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Summary
The main goal driving the work presented in this thesis is to investigate the relationship between

sequence conservation and biological function in Arthropods. Indeed, the increasingly

comprehensive sampling of all kingdoms of life enabled by developments in large-scale DNA

sequencing and driven by large-scale sequencing initiatives brings powerful opportunities to

explore patterns of genome evolution and characterise novel functional genomic elements using

multi-species comparative genomics approaches. The basic premise of such approaches is that

sequences that remain conserved or recognisably similar across many species over millions of

years of evolution are constrained to do so because of evolutionary pressures to maintain some

biologically functional role. Consequently, furthering our understanding of the relationship

between these evolutionary constraints on genomic sequence and the biological function of the

related genomic elements will facilitate the large-scale identification of functional elements in

new genome assemblies, as well as generally strengthen our knowledge of how genomes

encode biological function. A powerful method of detecting genomic sequences conserved

across genomes relies on the computation of Multispecies Whole-Genome Alignments

(MWGAs), which form the basic resource required to interrogate patterns of sequence changes

and evolutionary constraints in relation to the functional spectra of genomic elements.

Pioneering studies using signatures of evolutionary conservation to characterise functional

elements first looked at the relatively small genomes of yeasts and Drosophila; following

advances in sequencing technologies, further work investigated these patterns in mammals and

angiosperms. However, despite the success of these studies, computing MWGAs remains a

challenging task to this day, and at the start of this thesis project, there was no reliable

implementation of the computational workflow required to do so. Furthermore, while the ever

accelerating accumulation of available genome sequences enables increasingly powerful

studies of evolutionary constraints on genomic sequence for more and more clades, the quality

of these assemblies as well as the taxonomic coverage of sequence species remains

heterogeneous even today.

In light of these observations, the first challenge addressed by this thesis work was to accurately

assess both the quality and taxonomic distribution of genomic resources available for

arthropods, in order to select genome assemblies to include in MWGAs. Our solution to this

problem resulted in the release of an online resource powered by a computational workflow, the

Arthropoda Assembly Assessment Catalogue (A3Cat), which regroups all available information
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on released and upcoming arthropod assemblies along with estimates of assembly quality

computed by the workflow. This resource and the associated data was the focus of two

publications, which are summarised in Chapter 1. The second task undertaken in this work was

the development of bioinformatics tools and workflows necessary to build whole-genome

alignment resources for arthropods as well as downstream analyses of sequence conservation

and visualisation tools. In order to be useful to the general scientific community, these tools had

to follow modern requirements for computational science by being portable, scalable,

documented, and enabling fully reproducible computational analyses. This work resulted in two

computational workflows implemented using a modern workflow management engine: one to

compute MWGAs, presented in Chapter 2, and a second to perform analyses and generate

powerful visualisation from MWGAs, described in Chapter 3; furthermore, additional work to

develop specific missing blocks in the workflows and efforts to ensure reproducibility are

covered in Chapter 5.

Because of the considerable challenges encountered during the development of the A3Cat and

the two computational workflows to generate and analyse MWGAs, amplified by the need for a

reproducible implementation following modern practices, these technical advances comprise the

main outcome of this thesis work. However, we were able to leverage this work to compute

several MWGAs, which are described as part of Chapter 2, including a MWGA of 22 mosquito

species which was used for a preliminary analysis of sequence conservation at the genome

level presented in the results of Chapter 3. We expanded on the results of this analysis in

Chapter 4, exploring how patterns of sequence conservation relate to biological function in

protein-coding genes in mosquitoes using both long-term evolutionary conservation computed

from the MWGA as well population-level genetic polymorphism. We focused particularly on

genes whose products are involved in the immune system, as mosquitoes are vectors of some

of the deadliest diseases to humans, identifying a link between specific functions in the immune

system and sequence conservation for multiple gene families. Finally, we summarise additional

work contributing to collaborative projects in multiple areas of genomics in Chapter 6.
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Résumé
L'objectif principal des travaux présentés dans cette thèse est d'étudier le lien entre la

conservation des séquences génomiques et la fonction biologique chez les arthropodes. En

effet, l'échantillonnage de plus en plus complet des espèces vivantes, rendu possible par les

progrès du séquençage de l'ADN et par les initiatives de séquençage à grande échelle, offre de

puissantes opportunités d'explorer les schémas d'évolution du génome et de caractériser de

nouveaux éléments génomiques fonctionnels à l'aide d'approches de génomique comparative

multi-espèces. Le principe de base de ces approches est que les séquences qui restent

conservées ou qui présentent des similitudes reconnaissables chez de nombreuses espèces au

cours de millions d'années d'évolution sont contraintes de le faire en raison de pressions

évolutives visant à maintenir un certain rôle biologiquement fonctionnel. Par conséquent, une

meilleure compréhension de la relation entre ces contraintes évolutives sur la séquence

génomique et la fonction biologique des éléments génomiques apparentés facilitera

l'identification à grande échelle des éléments fonctionnels dans les nouveaux assemblages de

génomes, et renforcera d'une manière générale notre connaissance de la manière dont les

génomes codent pour une fonction biologique. Un outil puissant de détection des séquences

génomiques conservées à travers les génomes repose sur l'élaboration d'alignements de

génomes entiers multi-espèces (MWGA), qui constituent la ressource de base nécessaire pour

interroger les modèles de changements de séquence et les contraintes évolutives en lien avec

les catégories fonctionnelles d’éléments génomiques. Des études pionnières utilisant les

signatures évolutives de la conservation de séquences pour caractériser les éléments

fonctionnels ont d'abord porté sur les génomes relativement petits de la levure et de la

drosophile ; d'autres travaux ont ensuite étudié ces modèles chez les mammifères et les

angiospermes. Cependant, malgré le succès de ces études, la génération de MWGA reste à ce

jour une tâche difficile, et au début de ce projet de thèse, il n'existait pas d'implémentation fiable

du workflow nécessaire pour y parvenir. De plus, alors que l'accumulation toujours plus rapide

de séquences génomiques permet des études de plus en plus étendues des contraintes

évolutives sur le génome pour un nombre croissant de clades, la qualité de ces assemblages

ainsi que la couverture taxonomique des espèces séquencées restent encore aujourd'hui

hétérogènes.

À la lumière de ces observations, le premier défi relevé par ce travail de thèse a été d'évaluer

avec précision la qualité et la distribution taxonomique des ressources génomiques disponibles
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pour les arthropodes, afin de sélectionner les assemblages de génomes à inclure dans les

MWGA. Notre solution à ce problème a abouti à la publication d'une ressource en ligne,

l'Arthropoda Assembly Assessment Catalogue (A3Cat), qui regroupe toutes les informations

disponibles sur les assemblages d'arthropodes publiés et à venir, ainsi que les estimations de la

qualité des assemblages calculées par le workflow générant cette ressource. Le catalogue et

les données associées ont fait l'objet de deux publications, qui sont résumées dans le Chapitre
1. La deuxième tâche entreprise dans le cadre de ce travail a été le développement d'outils

bioinformatiques et de workflows nécessaires pour créer des ressources d'alignement de

génomes entiers d'arthropodes ainsi que des analyses en aval de la conservation des

séquences et des outils de visualisation. Afin d'être utiles à la communauté scientifique, ces

outils devaient répondre aux exigences modernes de la science informatique en étant portables,

scalables, documentés et en permettant des analyses informatiques entièrement reproductibles.

Ce travail a abouti à deux workflows mis en œuvre à l'aide d'un moteur moderne de gestion des

workflows : l'un pour générer les MWGA, présenté dans le Chapitre 2, et l'autre pour effectuer

des analyses et générer des visualisations à partir des MWGA, décrit dans le Chapitre 3 ; en

outre, des travaux supplémentaires visant à développer des blocs spécifiques manquants aux

workflows et des efforts pour assurer la reproductibilité sont couverts dans le Chapitre 5.

