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Summary

� The exploration of phenotypic spaces of large sets of plant species has considerably

increased our understanding of diversification processes in the plant kingdom. Nevertheless,

such advances have predominantly relied on interspecific comparisons that hold several

limitations.
� Here, we grew in the field a unique set of 179 inbred lines of durum wheat, Triticum turgi-

dum spp. durum, characterized by variable degrees of artificial selection. We measured

aboveground and belowground traits as well as agronomic traits to explore the functional and

agronomic trait spaces and to investigate trait-to-agronomic performance relationships.
� We showed that the wheat functional trait space shared commonalities with global cross-

species spaces previously described, with two main axes of variation: a root foraging axis and

a slow–fast trade-off axis. Moreover, we detected a clear signature of artificial selection on

the variation of agronomic traits, unlike functional traits. Interestingly, we identified alterna-

tive phenotypic combinations that can optimize crop performance.
� Our work brings insightful knowledge about the structure of phenotypic spaces of domesti-

cated plants and the maintenance of phenotypic trade-offs in response to artificial selection,

with implications for trade-off-free and multi-criteria selection in plant breeding.

Introduction

Characterizing the constraints shaping the diversification of life
has long been debated in ecology and evolution (e.g. Gould
et al., 1997; Barton & Partridge, 2000; Grubb, 2016; Garland
et al., 2022). For a long time, ecology and evolution, micro- and
macroevolution, diverged in the way these constraints can be
revealed. Over the last decades, plant comparative ecology has
brought interesting insights by exploring the covariations
between plant traits from a multivariate perspective (Garnier
et al., 2016). Indeed, studies comparing the relative positions of
species in a multivariate trait space suggest that natural selection
has shaped plant phenotypic diversity within an ‘envelope of con-
straints’ (Ackerly et al., 2000; Donovan et al., 2011; Reich, 2014).
Interspecific comparisons remain limited in their scope though,
and the effects of selection cannot be deeply explored. Conver-
sely, intraspecific comparisons are, by nature, better adapted to
test the role of selection on phenotypic diversity, but their gener-
alization ability is low. Finding commonalities and peculiarities
between intra- and interspecific phenotypic spaces appears as

a promising avenue to test the robustness of ecological
diversification laws.

Identifying independent dimensions of variation to document
and understand phenotypic diversification across the plant king-
dom is pivotal in plant functional ecology (Westoby et al., 2002;
Diaz et al., 2004; D�ıaz et al., 2016). These dimensions – axes of
specialization – are traditionally approximated by a set of plant
functional traits, defined as any morphological, phenological and
physiological feature measurable at the individual scale and that
impacts plant survival, growth and reproduction (Grime, 1977;
Violle et al., 2007; Garnier et al., 2016). In interspecific compari-
sons, functional traits have been widely documented as proxies of
organismal functions (e.g. light interception, soil nutrient acqui-
sition and use) and of ecological strategies depicting plant adapta-
tion to different environmental constraints (Grime, 1977;
Westoby et al., 2002; Diaz et al., 2004) and resources’ use econ-
omy (Wright et al., 2004; Garland et al., 2022). Importantly, sev-
eral traits need to be considered to accurately depict the whole
phenotype (Laughlin, 2014; Mouillot et al., 2021). A notable
example is the study by D�ıaz et al. (2016) who summarized the
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phenotypic variation of vascular plants by a six-dimensional trait
space. The authors identified two main axes of variation, one
size-related axis, which discriminates small herbaceous plants that
produce small diaspores from big trees with large diaspores, and
another axis depicting a resource acquisition–conservation trade-
off captured at the leaf level (the so-called leaf economics spec-
trum (LES); Wright et al., 2004). The recent incorporation of
roots in these analyses has highlighted novel independent dimen-
sions driven by root traits involved in soil resources’ economy
(Weemstra et al., 2016; Weigelt et al., 2021), which strengthens
the need to integrate the ‘hidden’ part of plants to grasp the mul-
tiple facets of resource foraging strategies (Bergmann & Wei-
gelt, 2020). Overall, global trait-based analyses have been very
fruitful in revealing robust trait covariations that together shape
and constrain cross-species functional spaces (Walker et al.,
2017). However, despite these efforts, the mechanisms driving
plant functional spaces are still poorly known, partly because
interspecific comparisons are inherently biased by phylogenetic
signals (Garnier et al., 2016). Even if recent evidence suggests
commonalities when comparing intraspecific LES to interspecific
LES (Vasseur et al., 2012; Sartori et al., 2019), the aboveground
and belowground space of plant forms and functions still remain
to be thoroughly assessed at the intraspecific level.

