in every direction of the space by mapping the misfit values compared to

the initial one. In two dimensions, this resembles a poll along the cardinal directions (East,

North, West, South), and the similar principle is implemented in higher dimensions.
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Starting from the initial point, the misfit value is evaluated at Dmesh distance (default

value: 1) in all directions in the order specified above. As soon as a point with lower misfit

is found, the polling is successful : this point becomes the new current point, and Dmesh is

multiplied by the expansion factor (default value: 2) for broader search. If, at a given point,

none of the neighbours has lower misfit, the polling is unsuccessful: in this case Dmesh is

multiplied by the contraction factor (default value: 0.5) for coarser search from the same

point. The pattern search continues until a given mesh size is reached (1*10−6 in the Mesh

Options of MatLab).

The strategy in the directional search can be chosen to be complete, meaning that all

neighbours are polled before the next point is chosen. This avoids the bias of ordering the

directions, at the cost of higher computation time. Synthetic recovery tests performed on a

1-D velocity model demonstrate that full polling of all neighbours produces a better result

(Figure 5.2.6), and that the additional computational cost is acceptable.
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Figure 5.2.6: Comparison between incomplete (blue) and complete (red) poll. a) Moho; b) Conrad; c)

Vp/Vs ratio at the upper crust; d) Vp/Vs ratio at the lower crust; e) △VpConrad.

A common characteristic we observed from this test is that is preferable to use the option

Complete Poll ON to reach the results accurately.
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5.2.2.4 Number of iterations

Another important decision to take before working with real data is the number of iterations

to use during the inversion procedure.
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Figure 5.2.7: a) Moho; b) Conrad; c) Vp/Vs ratio at the upper crust; d) Vp/Vs ratio at the lower crust;

e) △VpConrad considering 100 (blue), 200 (green) and 500 (red) iterations.
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Also for this case, I run ten 1-D synthetic RF recovery tests using a known velocity model.

The results are shown in Figure 5.2.7. What is seen from the tests is that with 5 parameters

to invert 500 iterations generally (but not always) recover the input values. Therefore, 500

is the minimum iteration number to carry out. Clearly, this number must be increased when

working on real data, which are always more complex than synthetic examples.

5.2.3 Spatial grouping of rays

The proposed inversion method is adapted to treat as many RFs as in the dataset. However,

when rays geometries are very similar, it is a reasonable step to group them together into a

stack “or bundle”. Figure 5.2.8 shows the ray coverage map of the real dataset at the Moho

depth in the Alpine area, with 25x25 km cells along the X-Y directions (24x19 cells). The ray

coverage reflects the station configuration in the Central Alpine zone with high number of

rays in the center of the area (up to 765 rays per cell) and a empty cells in the south-eastern

part of the model.
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Figure 5.2.8: Number of rays crossing each cell in the study area at the Moho level. Red cells are crossed

by at least 20 points.
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In order to reduce the computation time, I stack together traces that have similar char-

acteristics, which also reduces noise and improves overall data quality. This process is very

common in geophysics and is often applied to the receiver functions method (e.g. Kumar

et al., 2010; Sippl et al., 2017).

5.2.3.1 Bundle division

Around each node, what is new in our proposal is to stack RFs by similar raypaths, I divide

the 25x25 km area into 25 sub-blocks. The choice of the dimension of the sub-blocks (5x5 km)

was made because it is compatible to the Fresnel zone. I also group data into 6 sectors, taking

back-azimuth bins every 60° (Figure 5.2.9), which can be changed but is a good compromise

between achieved results and computation time.
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Figure 5.2.9: Back-azimuth distributions for all events available in the whole dataset (left) and histogram

of the events grouped every 60° (right).

The discretization into back-azimuth is also reported in Table 5.2. As observed, the vast
majority of the rays (>60%) is between 0 and 60°.

Backazimuth [°] Number of Events (% tot)

0 - 60 5 163 (26.43%)
60 - 120 7 234 (37.03%)
120 - 180 683 (3.50%)
180 - 240 1 164 (5.96%)
240 - 300 4 565 (23.27%)
300 - 360 728 (3.73%)

Table 5.2: Number of events grouped into Back-azimuth families.
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This step of grouping traces into bundles can be made because rays that come from the

same back-azimuth and within the same sub-block sample the same portion of the Earth

crustal structure. To demonstrate the stacking operation, I show a node with numerous rays.

Figure 5.2.10 a) represents the piercing points for the node in the center of the diagram,

where the colormap indicates the back-azimuth of the RFs, which reflects the different spatial

distributions of the teleseismic earthquakes. Initially, 531 rays cross this block.
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Figure 5.2.10: a) Example of piercing points at the Moho interface for the node (i, j) = (10, 13). Stations

are shown with the reverse red triangles, the node at the center of the block is represented with filled yellow

circle, red squares represent the sub-blocks and the color of the piercing points indicates the back-azimuth

orientation. b) Filled colorful squares indicates the new piercing points after the bundling. Empty squares

indicate that the bundling is not done since because there is only 1 trace which is kept.

Given 25 sub-blocks and 6 sectors, the slowest scenario is 150 piercing points at any node.

In the example considered here the effective number of bundles is 13 5.2.10 b).

In the best case scenario for ray coverage, and the worst for the efficiency of bundling, for

each node at each discontinuity I can have 150 (25*6, number of sub-blocks*number of back-

azimuth sectors) piercing points. This represents a considerable reduction on the number of

piercing points, especially in the zones with a very good data coverage.

3-D spatial information of the ray-path as well as the ray parameter is averaged for each

bundle. The bundling operation reduced the dataset to invert from 19 602 RFs to 1 795

bundles, which represents a 10-fold decrease.
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5.2.3.2 Threshold on number of rays per bundle

In order to guarantee result robustness and decrease the computation time, I decide to

introduce a threshold on the number of rays for each bundle (Figure 5.2.11).

0 200 400 600 800 1000 1200 1400 1600 1800

Numb. of Bundles

0

50

100

150

200

250

N
u
m

b
. 
o
f 

ra
y
s 

p
er

 b
u
n
d
le

Figure 5.2.11: Number of rays per bundle. Red line shows the minimum threshold I set (7 rays per bundle).

Setting the threshold to 7 rays per bundle (red line on Figure 5.2.11), I obtain 613 bundles

for a total number of 16 226 rays, which constitutes more than 80% of the number of rays

I have at the beginning. Figure 5.2.12 shows us what is the real ray coverage on the study

area, after the bundling.
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Figure 5.2.12: Number of rays crossing each cell in the study area at the Moho level after bundling. Red

cells are crossed by at least 20 points.

Compared with Figure 5.2.8, the ray coverage is less dense, especially in the areas that

are close to the plate boundary between Europe and Adria.



CHAPTER 5. INVERSION STRATEGY AND SETUP 138

5.2.4 3-D Synthetic inversion recovery test

To test the sensitivity and the performance of the inversion approach proposed here, I carry

out a 3-D synthetic recovery test using a known velocity model, and synthetic RF data

generated from that model. The 3-D model is extended from a 1-D model, with x0 =

[35, 20, 1.73, 1.78, 0] values corresponding to Moho depth [km], Conrad depth [km], upper

crustal Vp/Vs, lower crustal Vp/Vs, Vp jump across the Conrad [km/s], with Vp in each

layer fixed and constant. The synthetic data includes as many traces as the real dataset, and

is bundled the same way.

The initial point of the inversion is at xi = [37, 15, 1.75, 1.80, 0]. The inversion is run

with 500 iterations, using the SA+PS inversion at each node, and TSP across the area. The

final result obtained at a randomly node is xs = [35.0137, 19.4902, 1.7321, 1.77809, 0.04296].

The recovery of the discontinuity depth, as in the 1-D case, is excellent. The recovery of the

Vp/Vs ratios and of the velocity jump across the Conrad is also good, although the relative

errors are larger than for the discontinuity depths. Figure 5.2.13 shows the waveform fit

between the synthetic data and the best fit at the end of the inversion, and demonstrates

that the newly implemented approach technically works.

5.2.4.1 Waveform matches

In Figure 5.2.13 is shown the waveforms misfit between observed and calculated RF for a

single bundle after 500 iterations of simulated annealing and pattern search solver.
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Figure 5.2.13: Waveform match between a synthetic RF at a node (black) and the best RF-fit (red).



CHAPTER 5. INVERSION STRATEGY AND SETUP 139

As observed in the Figure 5.2.13, the waveform misfit between RF corresponding to

constant iso-velocity model per layer and the output model from the inversion is minimal

and a sign of the efficiency of the method used.

To visualize the exploration of the parameter space during the SA+PS inversion approach,

Figure shows 5.2.14 the tested pairs of parameters and the value of the misfit (L2-norm).

Each step of the SA phase is represented, together with the final point after PS (details of the

PS steps are unfortunately not available as output from the MatLab function). The Vp/Vs

values change about 0.02 in the PS phase. Overall, the randomness of the SA phase is well

visible on the figures, as the parameters space is fairly well sampled by points.
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Figure 5.2.14: Exploration of parameter space (from a to j) for 5 parameters; see axes labels for shown

parameters. Scatter points represent the value of the objective function to minimize before applying the pattern

search solver.

I do not see clear correlations between the inverted parameters in the sampling. The

objective function value is smaller near the solution, but the PS phase is certainly needed

to converge to the good result. In conclusion, all the synthetic tests and sensitivity studies

carried out in this chapter allowed me to define the minimum set-up of the new inversion

approach that I apply to real data in the following chapter.



Chapter 6

Inversion results and representation

At the beginning of this chapter, I describe the inversions I carried out for converted wave

tomography in the Central Alps. Part of the discussion is to consider the number of the

possible variables to be inverted, which greatly influences the computation time. Based

on these considerations, I choose a set of optimal and feasible parameters. After a careful

analysis between the quality of the solution and the computation time, for the final inversion

I proceed with 4 independent parameters, which are Moho depth, intra-crustal discontinuity

(Conrad) depth, Vp/Vs ratio for the full crust and P-wave velocity jump at the Conrad. By

performing a few rounds of the spatial traveling salesman path (described in Chapter 5) to

invert structure at nodes, I observe that the overall misfit improves.

In the second part of the chapter, I show the various presentation styles, and describe

the interpolation method used to fill in gaps at nodes not resolved by the inversion. I also

establish a quality control based on the absolute misfit per node in order to present a more

reliable model.

142
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6.1 Overview of inversions and final model selection

The final model has been chosen after considering the number of variables to be inverted,

and a set of inversions run to see the sensitivity of the results based in inversion parameters.

These are described in the following sub-sections.

6.1.1 Choice of the number of variables to invert

In section 4.2 I introduced a new model parameterization suitable for converted wave to-

mography. Considering a model with 2-layers in the crust bounded by 3 interfaces (surface,

Conrad and Moho), I can distinguish different scenarios according to the number of variables

to invert (Figure 6.1.1), which go from more flexible and more time consuming to simpler

and computationally more efficient implementations. Table 6.1 gives an overview of these

possibilities, with a color code of fixed and unknown parameters.

N. ind. Vars. 10 9 6 5 4 3

Conrad depth Z Conrad Z Conrad Z Conrad Z Conrad Z Conrad Z Conrad

Moho depth Z Moho Z Moho Z Moho Z Moho Z Moho Z Moho

Vp below surface Vp below surface Vp below surface Vp below surface Vp below surface Vp below surface

P velocity Vp above Conrad Vp above Conrad Vp above Conrad Vp jump Vp jump Vp jump

Vp below Conrad Vp below Conrad Vp below Conrad across the Conrad across the Conrad across the Conrad

Vp above Moho Vp above Moho Vp above Moho Vp above Moho Vp above Moho Vp above Moho

Vs below surface Vs below surface Vs below surface Vp/Vs upp. crust

S velocity Vs above Conrad Vs above Conrad Vs above Conrad Vp/Vs crust Vp/Vs crust

Vs below Conrad Vs below Conrad Vs below Conrad Vp/Vs low. crust

Vs above Moho Vs above Moho Vs above Moho

Table 6.1: Overview of inversion strategies with different number of parameters to invert. Green cells

represent independent variables to invert, red cells the a priori fixed variables. See text for details.