En raison des défis considérables rencontrés lors du développement de l'A3Cat et des deux

workflows pour générer et analyser les MWGA, amplifiés par la nécessité d'une implémentation

reproductible adhérant aux pratiques modernes, ces avancées techniques constituent le

principal résultat de ce travail de thèse. Cependant, nous avons pu tirer parti de ce travail pour

générer plusieurs MWGA, qui sont décrits dans le cadre du Chapitre 2, y compris un MWGA de

22 espèces de moustiques qui a été utilisé pour une analyse préliminaire de la conservation des

séquences au niveau du génome, présentée dans les résultats du Chapitre 3. Nous avons

développé les résultats de cette analyse au Chapitre 4, en explorant la manière dont les

schémas de conservation des séquences sont liés à la fonction biologique des gènes chez les

moustiques, en utilisant à la fois la conservation de séquence à l'échelle évolutive calculée à

partir de ce MWGA et le polymorphisme génétique au niveau des populations. Nous nous

sommes particulièrement intéressés aux gènes dont les produits sont impliqués dans le

système immunitaire, car les moustiques sont les vecteurs de certaines des maladies les plus

mortelles pour l'homme, et nous avons identifié un lien entre des fonctions spécifiques du

système immunitaire et la conservation des séquences pour plusieurs familles de gènes. Enfin,
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nous résumons au Chapitre 6 les travaux supplémentaires contribuant à des projets de

collaboration dans de multiples domaines de la génomique.
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Introduction
The work presented in this thesis details the development of computational tools and workflows

designed to enable the comparative genomics community to fully exploit the rapidly growing

amount of genome data. The thesis specifically describes the work performed to provide

researchers with the means to efficiently and reproducibly build and analyse multispecies whole

genome alignments (MWGAs), which allow comprehensive exploration and investigation of the

relationships between conservation of genomic sequence and the biological function of genomic

elements. In this introductory chapter, we first provide biological and technical context on

functional genomic elements and the expectations for their conservation throughout evolution.

We then present summaries of the theoretical frameworks underlying sequence alignment

methods and the history of approaches developed to overcome the computational challenges of

building whole genome alignments. Finally, we introduce community motivations driving the

development of computational solutions to meet the increasingly recognised needs for open,

accessible, and reproducible tools and workflows in modern science.

Functional genomic elements and how to find them

Genomes encode the building blocks of life

Understanding how the information encoded in genomes controls biological function is a major

challenge in biology. In the early days of genomics, most of the work to address this question

focused on identifying and characterising protein-coding genes, because these genomic

elements have the most evident link to biological function and are the easiest to identify (Harrow

et al., 2009). Nonetheless, protein-coding genes can have a complex structure: the entire gene

sequence is transcribed into a messenger RNA but introns and untranslated regions (UTRs) are

not translated into proteins. Furthermore, as the field of genomics progressed and whole

genome sequences became available for several species, the importance of non-coding

genomic elements in expressing and regulating biological functions came to light (Wright &

Bruford, 2011). Many of these non-coding sequences, including promoters, enhancers,

silencers, insulators, microRNAs, and long non-coding RNAs (lncRNAs) interact with

transcription factors and other proteins in a complex spatial and temporal network to regulate

the expression of genes (Spitz & Furlong, 2012). Some of these elements, for instance

lncRNAs, can also have a direct role in specific cellular processes (Wilusz et al., 2009). To
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understand the intricacies of how genomes govern biological processes, it is therefore crucial to

identify all functional sequences and the structural elements of which they are made (Maston et

al., 2006). Following this idea, considerable efforts led by the Encyclopedia of DNA Elements

(ENCODE) project were made to experimentally identify functional elements in the human

genome and later in model organisms including Caenorhabditis elegans and Drosophila

melanogaster, revealing that up to 80% of the human genome may be linked to a biological

function (ENCODE Project Consortium, 2012). Such comprehensive efforts serve to define and

refine the complete catalogue of functional genomic elements in a given genome, the building

blocks that govern organismal biology.

Functional elements usually exhibit cross-species sequence conservation

Building comprehensive catalogues of functional genomic elements has been achieved for

several well-studied species thanks to laborious and often expensive experimental work,

however, this usually cannot be applied to most non-model species. One solution to overcoming

this challenge was the development of computational methods to discover and annotate

functional elements in genomes (Mathe, 2002). Some methods were tailored to specific classes

of functional elements, but a successful general approach to finding functional elements

consists of characterising patterns of conservation of genomic sequence across multiple

species (Elgar & Vavouri, 2008). The hypothesis underlying this approach is that conserved

sequences are under selective constraints acting on a biological function, and therefore locating

these sequences is a major clue for the identification of functional elements in the genome of a

species (Alföldi & Lindblad-Toh, 2013). This hypothesis has been at the basis of many

approaches to identify specific types of functional sequences, and although not all functional

sequences are conserved, it is generally accepted that most conserved sequences are

functional (Pang et al., 2006). Conservation of genomic sequence has been studied in relation

to model species in yeasts (Kellis et al., 2003), mammals (Lindblad-Toh et al., 2011), flies (Stark,

Lin, et al., 2007), angiosperms (Hupalo & Kern, 2013), and in a few other non-model clades

(Roux et al., 2014; X. Wang et al., 2015; Woodard et al., 2011). Studies in human and

Drosophila in particular identified specific signatures of evolutionary conservation for different

families of genomic elements and, in some cases, were able to link patterns of conservation to

biological function, for instance highly conserved promoters being associated with

developmental functions in humans (Woolfe et al., 2004). Early comparisons between multiple

clades were performed using the limited available genomes at the time (Siepel et al., 2005), but

overall, such insights have been lacking outside of these model species, and the lack of data on
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conservation of sequence in other species has prevented large-scale comparisons across

multiple clades in an evolutionary framework. This scarcity is due at least in part to the

taxonomic heterogeneity of available genomes and to the computational challenges involved in

comparing whole genomes between multiple species.

Whole genome alignments enable identification of conserved sequences

Taxonomic sampling of genomes is improving in recent years, as technical advances have

greatly decreased sequencing costs and improved assembly methods, leading to a rapidly

increasing number of high-quality genome assemblies being generated for species across the

tree of life. Ambitious initiatives like the Earth BioGenome Project (Lewin et al., 2018) aiming to

sequence all identified species will further accelerate this trend in the coming years. The

resulting abundance of high-quality assemblies is therefore filling the taxonomic gaps in

available genomes and enabling the study of conservation of sequence in a multitude of taxa at

different evolutionary timescales. Efforts to exploit these growing numbers of genomes in

comparative analyses using Multispecies Whole Genome Alignments (MWGAs) are enabling

genome-wide quantification of sequence conservation. For example, the Zoonomia consortium’s

whole-genome alignment of 240 placental mammals representing all orders was used to

estimate that 10.7% of the human genome is evolutionarily conserved and to catalogue more

than 4,500 ultraconserved elements (Christmas et al., 2023). Analysis of this placental mammal

MWGA enabled the detection of 101 million exceptionally conserved (significantly constrained)

single nucleotides in both coding and noncoding regions of the human genome that are thus

likely to be functionally important. The formal identification of such conserved sequences using

MWGAs proceeds by building two phylogenetic models, one for conserved regions based on

sites expected to be conserved (e.g. the highly conserved first nucleotide of the three

nucleotides that make up a codon in protein-coding sequences), and one for non-conserved

sequences (e.g. the variable third nucleotide of the three nucleotides that make up a codon in

protein-coding sequences). Each position in the MWGA (i.e. each column of nucleotides in the

multiple alignment), can then be tested for whether it has a significantly better fit to the

conserved or to the non-conserved phylogenetic model. The building and testing of such

phylogenetic models (Siepel & Haussler, 2005) have been implemented in popular tools such as

phastCons (Siepel et al., 2005) and PhyloP (Pollard et al., 2010). Results from using MWGAs to

identify conserved sequences allow for the exploration of general signatures of evolutionary

conservation for coding and non-coding functional genomic elements, which will facilitate the de

novo annotation of these elements in existing and in future genome assemblies. When
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combined with functional genomics and other complementary data, opportunities arise to

unravel the links between identified conservation signatures and putative biological processes,

thereby helping to associate biological functions to these annotated conserved elements.

Theoretical background on sequence alignment methods

Sequence alignment constitutes a foundational process in many computational analyses of

biological sequence data. The problem of optimal global alignment of two sequences was

virtually solved in the 1970s and implemented for biological sequences by Needleman and

Wunsch (Needleman & Wunsch, 1970); to better adapt to the reality of biological sequences,

later algorithms like Smith-Waterman (Smith & Waterman, 1981) were designed to identify local

alignments in a pair of sequences, rather than a unique best global alignment. However, these

algorithms are computationally intensive and cannot easily be applied to long sequences or

multiple pairs of sequences, let alone entire genomes; furthermore, aligning entire genomes

requires handling duplications and rearrangements to reconstruct orthology relationships and

not just homology. Consequently, alignments at the genome scale require heuristic and

dedicated algorithms to find close-to-optimal alignments in a reasonable time, and such

algorithms were developed to handle the escalating volume of biological data (Delcher, 2002;

Delcher et al., 1999).

