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Copy number variants (CNVs) are major contributors to genetic disorders1. We have 

dissected a region on 16p11.2 encompassing 29 genes that confers susceptibility to 

neurocognitive defects when deleted or duplicated2,3. Overexpression of each human 

transcript in zebrafish embryos identified KCTD13 as the sole message capable of inducing 

the microcephaly phenotype associated with the 16p11.2 duplication (dup)2–5, while 

suppression of the same locus yielded the macrocephalic phenotype associated with the 

16p11.2 deletion (del)5,6, capturing the mirror phenotypes of humans. Analyses of zebrafish 

and mouse embryos suggest that microcephaly is caused by decreased proliferation of 

neuronal progenitors, with concomitant increase in apoptosis in the developing brain, 

whereas macrocephaly arises by increased proliferation and no changes in apoptosis. A role 

for KCTD13 dosage changes is consistent with autism in both a recently reported family 

with a reduced 16p11.2 deletion and a subject reported here with a complex 16p11.2 

rearrangement involving de novo structural alteration of KCTD13. Our data suggest that 

KCTD13 is a major driver for the neurodevelopmental phenotypes associated with the 

16p11.2 CNV, reinforce the notion that one or a small number of transcripts within a CNV 

can underpin clinical phenotypes, and offer an efficient route to identifying dosage sensitive 

loci.
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Copy number changes have emerged in recent years as a significant source of genetic 

variation contributing to the human genetic disease risk1. In addition to genomic disorders 

such as Charcot-Marie Tooth, DiGeorge syndrome and others7,8, in which large deletions 

and duplications represent penetrant alleles for discrete syndromic phenotypes, recent 

advances have highlighted the contribution of such genomic events in a broad range of both 

common and rare traits (DECIPHER Consortium, http://decipher.sanger.co.uk). Systematic 

surveys of neurodevelopmental disorders have uncovered an especially high incidence of 

both inherited and de novo CNVs that can confer either causality or susceptibility9–12. For 

example, deletions in 1q21.1 and 15q13.3 have been associated with schizophrenia (SCZ), 

whereas duplications in 15q11-q13 and 7q22-q31 have been associated with autism 

spectrum disorder (ASD; see review1).

A 600kb deletion on 16p11.2, encompassing 29 annotated genes, has been associated 

significantly and reproducibly with a range of neurocognitive defects, including epilepsy, 

autism and ASD2, while the reciprocal duplication has been associated with autism and 

SCZ3. In addition, extended phenotypic analyses of patients with such genomic lesions have 

revealed strong mirroring co-morbidities: the common 16p11.2 deletion is associated with 

pediatric neurodevelopmental disorders including autism, diabetes-independent obesity5 and 

macrocephaly6, while the reciprocal duplication is associated with both autism and SCZ, 

anorexia and microcephaly2–5. Moreover, a recent post hoc analysis of ASD and SCZ loci 

has revealed that such co-morbidities might be causally linked to each other, with 

macrocephaly shown to be associated with ASD and microcephaly associated with SCZ13.

A pervasive challenge in the interpretation of CNV discovery is the transition from the 

detection of a genomic lesion that can often span large regions encompassing many genes to 

the identification of the critical loci whose dosage sensitivity drives the phenotype. For some 

disorders, this has been achievable through the discovery of highly penetrant point mutations 

at a single locus; for example, mutations in PMP22 are sufficient to cause CMT14, while 

mutations in RAI1 cause Smith-Magenis syndrome15. In other instances, gene-specific 

genomic alterations such as chromosomal translocations, inversions, or small coding 

deletions can narrow the critical region to a single gene (e.g. MBD5 in 2q23.1 microdeletion 

syndrome16). Alternatively, systematic functional dissection through mouse mutagenesis has 

yielded strong candidates; ablation of Tbx1 recapitulates the cardiac phenotypes of VCSF17, 

while knockout of Shank3 captures most of the phenotypes seen in the terminal 22q deletion 

that causes Phelan-McDermid syndrome18. However, these approaches are significantly 

more challenging for common phenotypes and genetically heterogeneous disorders: 

systematic engineering of the mouse genome for each gene in a CNV can be impractical, 

while rare mutations involved in complex traits are likely to exhibit both reduced penetrance 

and variable expressivity.

