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Abstract

We study the asymptotic behavior of P(X − Y > u) as u → ∞,
where X is subexponential, Y is positive and the random variables
X,Y may be dependent. We give criteria under which the subtraction
of Y does not change the tail behavior of X. It is also studied under
which conditions the comonotonic copula represents the worst-case
scenario for the asymptotic behavior in the sense of minimizing the
tail of X − Y , and an explicit construction of the worst-case copula is
provided in the other cases.

1 Introduction

In recent years, there has been quite some progress in understanding the
asymptotic effect of dependence on the tail of sums of positive subexponential
random variables, see for instance Albrecher et al. [1], Mitra & Resnick [22],
Ko & Tang [18], Kortschak & Albrecher [19] and Foss & Richards [14]. In
this paper we are interested in the tail asymptotics of differences of random
variables, i.e. in

P(X − Y > u)

∗Supported by the Swiss National Science Foundation Project 200021-124635/1.
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for u → ∞, where X is subexponential and the positive random variable Y
may have different forms of the tail. If X,Y are independent, this is easy (cf.
[6, Lemma 3.2, p. 306]):

P(X − Y > u) ∼ P(X > u) (1.1)

without further conditions. Thus, the problem is dependence.
Since for positive u we have P(X − Y > u) = P(max(X, 0)− Y > u), we

can assume w.l.o.g. that X is positive.
There are various areas in which the asymptotics of dependent differences

of positive random variables are of interest, for instance random recurrence
equations, queueing models and insurance risk models, each in the presence
of dependence. In particular, in an insurance context, such a dependent
difference can have a natural interpretation as the difference between a claim
X and its preceding interarrival time Y , where the random walk structure
of the surplus level in the portfolio after a claim occurrence is still preserved
(see Albrecher & Teugels [3], Boudreault et al. [10], Asimit & Badescu [4], Li
et al. [20] and also Albrecher & Boxma [2] for such and similar dependence
structures). In queueing applications similar interpretations are possible.

Asmussen & Biard [7] needed (1.1) for the case where Y is light-tailed.
They showed (1.1) essentially when the tail of Y is of smaller magnitude than

e−x1/2
and gave a counterexample that (1.1) may not hold with lighter, but

still subexponential, tails. The aim of this paper is to provide more general
criteria on the dependence between X and Y for the insensitivity to hold and
to consider more general distributions of Y . In Section 3 we give a general
criterion under which the insensitivity (1.1) holds. Section 4 discusses the role
of the mean excess function in this analysis. In Section 5 we discuss the case of
light-tailed Y in more detail and provide a substantially simpler construction
of a counterexample that e−x1/2

is in fact the critical decay rate of the tail of
X, if no dependence structure is specified. This rate is critical in many other
contexts and is known as square-root insensitivity (e.g. Jelenković et al. [17]).
In Section 6 we show (under some regularity conditions) that if there exists a
counterexample for the insensitivity (1.1), then the comonotonic copula also
provides a counterexample. Yet, the comonotonic copula may not represent
the dependence structure that produces the most extreme behavior of P(X−
Y > u). We provide criteria under which the comonotone dependence is
indeed the worst case in the sense of minimizing the tail of X − Y and
provide an explicit construction of the worst-case copula otherwise. Finally,
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Section 7 deals with the case of intermediate regularly varying X and relates
the present discussion to local limit laws.

2 Preliminaries

In this section we summarize some properties of random variables and clas-
sical results that are used later in the paper. For a random variable X with
cumulative distribution function FX(u) denote with FX(u) = P(X > u) its
tail. We say that X is long-tailed if for every constant x

lim
u→∞

FX(u− x)

FX(u)
= 1.

A nonnegative random variable X is called subexponential if for two inde-
pendent copies X1 and X2 of X it holds that

lim
u→∞

P(X1 +X2 > u)

P(X > u)
= 2.

Note that subexponential random variables are long-tailed. A subclass of the
subexponential random variables are the regularly varying random variables,
for which there exists an index α > 0, such that for all y > 0

lim
u→∞

FX(yu)

FX(u)
= y−α.

An extension of regularly varying distributions are distributions that fulfill

lim
ε→0

lim inf
u→∞

P(X > (1 + ε)u)

P(X > u)
= 1.

This property is known as intermediate regular variation, or also as consis-
tent variation ([11] and [25]). From [13, Th.2.47] it follows that FX(u) is
intermediate regularly varying if and only if for any positive function δ(u)
with limu→∞ δ(u)/u = 0

lim
u→∞

FX(u+ δ(u))

FX(u)
= 1 (2.1)

holds. For a recent survey on heavy-tailed random variables see [13].
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Another useful extension of regularly varying distributions is related to
extreme value theory (see [24] or [15] for classical references). Let Mn =
max1≤i≤n Xi be the maximum of n independent and identically distributed
random variables and assume that there exist constants an and bn and a
non-degenerate distribution function H(x) with

lim
n→∞

P ((Mn − bn)an ≤ x) = lim
n→∞

(FX(anx+ bn))
n = H(x). (2.2)

Then H(x) is called an extreme value distribution and is known to be of one
of the following three types

H(x) =


e−x−α

, x > 0, (Fréchet)

e−(−x)α , x < 0, (Weibull)

e−e−x
, x ∈ R, (Gumbel),

see e.g. [24, Prop. 0.3]. X (or equivalently FX(x)) is then said to be in
the maximum domain of attraction of the extreme value distribution H).
In [24, Ch. 1] it is shown that X is in the maximum domain of attraction
of the Fréchet distribution if and only if X is regularly varying. If X is in
the maximum domain of attraction of the Weibull distribution then X has a
finite right endpoint. Finally, X is in the maximum domain of attraction of
the Gumbel distribution if and only if there exists an auxiliary function e(x)
such that for all y

lim
u→xr

FX(u+ ye(u))

FX(u)
= e−y,

where xr = inf{x : FX(x) = 1} is the right endpoint of X (see also [9, Sec.
3.10]). The function e(x) is unique up to asymptotic equivalence and can
be chosen as the mean excess function em(x) = E(X − x|X > x) or – if
the density exists – as 1/r(x) = FX(x)/fX(x) (the reciprocal of the hazard
rate). The class of distributions in the maximum domain of attraction of
the Gumbel distribution contains some subexponential distributions such as
lognormal or heavy-tailed Weibull distributions, but also light-tailed distri-
butions like the gamma or the normal.