A popular approach is to identify approximate best local alignments using seeding-extension

algorithms and then filter and process these local alignments to generate a whole-genome

alignment. This process relies heavily on efficiently finding approximate best local alignments

between two large collections of sequences, which is implemented in popular tools like the

Basic Local Alignment Search Tool, BLAST (Altschul et al., 1990) and the BLAST-Like

Alignment Tool, BLAT (Kent, 2002). However, these tools are optimised for closely-related

sequences, and specific software like LASTZ (Harris, 2007) and LAST (Kiełbasa et al., 2011)

were developed to align genomes of evolutionarily more distant species. LASTZ in particular

has been used to compute pairwise alignments in most MWGAs available today, including the

alignments used in conservation tracks from the University of California Santa Cruz (UCSC)

Genome Browser. LASTZ was developed as a successor to the formerly-popular BLASTZ

(Schwartz et al., 2000) to extend its functionalities, simplify parameter selection by the user, and

optimise memory usage. The software implements a seeding strategy allowing base-pair

transitions and user-specified seed patterns. Seed hits between two sequences are extended
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into ungapped high-scoring segment pairs (HSP) until the alignment score of the two sequences

drops to a negative threshold. Long HSPs are merged into chains of consecutive overlapping

HSPs and the resulting chains are integrated into gapped alignments using an anchoring

process. The final output of LASTZ contains all extended gapped alignments between the two

sequences found with this approach.

The aforementioned methodological developments apply to the alignment of two sequences, yet

MWGAs require aligning multiple sequences, which is an NP-hard problem and therefore

cannot be computed in a reasonable time for whole genomes without involving additional

heuristics (L. Wang & Jiang, 1994). A common strategy to align multiple sequences is to

perform progressive alignments using a tree describing the distance between sequences as a

guide. Progressive alignments are well suited to multiple whole-genome alignments and are

implemented in popular tools like progressiveMauve (Darling et al., 2010), Mugsy (Angiuoli &

Salzberg, 2011), and MULTIZ (Blanchette et al., 2004), the latter being used to compute

MWGAs for several seminal sequence conservation studies (Kellis et al., 2003; Lindblad-Toh et

al., 2011; Stark, Lin, et al., 2007) and UCSC Genome Browser conservation tracks. MULTIZ

takes as input pairwise alignments of each assembly to the assembly chosen as reference and

uses a guide tree to progressively merge these alignments into a multiple genome alignment.

One limitation of MULTIZ is that it can only produce reference-based alignments, which implies

that an alignment between two non-reference sequences that is not alignable to the reference

sequence will be discarded. This shortcoming spurred the development of new reference-free

MWGA software, the main one being Cactus (Paten et al., 2011) which is still in active

development. Cactus first computes local alignments with LASTZ and naively merges them into

a graph-based multiple alignment; this alignment is aggressively filtered and non-aligned

regions from the graph undergo a second, more sensitive alignment phase. The current version

of Cactus is called progressiveCactus and uses a guide tree to partition the multiple sequence

alignment problem in order to scale the algorithm to hundreds of genomes (Armstrong et al.,

2020) and was used for the Zoonomia consortium’s whole-genome alignment of 240 placental

mammals (Christmas et al., 2023). Cactus performed well in early “Alignathon'' methods

assessments (Earl et al., 2014), is increasing in popularity, and will likely replace other MWGA

approaches eventually, but it currently has several major limitations that make it not yet mature

for large scale automated alignments. First and foremost, at the time of writing, Cactus is

resource-intensive, and its usage and configuration are complex; it does not interface well with

High Performance Computational platforms (HPCs) and its development is shifting towards
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cloud computing. Second, reference-free alignments are still not supported by most downstream

software and need to be converted to reference-based multiple alignment format, which adds

compute time and partly negates the advantages of Cactus in computing alignments.

History and current state of computing whole genome alignments

The basic premise of comparative genomics approaches is that sequences that remain

conserved or recognisably similar across many species over millions of years of evolution are

constrained to do so because of evolutionary pressures to maintain some biologically functional

role (Alföldi & Lindblad-Toh, 2013). The very first pairwise and multi-species comparisons of

eukaryote genomes demonstrated the power of this axiom, highlighting the utility – and

methodological challenges – of whole-genome multiple sequence alignments for the discovery

and characterisation of functional genomic elements (Ureta-Vidal et al., 2003). Pioneering

studies targeted yeasts to take advantage of their small genomes, ~12 megabasepairs (Mb),

where analysis of the genome alignments of several Saccharomyces species led to the revision

of the yeast protein-coding gene catalogue and the identification of a suite of regulatory element

motifs (Cliften et al., 2003; Kellis et al., 2003). With their much larger genomes, early studies on

vertebrates focused on specific regions rather than whole genomes, e.g. developing

phylogenetic shadowing techniques to analyse four regions from 13 to 17 primates enabled the

discovery of primate-specific gene regulatory elements and the delineation of exons from

multiple genes (Boffelli et al., 2003). Across 12 more evolutionarily diverse vertebrates,

sequencing regions orthologous to a seven-gene-containing segment of about 1.8 Mb on

human chromosome seven enabled the identification of multi-species conserved sequences,

which showed conservation patterns indicating both functional constraints and neutral

mutations, and included many novel conserved non-coding segments not evident from pairwise

analyses (Margulies et al., 2003; Thomas et al., 2003).

The aim of the encyclopaedia of DNA elements (ENCODE) project “to identify all functional

elements in the human genome” (ENCODE Project Consortium, 2004) undoubtedly helped to

drive advances in sequence analysis approaches, e.g. by combining phylogenetic models of

molecular evolution with hidden Markov models (Siepel & Haussler, 2005), and the development

of robust approaches for the alignment of multiple whole genomes such as the threaded

blockset aligner (TBA) (Blanchette et al., 2004). Employing these new tools to build and analyse

four separate genome-wide multiple alignments identified evolutionary conserved elements in
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five vertebrates, four insects, two worms, and seven yeasts (Siepel et al., 2005). These

elements covered 3%–8% of the human genome and much larger fractions of the more

compact genomes of Drosophila melanogaster (37%–53%), Caenorhabditis elegans

(18%–37%), and Saccharomyces cerevisiae (47%–68%). Focusing on 44 regions

encompassing about 1% of the human genome, the ENCODE pilot project applied an array of

experimental techniques to characterise human genome functions (The ENCODE Project

Consortium, 2007). The functional genomics data were complemented by evolutionary analyses

of multi-sequence alignments of the corresponding genomic regions from 23 other mammals to

identify regions under evolutionary constraint, which spanned about 5% of the ENCODE

nucleotides (Margulies et al., 2007). Employing several different alignment and

constraint-measurement methods, these evolutionary analyses found ~40% of constrained

sequence to be annotated protein-coding exons or their untranslated regions (UTRs), a further

~20% corresponded to other experimentally-identified functional elements, but the remaining

~40% was functionally unannotated.

Successful scaling up of the alignments to whole-genome levels required the development of

computational pipelines such as those designed for building the alignment and conservation

tracks at the University of California Santa Cruz (UCSC) Genome Browser, which now include

the 240 Zoonomia consortium placental mammals (Nassar et al., 2023). Earlier analyses of their

28-way vertebrate whole-genome alignments highlighted the power of such approaches for

exploring vertebrate genomic evolution, and showed how different types of elements (coding

exons, regulatory regions, etc.) exhibited very different rates and modes in the decline of

alignability at increasing phylogenetic distances (Miller et al., 2007). The advancement of

multi-species analyses to examine patterns of conservation in increasing detail is exemplified by

the study of 12 Drosophila genomes (Drosophila 12 Genomes Consortium, 2007). Applying

evolutionary signature analyses to the 12-species genome alignment led to the de novo

discovery of functional genomic elements with improved precision and sensitivity of evolutionary

inferences (Stark, Lin, et al., 2007). This enabled the cataloguing of new and revised

protein-coding genes and exons as well as numerous stop-codon readthrough events (Lin et al.,

2007), the annotation of novel non-protein-coding genes such as microRNAs (miRNAs) (Stark,

Kheradpour, et al., 2007), and the identification of miRNA target sites and other regulatory

motifs (Kheradpour et al., 2007).
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Further developments to these and other methodologies were applied to the alignment of 29

placental mammal genomes to chart a high-resolution map of human evolutionary constraint

where constrained elements encompassed 4.2% of the genome (Lindblad-Toh et al., 2011).

About 30% of these elements were associated with protein-coding transcripts (19.6%

protein-coding sequences), ~27% overlapped mapped chromatin states (e.g. enhancers or

insulators), ~3% regulatory motifs, and ~1.5% RNA structures, leaving just under 40% with no

functional clues – in line with estimates from the ENCODE pilot project. In flowering plants,

using the relatively compact genome of the thale cress Arabidopsis thaliana (119 Mb) as the

reference onto which to build a 20-species whole-genome alignment helped to circumvent the

challenges associated with duplications in polyploid plant genomes (Hupalo & Kern, 2013).

