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SUMMARY
Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently
emerged, becoming the dominant circulating strains in many countries. These variants contain a large num-
ber of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we eval-
uate the ability of plasma from a cohort of individuals that received three doses ofmRNA vaccine to recognize
and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly
less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested.
Also, individuals who have been infected before or after vaccination present better humoral responses
than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better hu-
moral responses against these subvariants.
INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) Omicron variant BA.1 emerged at the end of 2021 and

rapidly became the dominant circulating strain in the world.1,2

Since its emergence, several sublineages of Omicron have

rapidly replaced the BA.1 variant due to higher transmission

rates. BA.2 became the dominant circulating strain in spring

2022,3,4 and currently, the BA.4 and BA.5 variants (sharing the

same mutations in their spike glycoproteins, named BA.4/5 S

in the report) are the dominant circulating strains in several coun-

tries.5–8 BA.2.75, BA.4.6, and BQ.1.1 have emerged more

recently and are spreading worldwide.9,10

It was previously shown that poor humoral responses against

BA.1 and BA.2 variants were observed after two doses of mRNA

vaccine.11–13 We and other reported that an extended interval
C
This is an open access article under the CC BY-N
between the first two doses of mRNA vaccine led to strong hu-

moral responses to several variants of concern (VOCs) including

BA.1 and BA.2 after the second dose of mRNA vaccine.14–16

However, a third dose of mRNA vaccine led to an increase of hu-

moral responses against these Omicron variants regardless of

the interval between doses.11,13,16,17 Previous studies also re-

ported that breakthrough infection (BTI) in vaccinated people

induced strong neutralizing antibodies (Abs) against VOCs,

including BA.1.18,19 However, recent studies have shown that

BA.4/5, BA.2.75, BA.4.6, and BQ.1.1 appear to bemore resistant

than BA.1 and BA.2 to antibodies elicited by vaccination and

monoclonal Abs.20–26

In this study, we analyzed the ability of plasma from vacci-

nated individuals to recognize and neutralize pseudoviral parti-

cles bearing different Omicron subvariant spikes 4 weeks (me-

dian [range]: 30 days [20–44 days]) and 4 months (median
ell Reports 42, 111998, January 31, 2023 ª 2023 The Author(s). 1
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Table 1. Characteristics of the vaccinated SARS-CoV-2 cohorts

Entire cohort Naive

Breakthrough

infectiona
Previously

infected

Number 45 15 15 15

Age 51 (24–67) 54 (24–67) 43 (30–64) 48 (29–65)

Gender male (n) 17 4 5 8

female (n) 28 11 10 7

Vaccine first dose Pfz = 43; M = 1; AZ = 1 Pfz = 14; M = 1 Pfz = 14; AZ = 1 Pfz = 15

second dose Pfz = 43; M = 1; AZ = 1 Pfz = 14; M = 1 Pfz = 14; AZ = 1 Pfz = 15

third dose Pfz = 40; M = 5 Pfz = 15 Pfz = 14; AZ = 1 Pfz = 11; AZ = 4

Days between symptom onset and the first doseb N/A N/A N/A 288 (166–321)

Days between the first and second doseb 110 (54–146) 109 (65–120) 110 (54–113) 112 (90–146)

Days between the second and third doseb 211 (151–235) 210 (184–227) 215 (151–224) 219 (187–235)

Days between the third dose and 4 weeks 30 (20–44) 32 (21–37) 28 (20–38) 33 (24–44)

Days between the third dose and 4 months 121 (92–135) 124 (105–135) 121 (92–131) 119 (111–127)

Pfz, Pfizer/BioNtech BNT162b2; M, Moderna mRNA-1273; AZ, AstraZeneca ChAdOx1.
aAll breakthrough infection individuals were infected between mid-December 2021 andMay 2022, when almost only Omicron variants (BA.1 and BA.2)

were circulating in Quebec. 6 breakthrough infection (BTI) individuals were infected before the time point collected 4 weeks after the third dose, and 9

BTI individuals were infected between the two time points.
bValues displayed are medians, with ranges in parentheses. Continuous variables were compared by using Kruskal-Wallis tests. p <0.05 was consid-

ered statistically significant for all analyses. No statistical differences were found for any of the parameter tested between the different groups.
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[range]: 121 days [92–135 days]) after the third dose of mRNA

vaccine. This study was conducted in a cohort of individuals

who received their first two doses with a 16-week extended in-

terval (median [range]: 110 days [54–146 days]) and their third

dose 7 months after the second dose (median [range]:

211 days [151–235 days]). The cohort included 15 naive individ-

uals who were never infected with SARS-CoV-2, 15 previously

infected (PI) individuals who were infected during the first wave

of COVID-19 in early 2020 (before the advent of the Alpha variant

and other VOCs) and before vaccination, and 15 BTI individuals

who were infected after vaccination. All BTI individuals were in-

fected between mid-December 2021 and May 2022, when

almost only Omicron variants (BA.1 and BA.2) were circulating

in Quebec. Basic demographic characteristics of the cohorts

and detailed vaccination time points are summarized in Table 1

and Figure 1A.

RESULTS

RBD-specific IgG and associated avidity
We first measured the level of anti-receptor-binding-domain

(RBD) immunoglobulin G (IgG) 4 weeks and 4 months after

the third dose of mRNA vaccine in naive, BTI, and PI individuals

(Figure 1A) by a well-described ELISA assay16,27–30 (Figure 1B).

Four weeks after the third dose, we did not observe significant

differences in the level of IgG between the three groups. Four

months after the third dose, we observed that the level of IgG

significantly decreased in all groups but decreased to a higher

extent in naive individuals. No significant differences were

observed between naive, BTI, and PI individuals 4 months after

the boost. We also measured the avidity of anti-RBD IgG

induced after the third dose of mRNA vaccine using a previ-

ously described assay.28,31 Four weeks after the third dose,

we observed that naive donors had IgG with lower avidity,
2 Cell Reports 42, 111998, January 31, 2023
although we only measured a significant difference with BTI in-

dividuals (Figure 1C). Four months after the third dose, the

avidity of these IgG slightly decreased for naive individuals

but remained stable for BTI and PI groups.

RBD-specific B cell responses after the third dose of
mRNA vaccine
We alsomonitored the SARS-CoV-2-specific B cells (identified as

CD19+ CD20+) by flow cytometry using two recombinant RBD

protein probes labeled with two different fluorochromes (Alexa

Fluor 594 and Alexa Fluor 488) (Figure S1A).30,32 Four weeks after

the third dose of mRNA vaccine, no significant differences in the

level of circulatingBcellswereobservedbetween the threegroups

(Figure 1D). Four months after the boost, this level significantly

decreased for naive donors but not for individuals with hybrid im-

munity (PI and BTI). For BTI individuals, we observed an increase,

withsomedonorspresentingahigher level ofcirculatingRBD-spe-

cific B cells, probably due to recent infection.

Recognition of SARS-CoV-2 spike variants by plasma
from vaccinated individuals
We next measured the ability of plasma to recognize the SARS-

CoV-2 D614G and different Omicron subvariant spikes in vacci-

nated naive, PI, and BTI individuals 4 weeks and 4 months after

the third dose of mRNA vaccine. Spike expression levels of the

spike variants were normalized to the signal obtained with the

conformationally independent anti-S2 neutralizing CV3-25

Ab33–35 that efficiently recognized all these spikes despite their

various mutations (Figures S1B and S2A–S2C). Four weeks af-

ter the third dose of mRNA vaccine, we observed that plasma

from PI individuals recognized more efficiently the D614G spike

than naive individuals (Figure 2A). We also observed that BTI in-

dividuals recognized the D614G spike as efficiently as the PI in-

dividuals. Four months after the third dose, the level of
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Figure 1. Anti-RBD IgG level, associated anti-RBD avidity, and RBD-specific B cell responses in plasma from naive, BTI, and PI individuals

after the third dose of mRNA vaccine

(A) SARS-CoV-2 vaccine cohort design. The yellow box represents the period under study.

(B and C) Indirect ELISAs were performed by incubating plasma samples from naive, BTI, or PI individuals collected 4 weeks or 4 months after the third dose of

mRNA vaccine with recombinant SARS-CoV-2 RBD protein. Anti-RBD Ab binding was detected using HRP-conjugated anti-human IgG.

(B) RLU values obtained were normalized to the signal obtained with the anti-RBD CR3022 mAb present in each plate.

(C) The RBD avidity index corresponded to the value obtained with the stringent (8 M urea) ELISA divided by that obtained without urea.

(D) The frequencies of RBD+ B cells were measured by flow cytometry.