Manipulation of zebrafish embryos represents an attractive alternative towards the discovery 

of human dosage-sensitive genes, especially when the CNV under investigation has 

mirrored anatomical phenotypes that are detectable during early development and that can 

thus be assayed by a combination of gene suppression and overexpression experiments19. 

Given the association between the 16p11.2 CNV and changes in head size, we hypothesized 

that a) systematic overexpression of each of the 29 genes in the common duplication might 
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yield a defined, reproducible set of transcripts some of which might cause microcephaly; b) 

that reciprocal suppression of these genes should yield the macrocephalic phenotype seen in 

the 16p11.2del. To test these hypotheses, we first queried the zebrafish genome by 

reciprocal BLAST for each of the 29 target genes (Fig. 1a) and identified 24 orthologs 

(Suppl. Table 1), with five genes, SPN, QPRT, C16orf54, TMEM219, C16orf92, found only 

in placental mammals. In a manner akin to the classic Drosophila misexpression 

experiments, we generated capped mRNA for all 29 human genes and injected zebrafish 

embryos at the two-cell stage with equimolar pairwise ‘cocktail’ combinations at two 

dosages of 25 pg and 50 pg; these commonly used ranges20 were selected because they 

represent >0.25–0.5% of total polyA+ mRNA in a zebrafish embryo21 and are thus likely to 

achieve significant overexpression above the baseline of any single transcript.

One gene, TAOK2, required reduced mRNA dosage to 10 pg because of toxicity. For the 

remaining 28 genes, we observed no lethality or gross morphological defects at either 25 or 

50 pg, while random RT-PCR testing of nine injections including KCTD13 showed 

persistence of the corresponding human mRNAs up to ~4.25 dpf (Suppl. Fig. 1e). We 

therefore developed a surrogate measurement for head size at 4.25–4.5 dpf using objective 

measurements, wherein the distance across the convex tips of the eye cups was recorded in 

50 embryos/injection, masked to the injection cocktail (Fig. 1b). Only a single 

overexpression cocktail containing KCTD13 and CDIPT gave significant changes in head 

size (two-tailed t-test, p<0.000001). Subsequent single-mRNA injections for the two genes 

indicated that the phenotype was driven exclusively by the overexpression of KCTD13; 

injection of KCTD13 at progressive mRNA amounts yielded an increasing percentage of 

microcephalic embryos (Fig. 2a, b; Suppl. Fig. 1a). In contrast, the head size of embryos 

injected with CDIPT was indistinguishable from those injected with sham control (data not 

shown).

To validate the specificity of this phenotype and to ask whether we could also simulate the 

macrocephalic phenotype seen usually in 16p11.2del patients4,13, we designed a splice-

blocking morpholino (MO) against the donor site of exon 3 of the sole kctd13 zebrafish 

ortholog. Injection of 10ng of MO and RT-PCR testing showed ~70% reduction of kctd13 

message at 4.5 dpf (Suppl. Fig. 1c). Strikingly, this injection also yielded a significant 

increase in mean head size (p<0.00001; Fig. 2a, b,Suppl. Fig. 1b). This phenotype is specific 

to kctd13; a scrambled MO induced no phenotypes, while injection of 10 ng of MO and 50 

pg of KCTD13 mRNA rescued both the microcephalic and macrocephalic phenotypes 

(Suppl. Fig. 1d). Importantly, measurement of the somitic trunk length of scored embryos 

showed no differences in length (or morphology; Suppl. Fig. 2), indicating that the head size 

differences are unlikely to be driven by gross developmental delay. We likewise observed 

no defects in other structures, including the heart and the swim bladder.

