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ABSTRACT 

Pancreatic β-cell expansion throughout the neonatal period is essential to generate the appropriate 

mass of insulin-secreting cells to maintain blood glucose homeostasis later in life. Hence, defects 

in this process can predispose to diabetes development at adulthood. Global profiling of the 

transcripts in pancreatic islets of newborn and adult rats revealed that the expression of the long 

non-coding RNA H19 is controlled by the transcription factor E2F1 and is profoundly 

downregulated during the post-natal period. H19 silencing decreased newborn β-cell expansion 

while its re-expression promoted proliferation of adult β-cells via a mechanism involving the 

microRNA let-7 and the activation of Akt. The offspring of rats kept on a low protein diet during 

gestation and lactation display a reduced β-cell mass and an increased risk to develop diabetes at 

adulthood. We found that the islets of newborn rats born from dams on a low protein diet express 

lower levels of H19. Moreover, we observed that H19 expression raises in the islets of obese 

mice under conditions of increased insulin demand. Taken together, our data suggest that the 

lncRNA H19 plays an important role in postnatal rat β-cell mass expansion and contributes to the 

mechanisms compensating for insulin resistance under obesity conditions.  
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INTRODUCTION        

Pancreatic β-cells, located within the islets of Langerhans, maintain blood glucose levels in a 

physiologically relevant range by precisely adapting insulin secretion to circulating levels of 

nutrients, particularly glucose (1). Insulin-secreting cells acquire a fully differentiated phenotype 

only after birth. Before weaning neonatal β-cells produce and release insulin in response to amino 

acids but the capacity to secrete insulin in response to a rise in glucose levels, a characteristic 

feature of fully mature β-cells, is still missing (2; 3).  

Another hallmark of newborn β-cells is a strong proliferative capacity that allows a massive 

expansion of the number of insulin-secreting cells during the postnatal period. After weaning, the 

replication slows down to maintain a more or less constant β-cell mass during the entire life (4). 

Defective β-cell expansion early in life can result in an insufficient mass of insulin-secreting cells 

at adulthood, predisposing the individuals to the development of diabetes. Under conditions 

associated with increased metabolic demands, such as pregnancy and obesity, β-cells raise their 

secretory activity and their replication rate.  Failure to compensate for insulin-resistance linked to 

pregnancy or obesity can lead to hyperglycemia and eventually to the onset of gestational or type 

2 diabetes, respectively (5). 

So far, most studies investigating the mechanisms driving postnatal β-cell maturation focused on 

protein-coding genes. However, the advent of high throughput RNA sequencing revealed that 

most genome sequences generate RNA molecules which are not coding for proteins (6). We now 

know that the non-coding transcriptome is involved in multiple biological processes influencing 

development, differentiation and metabolism (7-9). Emerging evidence points to a role for non-

coding RNAs also in postnatal β-cell maturation. Indeed, we showed that the nutritional shift at 

weaning from a fat-rich mother milk to a carbohydrate-rich chow diet triggers vast changes in the 

microRNA (miRNA) profile of newborn β-cells that are instrumental for the acquisition of 

glucose responsiveness and of a mature secretory phenotype (10).  

Beside small non-coding RNAs, the mammalian transcriptome includes a large number of long 

non-coding RNAs (lncRNAs) containing more than 200 nucleotides (11-13). Recently, thousands 

of lncRNAs were identified in human and mouse pancreatic islets (14-16). Many of these 

lncRNAs are specifically expressed in islets and are induced during β-cell differentiation. These 
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findings suggest a role for lncRNAs in developmental programming, proper functioning and/or 

maintenance of pancreatic islet cells.  

The aim of this project was to identify lncRNA-based mechanisms that contribute to the 

acquisition of the mature β-cell phenotype and that control the size of the functional β-cell mass. 

Screening for lncRNAs differentially expressed during islet postnatal maturation revealed the 

downregulation of H19, a maternally imprinted intergenic lncRNA generated from the Igf2 locus 

(17). We provide evidence indicating that H19 contributes to β-cell mass expansion in newborn 

rats and is re-expressed in adult islets under conditions of increased insulin demand. Moreover, 

we show that the level of H19 is lower in the islets of pups born from dams kept on a low protein 

diet during gestation and lactation, and which display a reduced β-cell mass and increased risk to 

develop diabetes at adulthood. Our findings provide new insights into the role of H19 in newborn 

and adult rodent β-cells and unveil a potential mechanism explaining the increased diabetes 

susceptibility of the offspring of mothers kept on deleterious dietary conditions during pregnancy 

and lactation. 
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RESEARCH DESIGN AND METHODS 

Chemicals 

IL-1β, hexadimethrine bromide, histopaque 1119 and 1077 were obtained from Sigma-Aldrich 

(St. Louis, MO). 3-isobutyl-1-methylxanthine (IBMX) was purchased from Merck (Whitehouse 

Station, NJ, USA), IFN-ɣ from R & D Systems (Minneapolis, MN, USA) and TNF-α from Enzo 

Life Sciences (Farmingdale, NY, USA).  

Animals 

Three month old male Sprague Dawley rats were purchased from Janvier Laboratories (Le 

Genest-Saint-Isle, France). P1 to P31 pups were obtained by collecting the offspring of pregnant 

Sprague Dawley rats. Pregnant Wistar rats were fed during gestation and lactation with a control 

diet (20% [w/w] protein) or an isocaloric low protein diet (8% [w/w] protein) (Hope Farm, 

Woerden, the Netherlands) (18). 13-16 week old C57BL/KsJ db/db and C57BL/6J ob/ob mice 

and age-matched lean control mice (db/+ C57BL/KsJ or -/- C57BL/6J, respectively) were taken 

from the Garvan Institute breeding colonies. 5-week old C57BL/6 male mice (Charles River 

Laboratories, Raleigh, NC, USA) were fed with a normal (ND) or a high-fat diet (HFD) for 8 

weeks (Bioserv F-3282, 60% energy from fat, Frenchtown, NJ, USA). The mice that after 7.5 

weeks on HFD weighed between 33 and 39 g were classified as low responders (LDR), while 

those weighing between 39 and 45 g were defined as high responders (HDR). Weight, glycemia 

and insulinemia of these animals were reported previously (19).  

Microarray profiling 

RNA was isolated from pools of islets of 5 P10 pups from 3 different mothers and 3 individual 

adult rats. mRNA and lncRNA profiling using the Rat lncRNA Array v2.0 and data analysis were 

carried out by Arraystar (Rockville, MD, USA). Differentially expressed transcripts were 

identified through Volcano Plot filtering (fold change ≥2, nominal p ≤0.05). The data are 

available on the GSE106919 record using the secure token: qfolagkublsfrov. 