The fundamental constraints underlying functional trait spaces
should delineate a fitness landscape in which certain combina-
tions of traits lead to higher performances than others (Laughlin
& Messier, 2015; Laughlin et al., 2020). Even if the functional
trait-to-performance linkage is a central tenet of trait-based ecol-
ogy (Arnold, 1983; Violle et al., 2007; Shipley et al., 2016),
interspecific analyses have reported weak and often contradictory
findings regarding the functional drivers of plant performances
(e.g. Adler et al., 2014; Garnier et al., 2018; Salguero-G�omez
et al., 2018; Yang et al., 2018). The first reason is that such a
linkage is probably species- and environment-dependent, and
thus hardly detectable through interspecific comparisons (but see
Rolhauser et al., 2022). A second reason is that plant perfor-
mance, and plant reproductive performance in particular, is mul-
tidimensional. This is well known in crop science where
agronomic performance is classically described by several agro-
nomic traits such as grain yield, number of spikes m�2, number
of seeds per spike and thousand kernel weight (Bulman &
Hunt, 1988; Kozak & Mazdry, 2006), whose variation is con-
strained and structured within an agronomic trait space defined
here as a multidimensional space reflecting major trade-offs
among agronomic traits. A third reason is that the multidimen-
sional nature of plant performance involves the interaction
between several physiological and biomechanical properties of
the organism, which can result in redundant mapping of plant
performance and the existence of multiple peaks in the fitness
landscape (Laughlin & Messier, 2015). In fact, it has long
been recognized that numerous phenotypic combinations can
yield to similar performance values (Koehl, 1996; Wainwright
et al., 2005). Such a ‘many-to-one’ mapping has already been dis-
cussed in the evolutionary biology literature (e.g. Wainwright
et al., 2005), but hardly in functional ecology (e.g. Marks &
Lechowicz, 2006) despite its putative major role in shaping

patterns of diversification in complex physiological systems
(Alfaro et al., 2005).

Exploring the intraspecific space of forms and functions and
linking it to an agronomic trait space using model crop species
has several advantages. From a theoretical standpoint, analysing
the functional trait space of crops allows to investigate evolution-
ary issues by assessing the impact of artificial selection on trait
covariations, their overall flexibility or robustness. Some evidence
suggests that intraspecific trait covariations were weakened in
crops (Martin & Isaac, 2015; Martin et al., 2017). This may
result in fewer correlations between traits at the whole plant scale,
especially between root and leaf traits (Milla et al., 2014; Isaac
et al., 2017; Roucou et al., 2018), compared with wild species.
This could be due to different selection pressures in crops com-
pared with wild species (Milla et al., 2014, 2015; Cantarel
et al., 2020), or because crop species have narrower phenotypic
variation associated with narrower phylogenetic scales (Messier
et al., 2017; McCormack et al., 2020). From an applied perspec-
tive, identifying proxies of agronomic performance is a long-
standing objective for plant breeders (e.g. McClean et al., 2011).
The conceptual thinking of crop ideotypes (Donald, 1968),
which seeks combinations of plant traits that contribute to
increased yield at high planting densities, has enabled targeted
efforts to improve light acquisition and use through aerial ideo-
type selection (Donald, 1968), and more recently, the develop-
ment of root ideotypes (Lynch, 2013; York et al., 2013). These
approaches demonstrated that different phenotypes, in terms of
root anatomy, morphology and architecture, enhance the pro-
duction in harsh environments (Lynch, 1995; Watt et al., 2006;
York et al., 2013). The existence of multiple trait covariations is a
well-known obstacle to identifying proxies of crop performance,
particularly when biophysical constraints are at play (Annicchiar-
ico & Pecetti, 1998; Yuan et al., 2011; Chairi et al., 2020). Yet,
applying functional trait-based approaches, especially
when considering the entire phenotype encompassing above-
and belowground compartments, holds promise in addressing
this issue.

In this study, we investigated intraspecific covariations of
above- and belowground traits and agronomic traits measured in
the field for 179 genetically and phenotypically diverse inbred
lines. These lines represented a highly diversified evolutionary
prebreeding population (EPO) founded with wild, primitive and
cultivated elite subspecies of durum wheat (David et al., 2014).
First, we tested whether the intraspecific functional space of
durum wheat is structured by the same trade-offs as those
observed at the interspecific level. We hypothesized that the
structure of the durum wheat functional space would differ from
the well-known interspecific space, as crop species evolution has
been strongly driven by artificial selection and by local adaptation
to artificial environments. Second, we tested whether and how
artificial selection has impacted the structure of functional and
agronomic trait space. We hypothesized that artificial selection
has led to changes in trait covariations, due to selection pressures
that have potentially restricted phenotypic variation and wea-
kened trait–trait relationships. Lastly, we tested whether func-
tional traits (or trait combinations) were related to agronomic
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traits. We expected that genotypes’ functional trait values, which
were used as proxies for functional strategies, would be good pre-
dictors of the observed agronomic traits, as suggested by the trait-
to-performance mapping framework in trait-based ecology
(Arnold, 1983; Violle et al., 2007).