(B–D) Plasma samples were grouped in two different time points (4 weeks and 4 months).

Naive, BTI, and PI individuals are represented by red, yellow, and black points, respectively, undetectable measures are represented as white symbols, and limits

of detection are plotted. Error bars indicate means ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, non-significant). For all groups, n = 15 (B and C) or

n = 10 (D).
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recognition of the D614G spike decreased for the three groups

but with a more significant reduction in the naive group. For the

BA.2, BA.4/5, and BQ.1.1 spikes, naive and BTI individuals had

the same level of recognition 4 weeks after the third dose, and

this level was significantly lower than for PI individuals

(Figures 2B–2C and 2F). For BA.2.75 and BA.4.6 spikes, we

only observed significant differences between naive and PI in-

dividuals 4 weeks after the third dose (Figures 2D and 2E). Four

months after the third dose, we observed a significant decrease

of the recognition for naive and PI individuals, with the excep-

tion of the BQ.1.1 spike, for which the level remained stable in

the PI group (Figures 2A–2F). For the BTI group, the level of

recognition remained more stable than for the other groups

and reached the same level as the PI group for all tested

spikes. We also observed that the BA.4/5 and the

BQ.1.1 spikes were always less recognized than the D614G

and other Omicron subvariant spikes at both time points for

all groups (Figures 2G and 2H).
Neutralizing activity of the vaccine-elicited Abs
We also evaluated the neutralizing activity against pseudoviral

particles bearing these spikes in the three groups. Of note, all

spikes were incorporated into pseudoviral particles to similar ex-

tents (Figure S2C) and had similar levels of infectivity in our assay

(Figure S2D). In agreement with the pattern of spike recognition,

PI individuals neutralized all the spike variants tested more effi-

ciently than naive individuals 4 weeks after the third dose

(Figures 3A–3F). For the BTI group, the level of neutralizing Abs

was intermediate between the two other groups. Fourmonths af-

ter the third dose, we did not observe significant differences

between PI and BTI individuals. In contrast, the naive group

neutralized the D614G and Omicron subvariant spikes less

efficiently (Figures 3A–3F). Four weeks after the third dose, no

significant difference in the level of neutralization was measured

between the D614G and BA.2 spikes for the three groups (Fig-

ure 2G). In contrast, the other Omicron variant spikes were

more resistant to neutralization than the D614G spike in all
Cell Reports 42, 111998, January 31, 2023 3
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Figure 2. Recognition of SARS-CoV-2 spike variants by plasma from naive, BTI, and PI individuals after the third dose of mRNA vaccine

(A–H) 293T cells were transfected with the indicated full-length spike from different SARS-CoV-2 variants and stained with the CV3-25 monoclonal Ab (mAb) or

with plasma from naive, BTI, or PI individuals collected 4 weeks or 4 months after the third dose of mRNA vaccine and analyzed by flow cytometry. The values

represent the mean fluorescence intensity (MFI) normalized by CV3-25 Ab binding. (A–F) Plasma samples were grouped in two different time points (4 weeks and

4 months) for D614G (A), BA.2 (B), BA.4/5 (C), BA.2.75 (D), BA.4.6 (E), or BQ.1.1 (F) spike recognition.

(G and H) Bindings of plasma collected at 4 weeks (G) and 4 months (H) post vaccination were measured.

Naive, BTI, and PI individuals are represented by red, yellow, and black points, respectively, undetectable measures are represented as white symbols, and limits

of detection are plotted. Error bars indicate means ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, non-significant). For all groups, n = 15.
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Figure 3. Neutralization activity of SARS-CoV-2 spike variants by plasma from naive, BTI, and PI individuals after the third dose of mRNA

vaccine

(A–H) Neutralization activity was measured by incubating pseudoviruses bearing SARS-CoV-2 spike glycoproteins with serial dilutions of plasma for 1 h at 37�C
before infecting 293T-ACE2 cells. Neutralization half maximal inhibitory serum dilution (ID50) values were determined using a normalized non-linear regression

using GraphPad Prism software.

(legend continued on next page)
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groups. Four months after the third dose, weak or no neutralizing

activity against Omicron subvariant spikes was detected in most

naive individuals (Figures 3B–3F and 3H). For BTI and PI individ-

uals, although neutralizing activity was higher than in naive indi-

viduals, the BA.4/5, BA.2.75, BA.4.6, and BQ.1.1 spikes were

also significantly less neutralized than the D614G and, in some

instances, BA.2 spikes (Figures 3B–3F and 3H).