Culture of INS832/13 and 1.1B4 cells 
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The rat β-cell line, INS832/13 was kindly provided by Dr. C. Newgard (Duke University, USA)  

and was cultured as described (20). The cells were seeded at a density of 4x104/cm2 for 

immunocytochemistry and cell death assessment, at 7.5x104/cm2 for insulin secretion and 

1.1x105/cm2 for RNA isolation. The human β-cell line 1.1B4 was generously provided by Dr. P. 

Flatt (University of Ulster) and was cultured as described (21).  

Isolation and culture of islet cells 

Rat pancreatic islets were isolated by collagenase digestion (22), purified on a Histopaque density 

gradient and then cultured as described (10). Islet cells were dissociated by trypsinization and 

seeded at a density of 5x104/cm2 for immunocytochemistry and 105/cm2 for RNA isolation.

Fluorescence activated cell sorting  

Dissociated islet cells from newborn and adult rats were sorted by FACS based on β-cell 

autofluorescence (23). Immunocytochemistry analysis using anti-insulin antibodies (#A0564, 

Dako, Basel, Switzerland) showed that 94 ± 1% of the cells in the purified fraction were insulin-

positive. 

Cell transfection 

Overexpression was achieved by transfecting a pcDNA3 plasmid harboring the sequences of the 

lncRNA using Lipofectamine 2000TM (Invitrogen, Carlsbad, CA) in INS832/13 cells or 

Lipofectamine 3000TM (Invitrogen) in islet cells. Downregulation was obtained by transfecting 

siRNAs against GFP (Eurogentec, Seraing, Belgium), H19 (Thermo Fisher Scientific, Waltham, 

MA, USA), Ago2 or E2f1 (GE Healthcare Europe) or miRCURY LNA™ microRNA Inhibitors 

(anti-miRs) (Exiqon, Bedvaek, Denmark) using Lipofectamine 2000TM (INS832/13 cells) or 

Lipofectamine RNAiMAX TM (Invitrogen) (islet cells). 

RNA isolation and detection 

RNA was isolated with the miRNeasy kit (Qiagen, Basel, Switzerland) for islet cells and with the 

ZR RNA MiniPrepTM kit (Zymo Research, Irvine, CA) for INS832/13 cells. The samples were 

treated with DNase (Promega, Madison, WI, USA) prior to retro-transcription using the M-MLV 

reverse transcriptase, RNAse H minus (Promega). For quantification of lncRNAs and mRNAs, 
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Real-time PCR was performed using iQ SYBR Green mix. LncRNA and mRNA primers are 

provided in the supplemental table 1. For miRNA quantification, Real-time PCR was carried out 

using the miRCURY LNATM Universal RT microRNA PCR kit (Exiqon).  

Immunocytochemistry 

Glass coverslips were coated with poly-L-lysine alone for dissociated islet cells or together with 

laminin for INS832/13 cells.  The cells were fixed with cold-methanol and permeabilized with 

PBS supplemented with 0.5% (v/v) saponin (Sigma-Aldrich). The coverslips were incubated in 

blocking buffer (PBS supplemented with 0.5% (v/v) saponin and 1% (w/v) BSA (Sigma-Aldrich) 

and then exposed to primary antibodies at the following dilutions: 1:700 rabbit anti-Ki67 

(#ab15580, Abcam, Cambridge, UK) and 1:500 guinea pig anti-insulin (#A0564, Dako). After 

washing, the coverslips were incubated with goat anti-rabbit Alexa-Fluor-488 or goat anti-guinea 

pig Alexa-Fluor-555, diluted at 1:500 (#A11008 and #A21435 respectively, ThermoFisher 

Scientific). Finally, they were incubated with Hoechst 33342 (Invitrogen), mounted on glass 

slides and visualized with a Zeiss Axiovision fluorescence microscope. For BrdU 

immunocytochemistry, the cells were incubated for 48h with BrdU (#ab142567, Abcam). After 

exposure to blocking buffer and prior exposure to mouse anti-BrdU antibody (1:400, #BD55627, 

BD Biosciences), DNA was denatured with 2N HCl. BrdU-positive cells were visualized with a 

goat anti-mouse Alexa-fluor-555 antibody (1:500; #A21422 ThermoFisher Scientific). Examples 

of Ki67 and BrdU positive cells are provided in Supplementary Fig.1. At least 1000 cells were 

analyzed for each condition.  

Insulin secretion 

Insulin secretion from INS832/13 cells was carried out as described previously (10). 

Cell death assessment 

INS832/13 cells were washed with PBS and incubated with Hoechst 33342 1µg/ml. The fraction 

of cells displaying pycnotic nuclei was scored after visualization under fluorescence microscopy 

(AxioCam MRc5, Zeiss).  As a positive control for apoptosis, a fraction of cells were exposed 

during 24h to a combination of cytokines (TNF-α 10 ng/ml, IL-1β 0.1 ng/ml, IFN-ɣ 30 ng/ml). 

About 500 cells were counted for each condition. 
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Protein extraction and western blotting 

INS832/13 cells were washed in cold PBS and incubated for 15min in lysis buffer (20 mM Tris, 

pH 7.5, 2 mM EDTA and protease inhibitors (Roche)). The cells were then scraped, briefly 

sonicated and centrifuged to eliminate nuclei and cell debris. 30µg of proteins were loaded on 

acrylamide gels and transferred to polyvinylidine fluoride membranes. The membranes were 

placed for 1h in blocking buffer (0.1% (v/v) Tween 20 and 5% (w/v) BSA followed by overnight 

incubation at 4˚C with primary antibodies diluted in blocking buffer. The antibodies used were 

the following: Rabbit anti-phospho-Akt, 1:500 (Thr308 (#9275S) or Ser473 (#4060S), Cell 

Signaling, Danvers, MA, USA); mouse anti-Akt, 1:500 (#2920, Cell Signaling); mouse anti-actin 

α, 1:15000 (#MAB1501, Merck & Cie, Schaffhausen, Switzerland). After one hour exposure at 

room temperature to horseradish peroxidase-coupled secondary antibodies, 1:15000, (Anti-Rabbit 

IgG (#111-165-144) and anti-mouse IgG (#111-165-166), Jackson ImmunoResearch Europe Ltd., 

Suffolk, UK) immunoreactive bands were visualized by chemiluminescence (ThermoFisher 

Scientific) using the ImageQXSuant LAS-4000 System.   

Luciferase assay 

The luciferase construct with eight let-7 target sites in the 3’UTR of the Renilla gene was a gift 

from Yukihide Tomari (psiCHECK2-let-7 8x; Addgene plasmid # 20931). Luciferase activity 

was measured using a dual luciferase reporter assay (Promega, Madison, WI, USA) and was 

normalized to the Firefly activity generated by the same plasmid. 