Materials and Methods

Plant material and experimental design

We grew 179 inbred lines of Triticum turgidum ssp. durum
(Desf.) Husn. derived from a highly diversified evolutionary pre-
breeding population in the field at Mauguio, southern France
(INRAE – UE DIASCOPE – Lat. 43°36036.700N, long.
3°5803700E). The EPO population was developed through crosses
between different compartments of durum wheat’s domestication
history, ranging from wild and primitive T. turgidum subspecies
to elite genotypes (David et al., 2014). The set of EPO lines is a
relevant material to test our questions because it captures a sub-
stantial amount of genetic and phenotypic variability of the
T. turgidum subspecies. We set up the field experiment on 21
November 2017. Each of the 179 inbred lines was cultivated in
randomly arranged single-genotype plots. The plots had dimen-
sions of 1.5 m by 1.2 m and consisted of six rows each measuring
1.5 m in length. There was a spacing of 20 cm between rows and
2–3 cm between plants within the same row, resulting in a plant-
ing density of 240 plants per square metre. The plots were sepa-
rated by 30 cm horizontally and 2 m vertically (see fig. 1 in
Montazeaud et al., 2020b). The soil at the experimental site was
stony loam, with c. 1% organic matter and a pH 8.7. Nitrogen
fertilization was applied twice during the wheat growth cycle with
a rate of 109 and 87 kg ha�1 of Nexen®. To protect against biotic
damages, one herbicide (Pointer®UltraSX® (30 g ha�1)), one gra-
minicide (Auzon®Duo (1 l ha�1)), one insecticide (Karate®Xflow
(0.063 l ha�1)) treatments and two fungicides treatments
(Priori®Xtra (1 l ha�1)) were applied during wheat growth cycle.

Measurement of functional traits

For a comprehensive comparison between intra- and interspecific
patterns, we focused on measuring plant functional traits that have
been widely studied on global studies (D�ıaz et al., 2016; Weigelt
et al., 2021) and known to describe plant ecological strategies.
Plant height (cm) was measured on three plants per plot at plant
maturity. The heading date was defined as the date at which spikes
become visible in 50% of the plants within a plot. We converted
the observed dates into degree days by summing the daily average
temperatures since sowing using a 0°C base temperature. One
foliar disc with a diameter of 6 mm was collected on four healthy
and mature leaves from randomly sampled individuals. The four
discs of known area were dried together for a minimum of 48 h at
60°C and then weighted in order to estimate the leaf mass per area
(LMA, kg m�2). Additionally, the leaf nitrogen content (LNC, %)
was estimated using spectral reflectance measurements of the foliar
disc obtained with a LabSpec® 4 spectrometer (Analytical Spectral
Devices Inc. (ASD), Boulder, CO, USA) and in-house calibration

(Ecarnot et al., 2013; see also supplementary information in Mon-
tazeaud et al., 2020b for more details).

At the end of the tillering stage, a key stage for cereals, explaining
a large part of variation in performance traits among plants (e.g.
Xie et al., 2016), two soil cores (10 cm diameter and 15 cm depth)
with three to five plants, according to their distribution along the
row, were collected for each line. Due to the gravitropism of durum
wheat, few roots of the central plant of each soil core were cut dur-
ing the process of soil sampling, allowing us to select well-
developed entire roots connected to the plants. Roots connected to
the central plant of the soil core were selected for trait measure-
ments. Roots cut by the soil corer were not measured. Then, the
roots were separated into seminal roots and adventitious roots. We
focused solely on adventitious roots since they were the youngest
and well-developed roots with no sign of senescence. In addition,
they were produced at the same time as the production of the leaves
on which the traits were measured, making it possible to test the
covariations between root and leaf traits. By considering a single
type of roots instead of a mixed root system, we were able to com-
pare trait values across different genotypes, irrespective of their rela-
tive investment in root types (seminal or adventitious in this case).
Root angle (RA) was measured at maturity between the two most
distant adventitious roots (see also supplementary information of
Montazeaud et al., 2020b). The collected roots were stained with
methyl violet and scanned at a resolution of 800 dpi (Epson
Expression 1680, Los Alamitos, CA, USA). The root scans were
analysed using WINRHIZO (pro v.2009; Regent Instrument,
Qu�ebec, Canada) software to estimate various traits for each sam-
ple, including the number of root tips, the distribution of root
lengths across different diameter classes, and the total root length
and volume. Root subsamples and the remaining roots were then
dried separately for at least 48 h at 60°C. Mean root diameter
(RD, mm) was calculated as the average of the median root dia-
meters of each diameter class, weighted by the root length of each
class. Specific root length (SRL, m g�1) was calculated as the ratio
of the total length of the sample divided by its dry mass. We esti-
mated root tissue density (RTD, g cm�3) as the ratio of the dry
mass divided by the root volume of the subsample and root branch-
ing intensity (RBI) as the ratio of the number of root tips in the
subsample divided by its length. Root length density (RLD, cm
cm�3) was computed by dividing the total root length by the soil
core volume.