To investigate the mechanism of the head size defects, we examined the developing brain of 

both macro-and microcephalic embryos. In situ hybridization with an antisense kctd13 probe 

showed this transcript to be expressed strongly in the developing brain. At 24 hpf, kctd13 is 

strongly expressed in the anterior forebrain (arrowheads, suppl. Fig. 3a, f), the midbrain, and 

the hindbrain. In later stages, kctd13 is expressed predominantly in the telencephalon, the 

diencephalon, and the retina (suppl. Fig. 3b-e). Staining both phenotype classes with 
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terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) showed a 

significant increase in apoptosis exclusively in the microcephalic embryos. At the same 

time, phospho-histone H3 antibody staining revealed an increase in proliferating cells in the 

brain of kctd13 morphants and a reciprocal decrease of proliferating cells in overexpressant 

embryos (Fig. 2 c, d). Detailed analysis of transverse sections from embryos injected with 

either MO or KCTD13 mRNA confirmed that the observed phenotypes are likely driven by 

changes in the number of cells in the developing brain, since the architecture and cell 

content of the Meckel and palatoquadrate pharyngeal cartilages were normal, as was the 

overall cell content and architecture of the retina (Fig 3a–f). Counting of cell nuclei at 4.5 

dpf, when the anatomical measurements were made, showed significant reciprocal changes 

in the total number of cells in each of the telencephalon, diencephalon, and mesencephalon 

(Fig 3k). Further, counting of HuC/D-positive cells (a marker for post-mitotic neurons) in 

the telencephalon recapitulated the differences seen in total cell count but showed no 

difference in cell circumference (Fig. 3l; Suppl. Fig. 4), indicating that the changes in 

overall cell numbers and ultimate changes in head size are largely driven by changes in the 

numbers of mature neurons. These data, collected at 4.5 dpf, predict that the onset of the 

neuroanatomical defects would precede the manifestation of anatomical micro- or 

macrocephalic phenotypes. To test this hypothesis, we stained all three classes of embryos 

with HuC/D and acetylated tubulin at 2 dpf, at which time the head size of kctd13 MOs and 

overexpressants is indistinguishable from uninjected controls. We observed stark differences 

in the density and distribution of neurons, particularly in the forebrain, with concomitant 

loss of organization and bilateral symmetry (Fig. 3m) as well as aberrant distribution of 

axonal tracks (Fig. 3n).

Although the zebrafish brain bears many similarities in terms of developmental 

programming with the mammalian brain, we sought to test whether our findings might be 

relevant to cortical development in a mammalian system. Data mining of the Gene 

Expression Nervous System Atlas (GENSAT; www.gensat.org) and the Allen brain atlas 

(www.brain-map.org) revealed that human and mouse KCTD13 is expressed throughout 

development in neurons residing in the cortex, striatum, olfactory tubercle, and 

hippocampus. We therefore designed shRNAs against murine Kctd13 and tested their 

efficiency in a cultured mouse neuroblastoma cell line (Neuro-2A). One shRNA, which, 

similar to the kctd13 MO, downregulated the expression of endogenous message by ~70% 

(Suppl. Fig. 5), was then co-transfected with a GFP-expressing plasmid into Neuro-2A cells. 

Two days after transfection, cells were pulsed with 5-bromo-2'-deoxyuridine (BrdU) and 

analyzed for the effects of Kctd13 knockdown on cellular proliferation. Similar to the 

proliferation data using zebrafish morphants, depletion of Kctd13 resulted in a 34% increase 

(p<0.01) in BrdU/GFP labeled cells (Fig 4a). We next injected the Kctd13 shRNA and GFP-

expressing plasmid into the ventricular space of wild-type C57BL/6 embryos at embryonic 

day 13.5 (E13.5) and injected BrdU into pregnant dams two hours before collection of 

electroporated embryos at E15.5. Knockdown of Kctd13 resulted in a two-fold increase in 