The full scenario is represented by the inversion with 10 independent variables at each

node: 2 variables for thicknesses (Moho depth and Conrad depth where the starting Moho

is from Spada et al. (2013) and the initial Conrad is defined as the Moho - 12 km), 4 for Vp

and 4 for Vs values (Fig. 6.1.1 a). The number of variables drops to 9 if I consider the depth

of the Moho fixed using an a priori model (Fig. 6.1.1 b), for example the model proposed

by Spada et al. (2013). For further reduction of the number of parameters, one can consider

the Vp model to be known (for example from local earthquake tomography), which results

in 6 independent variables (Fig. 6.1.1 c): 2 for thicknesses and 4 for Vs.
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Figure 6.1.1: Possible scenarios with different number of variables to invert. Velocity profile along horizon-

tal axis, depths along vertical axis. Red dots are a priori fixed parameters, green dots show the independent

variables to invert, white dots can be calculated from the other values. a) 10 parameters; b) 9 parameters;

c) 6 parameters; d) 5 parameters; e) 4 parameters; f) 3 parameters.

A further simplification in the a priori fixed Vp model is to replace the absolute values

above and below the Conrad (2 parameters) by the Vp jump across the Conrad △V pCONRAD

(1 parameter) around an a priori fixed mid-point value. This requires inverting for the two

thicknesses and, regarding velocities, for Vp/Vs of the upper and the lower crust, as well as

△V pCONRAD (5 parameters, Fig. 6.1.1 d). The number of variables decreases to 4 when the

Vp/Vs for the entire crust is considered (Fig. 6.1.1 e) and to 3 when the Moho depth is kept

fixed (Fig. 6.1.1 f).

Following initial testing, as especially estimates of computation times of these differ-

ent strategies, I have decided to proceed with the inversion with 3 (Conrad depth, Moho

depth, Vp/Vs for the full crust), 4 (Conrad depth, Moho depth, Vp/Vs for the full crust

and △V pCONRAD) or 5 (same as 4, but separate Vp/Vs in the upper and the lower crust)

independent variables. The choice of using △V pCONRAD simplifies the model and reduces its

flexibility as the Vp mid-point at the Conrad is fixed, but since receiver functions are more

sensitive to relative velocity variations rather than absolute values, this was a reasonable

choice, also saving computation time.
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6.1.2 Inversion parameter and runs

I carried out several inversions using different parameters of the inversion itself (e.g. number

of iterations) in order to choose a set of optimal parameters (Table 6.2).

Name N N. iter Lower Bounds Upper Bounds Baz. Bin N. rxb N. stat. Time (h)

Inv 1 5 500 -12, -6, 1.63, 1.70, -0.35 12, 6, 1.63, 1.70, 1.05 45° 10 150 8

Inv 2 5 1000 -12, -6, 1.63, 1.70, -0.35 12, 6, 1.83, 1.90, 1.05 45° 7 150 16

Inv 3 5 2000 12, -6, 1.63, 1.70, -0.35 12, 6, 1.83, 1.90, 1.05 45° 7 150 30

Inv 4 5 4000 -12*, -10*, 1.6, 1.7, -0.35 12, 10, 1.82, 1.90, 1.05 60° 7 150 35

Inv 5 4 500 -12, -6, 1.60, -0.35 12, 6, 1.90, 1.05 45° 7 150 9

Inv 6 4 1000 -12, -10, 1.60, -0.35 12, 10, 1.90, 1.05 60° 7 150 14

Inv 7 4 1000 -12*, -10*, 1.6, -0.35 12*, 10*, 1.9, 1.05 60° 7 150 12.5

Inv 8 4 1000 -12*, -10*, 1.6, -0.35 12*, 10*, 1.9, 1.05 60° 7 75 8

Inv 9 4 2000 -12*, -10*, 1.6, -0.35 12*, 10*, 1.9, 1.05 60° 7 150 23

Inv 10 4 4000 -12*, -10*, 1.6, -0.35 12*, 10*, 1.9, 1.05 60° 7 150 31

Inv 11 4 4000 -12*, -10*, 1.6, -0.35 12*, 10*, 1.9, 2.00 60° 7 150 33

Inv 12 4 4000 -12*, -10*, 1.6, 1.7 12*, 10*, 1.8, 1.9 60° 7 150 37.5

Inv 13 3 4000 -12*, -10*, 1.6 12*, 10*, 1.9 60° 7 150 30

Table 6.2: Inversions performed for the Central Alps domain. N is the number of variables to invert, N.

iter is the number of iterations, Lower and Upper Bounds are respectively the lower and upper limits for the

variables to invert. Moho depth and Conrad depth were relative constraints, and the * symbol means there

was an absolute constraint on those values. Baz. bin indicates the angle of back-azimuthal grouping into

bundles, N. rxb is the threshold of the minimum number of rays per bundle, N. stat. the number of stations

involved, Time is the effective computation time.

All the inversions were run considering the simulated annealing algorithm and a pattern

search for every node visited by the traveling salesman path.

From Inv 1 to Inv 4 I consider the inversion with 5 parameters, from Inv 5 to Inv 12 I

examine the inversion with 4 independent parameters, while Inv 13 has 3 parameters. I varied

the number of iterations from a minimum number of 500 (established by the synthetic tests

in Chapter 5) up to 4000, taking into account that the increase in the number of iterations

is directly proportional to the increase of the computation time.

Regarding the range of variation for each of variables value, i.e. the lower and upper

bounds, I have adopted 2 strategies:

• Relative ranges of variation (Inv 1, 2, 3, 5, 6) where the lower and upper bounds for

Moho and Conrad depth refers to the current round of the inversion;
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• Absolute ranges of variation (Inv 4, 7, 8, 9, 10, 11, 12, 13 reported with * in Table 6.2),

where an additional a priori absolute range was imposed on Moho and Conrad depth.

For the case applied to the Central Alpine domain, the Moho depth was allowed to

vary from 15 to 65 km, while the Conrad depth from 10 to 55 km.

Other parameters I have tuned to apply a spatial smoothing are the back-azimuthal sector

division (45° or 60°), the threshold on the number of rays per bundle (10 rays for Inv 1,

7 rays for the other inversions) and the number of stations (usually all, and for Inv 8 I

visually selected the stations with very good RF waveform quality). The inversions have

been launched using a MacBook Pro with 8 GB of RAM and with a 3.1 GHz Intel Core i7

processor. Figure 6.1.2 shows the computation time cost for the inversions listed in Table

6.2.
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Figure 6.1.2: Computation time cost for the inversions listed in Table 6.2. Inversion 8 stops at node 150

because it considers a fewer number of stations than the other inversions performed.
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6.1.3 Inversion rounds and misfit trends

As already mentioned, the inversion procedure is performed considering the technique of

simulated annealing, followed by a pattern search algorithm (Chapter 5). The geometry

and velocity structure is updated step by step at each node, but always (except at the

end) including neighbouring, not-yet-inverted-for nodes in the velocity interpolation. At

the end of a complete round of the inversion, the output velocity model from the inversion

constitutes the starting model for the next round of the computation, during which I expect

the solution to improve, because each node is visited for the second time, so in theory only

minor adjustments in the solution are expected. I decided to vary the traveling salesman

path scheme in each round, changing the order of the visited nodes. For each round of

the inversion, the ray-paths of the bundles are recomputed using the current structure and

velocity model, and the new (slightly changed) ray coverage is considered for constructing

bundles. In the graph of Figure 6.1.3, I show the relative misfit trend per node for Inversion

10 during 3 consecutive rounds of the traveling salesman problem, obtained respectively with

4000 (31 h), 1500 (19 h) and 1500 (19 h) iterations using the simulating annealing and the

pattern search algorithm for the inversion.
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Figure 6.1.3: Relative misfit trends for inversion 10 (see Table 6.2) during inversion rounds. Y-axis shows

the relative improvement (final misfit/initial misfit) at each node. Values close to 0 show a big improvement,

values close to 1 a slight improvement in the relative misfit per node. Filled black, blue and red circles

represent respectively the mean after 1st (0.7702), 2nd (0.9076) and 3rd (0.9349) round of the inversion.

Empty black, blue and red circles represent the respective medians (0.7925, 0.9298 and 0.9715).
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Figure 6.1.3 shows the misfit reduction misfitR at each node, defined as:

misfitR =
misfit0 −misfitn

misfit0
(6.1.1)

where misfit0 represents the initial misfit and misfitn the final misfit at the round nof

the inversion. The reason for showing relative misfit reductions by rounds instead of absolute

misfit values is that the bundles are recomputed in each round, and therefore a given node

considers different set of receiver functions in each round. Values close to 1 indicate a slight

variation on the relative misfit, while values far below 1 show big improvements of the relative

misfit. Apart from a very small number of nodes, the general trend shows that a few rounds

of traveling salesman paths clearly improve the overall misfit. In fact, values of mean and

median after the different rounds of inversion suggest a convergence towards a stable solution.

6.1.4 Waveform fits

The observed receiver functions and bundles, and the respectively computed synthetic traces

are minimized using the least-squares norm L2-norm. Figure 6.1.4 shows a few examples of

the waveform match between observed (black) and synthetic (red) RF for a single bundle

at 4 different stations. At first glance and as we expect, the observed RF data are rather

complicated, partly from the complex structure, and also as they contain noise. To increase

the signal-to-noise ratio (SNR), I did the grouping from single traces to bundles considering a

certain range of back-azimuth sector, and also applied a minimum number of rays per bundle

as a threshold (Chapter 5).

The misfit calculated at each node is the sum of misfits for each bundle, weighted by the

number of rays. The misfit computed at each node misfitnode is the mean of misfits for each

included bundle, weighted by the number of rays:

misfitnode =
ΣnormL2(ORF, SRF ) ∗Nrbundle

Nrnode
(6.1.2)

where normL2(ORF, SRF ) represents L2-norm difference between observed and syn-

thetic RFs for a bundle, Nrbundle is the number of rays per bundle, and Nrnode is the number

of rays per node that exceed the established threshold of the number of rays per bundle.
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Figure 6.1.4: Waveform matches for a single bundle between the receiver functions observed (black) and

synthetic (red) receiver functions by the inversion using simulated annealing and pattern search method (In-

version 10 in Table 6.2). a) BFO, fit with 16 rays in the bundle; b) EMING, fit with 19 rays in the bundle;

c) METMA, fit with 28 rays in the bundle; d) SLE, fit with 94 rays in the bundle. Blue labels indicate the

Ps conversion at the Moho and the subsequent multiples.

Figure 6.1.4 shows few examples of good fit between observed and synthetic RF wave-

forms. The match of the converted Ps and PpPs phases for the Moho (and sometimes

additional peaks) is remarkable1, while it is usually more difficult to identify the PpSs multi-

ple and the conversions from the intra-crustal discontinuity. Observed amplitude variations

may be due to the use of default values for the seismic attenuation Qp and Qs.