Statistical analysis 

Data are means ±SEM. Statistical significance was tested by unpaired or one sample Student’s t 

test when two sets of data were analyzed and by one-way ANOVA followed by multiple 

comparison tests (Dunnet’s or Tukey’s) or Kruskal-Wallis with multiple comparison test (Dunn), 

when the experiments included more than two groups. H19 expression and phenotypic 

characteristics of the mice were correlated by linear regression, using F-test (Graphpad statistical 

package, La Jolla, CA). 
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RESULTS 

To assess the contribution of lncRNAs to the acquisition of a fully differentiated β-cell 

phenotype, we used a microarray to search for lncRNAs differentially expressed between adult 

and neonatal rat islets (ten days after birth, P10). The array includes 5496 lncRNAs, 896 of which 

were upregulated and 1018 downregulated during islet maturation (fold change ≥2; nominal p-

value ≤0.05) (GSE106919, Fig.1a). We decided to investigate in more detail the role of lncRNAs 

displaying the largest expression changes and, to avoid possible interferences from protein-

coding genes, we focused exclusively on intergenic lncRNAs. Interestingly, the expression of 

H19 (NR_027324), a lncRNA generated from a maternally imprinted locus, was 303 times lower 

in the islets of adult compared to those of newborn rats (Fig.1b). These findings were confirmed 

by RT-PCR in whole islets (Fig.1c) and in FACS-purified β-cells (Fig.1d). A time course 

spanning the postnatal period showed that the expression of H19 is highest between P1 and P5 

and strongly decreases thereafter (Fig.1e). 

Several transcription factors can regulate the expression of H19. The level of one of these, E2F1, 

is reduced both in islets (Fig.1c) and purified β-cell (Fig.1d) upon postnatal maturation and 

displays an expression pattern that follows that of H19 (Fig.1e). Silencing of E2F1 in P10 islets 

(Supplementary Fig.2a) resulted in the downregulation of H19 (Fig.1f), suggesting that this 

transcription factor contributes to the control of H19 expression during the postnatal period. In 

contrast, silencing of c-Myc, a transcription factor that regulates H19 expression in other cell 

types (24; 25) and which is downregulated upon β-cell maturation had no effect on the level of 

this lncRNA (Supplementary Fig.3).     

To elucidate the role of H19, we first investigated its function in the rat β-cell line INS832/13. 

Overexpression of H19 to reach levels comparable to those measured in neonatal islets 

(Supplementary Fig.4a), led to an increase in proliferation (Fig.2a) without effects on cell 

survival measured by scoring the pycnotic nuclei (Fig.2b) or by TUNEL assay (Supplementary 

Fig.5). The rise of H19 did also not affect insulin content or secretion (Fig.2c and d). Neonatal rat 

β-cells display a much higher proliferation rate compared to adult β-cells (10). To assess whether 

H19 contributes to postnatal β-cell expansion, the level of this lncRNA was reduced by RNA 

interference (Supplementary Fig.2b). Silencing of H19 in neonatal β-cells resulted in a profound 

decrease in proliferation both when assessed by scoring the number of Ki67+ (Fig.2e) and of 
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BrdU+ cells (Supplementary Fig.6). Moreover, restoration in adult rat islets of elevated levels of 

the lncRNA (Supplementary Fig.4c), induced a four-fold increase in the proliferating β-cells 

(Fig.2f). These effects were independent from Igf2 the levels of which were unchanged by the 

modulation of H19 expression (Supplementary Fig.7). Similar results were obtained upon 

overexpression of human H19 in the human β-cell line 1.1B4 (21) (Supplementary Fig.8). 

H19 has been proposed to exert its action by affecting the level or the activity of different 

miRNAs (26-28). To investigate whether the regulation of β-cell proliferation is mediated by 

miRNAs, we assessed the effect of H19 in cells in which the expression of Argonaute 2 (Ago2), a 

component of the RNA-induced silencing complex (RISC) that is essential for miRNA action 

(29), is reduced by RNA interference (Supplementary Fig.2c). We observed that H19-induced 

proliferation is lost in INS832/13 cells lacking Ago2 (Fig.3a), indicating that H19 action may be 

mediated by miRNAs. 

Two miRNAs, miR-675-5p and 3p, are produced upon processing of H19 (30). Indeed, 

overexpression of H19 in INS832/13 cells (Fig.3b and c) led to corresponding changes in the 

level of these miRNAs and silencing of H19 (Fig.3d and e), resulted in a decrease in miR-675-5p 

expression. Moreover, the expression profiles of these miRNAs throughout the postnatal period 

revealed a downregulation that parallels that of H19 (Fig.3f), suggesting that the effect of the 

lncRNA on β-cell proliferation may be mediated by these miRNAs. To assess this hypothesis, we 

transfected P5 islet cells with anti-miRs to block miR-675-5p or miR-675-3p (Supplementary 

Fig.9a and b). As shown in Fig.3g, while silencing of H19 reduced β-cell proliferation, blockade 

of miR-675-5p or miR-675-3p was without effect, indicating that the action of the lncRNA is 

likely to be independent from these miRNAs. 

H19 expression is induced during myoblast differentiation and has been proposed to sequester the 

miRNA let-7 (31). The expression of most let-7 isoforms is not modified upon islet postnatal 

maturation (10), but possible changes in the repressive activity of these miRNAs have not yet 

been investigated. To evaluate the activity of let-7 in P10 and adult islets we transfected a 

reporter construct containing eight let-7 target sites in the 3’ UTR of the renilla luciferase gene 

(32). We found that the luciferase activity of the let-7 sensor in adult rat islets is reduced 

compared to that of newborn islets, while the activity of a reporter lacking the let-7 target sites 

was not significantly different (Fig.4a), confirming a rise in the activity of let-7 family members 
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after postnatal maturation. Knock-down of let-7a with a specific inhibitor (Supplementary Fig.9c 

and d) led to an increase in proliferation of INS832/13 cells (Supplementary Fig.10). A similar 

tendency was observed in primary adult β-cells but the effect did not reach statistical 

significance, probably because of the presence of several other let-7 isoforms with overlapping 

functions. To circumvent this issue, adult β-cells were transfected with inhibitors targeting 

several let-7 family members (Supplementary Fig.9e). This resulted in a significant increase in β-

cell proliferation (Fig.4b). In view of these findings, we hypothesized that H19 could induce β-

cell proliferation by sequestering let-7, resulting in the de-repression of let-7 targets necessary for 

cell division. Using the RNAhybrid software (33), we identified several potential let-7 binding 

sites in the H19 sequence (Supplementary Fig.11) and generated a mutant lacking the two most 

likely let-7 target sequences (Supplementary Fig.12). To investigate if H19 acts by sequestering 

let-7, we overexpressed wild type and mutant H19 (Supplementary Fig.4b and d) and observed 

that the construct lacking the let-7 binding sites fails to trigger proliferation of INS832/13 and of 

dissociated adult islet cells (Fig.4c and d). These findings suggest that the proliferative effect of 

H19 may be at least in part mediated by preventing the interaction of let-7 with its endogenous 

target(s).  