Since we will consider dependent random variables, it is sometimes use-
ful to decouple the dependence structure from the marginal distributions.
Therefore we will use copulas and review now some basic concepts (a stan-
dard reference is [23]). A two-dimensional copula C(u, v) is a function that
fulfills
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• C(u, 0) = 0 = C(0, v) for every u, v ∈ [0, 1]

• C(u, 1) = u and C(1, v) = v for every u, v ∈ [0, 1]

• C is 2-increasing, i.e. for every u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and
v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Hence, a copula is the joint distribution function of two random variables with
uniformly distributed marginal distributions on [0, 1]. From Sklar’s Theorem
it follows that there exists a copula C such that the joint distribution function
of two random variables X and Y can be expressed as

P(X ≤ x, Y ≤ y) = C(FX(x), FY (y)). (2.3)

Vice versa, for every copula there exist random variables X and Y with
marginal distributions FX and FY such that (2.3) holds. One says that X
and Y are dependent according to the copula C. Note that C is invariant
under monotone transformations of the marginal distributions. The Frećhet
upper bound (or comonotonic) copula M(u, v) = min(u, v) fulfills

C(u, v) ≤ M(u, v)

for all copulas C. Random variables X and Y are said to be comonotonic
if they are dependent according to M . For each copula one can define the
corresponding survival copula through Ĉ(u, v) = u+ v− 1+C(1− u, 1− v),
so that

P(X > x, Y > y) = Ĉ(FX(x), F Y (y)).

Copulas are a useful tool when constructing dependent random variables
with given marginal distributions. In this paper we will use the following
two methods of contracting copulas (see e.g. [23, Ch. 3]). Denote with {Ji}
a partition of [0, 1] defined here as a collection of closed intervals Ji = [ai, bi]
that are non-overlapping (except at the endpoints) and

∪
Ji = [0, 1] (one can

assign the overlapping points to one of the involved intervals, and then get
a partition in the classical sense). For any partition {Ji} and for any finite
collection of copulas {Ci}, we define the ordinal sum of {Ci} with respect to
{Ji} as

C(u, v) =

{
ai + (bi − ai)Ci

(
u−ai
bi−ai

, v−ai
bi−ai

)
, (u, v) ∈ J2

i ,

M(u, v), otherwise.

5



Note that when U and V are uniform random variables dependent according
to an ordinal sum, then P(U ∈ Ji|V ∈ Ji) = 1 and the random vector
(U, V )|(U, V ) ∈ J2

i has uniform marginals on Ji that are dependent according
to the copula Ci.

A second type of copulas that will be used in the sequel are so-called
straight shuffles of M . Assume we have a copula C, a finite partition
J = {J1, . . . , Jn} of [0, 1], and a permutation π of {1, . . . , n}. The cop-
ula C defines a measure on the stripes Ji × [0, 1] or, equivalently, on stripes
of the length hi = bi−ai. Now one can reorder these stripes according to the
permutation π. So on the stripe [0, hπ(1)]× [0, 1] assign the measure which is
assigned by C to the stripe Jπ(1)×[0, 1], on the stripe [hπ(1), hπ(1)+hπ(2)]×[0, 1]
assign the measure which is assigned to Jπ(2) × [0, 1] and so on. This defines
a new probability measure on [0, 1] × [0, 1] that (as one easily checks) has
again uniform marginal distribution and hence corresponds to a new copula
Cs(J , π). We call Cs(J , π) a straight shuffle of M if C = M , and then use
the notation Ms(J , π). From the discussion after Theorem 3.2.3 in [23] (see
also [21]) it follows that every copula can be approximated arbitrary closely
by a shuffle w.r.t. supremum norm.

In later sections we will also make use of multivariate extreme value the-
ory, which studies the component-wise maximum of multivariate random
variables (the results presented here can e.g. be found in [24, Sec. 5.4] or
[15]). Consider the possible limits of

lim
n→∞

[
P
(
X ≤ anx+ bn, Y ≤ âny − b̂n

)]n
= H(x, y),

such that the marginal distributions of H are non-degenerate. Then the
marginal distributions of X and Y have to be in the maximum domain of
attraction of an extreme value distribution HX and HY , respectively, and
there has to exist a copula C∗ such that the copula C of X and Y fulfills

C∗(u, v) = lim
n→∞

[
C(u1/n, v1/n)

]n
.

The copula C is then said to be in the maximum domain of attraction of the
extreme value copula C∗. We further have that H(x, y) = C∗(HX(x), HY (y)).
We now briefly outline the significance of extreme value theory for the pur-
poses needed in later sections. Let for instance FX be regularly varying with
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index α and FX(u) ∼ F Y (cu), then one easily checks that

lim
t→∞

P(X > tx or Y > tcy)

P(X > t)

= lim
t→∞

1− C(FX(tx), FY (tcy))

FX(t)

= − lim
t→∞

log

[
C

(
exp

{
FX(t)

log(FX(tx))

FX(t)

}
, exp

{
FX(t)

log(FY (tcy))

FX(t)

})1/FX(t)
]

= − log
(
C∗(e

−x−α

, e−y−α

)
)
.

For the last equality we needed that the function on the r.h.s. is continuous.
Now for every t the l.h.s. of the equation defines a measure Ht on [0,∞]2 and
the r.h.s. defines a measure H on [0,∞]2\{0, 0} (the so-called exponential
measure). The calculation shows that Ht → H in the vague sense (i.e.
for every set A that is bounded away from {0, 0} and H(∂A) = 0, we get
that limt→∞ Ht(A) → H(A), where ∂A is the boundary of A). Now for
A = {(x, y) : x− cy > 1} we have that

Ht(A) =
P(X − Y > t)

P(X > t)
.