Plant conserved elements showed about double the proportion of protein-coding regions (42%)

compared with vertebrates, leaving 19% in intronic and 5% in other features (e.g. regulatory

elements), and 33% in unannotated intergenic regions. In addition, comparing levels of

conservation across the phylogeny in terms of the fractions of alignable base pairs revealed a

slower decay of plant genome feature conservation than across vertebrates. A later study of 17

grass genomes identified at least 12% of the rice genome to be evolving under constraint,

where comparisons with population polymorphism data showed that constrained sequences

exhibited depleted single nucleotide polymorphism (SNP) frequencies (Liang et al., 2018).

The latest milestone in terms of taxonomic span and depth was achieved using

progressiveCactus (Armstrong et al., 2020) to build the Zoonomia consortium’s whole-genome

alignment of 240 placental mammals (Christmas et al., 2023). The UCSC Cactus team formed a

key part of the consortium and worked to compute the complete alignment set in HAL format, for

the rest of the consortium to then use as the basis for their analyses. The analysis of the MWGA

representing all orders of placental mammals showed that 10.7% (332 Mb) of the human

genome is evolutionarily conserved and identified more than 4,500 ultraconserved elements

(Christmas et al., 2023). The MWGA was used to measure constraint (significant conservation)

across the human, chimpanzee, mouse, dog, and little brown bat reference genomes by

projecting the Cactus alignment onto each species (HAL to MAF format) and then measuring

sequence constraint with phyloP (Siepel et al., 2005). Constraint in the primate subset of the

MWGA was assessed using phastCons (Hubisz et al., 2011), going beyond per-nucleotide

constraint and allowing for the identification of conserved elements. A gene-focused analysis

identified the most constrained genes as being enriched in functional processes such as

post-transcriptional regulation of gene expression and embryonic development. In contrast,
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genes implicated in functions including innate and adaptive immunity, skin development, smell,

and taste were amongst the most accelerated genes. These insights, and the many others

reported by the Zoonomia consortium, into the relationships between sequence conservation

and function exemplify the power of using MWGAs to investigate evolutionary constraints of

functional genomic elements. However, the construction of large-scale MWGAs remains

computationally extremely challenging, requiring in this case the direct support of the Cactus

team to achieve the feat of aligning so many genomes. This was a primary motivation for the

work of this thesis, to democratise the ability to build MWGAs by developing the necessary tools

and workflows for assessing genome quality, processing myriad file format conversions and

data preparation steps, introducing parallelisation where possible, and packaging downstream

analysis tools into an ecosystem of informatics solutions for building and analysing MWGAs.

Reproducible tools and workflows are a requirement for modern

science

There is a reproducibility and availability crisis in science

With the frantic pace required to keep up with the constant advances in our fields of knowledge

while being subjected to unrelenting pressure to publish positive results, it is easy for one to

lose track of the foundations of the process underlying science - or at least experimental

science, to which biology belongs. This phenomenon has long been exacerbated by the

requirements from funding bodies and publishing media, which overly emphasised the societal

impact of results over technical soundness and adherence to the scientific method. While the

exact model of this process has been debated and many variations exist (Nola & Sankey, 2014),

an arguably general description of this process includes, in order, 1) observing existing data, 2)

formulating a hypothesis, 3) designing and running an experiment testing this hypothesis, 4)

analysing the data obtained from the experiment, 5) drawing conclusions from the analyses

results, and 6) reporting these conclusions along with the entire process required to reach them.

Because this process is complex, and to limit the impact of biases in experiment design and

interpretation of results, it is essential that each step of this process undergoes careful scrutiny

by knowledgeable and objective peers. In addition, the process should be replicated

independently to provide support for - or conversely, to refute - the results and conclusions

reached by a body of work. In practice, however, the overwhelming pressure to publish novel

results lead to an almost complete absence of replicative studies (Makel et al., 2012); in fact,
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the volume of scientific publications makes even comprehensive peer validation effectively

impossible in many cases. Perhaps in part because of this phenomenon, the number of

scientific studies that could not be replicated - in cases where replication was attempted - has

increased drastically (Begley & Ellis, 2012). Unreplicable studies fall within two categories: the

first, and most serious one, results from unrigorous scientific practices, sometimes to the level of

scientific fraud (Agnoli et al., 2017; Fraser et al., 2018; Simmons et al., 2011); the second, more

widespread, comes from an insufficient transparency, level of details, and / or incomplete

reporting of the methods used in the study (Bakker & Wicherts, 2011; Nuijten et al., 2016). Albeit

with different severity, both categories contribute to the expansion of a body of unverified and

unreplicable results in the scientific literature, leading to a general “reproducibility crisis”

experienced by more than 90% of researchers (Baker, 2016). Interestingly, this crisis is well

illustrated by the example of MWGAs, presented in the first part of this introduction: although

several studies have computed and used MWGAs successfully as early as 2003, none of the

associated work was directly replicated, and the methods used in these studies have seen very

little use because of their complexity and lack of accessibility.

Reproducibility of computational analyses

Although the issue with reproducibility extends to the entirety of the scientific process, it is

particularly present in the data analysis step. With the rapid development of computing since the

1990s, virtually every current scientific study in biology includes computer-based data analyses

and visualisation, the complexity of which varies greatly, ranging from simple

spreadsheet-based data tables to complex statistical analyses and visualisations involving

extensive processing of large-scale data. By their nature, and in contrast with lab-based or

field-based scientific work, computer-based analyses are in a unique advantageous position

with regards to reproducibility. Indeed, both raw and processed data can be shared infinitely at

moderate cost, and analyses can be automated due to their reliance on programming and

scripting. Consequently, initiatives to develop software and guidelines for the reproducibility of

data analyses started relatively early (Hoon et al., 2003; Oinn et al., 2004), leading to a

definition of criteria for reproducibility: to be reproducible, an analysis should be automatable

with minimal efforts from a user attempting to replicate it; it should be portable and scalable,

making it executable on - ideally - any platform and system; it should be transparent and

documented, exposing the entire process involved in the analysis, including software,

parameters, and code; and finally, the data used in the analysis should be accessible. Building

on these criteria, comprehensive systems evolved into multiple frameworks handling every
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aspect of reproducibility for computational analyses. Among these systems, the most popular

today are Nextflow (Di Tommaso et al., 2017), Snakemake (Köster & Rahmann, 2012), Galaxy

(The Galaxy Community et al., 2022), with the meta-language Common Workflow Language

attempting to facilitate compatibility between systems (Crusoe et al., 2022). These solutions

attempt to resolve the issue with reproducibility of computational analyses with a different

approach, each with its strengths and weaknesses, and overall they greatly contributed to the

improvements in this direction. In parallel to the development of these systems, a second

approach focused specifically on portability, which is arguably the most difficult problem to solve

in reproducibility. Indeed, many tools used in computational analyses are only available for

specific systems or configurations, their source code is not open, and they sometimes simply do

not provide an easy installation solution (Aron et al., 2021). Even when they are available,

changes in systems and dependencies, as well as updates to software, can greatly hinder the

reproducibility of analyses (Kern et al., 2020). Multiple systems were designed to specifically

address this problem, two of the most popular in scientific computing are Docker (Merkel, 2014),

a general container solution, and Bioconda, a Conda channel managing packages for

bioinformatics software (Grüning et al., 2018). Both Conda and Docker were integrated in the

major frameworks Nextflow and Snakemake and are the main solution to resolving portability in

these two systems.

Managing and organising the rapid accumulation of available genomic data

The problem of reproducibility of computational analyses is exacerbated by the accelerating

pace at which data accumulates; this particularly applies to large-scale genomic data, including

high quality genome assemblies for an increasingly wide sampling of the tree of life, individual

resequencing data, gene expression data, and many other resources. Robust open and

reproducible computational workflows will play a key role in leveraging the power of these data

through large scale comparative genomic analyses; without rigorous efforts to maintain

discipline in the reproducibility of analyses, we are bound to accumulate unverified, potentially

erroneous results building upon each other (Cohen-Boulakia et al., 2017). Yet, managing this

avalanche of data requires more than reproducible workflows: existing and yet to be produced

resources need to be openly organised, managed, annotated, and made available to the entire

scientific community. This idea was formalised into a framework through the Findability,

Accessibility, Interoperability, and Reusability (FAIR) principles (Wilkinson et al., 2016), which

are used by large initiatives and institutes generating and managing genomic data such as the

Earth BioGenome Project (EBP) (Lewin et al., 2018), the Darwin Tree of Life project (The
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Darwin Tree of Life Project Consortium, 2022), the NCBI GenBank (Sayers et al., 2019), or the

European Nucleotide Archive (Leinonen et al., 2011). However, while these consortia and

institutes have achieved much in managing and making accessible both primary and secondary

genomic data, there is still a need for higher-level resources to improve the findability and

organisation of these data. In the context of this thesis project, for instance, we often needed to

survey available genome assemblies for arthropods to identify clades for which a sufficient

number of high-quality assemblies were available to compute MWGAs. The information needed

for this survey was mostly available in the form of metadata accessible on the NCBI, but some

information, for instance on assembly quality, was only released as non-accessible data

attached to publications. This observation led us to develop our own resource, the Arthropoda

Assembly Assessment Catalogue (A3Cat), which provides and organises comprehensive

information on existing and upcoming arthropod genome assemblies in a searchable and

filterable framework. Initiatives like the A3Cat will be crucial to improve the findability and

usability of genomic resources and will hopefully be integrated into existing resources in the

future.