The PI3K-Akt signaling pathway is a critical regulator of the β-cell mass (34). We measured the 

activation of Akt after overexpression of wild type H19 or of its inactive mutant. We observed an 

increase in Akt phosphorylation after overexpression of wild type H19 but not upon 

overexpression of the inactive mutant (Fig.5a and b). Akt protein levels were unchanged 

(Supplementary Fig.13).  Moreover, blockade of Akt phosphorylation using a pharmacological 

inhibitor (Fig.5c) prevented H19-induced proliferation of INS832/13 cells (Fig.5d) and of 

primary rat β-cells (Fig.5e). Similar results were obtained upon inhibition of PI3K activity with 

LY294002 (Supplementary Fig.14). Taken together, these findings indicate that H19 is likely to 

trigger β-cell proliferation by activating the PI3K-Akt signaling cascade. 

In view of the role of H19 in the control of β-cell proliferation, we investigated whether the 

expression of this lncRNA is modified under conditions associated with changes in the β-cell 

mass. The administration of a low protein (LP) diet to rats during pregnancy has a major impact 

on the offspring, resulting in reduced birth weight, impaired β-cell development and a lower β-

cell mass  (18; 35). These features are associated with an increased risk of impaired glucose 
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tolerance and type 2 diabetes in adult life. We analyzed the expression of H19 and of E2F1 in the 

islets of 10 day-old pups born from mothers kept on control or LP diet. We found that the level of 

both transcripts is reduced in the islets of pups born from rat dams on an LP diet (Fig.6a and b), 

suggesting that altered levels of E2F1 and H19 may contribute to the decrease in β-cell mass in 

the LP offspring. The level of miR-675-5p and miR-675-3p tended also to be reduced but the 

decrease did not reach statistical significance (Fig.6c and d). The let-7a was in contrast slightly 

increased (Supplementary Fig.15), potentially contributing to a reduction in neonatal β-cell 

proliferation.  

Ob/ob mice, which are leptin deficient, become severely obese but remain normoglycemic due to 

a compensatory expansion of their β-cell mass (36; 37). We found that the islets of ob/ob mice 

contain elevated levels of H19 compared to their wild-type littermates (Fig.7a). A similar 

increase in the expression of this lncRNA was also observed in the islets of insulin resistant and 

severely obese db/db mice lacking the leptin receptor and which become diabetic starting at about 

6-8 weeks of age (Fig.7b). Note that an analogous trend of upregulation was found for E2F1 (data 

not shown) (38-40). To assess whether similar changes in H19 expression can be observed under 

conditions of acquired obesity, we measured the level of this lncRNA in the islets of mice fed 

with a high fat diet (HFD) during 8 weeks (19). The animals were classified in two groups 

according to their response to the diet, (i) low responders to HFD (LDR), with mild obesity, 

insulin resistance and normoglycemia, and (ii) high responders to HFD (HDR) with much higher 

obesity, insulin resistance and hyperglycemia, but also with a significant increase in β-cell 

proliferation and β-cell mass (19).  We found H19 and E2F1 levels to be increased in the islets of 

the HDR group (Fig.7c and d).  Moreover, we observed a positive correlation between weight 

gain and H19 levels (Fig.7e).  

Together, our data suggest that in the face of insulin resistance re-expression of H19 may 

contribute to compensatory β-cell mass expansion in adulthood to achieve organismal glucose 

homeostasis. 
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DISCUSSION 

Increasing evidence points to lncRNAs as integral components of the transcriptional machinery 

controlling pancreas development and β-cell function (15; 16; 41; 42). Although some lncRNAs 

have already been functionally linked to islet embryonic development (41) and to the regulation 

of adult β-cell activities (41), so far none of these transcripts has been formally linked to postnatal 

maturation of insulin-secreting cells, a critical process for the acquisition of adult β-cell function. 

A better understanding of the events underlying the maturation of β-cells is needed to unravel the 

developmental origins of diabetes predisposition and would be a leap forward for the engineering 

of functional insulin-secreting cells for the treatment of diabetes. 

In this study, we detected 5496 lncRNAs expressed in newborn rat islets, 896 of which were 

upregulated and 1018 downregulated upon postnatal islet maturation. H19, a lncRNA conserved 

between rodents and humans, is one of the most strongly downregulated transcripts during the 

postnatal period in islet and FACS-sorted β-cells.  

The Igf2/H19 locus plays an important role in embryonic development and growth control (43). 

H19 is highly expressed during embryogenesis and is downregulated after birth in most tissues 

except in skeletal muscle and heart (44). We found that the transcription factor E2F1 is 

downregulated throughout β-cell maturation with kinetics superposing those of H19. E2F 

transcription factors play an important role in regulating cell survival and proliferation (45) and 

E2F1-/- mice display impaired postnatal β-cell proliferation and maturation resulting in an overall 

reduction of pancreatic size and in glucose intolerance at the adulthood (45). Moreover, ectopic 

expression of E2F1 in adult β-cells increases the proliferation of insulin-secreting cells both in 

vitro and in vivo (46). We found that silencing of E2F1 causes a downregulation of H19 in 

immature islets, pointing to a prominent impact of this transcription factor on the control of H19 

expression during the postnatal period. 

Our data indicate that H19 is not involved in the regulation of insulin secretion but affect 

decisively β-cell proliferation. Indeed, silencing of this lncRNA reduces β-cell proliferation in 

newborn rats while restoration of elevated levels of H19 promotes proliferation of adult β-cells. 

This proliferative effect necessitates the activation of Akt and of PI3 kinase but the events 

triggering this signaling pathway remains to be fully elucidated. H19 has been proposed to 
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mediate its effects by modulating the activity of a group of miRNAs, either by sequestering them 

(31), by controlling miRNA maturation  (47), or by directly generating two miRNAs, miR-675-

5p and -3p, encoded in the first exon of the lncRNA (30). The hypothesis of an involvement of 

miRNAs in H19 action is corroborated by the loss of the proliferative capacity of H19 in the 

absence of Ago2, a core component of the RISC complex that is essential for miRNA function 

(29). These findings confirm a role for Ago2 in the induction of β-cell proliferation (48). In these 

experiments we did not observe a significant decrease in proliferation under control conditions, 

probably because a transient reduction of Ago2 may not be sufficient to impact on basal 

proliferation. The level of miR-675-5p and -3p is tightly linked to the expression of H19 during 

the entire postnatal period. However, blockade of miR-675-5p or of miR-675-3p does not affect 

proliferation of newborn β-cells, indicating that H19 is acting via a different mechanism. In 

skeletal muscle, H19 act by sequestering let-7 (31; 49). Several observations in this study suggest 

that a similar mechanism may operate in β-cells. Indeed, blockade of let-7 increases adult β-cell 

proliferation and removal of two let-7 binding sites in the sequence of H19 reduces the 

proliferative capacity of the lncRNA. Our data do not exclude the interaction of let-7 with other 

domains of H19 or the binding of other miRNAs. The repressive activity of let-7 is higher in 

adult rat islets, which contain much less H19 compared to newborn islets. Since the level of most 

let-7 family members is not modified upon β-cell maturation (10), these findings suggest that 

H19 may control the availability of let-7. A general schema summarizing the proposed role of 

H19 in the regulation of β-cell proliferation is shown in Fig.8. Our model does not preclude the 

existence additional mechanisms through which H19 can modulate β-cell proliferation. Indeed, 

H19 may regulate enhancer and promoter activities, resulting in changes in the expression of 

neighboring genes such as Igf2, Cdkn1c, Kcnq1 and/or play important roles in the control of 

chromatin structure and of the imprinting regions. 