To prove that H(∂A) = 0 is trivial given the special form of H. From the
definition of H it is clear that one only needs to consider the case α = 1 to
get a characterization of H. If we write x = rθ and y = r(1 − θ), then it
follows from [24, Prop. 5.11] that under H the measure µr on the radial part
is independent of µθ on the angular part, µr has density r−2 and the measure
µθ satisfies ∫ 1

0

θ dµθ =

∫ 1

0

(1− θ) dµθ = 1. (2.4)

When X is in the maximum domain of attraction of the Gumbel distribution
the same steps are applicable.

3 An insensitivity result

From e.g. Foss et al. [13], if a distribution F is long-tailed, this implies that
there exists a non-decreasing function δ with δ(u) → ∞ as u → ∞, such that

FX

(
u± δ(u)

)
∼ FX(u) as u → ∞ . (3.1)
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In the following, we will be interested in choosing δ(u) as large as possible.
The following proposition is essentially equivalent to [14, Proposition 5.1], but
we give the proof because of its simplicity and usefulness for later purposes:

Proposition 3.1 Let X ≥ 0 be a r.v. with a long-tailed distribution FX and
Y ≥ 0 a (not necessarily independent) r.v.. Then (1.1) holds, provided δ(·)
in (3.1) can be chosen with

P(Y > δ(u), X > u+ δ(u)) = o
(
FX(u)

)
. (3.2)

Proof. Write

P(X − Y > u) = P
(
X − Y > u, Y ≤ δ(u)

)
+ P

(
X − Y > u, Y > δ(u)

)
.

Note that by (3.2)

P
(
X − Y > u, Y > δ(u)

)
≤ P

(
X > u+ δ(u), Y > δ(u)

)
= o

(
FX(u)

)
.

Moreover,

P
(
X − Y > u, Y ≤ δ(u)

)
≤ P(X > u) = FX(u) ,

P
(
X − Y > u, Y ≤ δ(u)

)
≥ P

(
X − δ(u) > u, Y ≤ δ(u)

)
= P

(
X − δ(u) > u

)
− P

(
X − δ(u) > u, Y > δ(u)

)
∼ FX(u)− o

(
FX(u)

)
.

Putting these estimates together completes the proof. 2

Example 3.2 If X and Y are dependent according to a copula C that is
negative quadrant dependent (i.e. C(u, v) ≤ uv for 0 ≤ u, v ≤ 1) and X is
long-tailed, then the assumptions of Proposition 3.1 are fulfilled, in particular

P(Y > δ(u), X > u+ δ(u)) ≤ P(Y > δ(u))P(X > u+ δ(u)) = o
(
FX(u)

)
.

Hence (1.1) holds. Note that this criterion does not involve any assumption
on the distribution of Y . In terms of the survival copula, a sufficient criterion
is Ĉ(u, v) ≤ uh(v) with h(v) → 0. In terms of distribution functions, this
means that for all x, y ≥ 0

P(X > x, Y > y) ≤ P(X > x)h(P(Y > y))

holds. 2
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Example 3.3 More generally, one can formulate a criterion in terms of
stochastic ordering: whenever the pair (X1, Y 1) fulfills the condition (3.2),
then every pair (X2, Y 2) with the same marginal distributions that is dom-
inated in concordance order (i.e. P(X1 > x, Y 1 > y) ≥ P(X2 > x, Y 2 > y)
for all x > x0, y > y0) also fulfills (3.2). 2

4 The role of the mean excess function

Assume that X is regularly varying or in the maximum domain of attraction
of the Gumbel distribution with mean excess function em(u). Then δ(u) in
(3.1) can be any function with δ(u) → ∞ and

lim
u→∞

δ(u)

em(u)
= 0. (4.1)

In a more general setting assume that there exists a function e(u) with

lim inf
u→∞

P(X − εe(u) > u)

P(X > u)
< 1

for some ε > 0 and

lim
ε→0

lim inf
u→∞

P(X − εe(u) > u)

P(X > u)
= 1.

Then if

lim
ε→0

lim sup
u→∞

P(Y > εe(u))

P(X > u)
= 0

we get by Proposition 3.1 that P(X − Y > u) ∼ P(X > u).
As we have seen above, for regularly varying distributions or distributions

in the maximum domain of attraction of the Gumbel distribution one can
choose em(u) as the mean excess function (or the reciprocal of the hazard
rate r(u)). The following result provides another criterion on the distribution
of X such that we can still use the mean excess function in (4.1).

Lemma 4.1 Assume that X is long-tailed with

FX(x) = c(x) exp
{
−
∫ x

0

r∗(t)dt
}
,
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where limu→∞ c(u) = c, 0 < c < ∞ and limu→∞ r∗(u) = 0. Assume further
that there exists an ε0 > 0 such that, uniformly in 0 < t < ε0,

lim inf
u→∞

r∗
(
u+ t

r∗(u)

)
r∗(u)

= cl > 0, lim sup
u→∞

r∗
(
u+ t

r∗(u)

)
r∗(u)

= cu < ∞.

Then

lim sup
u→∞

P
(
X − ε 1

r∗(u)
> u

)
P(X > u)

< 1, lim
ε→0

lim inf
u→∞

P
(
X − ε 1

r∗(u)
> u

)
P(X > u)

= 1.

Remark 4.2 Note that for an X that fulfills the conditions of Lemma 4.1,
the mean excess function em(u) satisfies

lim
u→∞

r∗(u)em(u) = 1.

Proof. We have that

P
(
X − ε 1

r∗(u)
> u

)
P(X > u)

∼ exp

(
−
∫ u+ ε

r∗(u)

u

r∗(t)dt

)
= exp

−
∫ ε

0

r∗
(
u+ t

r∗(u)

)
r∗(u)

dt


. exp

(
−cl

∫ ε

0

dt

)
= e−clε < 1

(here f(u) . g(u) means lim supu→∞ f(u)/g(u) ≤ 1). Furthermore,

P
(
X − ε 1

r(u)
> u

)
P(X > u)

∼ exp

−
∫ ε

0

r∗
(
u+ t

r∗(u)

)
r∗(u)

dt


& exp

(
−cu

∫ ε

0

dt

)
= e−cuε,

from which the result follows. 2

Remark 4.3 An example for which the conditions of Lemma 4.1 are not
fulfilled is

FX(x) =
1

log(x)
for x ≥ e.
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5 Light-tailed Y

It may be instructive to replace (3.2) by the stronger condition

P
(
Y > δ(u)

)
= o
(
FX(u)

)
, (5.1)

which is now a criterion on the marginal distribution of Y and its comparison
to the marginal distribution of X. This gives rise to the following question:
If Y is a light-tailed r.v. (i.e. P (Y > u) = o(e−gu) for some g > 0), for which
long-tailed r.v. X does (1.1) hold across all dependence structures? In this
case, condition (5.1) turns into

e−gδ(u) = o
(
FX(u)

)
,

which holds for FX regularly varying (take δ(x) = c log x with c sufficiently
large), the lognormal distribution (δ(x) = x/ log2 x) and the heavy-tailed
Weibull with FX(x) = e−xβ

with β < 1/2 (δ(x) = x1−β∗
with β < β∗ < 1).