Summary of the thesis structure

The bioinformatics research work described in this thesis is presented in six chapters following

this global introductory chapter. In Chapter 1, the background and motivations behind the

development of the Arthropoda Assembly Assessment Catalogue (A3Cat) resource are

presented, with a summary of the approaches taken and the results achieved, as well as how

this supports the rest of the thesis work and the broader research community. A major

accomplishment of the thesis work is presented in Chapter 2: a comprehensive technical

description of the development of the bioinformatics workflow required for building multispecies

whole genome alignments (MWGAs), along with the underlying rationale and demonstrations of

the application of the workflow to arthropod genome datasets. Chapter 3 then goes on to

describe the details of a complementary workflow that enables the downstream processing of

MWGAs to compute key metrics through the integration of third-party software for analysing

evolutionary constraint and protein coding potential, as well as tools that facilitate the

visualisation of the results. In Chapter 4, the utility of the workflows and tools developed and

described in the preceding chapters are demonstrated by applying them to the preliminary

exploration of relationships between gene conservation and gene function using the mosquito

immune system as a case study. Many challenges faced while developing the workflows
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described in chapters 2 and 3 required specific technical solutions which are detailed in

Chapter 5, including a suite of tools developed to efficiently process MWGAs, a phylogenomics

species tree reconstruction workflow, solutions for genome data track visualisations, as well as

software packaging efforts and solutions for efficient use of high-performance computing

facilities. Finally, Chapter 6 summarises contributions made to complementary research

projects undertaken during the course of the thesis including the development of tools,

visualisations, and workflows to study the genetic mechanisms of sex determination as well as

several projects investigating arthropod evolutionary genomics. The thesis concludes with a

brief overview of the challenges addressed and how the methodological and technical solutions

contribute to the advancement of the field in general, as well as the consequent future

perspectives raised in the context of reproducible science.
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Chapter 1: Surveying the current landscape of

arthropod assemblies with the Arthropoda Assembly

Assessment Catalogue

Summary

This thesis chapter summarises the research and development work performed to build a

comprehensive quality assessment workflow, applied to publicly available genome assemblies

of arthropods, with the results being made accessible through a web-browsable resource. The

technical details are described in a research article published at GigaScience: “Assessing

species coverage and assembly quality of rapidly accumulating sequenced genomes” (Feron &

Waterhouse, 2022a), included as Appendix 1 of this thesis. The results of the work were also

used as a basis for a review article published at Current Opinions in Insect Science: “Exploring

new genomic territories with emerging model insects” (Feron & Waterhouse, 2022b), included

as Appendix 2 of this thesis. The outputs of this chapter provide the community with valuable

resources: (i) a reproducible workflow that others can use to build their own assembly

assessment catalogues, and (ii) a public online catalogue of comprehensively and consistently

assessed arthropod genome assemblies. The results also serve as a foundation for the work

presented in Chapter 2, allowing for the selection of only high-quality genomes for inclusion in

multispecies whole genome alignment datasets.

Background and Motivation

Technical advances in sequencing technologies bringing down costs and reducing input sample

requirements have led to an accelerating accumulation of new and improved genome

assemblies (Hotaling et al., 2021). Efforts led by ambitious initiatives to sequence all known

species, for instance the Earth BioGenome Project (EBP) (Lewin et al., 2018) and Darwin Tree

of Life project (The Darwin Tree of Life Project Consortium, 2022), mean that this accumulation

is likely to increase in the future. Arthropods display a remarkable phenotypic diversity which

makes them attractive to study a wide range of topics including sociality, ageing, or ecosystem

dynamics, and they can be agricultural pests or vectors of diseases. Because they are so

diverse and studied for many research questions, arthropods will likely constitute a large
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proportion of upcoming genome assemblies, and the sequencing of arthropod species is

supported by specific initiatives like the Global Invertebrate Genomics Alliance (GIGA

Community of Scientists, 2014), the Global Ant Genomics Alliance (Boomsma et al., 2017),

Arthropod genomics 100 pest genomes initiative (Childers et al., 2021), or the 5,000 insect

genomes initiative (i5K Consortium, 2013), operating under the umbrella of the Earth

BioGenome Project (Lewin et al., 2018).

One of the principal aims of this thesis project was to build the necessary computational

workflows to generate MWGAs for multiple arthropod clades; high quality assemblies are key to

compute MWGAs and to estimate conservation of sequence across species. In order to select

which assemblies from which species to include in our MWGAs, we need a simple,

comprehensive, and updatable assessment of the taxonomic coverage and quality of available

arthropod genome assemblies. However, assessing the quality of an assembly is challenging

because assemblies are models of an unknown truth. A first approach consists of computing

metrics summarising the continuity of the assembly, e.g. N50 (length of the shortest contig so

that 50% of the assembly is included in contigs longer than this value) and L50 (smallest

number of contigs that make up 50% of the assembly), using software like Quality Assessment

Tool for Genome Assemblies (QUAST, Gurevich et al., 2013). A complementary approach

focuses on assessing assembly completeness by looking at gene or protein content using tools

like Dual Organellar GenoMe Annotator (DOGMA, Dohmen et al., 2016; Wyman et al., 2004),

Core Eukaryotic Genes Mapping Approach (CEGMA, Parra et al., 2007), or Benchmarking

Universal Single-Copy Orthologues (BUSCO, Simão et al., 2015; Waterhouse et al., 2019).

Among these, BUSCO has emerged as the standard and is now used by UniProt (Assessing

Proteome Completeness and Quality, n.d.) and by quality assessment pipelines like BlobToolKit

(Challis et al., 2020). Briefly, BUSCO relies on the idea that some genes are present in a single

copy in almost all species within a lineage; such genes are called Universal Single-Copy

Orthologues (USCOs), and sets of USCOs are manually curated for multiple lineages based on

orthology data from OrthoDB (Waterhouse et al., 2011). BUSCO uses the software MetaEuk

(MetaEuk—Sensitive, High-Throughput Gene Discovery, and Annotation for Large-Scale

Eukaryotic Metagenomics | Microbiome, n.d.)- or optionally, Augustus (Stanke et al., 2006) - to

predict all genes from a dataset in an assembly and output a score that represents the

proportion of these genes that was successfully identified. The higher this proportion, the more

likely the geneset of the evaluated assembly is complete.
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Approach and Results

Most assemblies released in recent years use both continuity metrics and BUSCO scores as

measures of quality, but these metrics are not yet available together in an easily accessible

resource; furthermore, the computation of BUSCO scores can vary between assemblies when

different versions, parameters, or lineage datasets are used. To address these shortcomings

and generate a comprehensive, standardised quality assessment for all arthropod assemblies,

we have developed an automated workflow applied for all arthropod assemblies available in the

United States National Center for Biotechnology Information (NCBI) GenBank database. The

workflow concurrently collates available NCBI assembly statistics and metadata and assesses

assembly completeness with BUSCO to build a comprehensive catalogue of metrics in a

taxonomically-aware framework. It is designed to be run regularly in order to update the collated

resources to reflect new additions or changes at NCBI. We applied our workflow to assess

2,083 NCBI arthropod genome assemblies representing 1,387 species and to build the first

release of the Arthropod Assembly Assessment Catalogue (A3Cat) which we used to survey the

current taxonomic coverage and assembly quality across arthropods. The workflows

implemented to build the A3Cat and the analyses of the first release are described in the first

annexed publication (Feron & Waterhouse, 2022a, Appendix 1); we also used these data to

review the current state of arthropod assemblies in the second annexed review publication

(Feron & Waterhouse, 2022b, Appendix 2).