BrdU/GFP labeling within the ventricular zone (p<0.001; Fig. 4b), suggesting that Kctd13 is 

required to maintain the proliferative status of cortical progenitors in vivo.
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The combination of our zebrafish and mouse data suggests that KCTD13 is a major driver of 

the head size phenotypes associated with the 16p11.2 CNV through the regulation of early 

neurogenesis. Our data do not exclude the possibility that other loci also have an 

independent contribution to the 16pdel/dup anatomical phenotypes and cannot inform 

directly the question whether all of the observed pathology in 16p11.2del/dup patients is 

driven by dosage changes in KCTD13. However, we were able to ask whether dosage 

changes of other loci inside the CNV might also be relevant to the head size phenotypes 

established by KCTD13. Specifically, we performed pairwise overexpressions of KCTD13 

with all other 28 transcripts in the region and asked whether we could observe changes in 

the penetrance (percentile of microcephalic zebrafish in a clutch) or the expressivity 

(percentile changes in mean head size) of the KCTD13-established phenotype. We observed 

no changes in penetrance. However, pairwise expression with two other transcripts, MAPK3 

and MVP increased significantly the expressivity of the phenotype from 18% for KCTD13 

alone to 24% and 22% respectively (Suppl. Fig 6,Suppl. Table 2), predicting that del or dup 

patients might have a more severe phenotype that individuals with heterozygous loss of 

function at KCTD13 alone.

Finally, we turned our attention to the question of whether loss of KCDT13 might be 

sufficient in humans to cause some of the commonly observed phenotypes associated with 

the 16p11.2del. During our analyses, a submicroscopic ~118 kb deletion in 16p11.2 that 

segregated with ASD and other neurodevelopmental abnormalities was discovered in a 

single three-generation pedigree22. This deletion encompasses five genes, MVP, CDIPT1, 

SEZ6L2, ASPHD1 and KCTD13, in agreement with our hypothesis that haploinsufficiency at 

KCTD13 might contribute to 16p11.2 phenotypes. We performed multiplex ligation-

dependent probe amplification (MLPA; Suppl. Table 3) of this restricted region in 518 

subjects that met diagnostic criteria for autism or ASD (Autism Diagnostic Observational 

Schedule, ADOS10), finding full-segment deletions in eight independent ASD subjects 

(1.54%; six deletion, two duplication), compared to just five such events from 8,328 controls 

(0.006%)23. We also observed the deletion of a single probe spanning exon 4 of KCTD13 in 

one proband with a narrow diagnosis of autism (Suppl. Fig. 7; Suppl. Table 3). The MLPA 

assay was replicated in the proband and the deletion was confirmed further by qPCR on two 

independently obtained DNA samples (Suppl. Fig. 7). Identical MLPA analyses, as well as 

confirmation of paternity by genotyping, were performed in both biological parents, 

revealing that the deletion arose de novo and was restricted to the KCTD13 coding region, 

maximally 9 kb and including exons 3, 4, and 5 (Suppl. Fig. 7). However, in an extensive 

effort to precisely localize the breakpoints by custom tiled array comparative genomic 

hybridization (aCGH) of the entire 16p11.2 region we discovered the rearrangement to be 

significantly more complicated. We discovered an additional, atypical ~360 kb deletion 

distal to the classic 16p11.2 region that was inherited from an asymptomatic mother. The 

deletion was confirmed by an independent Agilent 24 M feature aCGH, however the precise 

breakpoints could not be definitely localized as the rearrangement is mediated by a highly 

complex genomic region of segmental duplication24. The apparent complexity of these co-

occurring events, including both inherited and de novo rearrangements, impacts multiple loci 

in addition to KCTD13, suggesting this phenotype cannot be attributed solely to the 

KCTD13 alteration.
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In aggregate, our data support a major contributory role for KCDT13 in the 16p11.2 CNV 

through four lines of evidence: a) the in vivo overexpression screen yielded microcephaly in 

1/29 genes; b) the reciprocal suppression of this locus mirrored the corresponding human 

16p11.2del phenotypes; c) functional analyses established a neurogenic defect that was 

consistent across species; and d) KCTD13 lies in the putative critical region of ~118 kb 

region delineated in one family with ASD independent from our study, and, here, we found 

a complex rearrangement that includes de novo alteration affecting a portion of the coding 

region in a patient with a narrow diagnosis of autism.