Measurement of agronomic traits

To link functional traits to genotype’s agronomic performance,
we measured six major agronomic traits at the plot level: vegeta-
tive biomass yield, grain yield, total biomass yield, thousand ker-
nel weight, harvest index and seed number per m2. At maturity,
we harvested the aboveground biomass from the four central rows
of each plot, covering a length of 70 cm, while leaving 40 cm on
each side of the rows to minimize edge effects. Vegetative (leaves
and stems) and reproductive (spikes with grains) biomasses were
separated, dried and weighted. The spikes were threshed, and
grains were weighted. Grain biomass was used to calculate grain
yield (GY, g m�2). Vegetative biomass was used to estimate
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vegetative biomass yield per unit area (BY, g m�2). We computed
the total biomass yield (TBY, g m�2) by summing the biomasses
of grains, spikes and vegetative organs. The thousand kernel
weight (TKW, g) was estimated by counting and weighting 250
grains per line. We calculated the harvest index as the ratio of the
grain biomass divided by the total aboveground biomass (vegeta-
tive and reproductive), in order to evaluate whether genotypes
with equal biomass invest more in grain or in vegetative biomass.
Furthermore, we assessed the number of grains produced per unit
area by calculating the ratio of grain biomass to the thousand ker-
nel weight (seed number per m2, Seed nb).

Assessing the degree of artificial selection based on
genetic distance

Evolutionary prebreeding population lines derived by successive
selfing from a prebreeding population originated from crosses
between different genetic compartments of durum wheat, includ-
ing wild and primitive T. turgidum subspecies and elite genotypes.
Because the elite compartment has been strongly shaped through
human selection, we hypothesized that for each EPO line, the
lower the genetic distance to the elite compartment, the stronger
the artificial selection. We thus used genetic distance as a proxy of
the degree of artificial selection for each EPO line. We estimated
the genetic distance to elite lines by computing the average genetic
distance of each EPO line to a common set of eight durum wheat
elite varieties (Supporting Information Table S1) using 50 000
single-nucleotide polymorphisms (SNPs) obtained from the
TaBW280K high throughput genotyping array (Rimbert
et al., 2018). First, the SNPs matrix was converted into a genind
object (df2genind() function, ADEGENET package), where each col-
umn represents a locus and each row a genotype. Next, we esti-
mated the genetic distance as the average allelic differences with the
elite compartment (calculated by averaging the allelic differences
from the eight elites for each of the 179 genotypes), using the diss.-
dist () function of the POPPR package.

Statistical analyses

All statistical analyses were performed with R v.4.1.0 (R Core
Team, 2022).

To assess the structure of the intraspecific functional space of
durum wheat, we performed a principal component analysis
(PCA) based on aboveground (Height, LMA, LNC, Heading
date) and belowground (RA, RBI, RD, RTD, RLD and SRL)
traits (functional trait space hereafter), using the PCA() function
of the FACTOMINER package. A second PCA was performed on
agronomic traits (BY, GY, Harvest index, Seed nb, TBY and
TKW; agronomic trait space hereafter). To determine the num-
ber of dimensions to retain in the PCAs, we employed the
approach developed by Mouillot et al. (2021) based on the elbow
inflexion point for the area under the curve (AUC) criteria
and the mean absolute deviation (MAD; Fig. S1). The elbow
method is based on the maximization of a given benefit (AUC or
MAD gain) while minimizing the cost (number of dimensions).
To estimate the occurrence probability of given combinations

of trait values in the multidimensional spaces, we used a two-
dimensional kernel density estimation using the kde () function
from the KS package. Detailed information on kernel density esti-
mation is provided in D�ıaz et al. (2016).

We performed regression models to quantify the relationships
between the genetic distance to elite compartment and the principal
components of functional trait and agronomic trait spaces using the
lm() function. We reported the coefficient of determination, R2

(adjusted R 2) for each model, as well as the 95% confidence level
intervals for the model predictions computed as � 1.96 uncondi-
tional sampling standard deviation (Burnham & Anderson, 1998).