Our data provide congruent grounds for the idea that H19 sustains β-cell expansion in newborns 

and is required to achieve an adequate postnatal β-cell mass. Thus, exposure to environmental 

conditions during gestation affecting the expression of H19 could potentially result in a β-cell 

mass insufficient to cover the organism needs. Indeed, we found that the level of H19 is reduced 

in the islets of offspring from dams on LP diet throughout gestation and lactation and that display 

an increased risk of impaired glucose tolerance and type 2 diabetes in adult life (35). Consistent 

with these observations, reduced H19 levels were previously observed in islets from offspring of 
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gestational diabetes mellitus (50), another adverse intrauterine condition linked to reduced β-cell 

proliferation and diabetes susceptibility at adulthood (51). 

Adult β-cells undergo very little turnover and have low basal replication rates, which sustain 

metabolic homeostasis under normal conditions. However, pregnancy, obesity and β-cell 

recovery after injury are examples in which the systemic demand for insulin increases. To 

successfully compensate for the relative insulin deficiency that occurs during these metabolically 

pressured conditions, both proliferative and survival pathways are activated in insulin-secreting 

cells, to maintain blood glucose homeostasis and prevent the onset of diabetes (5). In this study, 

we observed the upregulation of H19 in different mouse models characterized by compensatory 

β-cell mass expansion in response to obesity and insulin resistance. These findings suggest that 

restoration of higher levels of H19 at adulthood in response to obesity associated insulin 

resistance may contribute to the expansion of the β-cell mass to counterbalance the diminished 

sensitivity of insulin target tissues and to prevent the onset of diabetes. Future studies involving 

the generation of gain and loss of function mice models will be needed to corroborate this 

hypothesis.  

Taken together, our observations uncover an important role for H19 in the control of newborn 

and adult rodent β-cell proliferation and shed new light on the mechanisms potentially 

contributing to diabetes susceptibility in the offspring of dams on deleterious dietary conditions 

during pregnancy and lactation. The level of H19 was reported to be higher in β-cells of young 

children compared to those of adult donors, indicating that similar changes may occur in humans 

(52). Moreover, despite differences in the nucleotide sequence we obtained evidence that human 

H19 can exert proliferative effects similar to rat H19. However, the mechanisms driving rodent β-

cell replication are often challenging to translate to humans. Thus, careful examination of the 

impact of H19 in primary human β-cells will be required before drawing definitive conclusions 

about the role of this non-coding RNA in humans.  

Future efforts will be needed to fully capture the complexity of the events triggering 

compensatory β-cell expansion seen under physiological (pregnancy) and pathophysiological 

(obesity) conditions. This knowledge will contribute to the design of novel means to combat β-

cell failure occurring in type 2 diabetes. 
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FIGURE LEGENDS 

Fig.1) Comparison of lncRNA expression between 10-day old and adult rat islets and 

regulation of H19 expression. (a) Volcano Plot representing the lncRNAs differentially 

expressed between P10 and adult islets. Up- or downregulated transcripts are depicted in red 

(nominal P<0.05, Fold change ≥│2│). H19 is indicated by the arrow. (b) Selected lncRNA with 

p-value, fold change, regulation and type.  The expression of H19 and E2F1 was measured by 

qRT-PCR in P10 and adult islets (c) or FACS-sorting purified β-cells (d). (e) Expression of H19 

and E2F1 in islets at the indicated ages was determined by qRT-PCR, normalized to 18S and 

expressed in fold change vs. P1. (f) Dissociated P10 rat islet cells were transfected with a siRNA 

against GFP or E2F1 for 48h. The expression of H19 was measured by qRT-PCR and expressed 

as fold change compared to control. The results are means±SEM of three (d) or four (c,e,f) 

independent experiments per group. *p<0.05, **p<0.01, ***P<0.001, ****P<0.0001 were 

determined by Student’s t-test or by one-way ANOVA with a Dunnett post-hoc test when more 

than 2 sets of data were analyzed. 

Fig.2) Functional role of H19 in β-cells. INS832/13 cells (a,b,c,d) or dissociated adult rat islet 

cells (f) were transfected with a control plasmid (pcDNA3) or a plasmid allowing the expression 

of H19 for 48h. (a,f) The fraction of proliferating cells was determined by scoring Ki67 positive 

cells. (b) Cell death was assessed by scoring the cells displaying pycnotic nuclei. The cells were 

incubated for the last 24h without or with a mix of cytokines. (c) Insulin secretion and insulin 

content (d) were measured by ELISA after 45 min of incubation with either 2mM or 20mM of 

glucose. (e) Dissociated P10 rat islet cells were transfected with a siRNA against GFP or H19. 

The fraction of proliferating insulin-expressing cells was determined by scoring Ki67 positive 

cells. The results are the means+SEM of three (b,e), four (f) five (c,d) or seven (a) independent 

experiments. Statistical differences from control conditions were assessed by Student’s t-test or 

by one-way ANOVA with a Dunnett post-hoc test when more than two conditions were 

compared. *P<0.05. 

Fig.3)    Involvement of miRNAs in H19 action. (a) INS832/13 cells were co-transfected with a 

siRNA against GFP or Ago2 (siGFP or siAgo2) and a control plasmid (pcDNA3) or a plasmid 

overexpressing H19. 48 h later, the fraction of proliferating cells was determined by scoring Ki67 
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positive cells. (b,c) INS832/13 cells were transfected for 48 h with a control plasmid (pcDNA3) 

or a plasmid expressing H19. (d,e) Dissociated P5 rat islet cells were transfected for 48 h with a 

siRNA against GFP or H19. miR-675-5p and -3p levels were measured by qRT-PCR, normalized 

to those of miR-130b-3p and expressed in fold change vs control condition (first column for each 

graph) or P1 levels for the postnatal islet time course expression (f). (g) Dissociated P5 rat islet 

cells were transfected with a control, a miR-675-5p or -3p inhibitor or with a siRNA against GFP 

or H19. 48 h later, the fraction of proliferating insulin-expressing cells was assessed by scoring 

Ki67 positive cells. The results are means±SEM of three (a-e) or five (f) independent 

experiments. Statistical differences from control conditions were determined by Student’s t-test 

or by one-way ANOVA with a Dunnett (a,f) or Tukey (g) post-hoc test, when more than 2 sets of 

data were analyzed. *p<0.05, ***P<0.001, ****P<0.0001. 