Thus, the condition covers most standard heavy-tailed distributions except
the ones closest to the light-tailed case. Since with independent X,Y and
X subexponential, X and X − Y always have the same tail (as discussed in
Section 1), one could believe that the condition is just technical. However,
it seems to have been observed before that this is not the case, even if we
cannot readily provide a precise reference. A counterexample is in Asmussen
& Biard [7], and an even simpler construction goes as follows:

Example 5.1 Assume P(X > u) ∼ e−uβ
with 0 < β < 1 and let Y = Xβ.

Then P(Y > u) ∼ e−u and hence Y is light tailed. Now

P(X − Y > u) = P(X > u+Xβ) ≤ P(X > u+ uβ) ∼ exp{−(u+ uβ)β}
= exp{−uβ(1 + uβ−1)β} ∼ exp{−uβ − βu2β−1} .

Here exp{−βu2β−1} = o(1) if and only if β > 1/2. 2

This counterexample (as well as the one in Asmussen & Biard [7]) involve
a comonotonic copula. It is natural to ask whether the comonotonic copula
always minimizes the tail of X − Y . This is the topic of the next section.

6 The worst-case copula

We will now show under some regularity conditions that if there exists a
counterexample for the insensitivity (1.1) to hold, then also the comonotonic
copula provides a counterexample:
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Lemma 6.1 Let X and Y be two positive random variables with distribution
functions FX(x) and FY (x), respectively. Define

γ(u) = sup{x|FY (x− u) < FX(x), x ≥ u} − u ,

γ(u) = inf{x|FY (x− u) ≥ FX(x), x ≥ u} − u.

If for some α > 0, c > 0 and all k > 1, limu→∞ F Y (ku)/F Y (u) ≤ ck−α,

lim
u→∞

P(X > u+ γ(u))

P(X > u)
= 1 and lim sup

u→∞

P(Y > γ(u))

P(X > u)
< ∞,

then

lim
u→∞

P(X − Y > u)

P(X > u)
= 1.

If

lim inf
u→∞

P(X > u+ γ(u))

P(X > u)
< 1,

and X and Y are comonotonic, then

lim inf
u→∞

P(X − Y > u)

P(X > u)
< 1.

Proof. At first note that P(X − Y > u) ≤ P(X > u). We have

P(X − Y > u) =

∫ ∞

u

P(Y ≤ x− u|X = x)dFX(x)

=

∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)<FX(x)}dFX(x)

+

∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)≥FX(x)}dFX(x).

To prove the first statement of the Lemma, note that∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)<FX(x)}dFX(x)

≤
∫ ∞

u

I{FY (x−u)<FX(x)}dFX(x)

≤
∫ u+γ(u)

u

dFX(x) = P(X > u)− P(X > u+ γ(u)) = o(P(X > u)).
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For the second integral we have∫ ∞

u

P(Y ≤ x− u|X = x)I{FY (x−u)≥FX(x)}dFX(x)

≥
∫ ∞

u+kγ(u)

P(Y ≤ x− u|X = x)dFX(x)

≥
∫ ∞

u+kγ(u)

P(Y ≤ kγ(u)|X = x)dFX(x)

= P(X > u+ kγ(u))− P(X > u+ kγ(u), Y > kγ(u))

≥ P(X > u+ kγ(u))− P(Y > kγ(u)).

Hence there exists a c1 > 0 that does not depend on k, with

P(Y > kγ(u))

P(X > u)
=

P(Y > kγ(u))

P(Y > γ(u))

P(Y > γ(u))

P(X > u)
≤ c1k

−α.

Since for x0 with FY (x0 − u) < FX(x0) it follows for every ε > 0 that
FY ((x0 + ε)− (u+ ε)) < FX(x0 + ε), we get that

γ(u+ ε) = sup{x|FY (x− (u+ ε)) < FX(x), x ≥ u} − (u+ ε)

≥ sup{x|FY (x− u) < FX(x), x ≥ u}+ ε− (u+ ε) = γ(u)

and hence γ(u) is monotonically increasing. Moreover,

lim inf
u→∞

P(X > u+ kγ(u))

P(X > u)
= lim inf

u→∞

k∏
l=1

P(X > u+ lγ(u))

P(X > u+ (l − 1)γ(u))

≥ lim inf
u→∞

k∏
l=1

P(X > u+ (l − 1)γ(u) + γ(u+ (l − 1)γ(u)))

P(X > u+ (l − 1)γ(u))
= 1,

from which the first statement follows. For the second, note that for comono-
tonic X and Y one has

P(X − Y > u) =

∫ ∞

u

P(Y ≤ X − u|X = x)dFX(x)

≤
∫ ∞

u

I{FY (x−u)≥FX(x)}dFX(x)

≤
∫ ∞

u+γ(u)

dFX(x) = P(X > u+ γ(u)).
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2

Although Lemma 6.1 shows that comonotonic copulas are natural candi-
dates for counterexamples, this does not tell whether the comonotonic copula
represents the worst case, i.e. the copula which minimizes P(X − Y > u)
asymptotically for given marginal distributions. To answer that question, let
us first consider the case of regularly varying X. In Proposition 7.1 below
it will be shown that if F Y (u)/FX(u) → 0, then all copulas provide the
same asymptotic properties. On the other hand, if FX(x) ≥ FY (x) for X, Y
comonotonic, then P(X − Y > u) = 0. Hence assume that there exists a
ĉ > 0 with

lim
u→∞

F Y (u)

FX(u)
= ĉ

or, equivalently, that there exists a c such that

lim
u→∞

F Y (cu)

FX(u)
= 1.