The waveforms of the synthetic data in Figure 6.1.4 (red curve) show that the Ps Conrad

is not present but is combined with the Ps Moho peak, while the multiple PpPs and PpSs

phases are separated in the lower an in the upper crust. In order to discriminate the first

1Since the forward model of the waveform inversion uses the method of Shibutani et al. (1996), the dipping
of the main interfaces is not accurately modeled and this might also explain why some Moho multiples are
not fitted properly (e.g. PpSs phase in Figure 6.1.4).
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Ps conversion between Conrad and Moho, it would therefore be appropriate to refer to RF

computed at higher frequencies.

6.1.5 Choice of the final model

The ten inversions run described in the section 6.1 also represent my search of a sufficient

set of parameters to get stable results, while results themselves should look similar when

changing inversion parameters. In this search, it turned out that the number of iterations

plays a key role, and it has to be sufficiently high to sample a large enough portion of the

parameter space. The second most important choice is the level of value bounds, which

expands the size of the search. Here, the absolute bounds were essential, to avoid divergence

of parameters, especially Moho and Conrad depth. The minimum criteria on rays, stations

and the size of the back-azimuth bins for bundling turned out to have relatively smaller

role in determining the results, they primarily affected the computation time and spatial

smoothness of the results.

Considering the tested inversion parameter sets (Table 6.2) and result, I ultimately choose

and stopped at the inversion 10 (Inv 10), which uses 4 independent variables to invert: Moho

depth, Conrad depth, Vp/Vs for the full crust and the P-wave velocity jump at the Conrad.

This inversion run was performed with the technique of simulated annealing and pattern

search using 4000 iterations for the first round of traveling salesman path, and 1500 iterations

for the subsequent rounds. Regarding the range of variation of the parameters’ values, in the

first round the Moho depth can vary from -12 to +12 km with respect to the initial model

of Spada et al. (2013), while the Conrad depth can change from -10 to +10 km compared to

the starting value (chosen at 12 less then the initial Moho depth). From the second round

onwards, I added an absolute constraint, as discussed above (Moho 15-65 km, Conrad 10-55

km). The average Vp/Vs for the full crust can vary from 1.6 to 1.9, and the P-wave velocity

jump at the Conrad from -0.35 to 1.05 km/s.

For the spatial smoothing, in this inversion run I grouped rays into bundles every 60°,

and a threshold of 7 rays per bundle was considered together with all stations available in the

study area. I decide to consider this inversion as the final one because due to the estimated

and “felt” complexity of the crust in the Alpine domain, it was a reasonable compromise, and

it seemed to be extremely difficult to meaningfully separate the average crustal Vp/Vs ratio

into a upper and a lower crustal value. The results of this inversion are presented in Chapter

7, in the ways described in section 6.2. The pattern of inversion results from the other runs

performed here are similar to the selected model, but sometimes less robust or presenting

more spatial gaps.

Since we observed that the P-velocity jump at the Conrad is very difficult to estimate,
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we have decided to test a further simplified inversion, in which both the △V pCONRAD and

the △V sCONRAD are set to 0, satisfying in this way the conditions with 3 variables to invert

(Inv 13 in Table 6.1.2). The result of this test showed already the main features with the

crustal thickness that generally reflects well the roots of the Alpine orogen and the average

crustal Vp/Vs ratios relatively higher beneath the orogen.

Figure 6.1.5 shows the difference between Conrad, Moho and Vp/Vs for the full crust

between the inversion with 4 parameters (Inv 10) and inversion with 3 parameters (Inv 13).
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Figure 6.1.5: a) Conrad depth difference between inversion with 4 variables and inversion with 3 variables.

b) Moho depth difference between inversion with 4 variables and inversion with 3 variables. c) Vp/Vs

difference between inversion with 4 variables and inversion with 3 variables. Images from the 4-variable

inversion are from Inv 10, which is considered the final result.

Most of the nodes have values close to zero except for some nodes within the Alpine

domain with maximum variations at around 15 km for the values of Conrad and Moho and

4 nodes with a difference of 0.3 regarding the Vp/Vs ratio. For all 3 maps, in most cases,

the difference is positive, meaning that the inversion with 4 variables mostly finds values

with Conrad and Moho deeper and with higher Vp/Vs with respect to the inversion using 3

variables.
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6.2 Inversion results representation

In this section I describe the model parameters obtained directly from the output of the

inversion with 4 independent variables, and the representation of interfaces and velocities.

Furthermore, I briefly report the interpolation scheme of the results at the nodes not resolved

by the inversion, as well as at nodes of high misfit to obtain high quality results.

6.2.1 Inversion output

As a result of the inversion procedure, I produce several point-wise maps with information on

the interfaces (Conrad and Moho depth) and velocities (average Vp/Vs for the entire crust

and P-wave velocity jump at the Conrad).

6.2.1.1 Interface depth representation

Figure 6.2.1 shows the depth map of the Moho discontinuity obtained during the 1st and

2nd round of the inversion, for the finally selected inversion (Inv 10), and similar maps are

produced for the Conrad discontinuity depth.

The investigated area (contoured by the red dashed line) contains in total 218 nodes.

Considering the ray coverage of the study area, I obtain results at 154 nodes. From Figure

6.2.1 I can observe that the general pattern in terms of Moho depth geometry is similar

between the 1st and the 2nd round of the inversion, and only minor changes occur in the

position of the nodes solved by the inversion as a result of slightly varying ray coverage

between the two rounds, which are highlighted in the Figure 6.2.1 concerning the difference

between the two Moho depth maps. Another observations is that the nodes that have high

values after the first round are often higher after the second round, reaching the upper allowed

bounds.
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Figure 6.2.1: a) Moho depth map after the 1st round of inversion. b) Moho depth map after the 2nd

round of inversion. c) Difference between 2nd and 1st round results. Red dashed line indicates the border of

the study area, white dots indicate nodes not resolved by the inversion. The color scale in Figure a) and b)

spans from the imposed lower to upper bound for Moho depth. Maps are from the inversion Inv 10, which is

considered the final result.

6.2.1.2 Velocities’ representation

Regarding the velocities’ representation, the inversion yields maps for the average crustal

Vp/Vs and for the P-wave velocity jump at the Conrad. As for the Moho depth map, also

for the Vp/Vs map (Figure 6.2.2) there are some but not too many differences (Figure 6.2.2

c) between the second and the first round of the inversion, even if, compared to the result of

the interfaces, a particular pattern on the map is less evident.
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Figure 6.2.2: a) Average crustal Vp/Vs map after the 1st round of inversion. b) Average crustal Vp/Vs

map after the 2nd round of inversion. c) Difference between 2nd and 1st round results. Red dashed line

indicates the border of the study area, white dots indicate nodes not resolved by the inversion. The color

scale in Figure a) and b) spans from the imposed lower to upper bound for Vp/Vs ratio. Maps are from the

inversion Inv 10, which is considered the final result.

I also tested an inversion which considers different values of Vp/Vs for the upper and for

the lower crust, but keeps the P-velocity jump across the Conrad at zero (Inv 12 in the Table

6.2). Results showed that often the Vp/Vs of the upper crust is larger than the Vp/Vs of

the lower crust. This means that the RF data suggests that there is a Vs jump across the

Conrad even if there is no Vp jump there. This is also reflected in a separate PpPs phase for

the Conrad and the Moho on the RF waveform fits (see Figure 6.1.4), while the Ps phase of

the Conrad is close to that of the Moho and may simply cause its broadening, not a separate

peak.

Similar to the previous cases, I find little differences between the first and the second

round of the inversion in terms of P-wave velocity jump at the Conrad with, in general,
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values close to 1 km/s, which is the upper limit of the model (Figure 6.2.3). These values

are suspicious not only because they are close to the maximum value of the search range, but

also because it seems high compared to result obtained by active seismic refraction studies.
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Figure 6.2.3: a) Map of P-wave velocity jump at the Conrad after the 1st round of the inversion. b)

Map of P-wave velocity jump after the 2nd round. Red dashed line indicates the perimeter of the study area,

yellow dots indicate nodes not resolved by the inversion. The color scale spans from the imposed lower to

upper bound for △V pCONRAD. Maps are from the inversion Inv 10, which is considered the final result.

In fact, seismic refraction data show that upper and middle crust has P-velocities between

6.0 and 6.2 km/s. Below the Penninic nappes the lower crust thickens remarkably, merging

probably with the high-velocity zone of 6.6 km/s at a depth of about 21 km, which has

been interpreted as the top of the indenting lower crust of the Adriatic promontory of the

African plate (Stäuble et al., 1993; Ye et al., 1995). Moreover, a low average P-velocity from

6.2 km/s to 6.4 km/s in the lower crust below northern Switzerland was reported earlier by

Deichmann and Rybach, 1989 based on the investigation of earthquakes with foci reaching

down to the Moho. High velocities between 6.6 and 6.8 km/s were found below the Molasse

Basin while low P-velocity value of 6.2 km/s for a highly reflective lower crust between the
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more commonly found higher velocity of 6.5-6.6 km/s below the northern Molasse Basin.

These data suggest that the Vp jump is at most 0.4-0.5 km/s at different geological domains

and does not reach higher values.

In general the interpretation of the P-velocity jump at the Conrad is complex, and the

result can contain some artifacts due to the parameterization, i.e. that the mid-point of the

jump in Vp is fixed. To further investigate this point, I carried out an inversion test (Inv

11 in the Table 6.2) by setting the upper limit of the P-velocity jump at 2.0 km/s (Figure

6.2.4), which was not a realistic value, yet the results as in Figure 6.2.3, most nodes are close

to the upper limit of the model and this makes too high amplitude Conrad PpPs multiples.
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Figure 6.2.4: Map of P-wave velocity jump at the Conrad with upper limit at 2.0 km/s (Inv 11).

Looking at the waveforms, it is still possible to see some peaks for the Conrad PpPs

multiples in the data, even if it is not possible to unambiguously discriminate whether this

is signal or noise. The Ps Conrad phase is usually close to the Ps Moho and causes its

broadening. This means that in case of a thin lower crust, the RF is not an efficient tool in

resolving △V p.

Based on these results, shear-wave velocity maps and cross-sections, which represents the

ultimate goal of our converted-wave tomography method, can be reconstructed. First, the

P-wave velocity above (or below) the Conrad is set, from the a priori selected mid-point and

by subtracting (or adding) half of △V pCONRAD, then the four values of Vp are divided by

the average crustal Vp/Vs ratio to obtain the four Vs values. This allows to plot Vs maps

along interfaces (above or below), Vs depth slices (interpolated to a constant depth), and Vs

profiles (projected to a cross-section, see examples below).
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6.2.1.3 Interpolation of unresolved nodes

One inherent property of our model parameterization on a fixed mesh-size grid is that in

areas of lacking ray coverage, there are unresolved nodes of structure and velocity. In order

to fill these gaps, I use the 8 surrounding nodes, but limited to the same tectonic plate, and

I compute an average weighted by the inverse of the square of the distance to these nodes.

However, as very often not all of these 8 nodes are resolved by the inversion procedure, I

distinguish 3 cases for this interpolation:

a) if the number of neighbouring nodes resolved by the inversion are 0, then the value at

the current node remains the value from the starting model (no relevant new information);

b) if there is only 1 neighbouring node resolved by the inversion, the value at the current

node is the mean between the its own initial value and the value of the resolved neighbour

node;

c) if the number of neighboring nodes resolved by the inversion and on the same tectonic

plate is 2 or more (up to a maximum of 8), then I assign the weighted average as described

above.