Fig.4) Let-7 family members participate in H19 action in β-cells. (a) Dissociated P10 or adult 

islet cells were transfected with a luciferase constructs containing (blue dots) or lacking (red dots) 

eight target sites for let-7 in its 3′ UTR. Luciferase activity was measured 48 h later. (b) 

Dissociated adult rat islet cells were transfected with a control inhibitor or with anti-miRs 

blocking all let-7 family members. INS832/13 cells (c) and dissociated adult rat islet cells (d) 

were transfected with a control plasmid (pcDNA3), a plasmid overexpressing H19 or a plasmid 

overexpressing a H19 form without let-7 binding sites (H19∆). Two days later, the fraction of 

proliferating insulin-expressing cells was assessed by scoring Ki67 positive cells. The results 

correspond to the means± SEM of three (a,b,c) or four (d) independent experiments. Statistical 

differences from control conditions were calculated by Student’s t-test or by one-way ANOVA 

with a Dunnett post-hoc test when more than two sets of data were analyzed. *p<0.05. 

Fig.5) H19 induces β-cell proliferation via the activation of Akt. (a) Representative western 

blot analysis of Akt phosphorylation at Thr-308 (P-Akt) in INS832/13 cells transfected with a 

control plasmid (pcDNA3), a plasmid overexpressing H19 or a H19 form without two binding 

sites for let-7 (H19∆). (b) The Western blots were analyzed by densitometry scanning and the 

abundance of P-Akt bands was normalized to that of actin α. (c,d) INS832/13 cells or primary rat 

islet cells (e) were transfected with a control plasmid (pcDNA3) or a plasmid expressing H19. 

After 48h, cells were exposed or not for 2h to 10 µM of the Akt inhibitor (Anti-Akt; ab142088). 

(c) Representative western blot analysis of AKT phosphorylation at Ser-478 (P-Akt) and Akt 
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protein expression. (d,e) The fraction of proliferating insulin-expressing cells was assessed by 

scoring those that were positive for Ki67. The results are means±SEM of three (d,e) or four (b) 

independent experiments. Statistical differences from control conditions were assessed by 

Kruskal-Wallis test with a Dunn post-hoc test (b) or by one-way ANOVA with a Dunnett post-

hoc test (d,e). *P<0.05. 

Fig.6) Expression of H19, E2F1, miR-675-5p and miR-675-3p in islets of offspring from low-

protein diet gestation and lactation.  H19 (a), E2F1 (b), miR-675-5p (c) and miR-675-3p (d) 

islet levels were measured by qRT-PCR in P10 control rats (Control) and P10 rat offspring from 

low-protein diet during gestation (LP), normalized to those of Ppia (a,b) or miR-130b-3p (c,d) 

and expressed in fold change. The results correspond to the means±SEM of four or six different 

individuals. Statistical differences from control pups were calculated by Student’s t-test: *p<0.05.  

Fig.7) H19 participates in β-cell mass expansion under obesity associated insulin resistance 

conditions. RNA levels were measured by qRT-PCR in islets from wt/wt and ob/ob mice (a), 

from wt/db and db/db mice (b), and in islets of mice fed with a normal chow diet (ND) or with 

high fat diet: low diet responders (LDR) and high diet responders (HFD) (c,d). (e) Linear 

regression analysis between H19 levels and weight before sacrifice of mice fed with a normal or 

high fat diet. Statistical differences from control mice (wt/wt, wt/db or ND) were calculated by 

Student’s t-test (a,b), by Kruskal-Wallis test with a Dunn post-hoc test (c) or by one-way 

ANOVA with a Dunnett post-hoc test (d). F-test was performed to measure significance in e. 

*P<0.05.

Fig.8) Model representing our view on the role of H19 in the control of β-cell proliferation.

We propose a positive feedback loop, where growth stimuli activate the PI3K and trigger the 

phosphorylation of Akt. This induces the activation of cyclin/cdk complexes that phosphorylate 

Rb, causing the release and the activation of E2F1. This results in a rise in H19 expression that 

binds let-7, relieving the repression of the targets of these miRNAs and further enhancing the 

activation of the PI3K/Akt pathway and cell cycle entry. Solid arrows indicate proven 

interactions while dotted lines show putative mechanisms inferred from our observations. 
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Supplementary table 1. List of primers used for measuring RNA levels by qRT-PCR. 

Specie Primer 

name 

Sequence 

Rat Ago2-F 5’-CCAGATGAAGAACGTGCAGA-3’ 

Ago2-R 5’-CGGCAGCAATTGAAGGTTTC-3’ 

Rat c-Myc-F 5’-CGAGCTGAAGCGTAGCTTTT-3’ 

c-Myc-R 5’-CTCGCCGTTTCCTCAGTAAG-3’ 

Rat E2f1-F 5’-GGCAAACCTGGGGAATAAGC-3’ 

E2f1-R 5’-ATGGCTGTCAGTCTGTCTCC-3’ 

Mouse E2f1-F 5’-CCCTACCCAAGAGTTGCTGA-3’ 

E2f1-R 5’-TAGGAAGGACGCATACCCAC-3’ 

Rat Gapdh-F 5’-ATGGTGAAGGTCGGTGTGAA-3’ 

Gapdh-R 5’-TCTCGCTCCTGGAAGATGG-3’ 

Mouse Gapdh-F 5’-TGCACCACCAACTGCTTAGC-3’ 

Gapdh-R 5’-GGCATGGACTGTGGTCATGAG-3’ 

Rat and mouse Hprt1-F 5’-AGTCCCAGCGTCGTGATTAG-3’ 

Hprt1-R 5’-AATCCAGCAGGTCAGCAAAG-3’ 

Human Hprt1-F 5’-CCCTGGCGTCGTGATTAGTG-3’ 

Hprt1-R 5’-GCTACAATGTGATGGCCTCCC-3’ 

Rat H19-F 5’-GCCTGAGTCTCTCCGTATGG-3’ 

H19-R 5’-GAAGGAAGGTGCGTTGAACA-3’ 

Mouse H19-F 5-‘AATGGTGCTACCCAGCTCAT-3’ 

H19-R 5’-TCAGAACGAGACGGACTTAAAGAA-3’ 

Human H19-F 5’-GCACCTTGGACATCTGGAGT-3’ 

H19-R 5’-TTCTTTCCAGCCCTAGCTCA-3’ 

Rat Igf2-F 5’-GGGACGTGTCTACCTCTCAG-3’ 

Igf2-R 5’-GTAACACGATCAGGGGACGG-3’ 

Rat Ppia-F 5’-CCACCGTGTTCTTCGACATC-3’ 

Ppia-R 5’-TTGCCACCAGTGCCATTATG-3’ 

Rat 18s-F 5'-GCAAATTACCCACTCCCGAC-3' 

18s-R 5'-CCGCTCCCAAGATCCAACTA-3' 
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Supplementary figure 1

Supplementary Fig.1. Representative images of primary rat β-cells double

positive for insulin and Ki67 (upper panels) or for insulin and BrdU (lower

panel) are indicated by the arrowheads.