We will study the asymptotic behavior of X − Y under the additional con-
dition that

P(X > xu, Y > ycu)

P(X > u)
→ H(x, y),

where H(x, y) is not degenerate. Then by extreme value theory it follows
that

P(X − Y > u)

P(X > u)
→ H({(x, y)|x− cy > 1}).

To understand whichH minimizesH({(x, y)|x−cy > 1}), the index of regular
variation α of FX plays a role. When turning to polar coordinates (where we
use the sum of components as norm), H can be written as a product of the
measure on the radial and angular part. Then the radial measure has density
αr−α−1 and condition (2.4) is equivalent to (note that we have performed a
change of variables)∫ 1

0

θαdµ(θ) =

∫ 1

0

(1− θ)αdµ(θ) = 1.

Further note that

H({(x, y)|x− cy > 1}) =
∫ 1

c
1+c

(θ − c(1− θ))α dµ(θ). (6.1)

14



Now we can ask which µ∗ minimizes (6.1). Consider discrete measures with
µ(θ = θi) = pi for i = 1, . . . , d. Then there exists a θi > 1/2 (pi > 0) if and
only if there exists a θj < 1/2 (pj > 0).

Lemma 6.2 If the measure µ∗ that minimizes (6.1) assigns positive mass pi
to a θi ≤ c

c+1
, then

θi =
c

1 + c
.

Proof. Assume that the result does not hold. Then w.l.o.g. we can assume
that θ1 > 1/2 and θ2 < c/(c+ 1). Define a new measure µ∗∗ with θ̂i = θi for
i ̸= 2 and p̂i = pi for i > 2, together with θ̂2 = c/(1 + c). To ensure that µ is
a measure we need

p1θ
α
1 + p2θ

α
2 = p̂1θ

α
1 + p̂2

(
c

1 + c

)α

,

p1(1− θ1)
α + p2(1− θ2)

α = p̂1(1− θ1)
α + p̂2

(
1

1 + c

)α

.

It follows that

p̂1 = p1 + p2

(
θ2

1+c
c

)α − ((1− θ2)(1 + c))α(
θ1

1+c
c

)α − ((1− θ1)(1 + c))α
< p1,

where w.l.o.g. we assumed that p2 is small enough such that p̂1 ≥ 0. Thus∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ)

= (p1 − p̂1) (θ1 − c(1− θ1))
α > 0,

which is a contradiction to µ∗ minimizing (6.1) . 2

Theorem 6.3 Assume that α < 1. Then µ∗ is concentrated on θ1 = 1 and
θ2 =

c
1+c

, with p1 = 1− cα and p2 = (1 + c)α.

Proof. Assume that µ∗ assigns positive measure p1 > 0 to c/(1+ c) < θ1 < 1.
Then we can define a new measure µ∗∗ which is equivalent to µ∗ except that
we replace θ1 by 1 and the corresponding probability p1 by p̂1. Further we
add the mass p̂0 to c/(1 + c), so that

p̂1 = p1 (θ
α
1 − cα(1− θ1)

α) > 0

p̂0 = p1(1− θ1)
α(1 + c)α.

15



Furthermore,∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ)

= p1 (θ1 − c(1− θ1))
α − p̂1

= p1 ((θ1 − c(1− θ1))
α − (θα1 − cα(1− θ1)

α)) > 0,

from which the result follows. 2

Theorem 6.4 Assume that α > 1. Then µ∗ is concentrated on θ1 = 1/2.

Proof. Assume that µ∗ assigns positive measure p1 > 0 to θ1 > 1/2 and
p2 > 0 to θ2 < 1/2, where we assume w.l.o.g. that

p1θ
α
1 + p2θ

α
2 = p1(1− θ1)

α + p2(1− θ2)
α.

Define the measure µ∗∗ with θ1 and θ2 replaced by 1/2 with probability mass
p̂1 = 2α(p1θ

α
1 + p2θ

α
2 ). We have to distinguish two cases:

a) θ2 > c/(1 + c): In this case we have to show that∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ) ≥ 0.

The l.h.s. equals

p1 (θ1 − c(1− θ1))
α + p2 (θ2 − c(1− θ2))

α

− (1− c)α(p1θ
α
1 + p2θ

α
2 )

= p1 (θ1 − c(1− θ1))
α + p1

θα1 − (1− θ1)
α

(1− θ2)α − θα2
(θ2 − c(1− θ2))

α

− p1(1− c)α
(
θα1 + θα2

θα1 − (1− θ1)
α

(1− θ2)α − θα2

)
,

so that we need to show(
1− c

(
1
θ1

− 1
))α

− (1− c)α

1−
(

1
θ1
− 1
)α ≥

(
1− c

(
1
θ2
− 1
))α

− (1− c)α

1−
(

1
θ2

− 1
)α (6.2)

(cf. the method outlined in Section 2). Since the function

(1− cx)α − (1− c)α

1− xα
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is decreasing for x < 1 and increasing for x > 1, we get that we only have to
check (6.2) for θ1 = θ2 = 1/2, which holds since

lim
x→1

(1− cx)α − (1− c)α

1− xα
= (1− c)α−1.

b) θ2 = c/(1 + c): In this case we have to show that∫ 1

c
1+c

(θ − c(1− θ))α dµ∗(θ)−
∫ 1

c
1+c

(θ − c(1− θ))α dµ∗∗(θ)

= p1 (θ1 − c(1− θ1))
α − (1− c)α

(
p1θ

α
1 + p2

(
c

1 + c

)α)
= p1 (θ1 − c(1− θ1))

α − p1(1− c)α
(
θα1 + cα

θα1 − (1− θ1)
α

1− cα

)
≥ 0.

This is equivalent to showing that(
1− c

(
1
θ1

− 1
))α

− (1− c)α

1−
(

1
θ1
− 1
)α ≥ (1− c)αcα

1− cα
.