Given that the design of our screen relies on a heterologous system of expression, we do not 

exclude the possibility that other genes in the 16p11.2 CNV might also be relevant to human 

pathology but did not trigger phenotypes in zebrafish embryos, especially the five transcripts 

not present in the zebrafish genome. Moreover, we do not know whether dosage imbalance 

of KCTD13 might regulate other phenotypes commonly associated with the 16p11.2 CNV, 

such as obesity and epilepsy4–6. However, it is reasonable to speculate that the 

neurodevelopmental changes observed upon KCTD13 perturbation could contribute to those 

phenotypes. We note that loss of function mutations of another member of this family, 

KCTD7 cause progressive myoclonic epilepsy25, while variants in KCTD15 have been 

associated with obesity26.

KCTD13 encodes the polymerase delta-interacting protein 1 (PDIP1), that interacts with the 

Proliferating Cell Nuclear Antigen (PCNA)27 and thus might have a role in the regulation of 

cell cycle during neurogenesis. Our studies might also inform disease architecture and 

whether changes in neuronal populations can account for brain overgrowth phenotypes28. 

Although our data suggest that disregulated KCTD13 levels are sufficient to establish 

neuroanatomical defects, its genetic interaction with at least one more locus leads us to 

speculate that the point mutation event that would phenocopy the 16p11.2del might not be 

represented by single loss of function alleles at KCTD13, but at cis alleles in KCTD13 and 

MAPK3, as well as MVP, or combined haploinsufficiency of all three. Testing this 

hypothesis with sufficient statistical power will require the analysis of large cohorts.

Similar to our study, the 16p11.2 CNV has been modeled in mice by chromosomal 

engineering, where neuroanatomical volumetric changes in regions analogous to our 

observations (e.g the forebrain and midbrain) have been noted29. Our approach is likely to 

be particularly useful in resolving a rapidly growing number of genomic regions implicated 

in a range of human genomic disorder phenotypes30 that a) are involved in both deletion and 

duplication syndromes such as 7q11.23 CNV10; and b) have mirroring anatomical 

phenotypes that can be assayed in a physiologically-relevant developmentalsystem (such as 

1q21.1, and 3q39 CNVs1). Such analyses will expedite the identification of major dosage-

sensitive loci and accelerate our biological understanding of CNVs that, together, account 

for a significant fraction of the mutational burden of neurodevelopmental disorders1,11.
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Methods Summary

Morpholino, in vivo analysis of gene expression and embryo manipulations

Splice-blocking morpholino (MO) against Kctd13 was designed and obtained from Gene 

Tools, LLC (5’-TCTAAGGGTACACGCCTGACCTGTA-3’). Control MO was the 

scrambled nucleotide sequence from Gene Tools, LLC (5'-

CCTCTTACCTCAGTTACAATTTATA- 3'). MO injection, RNA rescue and 

overexpression experiments are performed using standard protocol.

Immunostaining and TUNEL assay

Embryos were fixed in 4% PFA or in Dent’s fixative (80% methanol, 20% DMSO) 

overnight at 4°C. Embryos were incubated in the first antibody solution, 1:750 anti-histone 

H3 (ser10)-R, (sc-8656-R, Santa Cruz), 1:1000 anti-HuC/D (A21271, Invitrogen), 1:1000 

anti-acetylated tubulin (T7451, Sigma-Aldrich). Apoptotic cell death in zebrafish whole-

mounts was detected according to a modification of the ApopTag rhodamine In Situ 

Apoptosis Detection kit (Chemicon,Temecula, CA) protocol. Embryos for cryosectioning 

were fixed, incubated in PBS-sucrose 30%, embedded in Tissue-Tek O.C.T. Embedding 

Compound (Sakura Finetek) and sectioned at 7 µm.