DISCUSSION

More than 2 years after its emergence, and although an impor-

tant proportion of the world population has received several

doses of vaccine, SARS-CoV-2 variants continue to circulate

globally. In recent months, new subvariants of Omicron

emerged, carrying an increasing number of mutations and mak-

ing them more transmissible and resistant to vaccination and

monoclonal Ab treatment.8,17,20–22,25 In agreement with this,

we observed that the BA.4/5, BA.2.75, BA.4.6, and BQ.1.1

spikes were less efficiently recognized and neutralized than the

D614G and the BA.2 spikes by plasma from individuals who

received three doses of mRNA vaccine.

Several studies reported that poor neutralizing activity against

VOCs was observed after two doses of mRNA vaccine, but a

third dose strongly improved this response.11,16,36 However,

when the second dose of vaccine was administered with an

extended 16-week interval, higher humoral responses against

VOCs (including BA.1 and BA.2) were observed after the second

dose of vaccine,14 which were not increased by a booster

dose.16 Therefore, there is no evidence that additional doses of

the original SARS-CoV-2 vaccines after the third dose will result

in increased responses against VOCs.

The Omicron variants spread more easily in vaccinated indi-

viduals than pre-Omicron variants.37,38 Interestingly, it was

recently shown that previous infection with an Omicron variant

prevents reinfection more efficiently than previous infection

with a pre-Omicron variant,39,40 thus suggesting that new vac-

cines based on Omicron variants may generate humoral re-

sponses more likely to control Omicron subvariants.

It was previously shown that hybrid immunity due to SARS-

CoV-2 infection followed by vaccination confers stronger im-

mune responses than vaccination alone.16,32,40,41 Accordingly,

here we observed that individuals with BTI had the same level

of spike recognition and neutralization as PI individuals, support-

ing the concept that hybrid protection is similar whatever the or-

der of infection and vaccination. However, the durability of these

responses remains unknown.

In conclusion, virus recognition and neutralizing activity

induced by current mRNA vaccine are low against Omicron sub-

variants, rapidly decline over 4 months in naive individuals, and

will likely decrease further with future SARS-CoV-2 evolution.

There is a need to rapidly develop new generations of vaccines

that will elicit broader and less labile protection.
(A–F) Plasma samples were grouped in two different time points (4 weeks and 4 m

spike neutralization.

(G and H) Neutralization activity of plasma collected at 4 weeks (G) and 4 month

Naive, BTI, and PI individuals are represented by red, yellow, and black points, res

of detection are plotted. Error bars indicate means ± SEM (*p < 0.05; **p < 0.01;
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Limitations of the study
One of the limitations of the study is that for most BTI indi-

viduals, we do not have the exact day of infection and by

which variant. We can only confirm whether they were in-

fected before the first time point studied or between the 2

time points. Furthermore, it is very likely that some PI indi-

viduals were exposed a second time. However, in our study,

no case of infection was confirmed by PCR in the PI group,

and since they were already infected a first time, we cannot

conclude that a positive anti-N corresponds to a new infec-

tion or to the first. Finally, while we did not observe major

differences in infectivity with our pseudoviral particles, it is

possible that differences in infectivity and replication exist

when using authentic live viruses. For this reason we only

report on plasma neutralization profiles, which were shown

to be similar between pseudoviral particles and authentic vi-

ruses and have been largely used by the field to inform on

neutralizing responses elicited by natural infection and

vaccination.42–46
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Medjahed, H., Goyette, G., Dubé, M., Bazin, R., Kaufmann, D.E., and Finzi,

A. (2022). Evolution of anti-RBD IgG avidity following SARS-CoV-2 infec-

tion. Viruses 14, 532. https://doi.org/10.3390/v14030532.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andrés

Finzi (andres.finzi@umontreal.ca).

Materials availability
All unique reagents generated during this study are available from the lead contact without restriction.

Data and code availability
d All data reported in this paper will be shared by the lead contact (andres.finzi@umontreal.ca) upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact (andres.finzi@

umontreal.ca) upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
All work was conducted in accordance with the Declaration of Helsinki in terms of informed consent and approval by an appropriate

institutional board. Blood samples were obtained from donors who consented to participate in this research project at CHUM

(19.381). Plasmas and PBMCswere isolated by centrifugation and Ficoll gradient, and samples stored at�80�Cand in liquid nitrogen

respectively, until use.