To quantify the relationships between major agronomic traits,
that is biomass yield, grain yield, harvest index, TKW, total bio-
mass yield and seed number per m2, and functional traits, we
fitted for each agronomic trait a full model including all the func-
tional traits and their quadratic terms, as explanatory variables
(lm() function). We used quadratic terms to test whether various
trait values could lead to similar agronomic performance (several
peaks in agronomic performance; illustrating a ‘many-to-one
mapping’ between traits and performance). Both the dependent
and independent variables were standardized (l = 0, r = 1). We
then performed a backward model selection (glmulti() function
from the GLMULTI package) to rank the models according to their
Akaike information criterion values, corrected for small sample
size (Sugiura, 1978; Burnham & Anderson, 1998), and we
selected the N best models with Akaike information criterion
(AICc) differences from the first model lower than two
(Tables S2–S5). We then conducted model-averaging, based on
the N best models, using the coef () function from GLMULTI pack-
age in order to obtain standardized parameter estimates and their
95% unconditional confidence intervals, as well as trait relative
importance and adjusted R2.

Results

Functional and agronomic trait spaces occupied by durum
wheat lines

The four principal components (PC) that structure the functional
trait space explained 66% of the variability. The first two princi-
pal components, PC1 and PC2, altogether explained 42% of the
variability (Figs 1a, S1). PC1 (24.2%) was strongly positively
associated with RD and RBI, while negatively correlated with
SRL and RLD (Fig. 1a). This component represents a gradient
from genotypes that extensively explore the soil with fine, long
and sparsely branched roots to genotypes that invest in thicker,
more branched roots (left to right in Fig. 1a; Table S6). PC2
explained 17.8% of the variability. It was positively associated
with LNC and SRL, while negatively associated with RTD and
LMA (Fig. 1a; Table S6). PC2 represents a gradient from geno-
types with dense tissues to genotypes with low-density tissues,
high nitrogen content and high SRL values. PC3 explained
12.7% of the variability and was positively correlated with RTD,
RA and Heading date. PC4, explaining 11.3% of the variability,
was positively associated with plant height and RLD and nega-
tively associated with RA (Fig. S2; Table S6).
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Three principal components characterized the agronomic
trait space of the 179 genotypes and accounted for 98% of the
variability (Figs 1b, S1; Table S6). PC1 (56.7%) was mainly
correlated with grain production, while PC2 (23.05%) was
correlated with vegetative biomass. PC1 was positively asso-
ciated with grain yield and total biomass yield (GY and TBY)
as well as seed number per m2. PC2 was highly positively asso-
ciated with harvest index and negatively with biomass yield
(BY; Fig. 1b; Table S6). PC3 was positively associated with
thousand kernel weight and negatively with the number of
seeds per m2 (Fig. S2; Table S6).

Footprint of artificial selection on the functional and
agronomic trait spaces

We detected no significant relationship between PC1 and PC2 of
the functional trait space and the genetic distance between EPO
lines and the elite durum wheat compartment (P > 0.05; Fig. 2a,
b). Conversely, the first two PCs of the agronomic trait space
were both negatively correlated with the genetic distance
(R2 = 0.03, P = 0.01; R2 = 0.05, P = 0.001, respectively; Fig. 2c,
d). Thus, the smaller the genetic distance between an EPO line
and the elite compartment, the higher its grain yield, total bio-
mass yield and number of seeds per m2 (Fig. 2c), the lower its
biomass yield, and the greater its harvest index (Fig. 2d). PC3 of
the agronomic trait space did not significantly covary with
genetic distance (P > 0.05; Fig. S3c).

The functional trait-to-agronomic performance mapping

The adjusted mean R2 of the best full models for each agronomic
trait ranged from 0.08 for the seed number per m2 to 0.31 for
biomass yield. Total biomass yield, grain yield, thousand kernel
weight and harvest index had intermediate values with R2 of
0.11, 0.15, 0.22 and 0.25, respectively (Figs 3, S4; Tables S2–
S5). We found that functional traits better explained agronomic
performance when pooled in the analysis (R2 ranging from 0.15
to 0.31; Fig. 3) than when analysed individually (R2 ranging from
0.02 to 0.20; Fig. 4). Several functional traits, both aboveground
and belowground traits, had jointly a significant relationship with
agronomic traits (Figs 3, 4). Biomass yield was positively related
to plant height, leaf nitrogen content and the root angle quadratic
term, and negatively to the specific root length quadratic term,
that is genotypes with higher vegetative biomass production were
tall with high leaf nitrogen content, intermediate SRL values and
either very high or very low root angle values (Figs 3a, 4a–d).
Grain yield was jointly explained by LMA (quadratic term),
heading date, root tissue density and root diameter (Fig. 3b).
Additionally, harvest index was positively explained by LMA
quadratic term and negatively by root diameter, heading date and
height quadratic term (Fig. 3c). Investment in grain biomass was
higher for early genotypes, with thinner roots and peaked for low
or high LMA values (Figs 3c, 4e–g,i–k). Thousand kernel weight
was significantly associated with plant height, RTD (quadratic
term) and root diameter (Fig. 3d). Genotypes with high