Figure 6.2.5 shows the Moho map interface before (above) and after (below) this inter-

polation scheme was applied.
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Figure 6.2.5: Moho depth map. Above, first round result of inversion 10, colored dots represent the inversion

results at the resolved nodes. Below, same map after applying the spatial interpolation scheme (see text for

details). The direct inversion outputs are simple colored dots, while the interpolated values are distinguished

by a black edge. Thin double line indicates the plate boundary. Red dashed line indicates the perimeter of the

study area. Maps are from the inversion Inv 10, which is considered the final result.
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6.2.1.4 Results quality control by node

During the inversion run I observed that despite the 3-D scheme, some nodes remain with a

high misfit value, either because of noisy stations, or because of lower ray coverage near the

edge of the model. To obtain inversion model results based only on high quality data, and

to obtain a smoother image of the model, I decide to introduce a maximum threshold based

on the absolute values of the misfit to accept results as they are, and to replace values by

interpolation at nodes above this threshold (Figure 6.2.6). The choice of the threshold has

been made visually, looking at the distribution curve of the absolute misfit per node.
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Figure 6.2.6: Value of the absolute misfit per node, sorted in increasing order, for inversion 10, round

1. The red line with misfit of 0.0025 is chosen to cut the curve at its steeper increase, and represents the

threshold for which the quality control is carried out.

Figure 6.2.7 shows the misfit map of Inv 10 round 1, with the nodes that exceed the set

is threshold colored in red (16% of the available nodes). The majority of the nodes are close

to the edge of the study area or to the plate boundary.
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Figure 6.2.7: Point-wise map inversion quality at each node, from inversion 10 round 1, with circle size

proportional to absolute misfit. The nodes that exceed the threshold defined by the red line in Figure 6.2.6 are

filled in red. Thin double line indicates the plate boundary, red dashed line contours the study area.

Once the high misfit nodes are selected, their values are interpolated following the same

scheme as the one performed for unresolved nodes (section 6.2.1.3). Figure 6.2.8 shows the

final interpolated map for the study area, where the two sources of interpolated nodes are

highlighted.
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Figure 6.2.8: Moho depth map after interpolation of empty and poor quality nodes. Colored points without

an edge are the direct results from the inversion, blue edge represents interpolated value at unresolved nodes,

green edge represents interpolated value following misfit based quality control. Thin double line indicates the

plate boundary, red dashed line contours the study area.

6.2.1.5 Velocity profile representation

Combining the inversion results in terms of velocities (Vp/Vs, △V pCONRAD) and the a priori

set Vp values, I can reconstruct shear-wave velocities at any point in the 3-D volume. From

this, Vs profiles along any cross-section can be plotted by projection, for interpretation and

comparison with earlier results (Chapter 7). The main advantage of the model parameter-

ization I defined is that a sharp velocity jump at the Conrad can be imaged. Therefore,

interpolations of Vs along a profile is performed within each layer, i.e. within the upper

crust using Vs below surface and Vs above Conrad values, and similarly in the lower crust,

following the geometry of the Moho and Conrad discontinuities. Moreover, the interpolation

of unresolved and low-quality nodes done as described above (sections 6.1.2.3 and 6.1.2.4)

is already taken into account and can be directly represented on Vs profiles. An example of

such a profile is shown in Figure 6.2.9.
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NW SE

Figure 6.2.9: Vs profile along a cross-section between Vosges (NW, North-West) and West Po basin (SE,

South-East). The velocity in the mantle is fixed (blue at Vs=4.5 km/s), velocities within the two crustal

layers are interpolated. Dots show the nodes projected from the 3-D volumes considering an area of 90 km

with respect to the transect. Grey points are those not resolved directly by the inversion, green and red points

are those accepted or discarded after performing the quality control and the size of the circle is proportional to

the absolute misfit. Red solid line represents the topography in European plate, blue solid line the topography

in Adriatic plate; black solid vertical lines the plate boundary between the plates. Vertical exaggeration is 2:1.

In the case where a point is removed due to the large misfit (red dots in Figure 6.2.9),

we proceed to the interpolation with the next node, while in the case of a node not directly

resolved from the inversion (grey dots in Figure 6.2.9), the initial reference of Spada et al.,

2013 is taken.

In Chapter 7 I will use these representation styles, color scales and interpolation steps to

describe and interpret the results for the Central Alps.



Chapter 7

3-D interpretation of the Central Alps

The main goal of this chapter is to show the results I obtained with the newly developed

3-D P-to-S converted wave tomography method, and to compare them with other geological

investigations and geophysical studies obtained with other investigations. In the first part, I

present maps of the crustal structure with the information of intra-crustal boundary, Moho

discontinuity and lower crustal thickness. Then, I move to the velocity structure which is

represented through absolute Vs images for each interface (below surface, above Conrad,

below Conrad, above Moho), the average crustal Vp/Vs ratio, the velocity jump across the

Conrad discontinuity and the maps of the S-wave velocity within the upper crust and the

lower crust.

In the central part of the chapter, I compare the results I obtained with the P-to-S

converted wave tomography technique with corresponding geological transects, and another

study obtained by ambient noise tomography method by Lu et al. (2018), through the presen-

tation of a number of Vs cross-sections. The sections are selected in areas of interest for the

comparison, giving preference to the more reliably resolved areas, those crossed by a higher

amount of rays. The comparison is a starting point to show that the results obtained with

the new method are reliable and the discussion can be improved referring to active-source

experiments within the study area in more detail.

In the final part, I compare briefly thicknesses and velocities for the 3-D results with the

1-D outcomes using the H−κ method. Finally, I make a qualitative comparison between the

Vp/Vs map for the whole crust and the lower crustal seismicity distribution in the northern

Alpine foreland, and discuss its geodynamic implications.
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7.1 3-D P-to-S converted wave tomography results

In this section, I show maps obtained with the P-to-S converted wave tomography approach

regarding the crustal structure (Moho and Conrad discontinuity depths, lower crust thickness)

and the velocity structure through some images of the absolute shear-wave velocities for each

interface (below surface, above Conrad, below Conrad, above Moho), the average crustal

Vp/Vs ratio, the velocity jump across the Conrad discontinuity and the S-wave velocity

gradients within the upper crust and the lower crust. All results shown are those obtained

in Inversion 10, round 2.

7.1.1 Crustal interface structure

The crustal structure (with the Moho and Conrad interfaces) is probably the most reliable

data that comes out of our model since it is a parameter that can be better constrained with

respect to the Vp/Vs values.

7.1.1.1 Conrad discontinuity depth

Figure 7.1.1 shows the result of the inversion with the map of the intra-crustal discontinuity

depth.
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Figure 7.1.1: Final Conrad depth map. Colored points without an edge are the direct results from the

inversion, blue edge represents interpolated value at unresolved nodes, green edge represents interpolated value

following misfit based on quality control. Filled grey area shows the Alpine arc’s smoothed 800 m altitude line

while filled cyan area represents the geological Ivrea Verbano Zone (IVZ). Thin double line indicates the plate

boundary, red dashed line contours the study area. The color scale spans from the imposed lower to upper

bound for the Conrad depth variable during the inversion.

We observe that in the Alpine domain the depth of the upper crust is thicker than in

the surrounding area, with values around 30-35 km. According to the result of my model,

even thicker values for Conrad depths (> 45 km) are recorded in the Alpine arc within the

European plate, following the Europe-Adria plate boundary. Outside the Alpine arc, the

values of intra-crustal discontinuity are in the range between 15 and 25 km, with the only

exception in the South-East at the edge of the investigation area (contoured by red dash line)

at the Adriatic plate.

7.1.1.2 Moho discontinuity depth

The final Moho map (Figure 7.1.2) confirms the trend we have already seen on the previous

map for the intra-crustal discontinuity.
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Figure 7.1.2: Final Moho depth map. Colored points without an edge are the direct results from the

inversion, blue edge represents interpolated value at unresolved nodes, green edge represents interpolated value

following misfit based on quality control. Filled grey area shows the Alpine arc’s smoothed 800 m altitude line

while filled cyan area represents the Ivrea Verbano Zone (IVZ). Thin double line indicates the plate boundary,

red dashed line contours the study area. The color scale spans from the imposed lower to upper bound for the

Moho variable during the inversion.

The main remarkable result is that the Moho depth reflects very well the roots of the

Alpine orogen, with values deeper than 40 km within the Alpine arc. We find deeper values

(at around 60 km) on the European plate following the plate boundary. As we observed

for the Conrad map, even for the Moho outside the Alpine arc, the values are in the range

between 20 and 25 km, apart from southeastern margin of the study area, where the values

remain relatively high (40-45 km).

Figure 7.1.3 shows the difference between the final Moho result and initial Moho model,

which is the one of Spada et al. (2013). A large part of the nodes present values close to zero

(whitish colors in Figure 7.1.3), which means a very small difference between final Moho and

the initial value. Moreover, many nodes have positive variations with respect to the model

proposed by Spada et al. (2013), especially in the center and in the West of the study area

inside the European plate.
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Figure 7.1.3: Difference between final Moho result and initial Moho model. Colored points from blue to red

colors show respectively a negative or a positive variation compared to the initial model. Null variations are

marked by white dots. Yellow points represent nodes not directly solved from the inversion procedure.

This variation in terms of Moho difference seems important, however not unrealistic, as

the study of Spada et al. (2013), partly based on the RF method at individual stations,

counts with a Moho uncertainty of ±6 km for the stations involved in the investigated area.

Figure 7.1.4 shows the map of lower crustal thicknesses, which is obtained as the difference

between Moho and Conrad depth from the inversion results.
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Figure 7.1.4: Thickness of the lower crust: relatively thin areas are represented by whitish colors, relatively

thick areas are shown with bluish colors. Yellow points represent nodes not directly solved from the inversion

procedure. Other display elements are as on previous figures.
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Apart from some outliers (with values of lower crust thickness locally greater than 25 km,

mostly at the edge of the study area), the majority of the nodes have values from 15 to 20

km in the Alpine arc, which drops to values around 10 km or less in the northern Alpine

foreland (the initial value was set at 12 km).

7.1.2 Velocity structure

The other parameter obtained with the newly developed methodology is the 3-D velocity

structure. Below I show maps of the absolute shear-wave velocities for each interface (below

surface, above Conrad, below Conrad, above Moho), the average crustal Vp/Vs ratio, the

velocity jump across the Conrad discontinuity, and the S-wave velocity gradient across the

upper and the lower crust.

7.1.2.1 Absolute shear-wave velocities

As already discussed in Chapter 2, receiver functions are more sensitive to relative velocity

variations rather than absolute shear-wave velocities, therefore the maps from the inversion

results are not necessarily easy to interpret (Figure 7.1.5).
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Figure 7.1.5: Final shear-wave velocity map at each interface. a) Vs below surface; b) Vs above Conrad;

c) Vs below Conrad; d) Vs above Moho. Colored points without an edge are the direct results from the

inversion, black edge represents interpolated value at unresolved nodes, red edge represents interpolated value

following misfit based quality control. Other display elements are as on previous figures.

Regarding the Vs below the surface (Figure 7.1.5 a), we observe that usually in the Alpine

arc we found lower values of S-waves velocity (2.8-3.0 km/s), while in the foreland we have

higher values (3.0-3.2 km/s). Our model parameterization, currently using only two layers,

does not allow for resolving the Molasse basin Labhart (2005); a parameterization with an

additional layer would likely resolve sedimentary basin (Hetényi et al., 2006) but in our

approach this would come with a high computational cost. Shear-wave velocity maps above

and below the Conrad (Figure 7.1.5 b and c, respectively) are both more difficult to interpret,

there is more local variability. The only feature that is clearly detected that high velocities

(>4.2 km/s) are found in the European plate very close to the plate boundary Europe-Adria

(Figure 7.1.5 b) and these values extend along the Alpine arc on the map of S velocity below

the Conrad (Figure 7.1.5 c). This trend is confirmed and is much more evident on the map of

Vs above the Moho discontinuity, where high velocities are found beneath the Alps (4.3-4.5
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km/s), while lower velocities (3.6-3.8 km/s) are present in the Alpine foreland.