Human subjects
The study was conducted in 15 SARS-CoV-2 naive individuals (4 males and 11 females; age range: 24-67 years), 15 SARS-CoV-2

breakthrough infection individuals (5 males and 10 females; age range: 30-64 years) infected after the second or third dose of
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mRNA vaccine (6 BTI were infected before the time point collected 4 weeks after the third dose and 9 individuals were infected

between the two time points), and 15 SARS-CoV-2 previously infected individuals (8 males and 7 females; age range: 29-65 years)

infected before vaccination during the first wave of COVID-19 in March-May 2020. This information is presented in Table 1. No spe-

cific criteria such as number of patients (sample size), gender, clinical or demographic were used for inclusion, beyond PCR

confirmed SARS-CoV-2 infection in adults before vaccination for PI group, PCR confirmed SARS-CoV-2 infection or anti-N positive

in adults after vaccination for BTI group and no detection of Abs recognizing the N protein for naive individuals.

Plasma and antibodies
Plasmas were isolated by centrifugation with Ficoll gradient, heat-inactivated for 1 h at 56�C and stored at �80�C until use in sub-

sequent experiments. Healthy donor’s plasmas, collected before the pandemic, were used as negative controls, and used to calcu-

late the seropositivity threshold in our ELISAs and flow cytometry assays (data not shown). The RBD-specific monoclonal antibody

CR3022 was used as a positive control in ELISA assays, and the conformationally independent S2-specific monoclonal antibody

CV3-25was used as a positive control and to normalize spike expression in our flow cytometry assays, as described.28,34,47,49 Horse-

radish peroxidase (HRP)-conjugated Abs able to detect the Fc region of human IgG (Invitrogen) was used as secondary Abs to detect

Ab binding in ELISA experiments. Alexa Fluor-647-conjugated goat anti-humanAbs able to detect all Ig isotypes (anti-human IgM+Ig-

G+IgA; Jackson ImmunoResearch Laboratories) were used as secondary Abs to detect plasma binding in flow cytometry

experiments.

Cell lines
293T human embryonic kidney cells (obtained from ATCC) and Cf2.Th cells (a kind gift from Joseph Sodroski, Dana Farber Cancer

Institute (DFCI), Boston, MA, USA) were maintained at 37�C under 5%CO2 in Dulbecco’s modified Eagle’s medium (DMEM) (Wisent)

containing 5% fetal bovine serum (FBS) (VWR) and 100 mg/mL of penicillin-streptomycin (Wisent). 293T-ACE2 cell line was previously

reported.29

METHOD DETAILS

Plasmids
The plasmids encoding the SARS-CoV-2 spike variants were previously described.16,48,49 The plasmids encoding the BA.4/5,

BA.2.75, BA.4.6 and BQ.1.1 spikes were generated by overlapping PCR using the BA.2 SARS-CoV-2 spike gene as a template

and cloned in pCAGGS. All constructs were verified by Sanger sequencing. Spike variant sequences are outlined in Figure S2A.

The pNL4.3 R-E� Lucwas obtained from the NIH AIDSReagent Program. The vesicular stomatitis virus G (VSV-G)-encoding plasmid

(pSVCMV-IN-VSV-G) was previously described.29

Protein expression and purification
FreeStyle 293F cells (Invitrogen) were grown in FreeStyle 293F medium (Invitrogen) to a density of 13106 cells/mL at 37�C with 8%

CO2with regular agitation (150 rpm). Cells were transfectedwith a plasmid coding for SARS-CoV-2 SWTRBD48 using ExpiFectamine

293 transfection reagent, as directed by the manufacturer (Invitrogen). One week later, cells were pelleted and discarded. Superna-

tants were filtered using a 0.22 mm filter (Thermo Fisher Scientific). The recombinant RBD proteins were purified by nickel affinity col-

umns, as directed by the manufacturer (Invitrogen). The RBD preparations were dialyzed against phosphate-buffered saline (PBS)

and stored in aliquots at�80�C until further use. To assess purity, recombinant proteins were loaded on SDS-PAGE gels and stained

with Coomassie Blue.