Fig. 1 Projection of the 179 durum wheat lines (Triticum turgidum spp. durum) on the plane defined by the first two components of a principal component
analysis based on: (a) above- and belowground functional traits: Heading (degree days), heading date; Height, maximal plant height (cm); LMA, leaf mass
area (kgm�2); LNC, leaf nitrogen content (%); RA, root angle (°); RBI, root branching intensity (number of tips per length unit); RD, root diameter (mm);
RLD, root length density (cm cm�3); RTD, root tissue density (g cm�3); SRL, specific root length (m g�1); (b) agronomic traits related to biomass production
and reproduction: BY, biomass yield (g m�2); GY, grain yield (g m�2); Seed nb, seed number m�2; TBY, total biomass yield (g m�2); TKW, thousand kernel
weight (g). The colour gradient and contour lines correspond to the 0.5, 0.95 and 0.99 quantiles of the respective probability distribution, thus highlighting
the regions of highest (orange) and lowest (white) trait value combination occurrence probability.
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thousand kernel weight values were tall genotypes, with thinner
roots, and low or high RTD values (Figs 3d, 4m–o). The func-
tional traits that had the broadest effect on agronomic traits were
not always the ones that contributed the most to the functional
trait space structure (Fig. 1a); in particular, plant height and
heading date (Fig. 4a,e,i,m), which mostly contributed to the
third and fourth axes of variation (i.e. PC3 and PC4).

Discussion

In this study, using 179 durum wheat genotypes, we demon-
strated that intraspecific trait covariations are structured by the
same trade-offs than those previously described at the interspeci-
fic level (Westoby et al., 2002; Wright et al., 2004; Reich, 2014;
D�ıaz et al., 2016; Weigelt et al., 2021). We did not detect any
effect of artificial selection on the genotype position within this
functional space, whereas we found a strong footprint of artificial
selection on the agronomic space, confirming the strong impact
of human selection on yield-related traits. Our findings also
revealed that combinations of above- and belowground traits
explained wheat performance at the plot level, which both

enriches our understanding on the relationship between genotype
functional traits and their performance outcomes (Wainwright
et al., 2005; Violle et al., 2007) and brings insightful
information for multi-criteria yield improvement (Arnold, 1983;
Annicchiarico & Pecetti, 1998).

A fundamental question in functional ecology is whether trait
covariations are maintained both among species and within spe-
cies (Shoval et al., 2012; Vasseur et al., 2012; Niinemets, 2015;
Isaac et al., 2017; Messier et al., 2017). By considering both
above- and belowground traits, we provide evidence that the
intraspecific functional space of durum wheat is structured by
the same trade-offs than those observed at the interspecific level
(D�ıaz et al., 2016; Weigelt et al., 2021). Root traits played a sig-
nificant role in shaping the phenotypic space, particularly in sup-
porting the two main axes of trait covariation. The first axis
opposed specific root length and root diameter. This axis is com-
monly described as a gradient of soil exploration strategies, con-
trasting genotypes that are efficient at exploring the soil and
acquiring resources thanks to their ability to develop fine and
economical roots, to thick-rooted genotypes that invest more
carbon in soil exploration and may rely more on mycorrhizal

Fig. 2 Relationships between the degree of artificial selection of durum wheat genotypes, Triticum turgidum ssp. durum (assessed by the genetic distance
to elite compartment) and the two first components of the functional trait space (a, b) and agronomic trait space (c, d). For each relationship, the adjusted
coefficient of determination R2 is given. Significance: ns, not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001. The red dotted line shows the predicted
relationship by the model with the 95% confidence level interval in orange.
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partnerships for resource acquisition (Eissenstat et al., 2015;
Kramer-Walter et al., 2016; Bergmann & Weigelt, 2020; Weigelt
et al., 2021). In this study, this axis is also associated with the root
branching intensity, which positively covaried with root diameter.
Thick roots are more densely branched than thin roots; this sug-
gests that genotypes with high specific root length values extensively
explore the soil by producing long, thin roots with few ramifica-
tions, while thick-rooted genotypes achieve intensive soil explora-
tion through high branching, potentially enhancing their ability to
exploit nutrient-rich patches (Hodge, 2004; Kong et al., 2014).
This finding contradicts expectations based on tree studies (Eissen-
stat et al., 2015; Liese et al., 2017) and rice research (Montazeaud
et al., 2018), that is thicker root are usually found to be more spar-
sely branched. As with many other root traits (e.g. root hairs and
exudates), this emphasizes that we lack knowledge about root con-
straints that shape genotype position within the phenotypic space,
despite the acknowledged importance of roots for resource acquisi-
tion (York et al., 2013). The second axis of trait covariation can be
associated with the well-documented trade-off between ‘fast’ and
‘slow’ return on carbon and nutrient investment (Reich, 2014).