7.1.2.2 Average crustal Vp/Vs

Figure 7.1.6 shows the map with the average crustal Vp/Vs ratio for the entire crust.
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Figure 7.1.6: Final Vp/Vs map for the full crust. Colored points without an edge are the direct results from

the inversion, black edge represents interpolated value at unresolved nodes, blue edge represents interpolated

value following misfit based quality control. Other display elements are as on previous figures. The color scale

spans from the imposed lower to upper bound for the Vp/Vs map during the inversion.

Although it is less evident with respect to the Moho map of Figure 7.1.2, also for the Vp/Vs

ratio I observe a similar trend, with low Vp/Vs (1.60-1.70) in the foreland and higher values

inside the Alpine arc (1.80-1.90), with some local variations1. The petrophysical properties

density ρ, compressional wave velocity and heat generation exhibit considerable variation

with rock type (Rybach and Buntebarth, 1982). Our results broadly reflect of Lombardi

et al. (2008) who used individual station RFs to estimate crustal Vp/Vs and correlated them

with tectonic units known at the surface; however, between the regular Vp/Vs values in the

foreland (Variscan basement, Mesozoic cover, Molasse basin) and higher Vp/Vs values in

the Alps (Suture Zone), a lower Vp/Vs region in between, proposed to correlate with the

1From Wadati inversion of local earthquake data in Switzerland, the average Vp/Vs ratio for the mid to
upper crust is about 1.70-1.71 (Kummerow et al., 2012).
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Helvetic nappes, is not resolved when using a 3-D approach. Regarding the reliability of the

Vp/Vs map we can assert that the obtained result is robust since even the inversion with

only 3 parameters (Conrad, Moho, Vp/Vs) pointed out a similar Vp/Vs map (see difference

in Figure 6.1.5 c) with generally lower Vp/Vs in the foreland.

7.1.2.3 Velocity jump across the Conrad discontinuity and gradients inside the

crustal layers

Figure 7.1.7 represents the map of the velocity jump across the intra-crustal discontinuity.
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Figure 7.1.7: Final map of P-wave velocity jump across the Conrad. Colored points without an edge are

the direct results from the inversion, black edge represents interpolated value at unresolved nodes, red edge

represents interpolated value following misfit based quality control. Other display elements are as in previous

figures. The color scale spans from the imposed lower to upper bound for △V pCONRAD during the inversion.

As a reference, △V pCONRAD is 0.7 km/s in the iasp91 velocity model. As we can observe,

this result suggests high values (> 0.7 km/s) are present both inside and outside the Alpine

arc, with locally small, null are negative values. This is not easy to interpret, while earlier

RF studies have not found a clear Conrad discontinuity, but active seismic surveys did image

a more reflective lower crust with respect to the upper crust. This result may suffer from the

limitation of how △V pCONRAD was implemented (symmetrically shifted Vs values above and
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below the interface, with a fixed middle point). The result also underlines the complexity of

the Alpine crustal structure.

To shed light on this question from another angle, I also compute the Vs gradient across

the upper and the lower crust. The new model parameterization makes this calculation

straightforward:

γV sUC =
V sABOV E−CONRAD − V sBELOW−SURFACE

HMOHO

(7.1.1)

γV sLC =
V sABOV E−MOHO − V sBELOW−CONRAD

HMOHO −HCONRAD

(7.1.2)

for upper crust and lower crust, respectively.
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Figure 7.1.8: a) S-wave velocity gradient across the upper crust; b) S-wave velocity gradient across

the lower crust. Colored points without an edge (in the scale blue-white-red) represent the direct result from

the inversion, black edge represents interpolated value at unresolved nodes, green edge represents interpolated

value following misfit based quality control. Other display elements are as in previous figures.

Figure 7.1.8 shows the shear-wave velocity gradients across the upper and lower crust.

In the upper crust the majority area shows values between 0.02 and 0.04 km/s / km, which

represents an indication that Vs increases with depth. In the lower crust, there main pattern

is negative values, usually with values of -0.04 km/s / km or more, expressing shear-wave

velocity decrease with depth because of large P-velocity jump at the Conrad. Only some

areas of the thickened European crust in the Central Alps display no or positive gradients in

the lower crust.

While the Vs increase in the upper crust and its gradient appear normal, a decrease in the

lower crust is surprising, and could be an artifact. Considering that the velocity jump across
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the Conrad was found to be large (Fig. 7.1.7), it is possible that lower crustal Vs gradients

are subsequently distorted. A future investigation, inverting for more parameters per node

and allowing larger flexibility of the velocity structure across the Conrad, may reveal the

amplitude jump across the Conrad and Vs gradient in the lower crust.

7.2 3-D Vs comparison with Ambient Noise Tomography

and geological interpretations

Here I show and discuss the 3-D results I get with the P-to-S converted wave tomography

method with those obtained by ambient noise tomography method by Lu et al. (2018),

through the representation of some Vs cross-sections in depth.

7.2.1 Map of shown profiles

Figure 7.2.1 shows the map of the sections performed in this work. The profiles were carried

out in areas of interest for the comparison with other investigations where this was possible,

looking at the areas with a good ray coverage.
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Figure 7.2.1: Map of the sections shown in this work. Red box is the study area, filled light grey area shows

the Alpine arc’s smoothed 800 m altitude line while filled dark grey area represents the Ivrea Geophysical

Body (IGB). Dashed red, blue and green lines represent the boundary of Europe, Adria and Liguria plate,

respectively. taken from the model of Spada et al. (2013). Thin black dashed lines represent the contours of

the country borders. AA’: ECORS-CROP profile, BB’: Jura mountains-Po plain, CC’: NFP-20 West, DD’:

Vosges-West Po basin, EE’: Basel-Chiasso profile, FF’: European GeoTraverse profile, GG’: TRANSALP

profile.

The coordinates of the sections are:

• A-A’: ECORS-CROP: Lon 5.0°, Lat 46.5°; Lon 8.5°, Lat 44.58°

• B-B’: Jura mountains-Po plain: Lon 5.8°, Lat 46.7°; Lon 10.5°, Lat 45.15°

• C-C’: NFP-20 West: Lon 6.25°, Lat 47.0°; Lon 10.0°, Lat 44.0°

• D-D’: Vosges-West Po basin: Lon 6.5°, Lat 48.0°; Lon 8.85°, Lat 45.0°

• E-E’: Basel-Chiasso: Lon 7.23°, Lat 48.0°; Lon 10.39°, Lat 44.0°

• F-F’: European GeoTraverse: Lon 9.30°, Lat 48.5°; Lon 9.30°, Lat 44°

• G-G’: TRANSALP: Lon 11.6°, Lat 48.2°; Lon 11.6°, Lat 45.6°
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7.2.2 Cross-section A-A’: ECORS-CROP

A reference crustal seismic profile across the Alps was planned within a cooperation between

the French ECORS (Étude Continentale et Océanique par Reflexion et Refraction Sismique)

and the Italian CROP (Progetto Strategico Crosta Profonda) Projects. The seismic refraction

and wide-angle reflection at high resolution preliminary survey was acquired in 1985 (Nicolas

et al., 1990; Thouvenot et al., 1990; Finetti, 2005).

The Vs-cross section ECORS-CROP profile I obtained in this study is presented in Figure

7.2.2.

Result shows a Moho interface at around 30 km which increases to 55 km at the down-

dip end of the European plate, with an intermediate value (40 km) beneath the European

foreland, mapped at lower Vs at the surface. In the Adria domain, the Moho is as shallow as

25 km, representing the Ivrea Geophysical Body (IGB) at depth, and then it increases again

southwards to 40 km below the Po plain, which also show slightly lower Vs at the surface.

The horizontal location of the IGB aligns perfectly to the plate boundary, as proposed by

earlier studies. The lower crustal thickness is fairly constant along this profile.

I compared my result with the one obtained by ambient noise tomography by Lu et al.

(2018), which is shown in Figure 7.2.3.

Although in ambient noise tomography sharp interfaces are not clearly defined, Lu et al.

(2018) chose to express them as probabilities of having an interface, based on the vertical

gradient of the Vs model. In that sense, the two Vs models are rather similar in the European

plate, with a southeastward dipping Moho, and a good agreement even on the Moho depths.

My model locates the Moho discontinuity a little deeper (55-60 km) with respect to what

is found in the model of Lu et al. (2018). There is also a good agreement in the Adriatic

domain, with values of the Moho depth around 30 km and with milder dip. The IGB appears

with sub-mantle but still high velocities in the ANT model.

Regarding shear-wave velocities, my model presents a velocity at around 4.0 km/s in the

lower crustal layer, which is in agreement with what is found in the ambient noise tomography

model. One evident difference is that in the Lu et al. (2018) model the low velocity zone

(2.5-2.7 km/s) near the right end of the profile is more pronounced than in the my results.

This is not a surprise, as the corresponding sediments of the Po plain affect more horizontally

propagating noise than the vertically propagating teleseismic waves. Moreover, in our model

the eastern part is not resolved by the RF data due to a poor ray coverage and the apparent

resolution in the uppermost crust (e.g. Po basin) is the result from the a priori tomographic

model.
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A A'

Figure 7.2.2: Vs cross-section ECORS-CROP profile obtained in this study. Background velocities represent

the result of the inversion, where dots show the projection of the model nodes. Grey points are those not

resolved directly by the inversion, while the green points are those accepted after performing the quality control

and the size of the circle is proportional to the absolute misfit. Red solid line represents the topography in

European plate, blue solid line the topography in Adriatic plate, black solid vertical line the plate boundary

between the two plates. Vertical exaggeration is 2:1.

A A'

Figure 7.2.3: Vs cross-section along the ECORS-CROP profile obtained by ambient noise tomography by

Lu et al. (2018). Vertical exaggeration is 2:1.
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7.2.3 Cross-section B-B’: Jura mountains-Po plain

Figure 7.2.4 shows the result for a section that cross in a perpendicular way the Ivrea Verbano

Zone (IVZ) starting from the Massif du Jura, which is a sub-alpine mountain range located

north of the Western Alps (Hölder and Lotze, 1964), crossing the Geneva Lake, the canton

of Valais, into Po Plain, until the South-West of the city of Verona, in Italy.

In the cross-section we can observe a progressive deepening of the Moho (values from 25

to 50 km from West to East) in the European plate that reflects the principle of isostasy at

the presence of a crustal roots beneath collisional orogens Fischer (2002). In the Adriatic

domain we find a small Moho depth variation, with typical continental crustal values of 35-40

km below the Po plain. The supposed position of the Ivrea Geophysical Body is not resolved

sharply, in lack of close-enough nodes to the profile, but the general difference of Moho depth

across the Europe-Adria plate boundary, of about 20 km, is clear. The lower crust seems

somewhat thicker in Europe than in Adria. These main characteristics are also found in the

tomographic model of Lu et al. (2018) presented in Figure 7.2.5.

As in our model, we observe a progressive variation in depth of the crust-mantle interface

in the European domain and a rather constant Moho at 40 km below the Po plain. As

occurred for the section A-A’, also for this profile our model is not able to detect lower

velocities surroundings beneath the sediments, that instead are found with values around 2.7

km/s in the model of Lu et al. (2018).
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B B'

Figure 7.2.4: B-B’ Vs cross-section (Jura mountains-Po plain) obtained in this study. Background veloc-

ities represent the result of the inversion, where dots show the projection of the model nodes. Grey points

are those not resolved directly by the inversion, green and red points are those accepted or discarded after

performing the quality control, and the size of the circle is proportional to the absolute misfit. Red solid

line represents the topography in European plate, blue solid line the topography in Adriatic plate; black solid

vertical lines the plate boundary between the plates. Vertical exaggeration is 2:1.