Enzyme-linked immunosorbent assay (ELISA) and RBD avidity index
The SARS-CoV-2 WT RBD ELISA assay used was previously described.29,48 Briefly, recombinant SARS-CoV-2 WT RBD proteins

(2.5 mg/mL), or BSA (2.5 mg/mL) as a negative control, were prepared in PBS and were adsorbed to plates (MaxiSorp Nunc) over-

night at 4�C. Coated wells were subsequently blocked with blocking buffer (Tris-buffered saline [TBS] containing 0.1% Tween 20 and

2% BSA) for 1h at room temperature. Wells were then washed four times with washing buffer (Tris-buffered saline [TBS] containing

0.1% Tween 20). CR3022 mAb (50 ng/mL) or a 1/500 dilution of plasma were prepared in a diluted solution of blocking buffer (0.1%

BSA) and incubated with the RBD-coated wells for 90 min at room temperature. Plates were washed four times with washing buffer

followed by incubation with secondary Abs (diluted in a diluted solution of blocking buffer (0.4% BSA)) for 1h at room temperature,

followed by four washes. To calculate the RBD-avidity index, we performed in parallel a stringent ELISA, where the plates were

washed with a chaotropic agent, 8M of urea, added of the washing buffer. This assay was previously described.31 HRP enzyme ac-

tivity was determined after the addition of a 1:1 mix of Western Lightning oxidizing and luminol reagents (PerkinElmer Life Sciences).

Light emission was measured with an LB942 TriStar luminometer (Berthold Technologies). Signal obtained with BSA was subtracted

for each plasma and was then normalized to the signal obtained with CR3022 present in each plate. The seropositivity threshold was

established using the following formula: mean of pre-pandemic SARS-CoV-2 negative plasma + (3 standard deviation of the mean of

pre-pandemic SARS-CoV-2 negative plasma).
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SARS-CoV-2-specific B cell characterization
To detect SARS-CoV-2-specific B cells, we conjugated recombinant RBD proteins with Alexa Fluor 488 or Alexa Fluor 594 (Thermo

Fisher Scientific) according to the manufacturer’s protocol. 23106 frozen PBMCs from SARS-CoV-2 naive, BTI and PI donors were

prepared at a final concentration of 43106 cells/mL in RPMI 1640 medium (GIBCO) supplemented with 10% of fetal bovine serum

(Seradigm), Penicillin/Streptomycin (GIBCO) and HEPES (GIBCO). After a rest of 2h at 37�C and 5% CO2, cells were stained using

Aquavivid viability marker (GIBCO) in DPBS (GIBCO) at 4�C for 20 min. The detection of SARS-CoV-2-antigen specific B cells was

done by adding the RBD probes to the antibody cocktail listed in Table S1. Staining was performed at 4�C for 30 min and cells were

fixed using 2% paraformaldehyde at 4�C for 15 min. Stained PBMC samples were acquired on Symphony cytometer (BD Biosci-

ences) and analyzed using FlowJo v10.8.0 software and the gating strategy presented in Figure S1A.

Cell surface staining and flow cytometry analysis
293T were transfected with full-length SARS-CoV-2 spikes and a green fluorescent protein (GFP) expressor (pIRES2-eGFP; Clon-

tech) using the calcium-phosphate method. Two days post-transfection, spike-expressing 293T cells were stained with the CV3-

25 Ab (5 mg/mL) as control or plasma from naive, BTI or PI individuals (1:250 dilution) for 45 min at 37�C. AlexaFluor-647-conjugated
goat anti-human IgG (1/1000 dilution) were used as secondary Abs. The percentage of spike-expressing cells (GFP + cells) was

determined by gating the living cell population based on viability dye staining (Aqua Vivid, Invitrogen). Samples were acquired on

an LSR II cytometer (BD Biosciences), and data analysis was performed using FlowJo v10.7.1 (Tree Star) using the gating strategy

presented in Figure S1B. The conformationally-independent anti-S2 antibody CV3-25 was used to normalize spike expression, as

reported.33–35,49 CV3-25 was shown to be effective against all spike variants (Figures S2B and S2C). The Median Fluorescence in-

tensities (MFI) obtained with plasma were normalized to the MFI obtained with CV3-25 and presented as percentage of CV3-25

binding.