Again the left side is minimized for θ1 = 1/2 and we have to show that

(1− c)α−1 ≥ (1− c)αcα

1− cα
,

which is true for 0 < c < 1 and α > 1. 2

Lemma 6.5 Let X be in the maximum domain of attraction of the Gumbel
distribution with auxiliary function e(x). Further assume that there exists a
0 < c < 1 with

lim
u→∞

P(Y > cu)

P(X > u)
= 1

and that the copula of (X, Y ) is in the maximum domain of attraction of
an extreme value copula. Then the copula that asymptotically minimizes
P(X − Y > u) is the comonotonic copula.
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Proof. Again we have

P(X > u+ xe(u), Y > cu+ yce(u))

P(X > u)
→ H(x, y).

Here, H(x, y) = H∗(ex, ey), where under H∗, R = x + y and θ = x/(x + y)
are independent, R has density r−2 and the measure µ of θ satisfies∫ 1

0

θdµ(θ) =

∫ 1

0

1− θdµ(θ) = 1.

For b > 0 we get that

P(X − Y > (1− c)u+ e(u), X > u− be(u))

P(X > u)
→ H({(x, y)|x−cy > 1, x > −b})

with

H({(x, y)|x− cy > 1, x > −b})

=

∫ 1

0

min

(
e−

1
1−c (1− θ)

(
θ

1− θ

) 1
1−c

, eb

)
dµ(θ).

If µ(1) > 0 and N > 0, then as u → ∞

P(X − Y > (1− c)u+ e(u), X > u− be(u))

P(X > u)

& P(X > u−Ne(u))− P(X > u−Ne(u)), Y > cu− (N + 2)e(u))

P(X > u)

∼ eN −
∫ 1

0

min(θeN , (1− θ)ec
−1(N+2)))dµ(θ)

≥ eNµ(1) → ∞,

as N → ∞. Hence with b → ∞

lim
u→∞

P(X − Y > (1− c)u+ e(u))

P(X > u)

≥ e−
1

1−c

∫ 1

0

e−
1

1−c (1− θ)

(
θ

1− θ

) 1
1−c

dµ(θ). (6.3)
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Note that for X,Y comonotone we can replace ≥ by =. Finally we have to
find the µ that minimizes (6.3). Again, we only consider µ discrete. W.l.o.g
we assume that θ1 > 1/2 and θ2 < 1/2 with

p1θ1 + p2θ2 = p1(1− θ1) + p2(1− θ2) =
p1 + p2

2

and we replace θ1 and θ2 with θ = 1/2 and p = p1 + p2. We have to show
that

p1(1− θ1)

(
θ1

1− θ1

) 1
1−c

+ p2(1− θ2)

(
θ2

1− θ2

) 1
1−c

≥ p1(1− θ1) + p2(1− θ2).

Since

p2 = p1
2θ1 − 1

1− 2θ2
,

we need to establish that

1− θ1
2θ1 − 1

((
1 +

2θ1 − 1

1− θ1

) 1
1−c

)
≥ 1− θ2

2θ2 − 1

((
1 +

2θ2 − 1

1− θ2

) 1
1−c

)

or for xi =
2θi−1
1−θi

(1 + x1)
1

1−c − 1

x1

≥ (1 + x2)
1

1−c − 1

x2

,

which holds due to 1
1−c

> 1 and −1 < x2 < 0 < x1. 2

Theorem 6.3 shows that when X ∈ R−α with index α < 1, then comono-
tonicity does not minimize P(X − Y > u) asymptotically. On the other
hand, Theorem 6.4 suggests that for α > 1 comonotonicity does minimize
P(X − Y > u) asymptotically. However, we now show that this is not the
case.

As we want to compare the effect of different copulas on the joint distri-
bution of X and Y for fixed marginals FX and FY , define for every copula C
the measure PC through

PC(X ≤ x, Y ≤ y) = C(FX(x), FY (y)).
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An equivalent formulation for a comonotonic copula minimizing P(X − Y >
u) asymptotically is that for every copula C

lim inf
u→∞

PC(X − Y > u)

PM(X − Y > u)
≥ 1. (6.4)

In view of Proposition 7.1 shown in the next section, one can assume that
for regularly varying X there exists a counterexample for (6.4) if FX(x) ≈
cF Y (x) for some 0 < c < 1. Therefore we will choose FY (x) = FX(2x), i.e.

2Y
d
= X. Further, let X be in the maximum domain of attraction of an

extreme value distribution. We will use the following dependence structure.

Definition 6.6 For a random variable X with distribution function FX and
auxiliary function e(u), define un = un−1 + 2e(2un−1) for a u1 > 0 with
F (u1) > 0, together with a corresponding partition (Ji)n≥1 of the interval
[0, 1] (n ≥ 1)

J1 =
[
0, F (2u1)

)
J2n =

[
F (2un), F (2(un + e(2un)))

)
J2n+1 =

[
F (2(un + e(2un))), F (2un+1)

)
.

Moreover, define a series (Cn)n≥1 of copulas with

C2n(u, v) = uv and C2n+1(u, v) = min(u, v).

Finally, define the copula C as the ordinal sum of the copulas (Cn)n≥1 with
respect to the partition (Ji)n≥1.

Remark 6.7 If 2Y
d
= X and X, Y are dependent according to the copula in

Definition 6.6, then for 0 ≤ Y < u1 and un + e(2u) ≤ Y < un+1, we have
that 2Y = X. Furthermore, for n ≥ 1

P(X ≤ x|un ≤ Y < un + e(2un)) = P(X ≤ x|2un ≤ X < 2un + 2e(2un)).

Proposition 6.8 Let X be in the maximum domain of attraction of an ex-
treme value distribution and let its density fX satisfy

lim
u→∞

fX(u+ xe(u))

fX(u)
= g(x) =

{
(1 + x)−α FX(x) ∈ R−α, α > 0

e−x X ∈ MDA(Λ)
.
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Further assume that 2Y
d
= X and that X and Y are dependent according to

the copula of Definition 6.6. Then

lim inf
u→∞

PC(X − Y > u)

PM(X − Y > u)
< 1.