B B'

Figure 7.2.5: Vs cross-section B-B’ (Jura mountains-Po plain) obtained by the ambient noise tomography

by Lu et al. (2018). Vertical exaggeration is 2:1.
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7.2.4 Cross-section C-C’: NFP-20 West

Figure 7.2.6 a) shows the result for the section NFP-20 West (Kissling et al. (2006); Schmid

et al. (2017)). This transect follows the trace of the Swiss geophysical campaign NFP 20

“Deep Structure of Switzerland”, whose results were published inPfiffner et al. (1997).

In our model, I observe a steep slope of the Moho that corresponds to the plate boundary:

in the European domain the Moho is at nearly 60 km depth, and then a major jump towards

the East sees the Moho appear at a depth of less than 30 km, in correspondence with the

Ivrea Geophysical Body with typical mantle velocities (Vs = 4.5 km/s). In the Adriatic

sector, the Moho depth increases again to the SE. In general the same features are imaged by

the ambient noise tomographic model (Figure 7.2.6 b), but in our results the plate boundary

is better resolved using vertical rays at the plate boundary (at 200 km distance of the profile

length), while it appears less clearly and shifted or smeared to the SE (at x=240 km distance)

in the Lu et al. (2018) model.

Figure 7.2.6 c) and d) show 2 tectonic transects covering the same investigation area of

the profile NFP 20-West. In both of these geological sections (7.2.6 c is by Schmid et al.,

2017, d is by Escher et al., 1997) we can observe a good match both in slab shape and in the

position of the division into European upper and lower crust compared with our Vs results.

The Moho jump we observe in our model is located within the Sesia Unit, that is known

to exhibit eclogite facies conditions in its most internal parts only Bousquet et al. (2012a),

immediately adjacent to the Ivrea mantle rocks. However, the Ivrea Geophysical Body is

though to be even denser, and this of higher velocity, and this location, according to the

most 3-D analysis (Scarponi et al., 2020).
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a)
C C'

b)
C C'

c)

d)

Figure 7.2.6: a) Vs cross-section NFP-20 West obtained in this study. b) Vs cross-section NFP-20 from

ambient noise tomography by Lu et al. (2018). c) NFP 20-West geological-tectonic transect by Schmid et al.

(2017). d) Schematic geological profile by Escher et al. (1997) through through the Western Swiss-Italian

Alps from the Mont Tendre (Jura) in the NW to the Val Sesia in the SE. See Figure 4.2.5 for legend details.
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7.2.5 Cross-section D-D’: Vosges-West Po basin

Figure 7.2.7 shows the result for a transect which goes from the Vosges, a range of mid-

elevation mountains in eastern France bounding the Upper Rhine Graben, crosses Switzerland

and ends in the western part of the Po basin, to the South of the city of Milan.

I choose this section since it is an area with a very good ray coverage and therefore we

have consistent information with the uncertainty on the nodes examined. Regarding the

European domain, we observe a flat Moho with values around 25 km in the Western part,

and then a rather steep deepening to depths around 60 km in the Eastern part. There is a

Moho step across the plate boundary, to the Ivrea Geophysical Body, after which the Moho

smoothly goes to values at 40 km in the Adriatic plate. Aside from one point, the lower

crustal thickness seems fairly constant, and the crustal root mirrors the Alpine topography.

The observed characteristics in terms of velocities and interfaces’ location are in perfect

agreement with what was found in the tomographic study by ambient noise, as observed in

Figure 7.2.8, with the same mapping differences of the Moho jump and the sedimentary basin

velocities as along the previous cross-section.
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D D'

Figure 7.2.7: D-D’ Vs cross-section obtained in this study. Background velocities represent the result of

the inversion, where dots show the projection of the model nodes. Grey points are those not resolved directly

by the inversion, green and red points are those accepted or discarded after performing the quality control

and the size of the circle is proportional to the absolute misfit. Red solid line represents the topography in

European plate, blue solid line the topography in Adriatic plate; black solid vertical lines the plate boundary

between the plates. Vertical exaggeration is 2:1.

D D'

Figure 7.2.8: D-D’ Vs cross section obtained by the ANT by Lu et al. (2018). Vertical exaggeration is 2:1.



CHAPTER 7. 3-D INTERPRETATION OF THE CENTRAL ALPS 183

7.2.6 Cross-section E-E’: Basel-Chiasso

Figure 7.2.9 represents the Basel-Chiasso profile which crosses the Central Alps and Switzer-

land from North-Northwest to the South-Southeast, and expands a bit beyond.

Also in this case we see that the principle of isostasy is reflected: the rather shallow Moho

depth values in the European foreland (around 30 km) increase 50 km-depth beneath the

Alpine arc. This profile does not cross the Ivrea Verbano Zone, therefore the jump across

the plate boundary is less spectacular. Nevertheless, as already seen in the previous profiles,

the Moho depth of the Adria plate increase southeastwards, first to values typical for the

continental crust, and then further deeper, as a sign of Adria subducting beneath the Liguria

plate (not imaged by our dataset).

Figure 7.2.10 obtained by ambient noise tomography shows a very similar pattern with

respect to the results I obtained both in terms of discontinuities and in terms of velocities.

Again, the Po plain sediments are better imaged with ambient noise tomography.
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E E'

Figure 7.2.9: Vs cross-section along Basel-Chiasso profile obtained in this study. Background velocities

represent the result of the inversion, where dots show the projection of the model nodes. Grey points are those

not resolved directly by the inversion, green and red points are those accepted or discarded after performing

the quality control and the size of the circle is proportional to the absolute misfit. Red solid line represents the

topography in European plate, blue solid line the topography in Adriatic plate, green solid line the topography

in Ligurian plate; black solid vertical lines the plate boundary between the plates. Vertical exaggeration is 2:1.

E E'

Figure 7.2.10: Vs cross-section along Basel-Chiasso line obtained by the ANT by Lu et al. (2018). Vertical

exaggeration is 2:1.
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Finally I report the Vp cross-section along the same profile obtained from the local P-wave

earthquake tomographic investigation by Diehl et al. (2009), which also in this case shows a

similar trend regarding fast or slow areas than the surrounding zones.
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Figure 7.2.11: Vp cross-section along Basel-Chiasso line obtained by the local earthquake tomography by

Diehl et al. (2009). Vertical exaggeration is 2:1.

7.2.7 Cross-section F-F’: European GeoTraverse

Figure 7.2.12 shows the result from my study along a small part of the multidisciplinary

European GeoTraverse transect (Galson and Mueller, 1986; Blundell et al., 1992), which

crosses the Central Alps from North to the South along 9.3°E.

In the European domain the Moho discontinuity goes from values around 30 km in the

northern part to values of 60 km in the middle of the Central Alps, again expressing a crustal

root. There is uncertainty at the nodes in the European foreland (big red circles in Figure

7.2.12), and the supposedly slow sediments are not imaged. Across the Europe-Adria plate

boundary, there is a clear step in the Moho. In the Adriatic sector, the crust-mantle interface

is shallower and lies first shallower than 40 km in the Alps, with then a slight inclination

southwards, entering beneath the Liguria plate (outside the profile).

The corresponding ambient noise tomography model (Figure 7.2.13) highlights the same

features I detect, with the difference that it identifies the sediments with low Vs (2.7 km/s),

and images a clearly smaller Moho step than my model across the Europe-Adria plate bound-

ary at the center of the transect.
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F F'

Figure 7.2.12: Vs cross-section along European GeoTraverse transect obtained in this study. Background

velocities represent the result of the inversion, where dots show the projection of the model nodes. Grey points

are those not resolved directly by the inversion, green and red points are those accepted or discarded after

performing the quality control and the size of the circle is proportional to the absolute misfit. Red solid line

represents the topography in European plate, blue solid line the topography in Adriatic plate, green solid line

the topography in Ligurian plate; black solid vertical lines the plate boundary between the plates. Vertical

exaggeration is 2:1.

F F'

Figure 7.2.13: Vs cross-section along European GeoTraverse transect obtained by the ambient noise to-

mography by Lu et al. (2018). Vertical exaggeration is 2:1.
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7.2.8 Cross-section G-G’: TRANSALP

The TRANSALP project (Castellarin et al., 1992; Gebrande et al., 2001; Gebrande et al.,

2002; Lippitsch et al., 2003; Lüschen et al., 2004; Kummerow et al., 2004) is an international

and multidisciplinary research program for investigating orogenic processes driven by the

collision of continental lithospheric plates. The target area is the Eastern Alps to show the

collision of the Adriatic-African plate with the European plate. The combined passive and

active seismic TRANSALP experiment produced an unprecedented high-resolution crustal

image of the Eastern Alps between Munich and Venice (Kummerow et al., 2004).

Figure 7.2.14 shows the result obtained with our method of 3-D P-to-S converted wave

tomography of the TRANSALP profile.

In the northern part of the profile, the Moho is at about 30 km depth and then it goes

deeper until it reaches values up to 55 km within the European Alpine domain. On the

other side of the plate boundary, in the Adriatic sector, the Moho resumes at a shallower

depth, at around 50 km depth beneath the Alps, to then gently shallow towards to South (45

km). The results from ambient noise tomography display similar patterns (Figure 7.2.15),

and also capture a relatively sharp crust-mantle velocity transition. However, ANT results

do not clearly mark the crust-mantle discontinuity in the Adriatic plate, displaying a broader

vertical gradient; this the most difficult part to interpret of the profile also according to

previous investigations (Finetti, 2005).
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G G'

Figure 7.2.14: Vs cross-section along TRANSALP profile in this study. Background velocities represent

the result of the inversion, where dots show the projection of the model nodes. Grey points are those not

resolved directly by the inversion, green and red points are those accepted or discarded after performing the

quality control and the size of the circle is proportional to the absolute misfit. White dashed line is the Moho

from Kummerow et al. (2004). Red solid line represents the topography in European plate, blue solid line

the topography in Adriatic plate; black solid vertical lines the plate boundary between the plates. Vertical

exaggeration is 2:1.

G G'

Figure 7.2.15: Vs cross-section along TRANSALP profile obtained by the ambient noise tomography by Lu

et al. (2018). Vertical exaggeration is 2:1.
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Our model finds an almost perfect match with the interpretation of the depth migrated

short-period receiver functions TRANSALP line by Kummerow et al. (2004) shown in Figure

7.2.16. This work constitutes the first high-resolution investigation in this region, combining

receiver function (RF) and active seismic techniques aiming at better constraining the deep

architecture of the crust.

Figure 7.2.16: (a) Depth migrated short-period receiver functions along the TRANSALP line with simplified

geological section according to the work of Kummerow et al. (2004). EM = European Moho, AM = Adriatic

Moho, ACI = Adriatic Crust Interface, a dipping discontinuity in the middle and lower Adriatic crust. Green

and blue circles select values for crustal thickness. Times are converted to depth values using a constant

Vp/Vs ratio of 1.73 and Vp = 6.0 km/s (green circles) and Vp = 6.3 km/s (blue circles), respectively. (b)

Superposition of receiver functions and seismic reflection line drawings.