Pseudoviral infectivity
293T cells were transfected with the lentiviral vector pNL4.3 R-E� Luc (NIH AIDS Reagent Program) and plasmid encoding for the

indicated spike glycoprotein (D614G, BA.2, BA.4/5, BA.2.75, BA.4.6 or BQ.1.1) at a ratio of 10:1. Two days post-transfection, cell

supernatants were harvested and stored at �80�C until use. The RT activity was evaluated by measure of the incorporation of

[methyl-3H]TTP into cDNA of a poly(rA) template in the presence of virion-associated RT and oligo(dT). Normalized amount of RT

activity pseudoviral particles were added to 293T-ACE2 target cells for 48 h at 37�C. Then, cells were lysed by the addition of

30 mL of passive lysis buffer (Promega) followed by one freeze-thaw cycle. An LB942 TriStar luminometer (Berthold Technologies)

was used to measure the luciferase activity of each well after the addition of 100 mL of luciferin buffer (15mM MgSO4, 15mM

KPO4 [pH 7.8], 1mMATP, and 1mMdithiothreitol) and 50 mL of 1mMd-luciferin potassium salt (Thermo Fisher Scientific). RLU values

obtained were normalized to D614G.

Virus neutralization assay
To produce SARS-CoV-2 pseudoviruses, 293T cells were transfected with the lentiviral vector pNL4.3 R-E� Luc (NIH AIDS Reagent

Program) and a plasmid encoding for the indicated spike glycoprotein (D614G, BA.2, BA.4/5, BA.2.75, BA.4.6 or BQ.1.1) at a ratio of

10:1. Two days post-transfection, cell supernatants were harvested and stored at�80�Cuntil use. For the neutralization assay, 293T-

ACE2 target cells were seeded at a density of 13104 cells/well in 96-well luminometer-compatible tissue culture plates (PerkinElmer)

24h before infection. Pseudoviral particles were incubated with several plasma dilutions (1/50; 1/250; 1/1250; 1/6250; 1/31,250) for

1h at 37�C andwere then added to the target cells followed by incubation for 48 h at 37�C. Cells were lysed by the addition of 30 mL of

passive lysis buffer (Promega) followed by one freeze-thaw cycle. An LB942 TriStar luminometer (Berthold Technologies) was used to

measure the luciferase activity of each well after the addition of 100 mL of luciferin buffer (15mM MgSO4, 15mM KH2PO4 [pH 7.8],

1mM ATP, and 1mM dithiothreitol) and 50 mL of 1mM d-luciferin potassium salt (Prolume). The neutralization half-maximal inhibitory

dilution (ID50) represents the plasma dilution to inhibit 50% of the infection of 293T-ACE2 cells by pseudoviruses.

Virus capture assay
The assay was previously described.50 Briefly, pseudoviral particles were produced by transfecting 23106 293T cells with pNL4.3 R-

E� Luc (3.5 mg), pSVCMV-IN-VSV-G (1 mg) and plasmids encoding for SARS-CoV-2 spike glycoproteins (3.5 mg) using the standard

calcium phosphate protocol. 48 h later, virion-containing supernatants were collected. White MaxiSorp ELISA plates (Thermo Fisher

Scientific, Waltham, MA, USA) were plated with the CV3-25 mAb at 0.05 mg per well overnight at 4�C. Unbound antibodies

were removed by washing the plates twice with PBS. Plates were subsequently blocked with 3% BSA in PBS for 1 h at room tem-

perature. After the washes, 200 mL of virus-containing supernatant was added to the wells. Viral capture by the Ab was visualized by

adding 13104 SARS-CoV-2-resistant Cf2Th cells in full DMEMmedium per well. Forty-eight hours post-infection, cells were lysed by

the addition of 30 mL of passive lysis buffer (Promega, Madison, WI, USA.) and three freeze-thaw cycles. An LB941 TriStar luminom-

eter (Berthold Technologies) was used to measure the luciferase activity of each well after the addition of 100 mL of luciferin buffer

(15mMMgSO4, 15mMKH2PO4 (pH 7.8), 1mMATP, and 1mMdithiothreitol) and 50 mL of 1mMD-luciferin potassium salt (Prolume,

Randolph, VT, USA.).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Symbols represent biologically independent samples from SARS-CoV-2 naive, BTI or PI individuals. Statistics were analyzed using

GraphPad Prism version 8.0.1 (GraphPad, San Diego, CA). Every dataset was tested for statistical normality and this information was

used to apply the appropriate (parametric or nonparametric) statistical test. p values <0.05 were considered significant; significance

values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, ns, non-significant.
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