This axis opposes genotypes with dense root tissue and high leaf
mass per area values to those with high leaf nitrogen content. This
result supports the idea that the ‘fast–slow’ trade-off is common for
both above- and belowground organs (Weigelt et al., 2021) and
that similar trade-offs shape plant phenotypic space at both inter-
and intraspecific level, even within a crop species. These findings
emphasize the importance of further investigating intraspecific var-
iation in root traits, considering their crucial role in determining
key physiological and ecological plant strategies across different
environments (Borden et al., 2020; Freschet et al., 2021; Weemstra
et al., 2021).

In addition to the commonalities observed between the wheat
functional space and interspecific spaces described in functional
ecology, we highlighted peculiarities that can be attributed to the
life history of durum wheat, notably the breeding history of EPO
lines. Unlike the study of D�ıaz et al. (2016), in which the first
axes of variation depict a size gradient, here variation in plant
height was not well described by the two major axes of the func-
tional space. This discrepancy between patterns of variation in
natural populations and those observed in our study could be

Fig. 3 Standardized effects of functional traits on agronomic traits including biomass yield (g m�2, a), grain yield (g m�2, b), harvest index (c) and thousand
kernel weight (TKW, g, d). Above- and belowground functional traits: Heading date in degree days (Heading); maximal plant height in cm (Height); leaf
mass area in kg m�2 (LMA); leaf nitrogen content in % (LNC); root angle (°); root branching intensity in number of tips per length unit (RBI); root diameter
in mm (RD); root length density in cm cm�3 (RLD); root tissue density in g cm�3 (RTD) and specific root length in m g�1 (SRL). A quadratic term was added
in the models to test nonlinear relationships between functional traits and agronomic traits. Backward model selection was performed on a full model with
agronomic traits as the response variable and all functional traits as explanatory variables (Supporting Information Tables S2–S5). The N best models based
on an Akaike information criterion (AICc) difference < 2 were retained to compute model-averaged estimates reported on the left side of the four panels
with their 95% unconditional confidence intervals (error bars). The relative importance of functional traits is reported on the right side of the four panels
and can be interpreted as the probability that the trait is in the best model. Although a functional trait is represented on several dimensions, we assigned
colours to the dimensions of the functional trait space where the trait contributes the most. Adjusted R2 averaged across the N best models (R2

adj) are also
presented for the four models.
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explained by the fact that plant height variability has been
reduced through the selection of durum wheat. Reduced stature
has been strongly favoured since the Green Revolution to prevent
lodging in nitrogen-rich conditions and to limit plant competi-
tion for light (Donald, 1968; Peng et al., 2011; Montazeaud
et al., 2020a). Because of its breeding history (David et al., 2014;
Montazeaud et al., 2020b), height variability in EPO remains
higher than in modern durum wheat and we expected this height
variability to further shape the phenotypic space of this species,
but our findings did not support this expectation. The third var-
iation axis was phenology-driven, where late heading was asso-
ciated with high carbon-based construction costs, as indicated by
high root tissue density, highlighting the existence of another
component that may be related to the ‘fast–slow’ continuum.
This finding underscores the significant role of phenology in crop
physiology and justifies its long history of selection in agronomy
(e.g. Jung & M€uller, 2009). Conversely, phenology has been
poorly integrated in interspecific functional spaces so far (but see
Segrestin et al., 2018). Beyond the well-known key role of

phenology in annual plants (see e.g. Sartori et al., 2019), a more
systematic integration of phenological traits in large-scale inter-
specific analyses is a priority for the research field.

Several studies have shown that domesticated species tend to
have faster growth and more ‘fast’ resource-use strategies than their
wild relatives (Hancock, 2012; Milla et al., 2015; Milla & Mate-
sanz, 2017; Roucou et al., 2018; Isaac et al., 2021), which
is interpreted as an adaptation to nutrient-rich habitats (Cha-
pin, 1980; Pujol et al., 2008; Milla et al., 2014; Roucou
et al., 2018). Here, variation in functional traits was not explained
by the genetic distance of EPO genotypes to modern varieties,
which can be interpreted as a lack of effect of artificial selection on
the positioning of genotypes within the phenotypic space, suggest-
ing that trade-offs between traits are difficult to overcome. How-
ever, we cannot ignore a potential bias in our quantification of the
degree of artificial selection that has been inferred on the whole-
genome level while only a reduced number of genes probably cap-
ture human-driven selection (Doebley et al., 2006). On the con-
trary, we found significant relationships between the different