In the original TRANSALP results, the European Moho dips gently southward from 35

km beneath the northern foreland to a maximum depth of 55 km beneath the central part

of the Eastern Alps, whereas the Adriatic Moho is imaged primarily by receiver functions

at a relative constant depth of about 40 km. The European Moho (EM) and the Adriatic

Moho (AM) are easily identified in Figure 7.2.16. The Moho step is not only observed in the

direct Moho conversions, but also in the near-vertical reflection data. The results obtained

with our new approach agree well with the migrated receiver function data, while the flat

Adriatic receiver function Moho seems to be somewhat different form the line drawings of

the near-vertical reflection data.
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7.3 3-D to 1-D crustal Moho and Vp/Vs comparison

Here I compare the results obtained with the 3-D P-to-S converted wave tomography method

with the outcomes obtained through the 1-D H−κ grid search technique (Zhu and Kanamori,

2000). For the latter, I take the results obtained by myself and by the investigation of

Lombardi et al. (2008) who included dip corrections, as already presented in Chapter 2.
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Figure 7.3.1: Final Moho depth map from the 3-D approach (circles) with superimposed 1-D results

obtained in this work (a) and by Lombardi et al. (2008) and (b) using the H-κtechnique (squares). Colored

points without an edge are the direct results from the inversion, blue edge represents interpolated value at

unresolved nodes, green edge represents interpolated value following misfit based quality control. Other display

items as on earlier figures.

Figure 7.3.1 shows the Moho depth comparison. There is a good match between the

values obtained by the 3-D inversion and the ones obtained by the inversion of single station

data (which has many intrinsic limitations as a method, e.g. one single value for crustal Vp),

with thick crust within the Alpine area, reaching 60 km in the European domain along the

Europe-Adria plate boundary and Moho depth values between 20 and 35 km in the Alpine

foreland. However, locally, 5 km or larger differences exist at a few places, especially in the

center of the Alpine arc (stations DAVOX, FUORN, VDL, WILA) where the Moho depth

seems to be deeper compared to the surrounding area. What we observe is that the 1-D

result of the work of Lombardi et al. (2008) gives in general deeper values with respect to

the our 1-D Moho values, although the biggest differences do not seem to be connected to

the local dip, which in the Alpine arc assumes values around 10-12°.
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Figure 7.3.2: Final average crustal Vp/Vs map from the 3-D approach (circles) with superimposed 1-D

results obtained in this work (a) and by Lombardi et al. (2008); (b) using the H − κ technique (squares).

Display as in Figure 7.3.1. The color scale spans from the imposed lower to upper bound for the Vp/Vs

variable.

In several points of the map, differences of 0.1 or larger appear. For example, within the

European foreland our 3-D model has values lower tan 1.70 while both in our 1-D inversion

and in Lombardi et al. (2008) work the Vp/Vs is higher, up to values equal to 1.78. Note

that the single station Vp/Vs estimates’ uncertainty on 57 stations is based between 0.04 and

0.18 (average: 0.07, median: 0.06), so part of the difference can be accounted by this effect.

The remaining part of the difference is still an open question to discuss.

7.4 Lower crustal seismicity and geodynamic interpretation

Finally, in order to have an idea of the relation between seismic velocities, crustal rheology

and rock composition, I make a qualitative comparison between the Vp/Vs map and the

lower crustal seismicity distribution in the northern Alpine foreland.

7.4.1 Lower crustal earthquakes in the northern Alpine foreland

While the majority of the Alpine area shows relatively high Vp/Vs values, the European

foreland has a contiguous area with consistently low Vp/Vs ratios. The same area is also

known to host lower crustal earthquakes, as reported by Singer et al. (2014) based on Swiss

and EMSC catalogue data and detailed reanalysis of focal depths and mechanisms. I compare

my final 3-D velocity ratio results and the distribution of these earthquakes (Figure 7.4.1) to

investigate whether there is a geodynamic interpretation possible at a larger scale.
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Figure 7.4.1: Average crustal Vp/Vs map after interpolation of empty and poor quality nodes (Figure

7.1.6) to which is superimposed with yellow dots the lower crustal seismicity in the Alpine region as reported

in Singer et al. (2014). Size of the circle is proportional to the magnitude of the event. Two black dashed

line segments represent represent the Vp/Vs sector when Vp/Vs < 1.70.

As we can observe on Figure 7.4.1, 95% (all except 3 in the foreland, and an event near

Besançon) lie in a zone of the model with crustal Vp/Vs values lower than < 1.70. They

do not seem to align along well definable faults or fault zones. According to Singer et al.

(2014) this focus of seismicity in Northern Switzerland correlates well with the lateral extent

of the European slab beneath the Central Alps where it is still attached to the European

lithosphere, based on tomographic arguments (Lippitsch et al., 2003).

A zoom of the area of interest is reported in Figure 7.4.2. The western bound of the

area is roughly along the Bern - Biel - Porrentruy - Belfort line; this is further NE than

the shallow Fribourg Lineament (Vouillamoz et al., 2017). The eastern bound starts East of

Lindau, crosses NE of Ravensburg, and has a projected end between Albstadt and Tübingen.

There is no primary geological boundary or marker at the surface, according to the map

Geological Map of Switzerland, at the 1:500 000 scale, published by the Swiss Federal Office

of Topography (Swisstopo). Most of this area is covered by the foreland basin sediments.

On the other hand, the nature of the lower crust is not well known, and it can be that the

segment with lower crustal earthquakes and relatively low Vp/Vs is inherited.
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Figure 7.4.2: Zoom of the Figure 7.4.1, black squares show the location of the main cities in the study area,

black solid lines are the borders of the country, dashed black contours the selected area with Vp/Vs value less

than 1.70.

7.4.2 Geodynamic considerations

As a general trend one could expect that the crust is density sorted, and that at the lower

crustal level we should find rocks with more mafic compositions, with a high Poisson’s ratio

and a relatively high Vp/Vs (>1.75), as reported in several works in literature (e.g. Barton,

1986; Zandt and Ammon, 1995; Christensen, 1996). Based on these considerations, the lower

crust in the area of full-crustal Vp/Vs < 1.70 cannot be extremely mafic.

The reasons why there are lower crustal earthquakes in a zone of low Vp/Vs and not

elsewhere can be possibly linked to several factors, such as the thermal state, regional tectonic

strain rate, petrological composition and fluid concentration. All these parameters play a

role in controlling the depth of transition between brittle and ductile deformation within the

crust.

Earthquakes which are clear evidences of brittle deformation are very important for our

understanding of the properties of the continental crust, and this is particularly true in a

region of such structural complexity and of ongoing tectonic activity as the Alps and its

foreland (Deichman and Baer, 1990). In view of the high temperatures and an assumed felsic

composition, hence quartz or plagioclase rheology in the lower crust, as deduced from surface

heat flow and seismic velocities, the deep seismicity below the northern Alpine foreland could

be a consequence of the upward migration of fluids under near-lithostatic pore pressures
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(Deichmann and Rybach, 1989).

It remains a problem of reconciling the existence of seismicity in a depth range where

temperatures are expected to be high, and where Vp/Vs ratio is low. In general, the combined

effect of increasing pressure and temperature will result in an increase of both velocities and

Poisson’s ratio (Kern, 1982). However, under the influence of a high temperature gradient,

some rocks can exhibit the opposite trend, suggesting that the assumption of a dry crust

is indeed unrealistic (Deichmann and Rybach, 1989). Moreover, the behavior of seismic

velocities for a given rock in the presence of water is quite complex, because it depends

critically on the degree of saturation on pore pressure. The role of water is also critical for

the assessment of the crust’s rheology: in the presence of water, both the frictional resistance

to failure and the resistance to ductile deformation are decreased relative to a dry rock

(Deichmann, 1992). One possible source of water in the lower crust could be dehydration

reactions: there are several minerals, which undergo dehydration (or decarbonation) reactions

at higher temperatures, thereby releasing fluids into existing or newly formed pore spaces

(Fyfe, 2012). This mechanism has been suggested in conjunction with the transformation

of serpentinite to olivine, as a possible explanation for deep subduction-zone earthquakes.

However, serpentinite weakening is unlikely to be a factor controlling lower-crustal seismicity

below northern Alpine foreland, first because of its geological history, and second because a

significant amount of either serpentinite or olivine (Christensen, 1966) is inconsistent with

the low Vp/Vs ratio obtained in this study and the low Poisson’s ratios (0.23-0.24) computed

in the study of Deichmann and Rybach (1989).

While fluids may explain the presence of lower crustal earthquakes, the spatial concentra-

tion of lower crustal earthquakes and of low crustal Vp/Vs ratios along the arc of the Alpine

foreland still needs to be explained. The surface heat flow is not known to vary significantly

along the Molasse foreland basin, as illustrated by geothermal project initiatives all along

the basin from Geneva to Bavaria (Chelle-Michou et al., 2017). The strain rate, which is

an important factor influencing rock deformation, is also unlikely to vary a lot in the slowly

deforming Alpine domain, especially along the arc. What can easily vary spatially is the

composition of the rocks in the lower crust. This would explain the consistently low Vp/Vs

ratios, and also the earthquakes in two possible ways. First, if these rocks carry more water,

following dehydration they may provide the fluids mentioned above. Second, and indepen-

dently of the fluids, these rocks may have weaker rheologies than in the surrounding areas

of the lower crust. This means that under the same strain and stress conditions, these me-

chanically weaker rocks (such as granites and gneisses) reach their strength limit and yield

in form of brittle ruptures. At the same conditions, stronger rocks (such as granulites or

dry diabase) would still support the mechanical stress and remain apparently aseismic. A
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quantitative demonstration for our domain remains to be done, using rheological properties

reported in the literature, such as by Rybacki and Dresen (2004) and Afonso and Ranalli

(2004). Such compositional variations in the lower crust are most likely inherited from the

geological history of these zones.

Inherited structures in general play a key role in controlling strain localization on a local

scale, during early stages on rifting (Piqué and Laville, 1996; Tommasi and Vauchez, 2001)

or also in orogeny as reactivated structures. Inheritance can be defined as the difference

between a real and an idealized lithosphere (Manatschal et al., 2015). Figure 7.4.3 shows in

a conceptualized manner the 3 types of inheritance in a section across a lithosphere at the

end of an orogenic collapse but before the onset of rifting.

Figure 7.4.3: Two different type of lithospheric scale sections (from Manatschal et al. (2015)). (a) Idealized

lithosphere made of a thermally equilibrated layer cake; (b) Real post-orogenic lithosphere with inherited

structural and compositional complexity.

The idealized lithosphere is defined as a thermally equilibrated horizontally homogeneous

layer-cake lithosphere, made of quartzo-feldspatic upper and middle crust and a mafic lower

crust and a peridotitic mantle. In contrast to this idealized lithosphere, a real lithosphere

may differ by its thermal state, compositional heterogeneities and structural complexity.

Manatschal et al. (2015) distinguish between three types of inheritance, called thermal (a
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function of the age of the lithosphere), structural (with mechanically “weak” zones) and

compositional (related to rheology difference).

Based on these concepts, the geodynamic interpretation of the study zone like the Central

Alps is a complex exercise in which some simplifications are generally considered. These areas

are represented by the continental domains, which are the results of polyphase tectonic,

magmatic, and metamorphic history since Variscan times and even earlier. Therefore, it

cannot be described by a few physical parameters only, but it needs to take into account the

structural and time-integrated inheritance of the lithosphere. This is increasingly difficult

with increasing geological time and increasing depth. For better understanding the lower

crust, which is unlikely to be sampled by continental drilling, joint inversion of geophysical

data and multi-parameter numerical modeling of its evolution may allow to step forward.



Chapter 8

Conclusions and future perspectives

In this last chapter, I compare the newly obtained, final 3-D Moho depth model of the Central

Alps with other previous investigations using different methods, and then I summarize the

results presented and discussed in the previous chapter. I describe briefly the uncertainties

and highlight the applicability of the method with its own limits. Finally, I suggest some

ideas for future developments of the presented technique.