In utero microinjection

E13.5 embryos were injected with either control or Kctd13 shRNA constructs and a GFP-

expressing vector. Forty-eight hours after electroporation, BrdU (100 mg/kg) was injected 

intraperitoneally into the pregnant dams and embryos were harvested 2 hours later. Embryo 

brains were processed and sectioned (20 µm) before staining with a BrdU antibody 

(Accurate).

Short arm of chromosome 16 custom array-CGH

DNA samples from the proband and both parents were labelled with Cy3 and cohybridized 

with Cy5-labelled control DNA from an unaffected CEPH individual obtained from Coriell 

(GM10851) to custom-made Nimblegen arrays. DNA labelling, hybridization and washing 

were performed according to Nimblegen protocols. Scanning was performed using an 

Agilent G2565BA Microarray Scanner. Image processing, quality control and data 

extraction were performed using the Nimblescan software v.2.5.

Methods

Morpholino, in vivo analysis of gene expression and embryo manipulations

Splice-blocking morpholino (MO) against Kctd13 was designed and obtained from Gene 

Tools, LLC (TCTAAGGGTACACGCCTGACCTGTA). Control MO was the scrambled 

nucleotide sequence from Gene Tools, LLC (5'-CCTCTTACCTCAGTTACAATTTATA- 

3'). We injected 1nl of diluted MO (6, 8, 10 ng) and/or RNA (50, 75, 100 pg) into wildtype 

zebrafish embryos at the 1-to 2-cell stage. Injected embryos were scored at 4.25 dpf and 

classified into two groups, i.e. normal and mutant, on the basis of the relative head size 

compared with age-matched controls from the same clutch. For RNA rescue and 

overexpression experiments, the human wild type mRNAs was cloned into the pCS2 vector 
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and transcribed in vitro using the SP6 Message Machine kit (Ambion). All the experiments 

were repeated three times and we ran a t-test to determine the significance of the morphant 

phenotype. Whole-mount in situ hybridizations were carried out using antisense probes for 

kctd13 made from clone (Openbiosystems) and following standard protocols. Further 

processing included clearing in methyl salicylate and flat mounting were performed using 

standard protocol.

Whole-Mount TUNEL assay

Apoptotic cell death in zebrafish whole-mounts was detected according to a modification of 

the ApopTag rhodamine In Situ Apoptosis Detection kit (Chemicon,Temecula, CA) 

protocol. Embryos were fixed in 4% paraformaldehyde (PFA) at 4°C overnight and store in 

100% methanol at −20°C. After rehydratation in PBS, embryos were permeabilized by a 5 

minutes digestion with proteinase K (10µg/ml) in PBS at room temperature. After two 

washes in sterile water for 3 minutes each, embryos were postfixed with 4% PFA for 20 

minutes, room temperature and then with prechilled ethanol:acetic acid (2:1) for 10 minutes 

at -20°C. Embryos were washed in PBS-T (PBS 1X, 0.1% Tween-20) for 5 minutes, 3 times 

at room temperature. The incubation in the equilibration buffer and the further steps were 

followed according to the standard protocol suggested by the manufacturer. TUNEL staining 

was quantified by counting positive cells in defined regions of the head and with ImageJ 

software.