Proof. W.l.o.g we assume that e(x) is monotone. For every n we have

P(X − Y > un) = P(X − Y > un, Y ≤ un)

+ P(X − Y > un, un < Y ≤ un + e(2un))

+ P(X − Y > un, un + e(2un) < Y ).

Now one can easily check that

P(X − Y > un, Y ≤ un) = 0

and
P(X − Y > un, un + e(2un) < Y ) ≤ P(Y > un + e(2un)).

On the other hand,

P(X − Y > un, un < Y ≤ un + e(2un))

=

∫ un+e(2un)

un

P (X > un + y|2un < X ≤ 2(un + e(2un))) fY (y)dy

= e(2(un))

∫ 1

0

P (X > 2un + ye(2un)|2un < X ≤ 2(un + e(2un)))

fY (un + ye(2un))dy.

Note that

P (X > 2un + ye(2un)|2un < X ≤ 2(un + e(2un)))

=
P(X > 2un + ye(2un))− P(X > 2un + e(2un))

P(X > 2un)− P(X > 2un + e(2un))

→ g(y)− g(1)

g(0)− g(1)
< 1, y > 0

for n → ∞. It follows from

fY (un + ye(2un))

fY (un)
=

fX(2un + 2ye(2un))

fX(2un)
→ g(2y)
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that

lim
n→∞

P(X − Y > un, un < Y ≤ un + e(2un))

P(un < Y ≤ un + e(2un))
< 1

and hence

lim
n→∞

P(X − Y > un)

P(Y > un)
< 1.

2

Example 6.9 As an illustration, consider P(X > x) = P(2Y > x) = 1/x

with e(x) = x and un = 5n. Figure 1 depicts the plot of
PC(X−Y > 1

2
10x)

PM(X−Y > 1
2
10x)

.

4 6 8 10
x

0.8

1.0

1.2

1.4

Figure 1: Plot of PC

(
X − Y > 1

2
10x
)
/PM

(
X − Y > 1

2
10x
)

Having seen now that the worst case is not always given by the comono-
tonic copula, we are now interested in identifying the worst case (given a
specific u instead of u → ∞). For that purpose, we will use straight shuffles
of M . Since shuffles are dense in the set of copulas we want to find the shuffle
that minimizes P(X − Y > u). For a given FX , FY and u, define

gu(x) =

{
inf{t : F−1

Y (t) ≥ F−1
X (x)− u} if F−1

X (x) > u,

0 otherwise.
(6.5)

For uniformly distributed (U1, U2) with the same copula C as (X, Y ), it is
valid that

P(U2 < gu(U1)) = P(X − Y > u).
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Lemma 6.10 Let g(x) be an increasing function, such that for all c ∈ [−1, 1]
the number of times g(x)− x− c changes sign is finite. Then the shuffle M∗

s

that minimizes
PMs(U2 < g(U1))

is of the form J = {[0, x0], [x0, 1]} and π = (2, 1) for some 0 < x0 < 1.

Proof. Let Ms be a shuffle with finite partition J and permutation π. For
J ∈ J and x ∈ J , denote by Jπ and xπ the interval J (point to which
x, respectively) is mapped by the permutation. W.l.o.g we assume that for
every J ∈ J

P(U1 ∈ {xπ : x ∈ J & x < g(xπ)})
P(U1 ∈ {xπ : x ∈ J})

∈ {0, 1}.

Denote with x0 = PMs(U2 < g(U1)). W.l.o.g we can assume that for every
J ∈ J , (J ∩ [0, x0]) ∈ {∅, J}. Further we can split the intervals in the parti-
tion J , such that to every interval J ∈ J with P(U1 ∈ {xπ : x ∈ J & x <
g(xπ)}) = P(U1 ∈ {xπ : x ∈ J}) we can assign a unique interval Ĵ with
Ĵ ∩ [0, x0] = Ĵ and |J | = |Ĵ |. If we change the position of J and Ĵ in the
permutation then P(U2 < g(U1)) is the same for both shuffles. Hence we can
assume that if P(U1 ∈ {xπ : x ∈ J & x < g(xπ)}) = P(U1 ∈ {xπ : x ∈ J}),
then J ⊂ [0, x0]. Since g(x) is increasing we can reorder the partitions such
that we get the form of M∗

s from which the Lemma follows. 2

The worst copula is not unique, as can be seen by the following straight-
forward result.

Lemma 6.11 Let g(x) be an increasing function. Let x1 = inf{x : x ≥
g(x)}. If x1 < 1 − x0 for some x0, then the shuffles Ms({[0, x0], [x0, 1]},
(2, 1)) and M̂s({[0, x1], [x1, x1 + x0], [x1 + x0, 1]}, (1, 3, 2)) fulfill

PMs(U2 < g(U1)) ≥ PM̂s
(U2 < g(U1)).

If x1 ≥ 1− x0, then

PMs(U2 < g(U1)) ≥ PM(U2 < g(U1)).

Example 6.12 Let FX(x) = 1 − 1/x, FY (x) = 1 − 1/(2x) and u = 1. For
this case, Figure 2 shows the support of the copula in Lemma 6.10 (bold
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Figure 2: A worst-case copula

Figure 3: Another worst-case copula
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line), where x0 ≈ 0.086. In Figure 3, the bold line depicts the support of the
copula in Lemma 6.11, where x0 ≈ 0.086 and x1 = 0.5. In both plots the
dashed line corresponds to the function gu(x). Here

x0 = x∗
0 = sup

0≤x≤1
gu(x)− x. (6.6)

2

In fact, the choice of x0 = x∗
0 in (6.6) is optimal in general, as can be

verified by the following arguments: If x0 > x∗
0, then the line x + x0 cor-

responding to the interval [x0, 1] lies above the line gu(x). Hence we can
decrease x0 to x∗

0 so that the line x + x∗
0 touches the line gu(x); certainly

PMs(U2 < gu(U1)) then does not increase. If on the other hand x0 < x∗
0 and

x∗ is a point with x∗
0 = gu(x

∗) − x∗, then the monotonicity of gu(x) implies
that the line segment of x+x0 from x∗ to gu(x

∗)−x0 lies below gu(x). Since
this line segment has length gu(x

∗)− x0 − x∗ = x∗
0 − x0 we see that by using

x∗
0 instead of x0 we do not increase the probability of PMs(U2 < gu(U1)).