197
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8.1 Results summary

The first application of the new method presented in this thesis allowed to quantitatively

constrain the Alpine crustal structure. Figure 8.1.1 shows the geometry of the main inter-

face, the final Moho depth model of the study area. In this 3-D image no smoothing or

regularization technique is applied and this is the reason why in some points the curve has

some “spiky” geometries.
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Figure 8.1.1: Perspective SW-oriented (top) and NE-oriented (bottom) view on the Moho depth model

beneath the Central Alpine region obtained in this study. The European and Adriatic Moho are indicated with

Me and Ma.

In general, the obtained Alpine Moho topography reflects the present large-scale Alpine

tectonic structure resulting from the collision of the African with the European Plate. The
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two Moho interfaces at either side of the Insubric Line confirm a southward subduction of

Europe under the shallower lying Adria in the Central Alps, with a decreasing depth difference

from West to East in our study area. Our results highlight and confirm the unusually

superficial crust-mantle interface beneath the Ivrea Verbano Zone, at around 15-km depth,

as reported also by seismological and gravity investigations (Berckhemer et al., 1968; Kissling

et al., 1983; Scarponi et al., 2020). In general Moho depths are in good agreement with

previous studies for those regions with dense and reliable controlled-source data (e.g. Nadir,

1988; Valasek, 1992; Kissling, 1993; Hitz, 1995; Waldhauser et al., 1998; Spada et al., 2013).
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Figure 8.1.2: Perspective SW-oriented (top) and NE (bottom) on the Moho depth model below the Alpine

region according to Spada et al. (2013), in a study combining receiver functions and controlled-source seis-

mology data. European, Adriatic and Ligurian Moho are indicated with Me, Ma and Ml.

When comparing the model of Spada et al., 2013 (Figure 8.1.2), which was the initial
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model of our inversion, with our results, the Moho topography is rather similar at long

wavelength, yet our results reveal some smaller wavelength variations. These could be realistic

considering the complexity of Alpine tectonics, and that the Moho model of Figure 8.1.2

appears spatially more smoothed.

This is because in Spada et al. (2013) Moho, the interface is generated following the

principle of simplicity; they search for the smoothest Moho interface that fits all available

information within their uncertainties (Kissling, 1993) and then they define the simplicity of a

seismic interface based on the degree of continuity and of surface roughness of this interface.

To take into account for documented Moho offsets along plate boundaries, three main a

priori surfaces are used to fit the data: interfaces described in Wagner et al. (2012) based

on analysis of the LET (Diehl et al., 2009), CSS (Waldhauser et al., 1998) and teleseismic

tomography information in the region (Lippitsch et al., 2003).

The real Moho geometry is most likely somewhere in between the locally irregular geom-

etry proposed in this work (some of this irregularity coming from data coverage and a priori

models) and the structure proposed by Spada et al. (2013) which appears very smooth on

the regional level (this smoothness coming from interpolation between sparse seismic data).

In this sense, an important constraint would be to include in our model some active seismic

lines or dense RF profiles.

The new inversion method I developed yields a fully 3-D shear-wave velocity model of the

crust based on receiver functions only. The resulting velocity profiles are comparable to those

obtained by ambient noise tomography: while the new method inherently performs better in

localizing sharp discontinuities, it is less well adapted to image bulk anomalies as tomography

does. The maps of average crustal Vp/Vs ratio shows higher values in the Alps compared

to the foreland. Within the European foreland, a zone of low Vp/Vs (<1.70) coincides with

lower crustal earthquakes, which I interpret as inherited difference in rock properties.

The successful test of the new method on the Central Alps and using a wealth of high-

quality data validated the applicability of the new method, which consists in the following

main elements:

• An accurate ray propagator, which respects Snell’s law in 3-D at any interface geometry,

and allows P-to-S converted ray-paths to reach the recording station with an accuracy

at the order of a hundred meters (Chapter 3).

• A new model parameterization of velocities: it is a fixed rectangular mesh in map view,

but the interfaces have flexible depths; separate velocities are define above and below

each discontinuity which allows to map both sharp discontinuities and gradient across

layers (Chapter 4).
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• A stochastic inversion procedure, combining simulated annealing and a pattern search

algorithm, to find discontinuity depths and velocities across the crust by fitting grouped

converted waves with synthetics (Chapter 5).

8.2 Uncertainties analysis and the method’s applicability

The accuracy of the ray tracing implemented in this new tool is much higher than in most

previous passive seismology studies. The reliability of the inversion is maximized by the

quality and the number of rays passing through each cell. This is why I included a detailed

quality control on the data, and introduced a threshold on the number of rays for each bundle

to invert. In this regard, to save computation time keeping the robustness of the stochastic

inversion method, it would be appropriate to launch the inversion with a significant random

portion of the initial data (e.g. 50% of the dataset) and verify that the final results do not

differ too much from those obtained with the entire dataset.

The uncertainty analysis of the results would ideally be based on the number of sampled

models during inversion, and their assessment based on misfit and coverage of the parameter

space. As I have shown in Chapter 5, the joint use of the simulated annealing and the

pattern search algorithms in the MatLab implementation unfortunately precludes doing this.

The reason is that while all sampled model parameter sets are available during the simulated

annealing phase, no information can be retrieved during the pattern search phase and because

the result from the last SA step to the final (SA+PS) step differ, using the SA steps alone

would not be representative. Therefore, before a new technical implementation is performed,

either in another software, or by rewriting the PS algorithm to have full control, I am not

able to carry out a proper uncertainty analysis of the obtained results and this is probably

the weakest point of the presented implementation. Another important limitation is that a

priori information, studies with different resolution and significant uncertainties are mapped

into the final S-wave velocity, which can create a null variation of the initial model or, worse,

some artifacts, especially in areas where the ray coverage is not so high.

The newly developed tool is organized into different modules and is parameterized so

that it can be adapted to be applied to other areas where a sufficient coverage of stations

is available. The method does not require local earthquakes, nor a large aperture seismic

network, but a dense array of 3-D component sensors with a spacing similar to the expected

crustal thickness. In this study I showed a first application to the Central Alps; a natural

extension would be to extend to the entire Alpine domain using AlpArray Seismic Network

data (Figure 8.2.1).
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Figure 8.2.1: Distribution of seismic stations in the frame of the AlpArray project (from Hetényi et al.,

2018b).

Regarding application to other geological contexts (Figure 8.2.2), the USArray network

may be too sparse for Moho depth imaging, but the lithosphere-asthenosphere boundary

could be mapped with S-to-P converted waves1. The dense network of broadband seismo-

graphs makes Japan a suitable target to apply this new method, and other arrays exist (e.g.

IberArray) and will be implemented in the near future (e.g. AdriaArray).

1It is always preferable to constrain the initial models with available information related to the geological
context of reference (e.g. active seismics, gravity studies).
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Figure 8.2.2: On the left status of USArray stations (image from Usarray.org), on the right distribution of

seismic stations from Japan Meteorological Agency (from Yano et al., 2017).

8.3 Method limitations and future perspectives

The method proposed in this study presents different limitations, either by its nature or due

to simplifying assumptions in the presented implementation to save computation time. While

the latter can be addressed easily by more powerful computational power, the former could

be improved by progressing with the methodology.

Regarding the ray tracing procedure, the accuracy of the developed tool considering the

local dip is remarkable (accuracy of the order of hundred meters), however I focused on

simulating the converted P-to-S wave raypath, and, inherently, not that of the multiples.

This could be very useful for imaging, although not easy to implement as it already requires

a high reliability of an initial 3-D model.

For the inversion, the main limiting assumption in the application to the Central Alps was

the choice of the number of parameters to invert for. In this work, I showed the final results

with 4 independent parameters: Conrad and Moho depth, Vp/Vs ratio for the entire crust, P-

velocity jump at the Conrad. This can be easily improved for a more flexible parameterization

of the model, and by performing the inversion with more than 4 parameters, up to 10, as

discussed in section 6.1. Another assumption that could be considered as a limitation is the

choice of the initial model, and whether that is a strong constraint or not. In our case, both

the Moho depth and the P-wave velocity model were evolved inputs, but inversion could

be launched in a much less constrained case. For both of these aspects, the corresponding

increase in the computation time needs to be accounted for, either with time, or with parallel

programming.
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A similar limiting assumption adopted in this work was to assume a model structure

consisting of only 2 layers, upper crust and lower crust, meaning 2 discontinuities. A more

realistic choice could be to add a sedimentary layer, which would have helped to produce

better results in the basins adjacent to the Alps (e.g., Po plain, Molasse Basin). If one

considers mapping the entire lithosphere, allowing for further discontinuities would be useful.

In the last two decades a class of algorithm using transdimensional Bayesian formulation has

developed and appears in several problems related to RF inversion (Piana Agostinetti and

Malinverno, 2010; Bodin et al., 2012; Sambridge et al., 2006; Young et al., 2013; Sambridge

et al., 2013; Kolb and Lekić, 2014). With this kind of approach, the number of model

parameters is a variable and a Markov chain Monte Carlo is used to provide a solution.

Therefore, in a future development of our method, one might decide not to fix a priori the

number of layers so the dimension of the model space becomes itself a variable. This certainly

requires high computational power, especially that each layer has 2 velocities defined at each

node.

Another choice that can effect the implementation of the method is the shape of the cells

used in the model parameterization. In this work I used square meshes in map view. Other

possible shapes filling the space can be triangular (Li et al., 2014) or hexagonal meshes.

Furthermore, one could consider a variable cell size mesh, adapting to data density, as for

example in recent tomography studies (Schaefer et al., 2011; Lu et al., 2018). While these

choices should not drastically influence the results, they may allow a better recovery or

representation of reality in a model. For mantle convection simulations, a new kind of overset

grid, named Yin-Yang grid, for spherical geometry is proposed Kageyama and Sato, 2004:

these grids, composed of two identical component, are combined in a complemental way to

cover a spherical surface with partial overlap on their boundaries. This type of grids require

the cost of parallel computers.

A clear improvement to our method would be to use and implement in 3-D the stochastic

Neighbourhood Algorithm (Sambridge, 1999a; Sambridge, 1999b) for the inversion procedure.

This approach was specifically built for sampling in geophysical inverse problems, and in this

sense could likely be better than the combination of simulated annealing algorithm and

pattern search used in this work. The computation time should be on the same order of

magnitude (see Figure 5.1.5). The main advantage of implementing the Neighbourhood

Algorithm would be to access the entire series of tested parameter sets, and therefore to

quantitatively access the model results’ uncertainties.

Finally, the main future target to better constrain the 3-D structure of the lithosphere

is to improve the method proposed in this study by integrating other geophysical data and

hence move towards joint inversion approaches, since a study based only on RF itself may
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not be sufficiently reliable. The main goal is to constraint multiple physical properties of

rocks, to obtain a geophysical model consistent with multiple datasets. Our method exploits

sub-vertically propagating S waves in the crust to retrieve Vs. It could be used together with

surface wave dispersion or ambient noise tomography for still inverting Vs but with waves of

different geometry and sensitivity (Julia et al., 2000; Chang et al., 2004). To include other

rock properties, such as Vp and density, jointly inverting gravity and seismic tomography

data should be implemented (Tiberi et al., 2003; Basuyau and Tiberi, 2011). The advantage

is that gravity and seismic data are complementary in terms of their best resolution areas and

sensitivities. The relationship between rock velocities and rock density can be assumed based

on empirical relations (Nafe and Drake, 1957; Birch, 1961), or can be part of the inversion

problem itself.

As a main conclusion: in the application of this new method, as with any other method,

some simplifying assumptions are usually taken at start, nevertheless the capacities should

be explored for imaging in fully in 3-D, as this is the nature of our environment and therefore

a key element in all branches of solid Earth research.
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