Zebrafish whole-mount and section immunostaining

Embryos were fixed in 4% PFA overnight and stored in 100% methanol at −20°C. For 

acetylated tubulin staining embryos were fixed in Dent’s fixative (80% methanol, 20% 

DMSO) overnight at 4°C. The embryos were permeabilized with proteinase K followed by 

post-fixation with 4% PFA, washed in PBSTX (PBS+0.5% Triton X-100). After rehydration 

in PBS, PFA-fixed embryos were washed in IF buffer (0.1% Tween-20, 1% BSA in PBS 

1X) for 10 minutes at room temperature. The embryos were incubated in the blocking buffer 

(10% FBS, 1% BSA in PBS1X) for 1hr at room temperature. After two washes in IF Buffer 

for 10 minutes each, embryos were incubated in the first antibody solution, 1:750 anti-

histone H3 (ser10)-R, (sc-8656-R, Santa Cruz), 1:1000 anti-HuC/D (A21271, Invitrogen), 

1:1000 anti-acetylated tubulin (T7451, Sigma-Aldrich) in blocking solution, overnight at 

4°C. After two washes in IF Buffer for 10 minutes each, embryos were incubated in the 

secondary antibody solution, 1:1000 Alexa Fluor donkey antirabbit IgG and Alexa Fluor 

goat anti-mouse IgG (A21207, A11001, Invitrogen) in blocking solution, for 1hr at room 

temperature. Staining was quantified by counting positive cells in defined regions of the 

head and with ImageJ software. Embryos for cryosectioning were fixed in 4% PFA 

overnight at 4°C, washed twice in phosphate-buffered saline (PBS) and incubated in PBS-

sucrose 30% at 4°C overnight. Embryos were embedded in Tissue-Tek O.C.T. Embedding 

Compound (Sakura Finetek). Sections were cut at 7 µm.
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Cell Proliferation assay

Neuro-2A cells were seeded in 2 well chamber slides and transfected with control and 

Kctd13 shRNA constructs and a GFP expressing plasmid. Two days after transfection, cells 

were pulsed with 10 µM BrdU, fixed and stained with a BrdU antibody (Accurate).

In utero microinjection

E13.5 embryos were injected with either control or Kctd13 shRNA constructs and a GFP-

expressing vector. Forty-eight hours after electroporation, BrdU (100 mg/kg) was injected 

intraperitoneally into the pregnant dams and embryos were harvested 2 hours later. Embryo 

brains were processed and sectioned (20 µm) before staining with a BrdU antibody 

(Accurate).

Multiplex ligation-dependent probe amplification (MLPA)

A custom assay with 29 probes was designed to capture candidate genes in the 118 kb 

16p11.2 putative critical region (23 probes to the targeted genes KCTD13, MVP, and 

CDIPT; 2 probes to 16p11.2 microdeletion region genes not within the putative critical 

region, TAOK2 and TBX6; 4 probes to control genes outside of the region). The assay was 

performed with 100–150 ng genomic DNA (quantified byPico-Green (Quant-iT, 

Invitrogen)) according to manufacturer’s instructions. All samples were performed in 

triplicate. Amplification products from ligated probes were run on an ABI 3730xl DNA 

Analyzer using Genescan-Rox500 size standards (Applied Biosystems Inc). MLPA peak 

plots were visualized and analyzed using GeneMarker Software Trial Version 1.91 

(SoftGenetics LLC). Peak height and area were compared between control individuals and 

ASD samples. Values between 0.75 and 1.3 were considered normal.

Real-time Quantitative PCR

Each quantitative real-time PCR was performed in a 96-well plate using 2×LightCycler 480 

SYBR Green I Master mix (Roche Applied Science) according to manufacturer's 

instructions. All products were cycled at: 95°C for 2 min followed by 45–55 cycles of 95°C 

for 15 s and 60°C for 1 min. Melt temperature analysis was performed at the end of each run 

to confirm PCR specificity. Relative copy number was determined between the proband 

(AC02-1467-01) and three control subjects for probes designed within exon 4 of KCTD13 

and control probes localized outside of the 16p11.2 microdeletion region.