The first release of A3Cat, including the aforementioned 2,083 assemblies, was published online

on June 11th, 2021. Since then we updated the catalogue regularly; changes to the workflow,

notably updating BUSCO from version 4 to the newer version 5.4.0, delayed some of these

updates, but we are now attempting to maintain a monthly update schedule. Each release

updates the main table with new assemblies submitted to NCBI and the figures showing the

distribution of assembly metrics between arthropod orders. All BUSCO results as well as

archived tables and JSON files from previous A3Cat releases are archived and available for

download. The publication presents a description of our automated analysis workflow that

surveys genome assemblies, assesses their completeness using BUSCO, and collates the

results into an interactively browsable resource (Feron & Waterhouse, 2022a). Using these

results, we surveyed current taxonomic coverage and assembly quality at the NCBI. This survey

highlighted the sparsity and taxonomic imbalance of current species sampling, with 79.5% of

species (83% of assemblies) belonging to only 3 orders: Lepidoptera—e.g., butterflies, moths

(712 species, 1,122 assemblies), Diptera—e.g., flies (216 species, 389 assemblies), and
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Hymenoptera—e.g., ants, bees, wasps (175 species, 217 assemblies). Roughly half (142) of

species with multiple assemblies were represented by a chromosome-level assembly, and

across all assemblies, those labelled as chromosome-level accounted for 12.3%, while a further

41.1% were labelled as scaffold-level assemblies, and the remaining 46.6% were at contig-level.

We also examined how key assembly metrics relate to gene content completeness. The EBP

criteria for a reference-quality assembly include obtaining a complete and single-copy BUSCO

score >90% and having the majority of sequences assigned to chromosomes. While 828 of the

assessed arthropod assemblies achieved a complete and single-copy BUSCO score >90%,

only 229 of these were also labelled as chromosome-level assemblies. Indeed, comparing

assembly N50 values with their completeness scores showed that obtaining >90% complete

BUSCOs can be achieved across a wide range of contiguities. While some with N50s <10 kb

were able to achieve >90% or 80–90% completeness, the vast majority of assemblies with such

low contiguity levels achieved considerably lower BUSCO completeness scores than more

contiguous assemblies. The smallest assembly with a >80% Arthropoda completeness score

was that of a grasshopper, however, inspecting the metadata revealed this to be a transcriptome

and not a genome assembly.

The large number of assemblies included in our A3Cat release accompanying the publication

allowed us to comprehensively compare results from using different BUSCO lineage datasets

and different BUSCO versions. Comparing percentages of complete BUSCOs identified with the

Eukaryota (n=255) and the Arthropoda (n=1’013) lineage datasets for a total of 1’977 arthropod

assemblies showed highly linearly correlated scores, especially for the highest-scoring

assemblies. For those scoring <80% there was a small but noticeable shift towards Arthropoda

producing slightly higher scores than Eukaryota, indicating that proportionately more of the

larger set of Arthropoda BUSCOs can be recovered from lower-quality assemblies. Outlier

points above the identity (y=x) axis (Figure 4.A in the attached publication 1) suggest that the

lower-resolution Eukaryota lineage dataset occasionally produces overestimates of

completeness, where proportionately more of the smaller set of ancient Eukaryota BUSCOs are

recovered. Similar trends were observed when comparing the Arthropoda results to the

higher-resolution Insecta (n=1,367) lineage dataset, with highly linearly correlated scores and

occasional small overestimates of completeness using the Arthropoda lineage dataset.

Comparing Arthropoda results to those from insect order-level lineage datasets revealed some

shifts in completeness estimations that likely arise from the uneven representations of these

orders in the 90-species Arthropoda lineage dataset, which is dominated by 20 hymenopterans
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and 15 dipterans. Using our large dataset to compare BUSCO v4 estimates with the previous

BUSCO v3 results also highlighted interesting trends, revealing high levels of agreement for the

highest-scoring assemblies, but a consistent shift towards lower scores reported by BUSCO v4

for lower-quality assemblies. Our large-scale analyses showed that the different BUSCO

versions produce generally consistent estimates of completeness, with a tendency for the

OrthoDB-v10–based Arthropoda and Insecta datasets to report lower scores, especially for

lower-quality assemblies. For objective quantitative comparisons, it is therefore critical to assess

assemblies using the same BUSCO versions, parameters, and lineage datasets, as presented

in our A3Cat resource for phylum-wide assessments of available arthropod genome assemblies.

Finally, since the publication of A3Cat, the Wellcome Sanger Institute has developed a search

engine for genomic and sequencing project metadata across the eukaryotic tree of life called

Genomes on a Tree (Challis et al., 2023) Application Programming Interface (API). To provide

the arthropod genomics community with not only a catalogue of available assemblies but also

an overview of arthropod species with ongoing and planned genome projects, we implemented

an additional page in our A3Cat resource displaying information on upcoming assemblies using

a query to GoaT. Thanks to this update, the A3Cat now presents exhaustive metadata and

quality metrics for publicly available arthropod genome assemblies and summarises current

efforts to target new species and accumulate high quality genomics data, making it a

comprehensive hub for anyone interested in arthropod assemblies. Over the course of the

project, we updated the A3Cat 22 times, and it is still updated today (Table 1.1); the latest

release of the A3Cat (March 2024) now provides data quality and metadata for 5,792

assemblies from 3,412 species (Figure 1.1), as well as 4,308 species with ongoing or planned

genome generation efforts.
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Date BUSCO version Assemblies

2021-06-11 4.1.4 2,083

2022-01-11 4.1.4 2,699

2022-01-12 5.4.0 2,699

2022-04-27 5.4.0 2,987

2022-05-25 5.4.0 3,125

2022-07-30 5.4.0 3,298

2022-12-02 5.4.0 3,514

2023-02-01 5.4.0 3,826

2023-03-01 5.4.0 3,900

2023-04-01 5.4.0 3,974

2023-05-01 5.4.0 4,149

2023-06-02 5.4.0 4,381

2023-07-01 5.4.0 4,504

2023-08-01 5.4.0 4,696

2023-09-05 5.4.0 4,803

2023-09-21 5.4.0 4,830

2023-10-05 5.4.0 4,853

2023-11-06 5.4.0 4,951

2023-12-01 5.4.0 5,064

2024-01-02 5.4.0 5,199

2024-02-01 5.4.0 5,627

2024-03-01 5.4.0 5,792

Table 1.1: date, BUSCO version, and number of assemblies included in each update of the
A3Cat. Starting from February 2023, development was mostly done and the update process was
streamlined, leading to regular monthly updates to this day. The number of Arthropod
assemblies assessed in the catalogue - and thus deposited to NCBI Genbank - almost tripled
since the start of the project. The workflow and website were originally developed using the
widely-used version 4.1.4 of BUSCO; after version 5 was released, we waited for development
to stabilise and public adoption to increase before settling on version 5.4.0 to update A3Cat.
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Figure 1.1. Taxonomic coverage of the Arthropod Assembly Assessment Catalogue A3Cat
v.2023-03-01. The Arthropoda phylogeny from the US NCBI Taxonomy database shows the
evolutionary relationships amongst 114 orders. Counts of described species (Sp.) within each
order are shown from the NCBI (v.2021–06-11) and the Catalogue of Life (CoL, v.2021–06-10),
alongside numbers of genome assemblies available from the NCBI Assembly database
(accessed on 25 August 2021). Of the 114 orders recognized by both the NCBI and the CoL, 48
orders are represented by ≥1 genome assembly. The 21 orders with ≥5 assemblies are
highlighted with distinct colours.
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Our development of A3Cat led to an invitation to contribute to a special issue on Insect

Genomics for Current Opinion in Insect Science. This special issue focused on how

accumulating genomics resources are facilitating a shift from traditional model organisms to new

model species or groups of model species for studying a large variety of biological phenomena

at many different levels. In our review, we use results from A3Cat to highlight how new genome

resources are supporting emerging model systems that are advancing our understanding of

insect biology and evolution. We show that while the quality of genome assemblies varies in

contiguity and gene content completeness, technological advances are generally supporting

new models by delivering high-quality genomic data. These new reference genomes

themselves provide the framework onto which new knowledge can be mapped, from

comparative genomic analyses, molecular biology experiments, as well as functional and

population genomic datasets - transcriptomics, proteomics, metabolomics, resequencing, etc.

Building on this idea, we used the number of NCBI BioProjects as a proxy to gauge the extent of

genome-enabled research activities, and found that the classical model insect species,

Drosophila melanogaster, is associated with an order of magnitude more registered projects

than the other most represented species. Among the others are well-known species that are

economically important, vectors of human diseases, or agricultural pests, all of which have had

publicly available draft assemblies for more than five years and almost all of which now have

published high-quality assembly upgrades, including most recently for the fall armyworm (Zhang

et al., 2020), the tiger mosquito (Palatini et al., 2020), the brown planthopper (Ye et al., 2021),

and the red flour beetle (Herndon et al., 2020). Species representing emerging model systems

we highlighted in the review are expected to similarly build genome-anchored knowledge bases

that support and enrich the exploration of insect diversity. Based on these observations, we

concluded that gene content completeness and other quality assessments during production

and of the resulting chromosome-level assemblies will continue to play a key role in establishing

genome resources that best support the development of new model systems and advance

understanding of insect biology and evolution.