Supplementary figure 2

Supplementary Fig.2. Confirmation of the downregulation of the selected genes in

dispersed P10 islet cells and INS832/13 cells. Dissociated islet cells from P10 rats (a, b)

and INS832/13 cells (c) were transfected for two days with a siRNA against GFP (control),

E2F1 (a), H19 (b) or Ago2 (c). The expression of each gene was measured by qRT-PCR,

normalized to that of Hprt1 (a), 18s (b) or actin β (c) and is presented in fold change over the

respective controls. The results are means ± SEM of four (b,c) or five (a) independent

experiments. Statistical differences were calculated by Student’s t-test: *p<0.05, **p<0.01.
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Supplementary Fig.3. c-Myc does not control H19 expression in newborn rat islets.
a) c-Myc expression was measured by qRT-PCR in the islets of P10 and adult rats (n=3).
b,c) Dissociated islet cells from five day old rats were transfected with a control siRNA or
with an siRNA against c-Myc for 72 hours. The expression of c-Myc (b) and H19 (c) was
measured by qRT-PCR, normalized to Ppia and expressed in fold changes over control.
The results are the mean + SEM of four (b) or three (c) independent experiments.
Statistical differences were determined by Student’s t-test. *p<0.05; **p<0.01.

Supplementary figure 3

P 1 0  A d u lts

0 .0

0 .5

1 .0

1 .5

c
-M

y
c

 e
x

p
r
e

s
s

io
n

(F
o

ld
 c

h
a

n
g

e
)

*a

b c



H
1

9

(F
o

ld
 c

h
a

n
g

e
)

p c D N A 3  H 1 9

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

*

a

p c D N A 3  H 1 9

0

1 0 0

2 0 0

3 0 0

H
1

9

F
o

ld
 c

h
a

n
g

e

*

H
1

9


(F
o

ld
 c

h
a

n
g

e
)

p c D N A 3  H 1 9

0

1 0 0

2 0 0

3 0 0

*

H
1

9


F
o

ld
 c

h
a

n
g

e
p c D N A 3  H 1 9

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0 *

b

c d

Supplementary figure 4

Supplementary Fig.4. Confirmation of upregulation of the indicated transcripts in

INS832/13 cells and dispersed rat islet cells. INS832/13 cells (a,b) and dissociated islet cells

from adult rats (c,d) were transfected for two days with an empty plasmid (pcDNA3) or a plasmid

allowing the expression of H19 or a H19 mutant lacking the let-7 binding sites (H19∆). The

expression of each transcript was measured by qRT-PCR, normalized to that of Gapdh and

expressed in fold change. The results are means ± SEM of three (a,b) to four (c,d) independent

experiments. Statistical differences were calculated by Student’s t-test: *p<0.05.



Supplementary Fig.5. Effect of H19 overexpression on apoptosis. INS832/13 cells were

transfected for 48 hours with a control plasmid (pcDNA3) or a plasmid expressing H19. The

cells were incubated with or without a mix of pro-inflammatory cytokines (TNFα; IL1-β and IFNγ)

for 24 hours. Cell death was assessed by TUNEL assay. The results are the means + SEM of

three independent experiments. Statistical differences from control conditions were assessed by

ANOVA analysis with Dunnett’s post-hoc. *p<0.05.
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Supplementary figure 6

Supplementary Fig.6. Confirmation of the effect of H19 silencing on neonatal β-cell

proliferation. Dissociated islet cells from 10 days old rats were transfected with a siRNA

against GFP (control) or H19 and were incubated with BrdU for 48 hours. The fraction of

proliferating insulin-expressing cells was assessed by scoring the cells double positive for

insulin and BrdU. The data correspond to the mean + SEM of three independent

experiments. Statistical difference from control condition was determined by Student’s t-

test. *p<0.05.



Supplementary figure 7
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Supplementary Fig.7. Expression of Igf2 after modulation of H19 levels. (a) INS832/13
cells were transfected for 48 hours with a control plasmid or a plasmid allowing the
overexpression of H19. (b) Dispersed islet cells from P10 rats were transfected with a
siRNA against GFP or against H19. The expression of Igf2 was measured by qRT-PCR,
normalized to those of Gapdh (a) or Ppia (b). The level of Igf2 under control conditions was
set to one and is indicated by the dotted line. The results are means + SEM of two (b) to
three (a) independent experiments. Statistical differences from control conditions were
assessed by Student’s t-test.
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Supplementary Fig.8. Effect of H19 on human β-cell proliferation. Human 1.1 B4 cells

were transfected with a control plasmid or a plasmid allowing the overexpression of human

H19 for 48 hours. (a) The expression of H19 was measured by qRT-PCR, normalized to

that of Hprt1 and expressed in fold change. (b) The fraction of proliferating cells was

assessed by scoring Ki67 positive cells. The data correspond to the means + SEM of three

(a) or four (b) independent experiments. Statistical differences from control conditions

were determined by Student’s t-test. *p<0.05.
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Supplementary Fig.9. Confirmation of the downregulation of selected miRNAs in

INS832/13 and rat islet cells. Dissociated islet cells from P5 rats (a,b), adult rats (d,e) and

INS832/13 cells (c) were transfected with a control anti-miR (anti-control) or with anti-miR

directed against miR-657-5p (a), miR-675-3p (b), let-7a (c,d) or all let-7 family members (e).

The expression of each miRNA was measured by real-time PCR and expressed in fold

change. The results are means of two (d), three (b,c,e) or four (a) independent experiments

and statistical differences were calculated by Student’s t-test: *p<0.05, **p<0.01, ***P<0.001,

****p<0.0001.
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Supplementary Fig.10. Effect of a specific inhibitor of anti-Let-7a on β-cell

proliferation. INS832/13 (a) and dissociated adult rat islet cells (b) were transfected

with a control inhibitor or with an anti-miR specifically blocking let-7a. Two days later,

the fraction of proliferating insulin-expressing cells was assessed by scoring Ki67

positive cells. Statistical differences from control conditions were assessed by

Student’s t-test. * p<0.05
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Supplementary figure 11

Supplementary Fig.11. Main potential binding sites for let-7 present in the rat

H19 sequence. Representative binding sites for seven let-7 isoforms. Red letters

show the seed sequence of let-7.