Short arm of chromosome 16 custom array-CGH

DNA samples from the proband and both parents were labelled with Cy3 and cohybridized 

with Cy5-labelled control DNA from an unaffected CEPH individual obtained from Coriell 

(GM10851) to custom-made Nimblegen arrays. These arrays contained 71,000 probes 

spread across the short arm of chromosome 16 from 22.0 to 32.7 Mb (at a median space of 

45 bp between 27.5 and 31.0 Mb) and 1,000 control probes situated in invariable region of 

the X chromosome. DNA labelling, hybridization and washing were performed according to 

Nimblegen protocols. Scanning was performed using an Agilent G2565BA Microarray 

Scanner. Image processing, quality control and data extraction were performed using the 

Nimblescan software v.2.5.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Systematic analysis of 16p11.2 del/dup genes in vivo induces defects in head size
(a) Schematic of chromosome 16, zoomed in the 16p11.2 CNV, showing gene content (not 

to scale) above the black line. (b) Plot of head size measurements (in µm) of human mRNA 

overexpression combinations measured across ~50 embryos/injection cocktail. In all but one 

injection, both controls and human overexpressed genes result in indistinguishable median 

head size, with minimal variance. By contrast, embryos injected with the KCTD13/CDIPT 

mRNAs cocktail show consistent and significant reduction of head size.

Golzio et al. Page 12

Nature. Author manuscript; available in PMC 2012 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. KCTD13 dosage changes lead to head size, proliferation and apoptosis defects
(a) From top to bottom, dorsal (left) and lateral (right) views of representative embryos 

injected with Kctd13 MO, control, or KCTD13 mRNA. (b) Graph of the ratio between 

control and injected embryos head size measures at 4.5 dpf (n=45). (c) Phospho-histone H3 

(top panel) and TUNEL (bottom panel) staining for proliferating or apoptotic cells in 

zebrafish brain at 2 dpf and 3 dpf respectively. From left to right are representative examples 

of MO-, control- and mRNA-injected embryos. (d) Graph of phospho-histone H3 and 

TUNEL quantifications from 20 MO-, control and mRNA-injected embryos. Data from 

three independent experiments are represented as mean ± s.d. *** p<0.00001; two-tailed t-

test comparisons between control and either MO-and mRNA-injected embryos.
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Figure 3. KCTD13 dosage changes lead to neuroanatomical defects
DAPI staining on transverse sections of the telencephalon (a, b, c), the diencephalon (d, e, f), 

and the mesencephalon (g, h, i) of embryos injected with kctd13 MO, control or KCTD13 

mRNA at 4.5 dpf. (j) The planes of section are illustrated with red lines on dorsal views of 

kctd13 MO-, control-, and KCTD13 mRNA-injected embryos (left to right). Higher 

magnifications of the telencephalon (a–c) and the diencephalon (d–f) are in (a’–f’). The 

Meckel pharyngeal cartilage (a–c) and the palatoquadrate pharyngeal cartilage (d–f) are in 

insets. Scale bar, 100µm. (k) Bar graph of the total number of nuclei for the three classes of 

embryos in the telencephalon, diencephalon and mesencephalon at 4.5 dpf (3 adjacent 

sections, n=4). (l) Bar graph of the number of HuC/D positive cells in the telencephalon for 

kctd13 MO-, control- and KCTD13 mRNA-injected embryos at 4.5 dpf (3 adjacent sections, 

n=4). (m) Ventral and (n) dorsal views of kctd13 MO-, control-, and KCTD13 mRNA-

injected embryos at 2 dpf (left to right). Data are represented as mean ± s.d. * p<0.01; two-

tailed t-test comparisons between control and either MO- and mRNA-injected embryos.
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Figure 4. Kctd13 regulates mammalian cell proliferation in vitro and in vivo
(a) Knockdown of Kctd13 in Neuro-2a cells results in an increase in the number of BrdU

+/GFP+ cells relative to control cells. Error bars represent the standard error from two 

independent experiments.

(b) Analysis of E15.5 mouse cortices injected with either Kctd13 or control shRNA reveal a 

similar increase in BrdU+/GFP+ cells in knockdown tissue (n=3, error bars represent the 

standard error). ** p<0.01; ***p<0.001.
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