Conclusion and Perspectives

The workflow and the resource produced as a result of this work represent important

contributions to the field. The careful design and implementation of the workflow mean that it is

easily deployable by others, as evidenced by the continued use and maintenance of the A3Cat

resource by the Waterhouse group in the context of the SNSF Sinergia project on arthropod
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moulting. The online A3Cat resource is popular amongst arthropod genomics researchers, with

a total of 2,151 page views from 689 unique users in the year 2023, and many personal

communications from appreciative users around the world. A recent update to the BUSCO

assessment tool included the ability to use a different, faster, method for the gene-finding step.

Therefore future development of the workflow would need to incorporate minor changes to the

workflow in order to take advantage of this new feature that promises to speed up the

assessment process. Importantly, as well as serving the community the results presented in this

chapter serve as an important basis for additional work performed as part of this thesis, as

described in Chapter 2 (for multispecies whole genome alignments) and Chapter 5 (for species

tree reconstructions).
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Abstract

Background: Ambitious initiatives to coordinate genome sequencing of Earth’s biodiversity mean that the accumulation of genomic
data is growing rapidly. In addition to cataloguing biodiversity, these data provide the basis for understanding biological function
and evolution. Accurate and complete genome assemblies offer a comprehensive and reliable foundation upon which to advance our
understanding of organismal biology at genetic, species, and ecosystem levels. However, ever-changing sequencing technologies and
analysis methods mean that available data are often heterogeneous in quality. To guide forthcoming genome generation efforts and
promote efficient prioritization of resources, it is thus essential to define and monitor taxonomic coverage and quality of the data.

Findings: Here we present an automated analysis workflow that surveys genome assemblies from the United States NCBI, assesses
their completeness using the relevant BUSCO datasets, and collates the results into an interactively browsable resource. We apply
our workflow to produce a community resource of available assemblies from the phylum Arthropoda, the Arthropoda Assembly
Assessment Catalogue. Using this resource, we survey current taxonomic coverage and assembly quality at the NCBI, examine how
key assembly metrics relate to gene content completeness, and compare results from using different BUSCO lineage datasets.

Conclusions: These results demonstrate how the workflow can be used to build a community resource that enables large-scale as-
sessments to survey species coverage and data quality of available genome assemblies, and to guide prioritizations for ongoing and
future sampling, sequencing, and genome generation initiatives.

Keywords: arthropod genomes, biodiversity genomics, BUSCO assessments, genome assembly, genome quality database, reproducible
workflow

Introduction
Advances in sequencing technologies are bringing down costs and
reducing sample requirements, leading to an accelerating accu-
mulation of new and improved genome assemblies. Ambitious
initiatives to coordinate sequencing of all known species are gen-
erating representative genomes from across the tree of life that
catalogue Earth’s genetic biodiversity. In addition to constituting
an inventory of biological diversity, the assembled and annotated
genomes drive research to understand function and evolution at
multiple levels, as well as to benefit human welfare [1, 2]. Inves-
tigating such questions using genomic data often requires com-
prehensive multi-species comparative analyses that benefit from
high-quality assemblies [3, 4]. It is therefore essential to be able to
define the current taxonomic coverage of high-quality assemblies
to guide forthcoming sequencing efforts and promote efficient pri-
oritization of resources globally.

Methods to gauge assembly quality include 2 main families of
metrics [5]. One summarizes contiguity using metrics like N50
length, where half the assembly comprises sequences of length
N50 or longer, or L50 count, the smallest number of sequences
whose lengths sum to 50% of the assembly. Complementary ap-
proaches estimate completeness by examining gene or protein
content, e.g., the DOmain-based General Measure for transcrip-
tome and proteome quality Assessment (DOGMA) [6, 7] or BUSCO
[8, 9]. BUSCO has emerged as a standard and is used by UniProt

[10] and the US NCBI [11], as well as by genomics data quality as-
sessment pipelines like MultiQC [12] and BlobToolKit [13]. BUSCO
is based on the evolutionary expectation that single-copy ortho-
logues found in nearly all species from a given taxon should be
present and single-copy in any newly sequenced species from
the same clade. BUSCO datasets are built for multiple taxonomic
lineages by identifying near-universal groups of single-copy or-
thologues from OrthoDB [14, 15]. For assembly evaluations, se-
quence searches followed by gene predictions and orthology clas-
sifications identify complete, duplicated, or fragmented BUSCOs.
The proportions recovered indicate the completeness in terms of
expected subsets of evolutionarily conserved genes. Extrapolat-
ing from these, a high BUSCO completeness score suggests that
the sequencing and assembly procedure has successfully recon-
structed a reliable representation of the full set of genes.

Using their Complete Proteome Detector algorithm, UniProt
classifies proteomes as “standard,” “close to standard,” or “out-
lier” and provides BUSCO proteome completeness summaries.
For assemblies, the NCBI Assembly database provides summary
statistics and metadata for each record. Querying these can pro-
vide snapshots of taxonomic coverage and data quality, but re-
searchers currently lack access to comprehensive and standard-
ized assessments of available assemblies. These would allow
data producers to compare their assemblies to existing data at
the most relevant taxonomic level. They would also provide re-
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searchers with comprehensive overviews of resources for their
focal taxa. Such communities would benefit from being able to
survey coverage and quality of available genomic resources for
selected groups of species from their field of interest. This would
(i) aid project design, particularly in the context of comparative
genomics analyses; (ii) simplify comparisons of the quality of
their own data with that of existing assemblies; and (iii) provide a
means to keep up to date with accumulating genomics resources
relevant to their ongoing research projects.

To address these needs, we developed an automated analy-
sis workflow that performs BUSCO assessments of assemblies for
user-selected taxa from the NCBI, concurrently collating assem-
bly metadata to build a catalogue of metrics in a taxonomically
aware framework. To demonstrate the utility of standardized eval-
uations for a clade, we applied our workflow to the phylum Arthro-
poda, for which genome data are supporting research on a wide
range of topics including their roles as pests and disease vectors
[16]. Since sequencing of the fruit fly genome [17], sampling of
arthropods has included ants and other Hymenoptera [18, 19],
arachnids [20], beetles [21], butterflies and other Lepidoptera [22],
flies and other Diptera [23, 24], hemipterans [25], and many others
[26, 27]. Through efforts such as the i5k 5000 arthropod genomes
initiative [28] and others, the arthropod genomics community has
worked to overcome challenges in genome sequencing, assembly,
and annotation [29–31]. Despite encompassing only a tiny fraction
of all arthropod diversity and showing taxonomic biases in sam-
pling, assemblies are accumulating rapidly and are now publicly
available for hundreds of species [32, 33].

Our large-scale assessments allowed us to (i) survey the cur-
rent taxonomic coverage and assembly quality across Arthropoda,
(ii) examine how key assembly metrics relate to gene content
completeness, (iii) quantify effects on assessment resolution us-
ing different BUSCO lineage datasets, (iv) compare the results of
BUSCO v3 with the newer BUSCO v4, and (v) demonstrate how our
workflow can be used to build a community resource. We provide
the catalogue as an open resource for the arthropod genomics
community, and the stand-alone open-source workflow for users
to build their own catalogues tailored to the needs of their re-
search communities. Enabling user-customizable, taxonomically
aware, standardized, and updatable quality assessments of avail-
able genome assemblies will empower genomics data producers
and users, as well as helping to prioritize species for genomic se-
quencing of Earth’s biodiversity.

Results and Discussion
An automated workflow for assembly
assessments
We developed an automated analysis workflow to build and
maintain NCBI genome assembly assessment catalogues for se-
lected taxa. This workflow performs the following steps: (i) query
the NCBI GenBank Assembly database [11] to retrieve informa-
tion about available assemblies and corresponding metadata
for a user-defined taxonomic group; (ii) identify all relevant
BUSCO lineages based on species taxonomy for each assembly;
(iii) run BUSCO on each assembly using each relevant lineage
dataset; (iv) generate a summary table that collates all BUSCO re-
sults with assembly metrics and metadata; and (v) generate an
HTML/JavaScript interactive table containing all data from the
summary (Supplementary Fig. S1). Assembly metadata are inte-
grated into a summary file along with 5 metrics obtained from
the results of running BUSCO on each assembly with each rele-

vant lineage: the percentages of complete, complete single-copy,
complete duplicated, fragmented, and missing BUSCOs. The work-
flow allows users to systematically assess all assemblies available
at the NCBI for a given taxon of interest. Importantly, it is also de-
signed to perform on-demand updates to assess assemblies added
to NCBI GenBank since the last run. The final output provides all
the information retrieved for each assembly in both JSON and tab-
separated formats, and an HTML/JavaScript table is generated to
display the data. This output is saved in a summary folder each
time the workflow is run. The workflow is implemented using the
Snakemake workflow management engine [34, 35], and all soft-
ware dependencies are managed by the Conda package manager.
It is fully automated and can be configured using a YAML file to
specify the query to use for the NCBI Assembly database, BUSCO
parameters, and the information to display in the output tables.
The code and documentation are available from [36].