Supplementary figure 12

GGGGTGGGGGGTAATGGGGAAACTGGGGAAGATGGGAGTGCTGGAGGAGAGTTGTGGGGTCCGAGGAGCACCTCGG

CATCTGGAGTCTGGCAGGAGTGTTGAAGGACTGAGGGGCTAGCTCGGGCAGGGCAAAGGCAGCAGGACCTGGGAGG

AAGGAGCATGGTGTGGTTCCCAGGCATTGCAGAGGCTGGAAAACATCGGTGTGGGGTTGAAGGGCCTGAGCTAGGG

TTGGAGAGGAACGGGGAGCCAGACATTCATCCCGGTCACTTTTGGTTACAGGACGTGGCGGCTGGTCGGATACAGG

GGAGCTGCTGGGAAGGGTTCGACCCCAGACCTGGGCAGTGAAGGTGTAGCTGGCAGCGGTGGGCAGGTGAGGACCG

CCGTCTGCTGGGCAGGTGAGTCTCCTTCTTCTCTCTTGGCCTCGCTGCACTGACCTTCTAAAAGGTTTAGAGAGCG

AGGCCGCTGAGAAGAAGCAGCTGACCTCCCAACAGAATGGCACATAGAAAGGCAGGACAGTTAGCAAAGGAGACAT

CGTCTCGGGGGGAGCCGAGACAGAACAAGGCTGGGGGACCATTGGGCACCCCGGAGTGGAAAGAGCTTTTAGAGAG

AAGATAGAAGAGGTGCAGGGCTGCCAGTCAAGACTGAGGCTGCTGCCTCCAGGCAAGTGATAGGAGGCCTTGGAGA

CAGTGGCAGAGACTATGGGATCCAGCAAGAGCAGAAGCATTCTAGGCTGGGGTCAAACAGGGCAAGATGGGGGTCA

CAGGACACAGATGGGTCCCCAGCCGCCACCACATCCCACCCACCGTAATTCATTTAGAAGCAGGTTCAAGAGTGGC

TCTGGCAGGGCCTTCTGAGGCCTTTGCCAGAGCTTCGATGGCCGGAGAACGGGAAAGAAGGGCAGTGCAGGGTGTC

AACAGGAAGGGAACGGGGGCTGCAGGTATCGGACTCCAGAGGGATTTTACAGCAAGGAGGCTGCAGTGGGTCCAGC

CTGCAGACACACCATTCCCATGAGGCACTGCGGCCCAGGGACTGGTGCGGAAAGGGCCCACAGTGGACTTGGTGCA

CTGTATGCCCTAACCGCTCAGTCCCTGGGTCTGGCATGACAGACAGAACATTTCCAGGGGAGTCAAGGGCACAGGA

TGAAGCCAGACAAGGCGAGGCAGGTGGGGCAGAATGAATGAGCTTTCTAGGGAGGGAGGTTGGGTGCAGGTAGAGC

GAGGTAAAGCAGCTGGGGTGGTGAGCCAGCGAGGCACTGGCCTCCAGAGTCCGTGGCCAAGGAGGGCCTTGCGGGC

GGCGACGGAGCAGTGATCGGTGTCTCGGAGAGCTCGGACTGGAGACTAGGCCAGGTCTCTAGCAGAAGTGGATGTG

CCTGCCAGTCACTGAAGGCGAGGATGACAGGTGTGGTCAACGTGATAGAAAGACATGACATGGTCCGGTGTGATGG

AGAGGACAGAAGGACAGTCATCCAGCCTTCCTGAACACCGTGGGCTGGTGCCGTGGGACACTGCCGTAGAAGCCGT

CTGTTCTTTCCTTTGCCCAAAGAGCTAACACATCTCTGCTGCTCTCTGGATCCTCTTCCCATACAACTTGAACCCT

CAAGATGAAAGAAATGGTGCTACCCAGCTCATGTCTGGGCCTTTGAATCCGGGGACTTCTTTAAGTCCGTCTAGTT

CTGAATCAAGAATATGCTGCACTCAGAACACTACACTACCTGCCTCAGGAATCGGCTCGAAGGTAAAGCTGAAGGA

ACAGACGGTGACAACATCTTGAAAGAGCAGACCCACACAGCACCCACCCACCCCTGAGACTCCATCTTCATGGCCA

ACTAACTCTGCCTGGCCCGGGAGACCACCACCCACATCATCCTGGAGCCAAGCCTCTAGCCCGGGATGACTTCATC

ATCTCCCTCCTGTCTTTTTTCTTCTTCCTCCTTTCCTGTAACTCVTTTCTTTCCTTTTGTTCCTTCTCTGCTTGAG

AGACTCAAAGCATCCGTGACTCTGCTCCCCCACTCACCCCTTTTGAATTTGCACTAAGTCGATTGCACTGGTTTGG

AGTCCCGGAGATAGCCTGAGTCTCTCCGTATGGATGTATACAGCGAGTGTGTAGGCCCCTTTGGCTATGCTGCCCC

AGTGCCCGCCCGTCATCCACTTCTGTCTGAGGGCAACTGGGTGTGGCCGTGCGCTTGAGGCCTCACCTTCCCCTTG

CCTAGTCTGGAAGCAGTTCCATCATAAAGTGTTCAACGCACCTTCCTTCATCCTTTGTCCCTCCTCACCAGGGCCT

CACCAGAGGTCCTGGGTCCACCAATAAATACAGTTACAGTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA

Supplementary Fig.12. Predicted let-7 binding sites present in H19. The green sequence

indicates the binding site for let-7a, let-7d, let-7f and let-7i; and the blue sequence that for let-

7b, let-7c and let-7e. Other possible let-7 binding sites in the H19 sequence are shown in

red. The H19∆ mutant lacks the green and blue sequences.
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Supplementary Fig.13. Akt protein level after overexpression of H19 or of the

H19∆ mutant. (a) Representative western blot of Akt protein in INS832/13 cells

transfected with a control plasmid (pcDNA3), a plasmid overexpressing H19 or the

H19 mutant lacking the two main binding sites for let-7 (H19∆). (b) The intensity of

Western blot bands of Akt were determined by densitometric scanning and were

normalized to that of actin α. The results are means ± SEM of four independent

experiments.
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Supplementary Fig.14. The proliferative effect of H19 necessitates the activation of

PI3K. INS832/13 cells were transfected with a control plasmid (pcDNA3) or a plasmid

overexpressing H19. PI3K activity was or not inhibited during 36 hours with 20 µM of the

PI3K inhibitor (LY294002). Phosphorylation at Thr-308 of Akt (a downstream target of

PI3K) was assessed by western blotting (a). The fraction of proliferating cells was

assessed by scoring Ki67 positive cells (b). The data correspond to the means + SEM of

three independent experiments. Statistical differences from control conditions were

assessed by one-way ANOVA with a Tukey’a post-hoc test. *p<0.05, **<0.01.
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Supplementary figure 15

Supplementary Fig. 15. Expression of let-7a in the islets of the offspring from

dams on a low-protein diet during gestation. Let-7a levels were measured by qRT-

PCR in P10 control rats (control pups) and in P10 rats from dams on a low-protein diet

during gestation and lactation (LP pups). The results are expressed as 2-ct values and

are the means ± SEM of 4 and 6 animals. Statistical differences from control pups were

calculated by Student’s t-test: *p<0.05.
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