Fig. 4 Univariate relationships between the four agronomic traits and functional traits. Agronomic traits related to biomass production and reproduction:
BY, biomass yield (g m�2) (a to d); GY, grain yield (g m�2) (e to h); Harvest index (i to l); TKW, thousand kernel weight (g) (m to o). Above- and below-
ground functional traits: Heading (degree days), heading date (e, i); Height, maximal plant height (cm) (a, l, m); LMA, leaf mass area (kgm�2) (g, k); LNC,
leaf nitrogen content (%) (c); root angle (°) (d); root diameter (mm) (f, j, o); RTD, root tissue density (g cm�3) (h, n); and SRL, specific root length (m g�1)
(b). Functional traits shown had the highest relative importance (i.e. they were selected by all the N best models; Fig. 3) and had standardized estimates
with 95% unconditional confidence intervals that did not cross 0. For each relationship, the adjusted coefficient of determination R2 is given. Significance:
ns, not significant; ., P ~ 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001. The orange solid line shows the predicted relationship by the model with the 95%
confidence level interval in grey.
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facets of wheat’s agronomic performance and the degree of artificial
selection. As expected, genotypes that shared more genetic similari-
ties with modern varieties displayed higher values of harvest index,
total biomass and grain production, and lower values of vegetative
biomass. This could be explained by the fact that artificial selection
has deliberately acted on yield components in the evolutionary his-
tory of crops (Harlan et al., 1973; Hay, 1995; Peleg et al., 2011;
Peng et al., 2011). Due to the absence of a significant effect of
genetic distance to modern varieties on durum wheat functional
traits that are indirectly linked to agronomic performance, we
hypothesize that these traits could serve as promising candidates for
future breeding programmes aimed at better-adapting varieties to
constraints of new environments.

According to Arnold’s (1983) paradigm, later adapted in func-
tional ecology (Violle et al., 2007), functional traits are expected
to influence directly and indirectly plant fitness. The multifaceted
nature of resource-use strategies and plant performance has long
impeded a comprehensive evaluation of the functional traits-to-
performance mapping in both wild and crop species (Phillips &
Arnold, 1989; Laughlin & Messier, 2015). The complexity of
trait–performance relationships stems from the multivariate nat-
ure of plant phenotypes, where traits are interrelated throughout
the plant. For example, if trait A has a positive effect on genotype
performance, this effect can, in fact, be due to the effect of a trait
B that interacted with A (Phillips & Arnold, 1989). Here, we
identified above- and belowground traits combinations that were
related to agronomic performance, thus confirming that
trait-performance mapping is multidimensional. Although these
combinations of functional traits explain a limited part of the var-
iation for some agronomic traits, it is noteworthy that functional
traits from the fourth PC axis of the durum wheat phenotypic
space are involved in these relationships, which underlines the
fact that agronomic performances are dependent on the whole
plant phenotype. Despite not being well described by the first
two axes of the phenotypic space, plant height and heading date
were strongly associated with agronomic performance. Tall geno-
types produced higher amounts of vegetative biomass and heavier
grains, but did not necessarily produce the greatest amount of
grains, in part because of the quadratic relationship between plant
height and harvest index. In parallel, heading date was negatively
related to harvest index and grain yield. As a result, early heading
genotypes with an intermediate plant height had higher harvest
index and grain yield. Plant height and crop phenology jointly
strongly influence the yield of crops, as previously described in
rice crops (Li et al., 2012), in wheat (Hyles et al., 2020) and oat
(Rosielle & Frey, 1975), in particular, because these traits are
strongly involved in plant responses to abiotic and biotic factors
and therefore influence allocation patterns within the plant
(Donald & Hamblin, 1976; Hill & Li, 2016). Simultaneously,
traits associated with the ‘fast–slow’ economic spectrum also
played a significant role in explaining agronomic performances:
mid-spectrum genotypes (displaying intermediate LNC, LMA
and RTD) produced less vegetative biomass and grain biomass
than ‘fast’ genotypes, which produced higher vegetative biomass
and heavier seeds. Moreover, root systems characterized by high
specific root length, high root length density and low root

diameter can facilitate belowground resource foraging (e.g.
Campbell et al., 1991; Freschet et al., 2021), which could in turn
increase the allocation of resources to the growth and reproduc-
tive function. We found in particular a maximization of biomass
yield at intermediate values of specific root length. These findings
support the links between root traits, resource acquisition strate-
gies and yield components and underpin the importance of an
underground ideotype for crop improvement (Richardson
et al., 2011; Lynch, 2013; York et al., 2013).

Our findings call for mobilizing breeding approaches that con-
sider multidimensional phenotypic space to take into account plant
trade-offs and potentially even override them (Denison, 2015; Isaac
& Martin, 2019; Rolhauser et al., 2022). The existence of multiple
phenotypic pathways to plot-level performances opens new avenues
for plant breeding programmes since several traits should be tar-
geted simultaneously. Multi-criteria crop breeding has made a lot
of progress in recent years though (Cabrera-Bosquet et al., 2012;
Moeinizade et al., 2020), and we are confident that future fruitful
interactions between ecology and agronomy will lead to better iden-
tification of breeding targets and to the removal of still largely
unknown phenotypic and genetic constraints.
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