Further if x∗ > 1/2 then the line corresponding to the interval [0, x0] lies
below gu(x). Thus we have proved the following:

Proposition 6.13 Assume that the conditions of Lemma 6.10 hold and that
u is large enough such that x∗ with

gu(x
∗)− x∗ = sup

0≤x≤1
gu(x)− x

fulfills x∗ > 1/2. Then

inf
C

PC(X − Y > u) = sup
0≤x≤1

gu(x)− x.

Let us compare this result to the comonotonic copula. To that end, assume
that there exists a unique point γu such that gu(x) − x ≤ 0 for x < γu and
gu(x)− x > 0 for x > γu, then PM(X − Y > u) = 1− γu and

inf
C

PC(X − Y > u)

= PM(X − Y > u) sup
0≤x≤1

gu (γu + x(1− γu))− γu − x(1− γu)

1− γu

= sup
0≤x≤1

(gu (γu + x(1− γ(u)))− γu − x(1− γu)) .

25



If the function

hu(x) =
gu (γu + x(1− γu))− γu − x(1− γu)

1− γu

converges for u → ∞ to a function h∞(x) with sup0<x<1 h∞(x) = 1 (i.e.
h∞(x) = 1 − x), then for every copula C (6.4) holds. On the other hand, if
there exists a sequence un with limn→∞ un = ∞ and lim supn→∞ sup0<x<1 hun(x) <
1 then we can analougously to Proposition 6.8 construct a copula where (6.4)
does not hold. The following example shows such a situation where X is
Weibull and Y is light tailed.

Example 6.14 Let FX(x) = 1 − e−xβ
(1/2 < β < 1) and FZ(x) = 1 −

e−
(1+ε)β2

2β−1
x2−1/β

. Define u0 = 0, un = 2n and

FY (x) = 1− e−un +
FZ(x)− FZ(un)

FZ(un+1)− FZ(un)

(
e−un − e−un+1

)
, un ≤ x < un+1.

Since for x > 2
F Y (x)

e−x/2
≤ F y(un)

e−un+1/2
= 1

we get that Y is light tailed. Further for u = u
1/β
n − un we get that γu =

(1−e−un) and since FY (x) ≤ 1−e−x there are no roots of FY (F
−1
X (x)−u) = x

to the left of γu. We get that

hu(x) = 1− x− F Y ((un − log(1− x))1/β − u1/β + un)

e−un

since for n → ∞

(un−log(1−x))1/β−u1/β+un = un+(1+o(1))
(− log(1− x))

β
u1/β−1
n ≤ 2un = un+1.

We get that

F Y ((un − log(1− x))1/β − u1/β + un)

e−un

= 1−
FZ

(
un + (1 + o(1)) (− log(1−x))

β
u
1/β−1
n

)
− FZ(un)

FZ(un+1)− FZ(un)

(
1− e−un

)
∼

FZ

(
un +

(− log(1−x))
β

u
1/β−1
n

)
FZ(un)

∼ (1− x)1+ε
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Hence as n → ∞
hun(x) → (1− x)(1− (1− x)ε).

7 Intermediate regularly varying X

Proposition 7.1 If X is intermediate regularly varying and F Y (u) = o(FX(u)),
then (1.1) holds.

Proof. We have to show that a positive function δ(u) = o(u) exists that fulfills
(5.1) since such a δ(u) also fulfills (2.1). At first note that for every c > 0
there exists a bc such that

lim
u→∞

FX(cu)

FX(u)
≤ bc.

Hence, for every n there exists a ûn such that for all u > ûn

P(Y > u)

P(X > nu)
≤ 1

n
.

Define u0 = 0 and un = max(nûn, un−1) + 1 for n > 0. Then for all u > un

P(Y > u/n)

P(X > u)
≤ 1

n
.

Define

ε(u) =

{
1, u < u1,
1
n
, un < u < un+1.

Then for δ(u) = ε(u)u we have

lim
u→∞

P(Y > δ(u))

P(X > u)
= 0.

2
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7.1 Approach with local limit laws

Let us now use local limit laws as in Heffernan and Resnick [16] to find the
asymptotic behavior of P(X − Y > u). For that purpose, let either E =
[−∞,∞]× (−∞,∞]) (e(u)/u → 0) or E = [−∞,∞]× (−1,∞]) (e(u) = u).
Further we assume that there exists a measure µ (not equal to zero) for which
for every fixed y in E

• µ([−∞, x], (y,∞]) is a non-degenerate distribution function in x,

• µ([−∞, x], (y,∞]) < ∞, and

• lim
u→∞

P(Y ≤ β(u) + xα(u), X > u+ ye(u))

P(X > u)
= µ([−∞, x], (y,∞])

at each continuity point (x, y) of the limit.

Assume that α(u)/e(u) → c for some constant c, then we have that

lim
u→∞

P(X − Y > u− β(u))

P(X > u)
= lim

u→∞

P
(

X−u
e(u)

− α(u)
e(u)

· Y−β(u)
α(u)

> 0, X−u
e(u)

> 0
)

P(X > u)

= µ ({(y, x)|x− cy > 0, x > 0}) ≤ 1

at least if µ is sufficiently continuous. The area we have to measure is depicted
in Figure 4.

It follows that

P(X − Y > u)

P(X > u)
∼ P(X > u)

P(X > u− β(u))
µ ({(y, x)|x− cy > 0, x > 0}) .

If (1.1) is valid, then we have to assume that β(u)/e(u) → 0 and c = 0 (i.e.
α(u)/e(u) → 0). However note that for every ε > 0

lim
u→∞

P(Y ≤ εe(u), X > u)

P(X > u)

= lim
u→∞

P
(
Y ≤ β(u) + εe(u)−β(u)

α(u)
α(u), X > u

)
P(X > u)

≥ lim
u→∞

P (Y ≤ β(u) + bα(u), X > u)

P(X > u)

= µ([−∞, b)× µ(0,∞]) → 1

as b → ∞. Hence the conditions of Proposition 3.1 are fulfilled, so that we
do not need to use local limit law for establishing (1.1).
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Figure 4: Area to be measured (shaded)
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