A survey of arthropod genome assembly
resources
Applying the assembly assessment workflow to the phylum
Arthropoda on 11 June 2021 resulted in the retrieval of a total of
2,083 assemblies from 1,387 species, providing a snapshot of the
taxonomic coverage of available genome resources for arthropods
at the NCBI. Of the ∼120 arthropod orders recognized by the NCBI
Taxonomy database [37] or the Catalogue of Life [38], 48 are rep-
resented by ≥1 genome assembly, with 21 orders represented by
≥5 assemblies (Fig. 1). Currently available genome resources in-
clude 1,929 assemblies for 1,262 insect species and a further 154
assemblies for 125 other arthropod species. For Insecta, this is a
doubling of the number of species since a November 2020 sur-
vey from Hotaling et al. [33]. Species with assemblies represent a
∼0.06% sampling from a total of ∼1 million described arthropod
species (792,339 species records and 121 orders in the NCBI Tax-
onomy database on 10 August 2021; 1,126,288 extant species and
123 orders in the Catalogue of Life 2021–06-10 edition).

This survey highlights the sparsity and taxonomic imbalance
of current species sampling, with 79.5% of species (83% of as-
semblies) belonging to only 3 orders: Lepidoptera—e.g., butter-
flies, moths (712 species, 1,122 assemblies), Diptera—e.g., flies
(216 species, 389 assemblies), and Hymenoptera—e.g., ants, bees,
wasps (175 species, 217 assemblies). Similar sampling biases were
identified by the November 2020 survey of NCBI resources for In-
secta [33], where order-level counts for 601 insect species from 20
orders were 28% Diptera, 20% Lepidoptera, and 27% Hymenoptera.
Notably, while roughly one-third of insect orders are represented,
only 5–10% of orders from other groups such as crustaceans, myr-
iapods (e.g., centipedes, millipedes), and chelicerates (e.g., spi-
ders, scorpions) have ≥1 assembly. Across Arthropoda, orders
with the most sequenced species also show the highest propor-
tions of sequenced versus Catalogue-of-Life–described species de-
spite also being amongst the most species-rich clades: 0.063% se-
quenced species for Lepidoptera, 0.019% for Diptera, and 0.016%
for Hymenoptera. An exception to this observation is Coleoptera—
e.g., beetles, weevils, which has the highest number of described
species to date with currently available genome assembly re-
sources for only 0.007% of these species.

These uneven distributions likely reflect historical biases in re-
search interests for dipterans, which include the model species
Drosophila melanogaster and disease vectors like mosquitoes; for
lepidopterans, which have been a model to study the genetic basis
of complex traits and population genetics; and for hymenopter-
ans, which include many well-studied social insects. While such
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Figure 1: Available genome assembly resources across the arthropod phylogeny. The Arthropoda phylogeny from the US NCBI Taxonomy database
shows the evolutionary relationships amongst 114 orders. Counts of described species (Sp.) within each order are shown from the NCBI (v.2021–06-11)
and the Catalogue of Life (CoL, v.2021–06-10), alongside numbers of genome assemblies available from the NCBI Assembly database (accessed on 25
August 2021). Of the 114 orders recognized by both the NCBI and the CoL, 48 orders are represented by ≥1 genome assembly. The 21 orders with ≥5
assemblies are highlighted with distinct colours, which are maintained for cross-referencing in Figs 2–4. The inset shows the accumulation of
assemblies, species, and orders submitted to the NCBI since 2005 (note that in the case of assembly updates only the latest submission dates are
considered).
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biases may persist owing to factors such as research priorities and
ease of sampling, the balance should improve as the numbers and
taxonomic spread of available arthropod genome assemblies con-
tinue to grow rapidly (Fig. 1, Inset). Surveying taxonomic represen-
tation in this way highlights the increasingly rapid accumulation
of new genome assemblies at the NCBI, providing researchers with
a comprehensive overview of the species coverage of available ge-
nomics resources for their taxa of interest.

Assessing the surveyed species data allows for phylum-wide
comparisons of the contiguity and completeness of genome as-
semblies available at the NCBI. Focusing on the 21 orders with ≥5
assemblies, order representation is notably unbalanced and as-
sembly quality metrics summarized with N50 lengths and BUSCO
completeness scores vary greatly among and within orders (Fig. 2).
Large differences between assembly and species counts are pri-
marily driven in Lepidoptera by Heliconius melpomene (n = 42),
Junonia neildi (n = 35), Junonia evarete (n = 32), and 6 other Junonia
and Heliconius species with >10 assemblies, and in Diptera mainly
by D. melanogaster (n = 26), Drosophila simulans (n = 12), and Anophe-
les coluzzii (n = 10). The 307 species with >1 assembly comprise
distinct assembly submissions and not updates that result in new
versions of existing submissions (in this case only the latest ver-
sion is surveyed). Roughly half (142) of these species with mul-
tiple assemblies are represented by a chromosome-level assem-
bly. Across all assemblies, those labelled as chromosome-level ac-
count for 12.3%, while a further 41.1% are labelled as scaffold-
level assemblies, and the remaining 46.6% are contig-level (Sup-
plementary Fig. S2).

Excluding Lepidoptera, which are skewed by a large number of
poor-quality assemblies [39], median N50 lengths per order rep-
resented by ≥5 assemblies (shown in Fig. 2C) range from 11.6 kb
for Sarcoptiformes (mites, 15 assemblies for 12 species) to 96.3
Mb for Xiphosura (horseshoe crabs, 8 assemblies for 4 species).
The horseshoe crabs have large genomes of 1.7–2.2 Gb, for which
concerted efforts have been successful in producing contiguous
assemblies [40–43]. The mite genomes are all much smaller, with
a median assembly span (total length) of just 88.5 Mb, where the
latest assembly for the parasitic mite, Sarcoptes scabiei, provides
an example of how long-read technologies are helping to improve
available genomic resources [44].

Median BUSCO completeness scores per order represented by
≥5 assemblies for the Arthropoda lineage dataset (Fig. 2D) are
less variable than the N50 lengths and, excluding Lepidoptera,
range from 72.1% for Sarcoptiformes to >97% for Diplostraca
(clam shrimps and waterfleas, 9 assemblies for 7 species), Blat-
todea (cockroaches and termites, 6 assemblies for 5 species),
Diptera, and Hymenoptera. Although within-order distributions
can be highly variable, all but 2 of the 21 orders (Sarcoptiformes
and Trombidiformes mites) are represented by ≥1 assembly with
>90% complete BUSCOs. These contiguity and completeness dis-
tributions include all available assemblies, i.e., not filtered by
level (contig, scaffold, chromosome) or type (e.g., haploid, princi-
pal or alternate pseudohaplotype). The completeness of contig-
level assemblies is expectedly lower than that of scaffold- or
chromosome-level (Supplementary Fig. S2B) assemblies, and al-
though alternate pseudohaplotype assemblies can achieve high
BUSCO completeness scores, they are generally lower than for
principal pseudohaplotypes (Supplementary Fig. S2C). Additional
partitioning of the datasets by sequencing technologies, assembly
algorithms, and so forth is feasible where the metadata labels are
applied consistently, or after metadata curation as for previous
assessments of insects that contrasted short- and long-read tech-
nologies [33]. These phylum-wide comparisons of the qualities of

available genome assemblies highlight the unbalanced order-level
species representation, as well as the variable levels of contiguity
and completeness within and amongst arthropod orders.

Arthropod assembly contiguity, size, and
completeness
With 2,083 assemblies exhibiting variable contiguities and sizes,
the survey results provide the opportunity to examine expecta-
tions of how assembly contiguity and size relate to gene content
completeness. Although long-read sequencing technologies are
producing improved results [33], large genomes have often been
challenging to assemble owing to expanded proportions of repeti-
tive sequences [31]. Even for smaller genomes, repeats can hinder
scaffolding of contigs, reducing contiguity and possibly adding un-
determined gap regions to the assembly. Less contiguous assem-
blies are thus expected to have more genes split across scaffolds,
or partially or completely missing, resulting in lower complete-
ness scores [45].

The Earth BioGenome Project [2] criteria for a reference-quality
assembly include obtaining a complete and single-copy BUSCO
score >90% and having the majority of sequences assigned to
chromosomes. While 828 of the assessed arthropod assemblies
achieve a complete and single-copy BUSCO score >90%, only
229 of these are also labelled as chromosome-level assemblies.
Indeed, comparing assembly N50 values with their complete-
ness scores shows that obtaining >90% complete BUSCOs can be
achieved across a wide range of contiguities (Fig. 3A). Recovery
of >90% complete BUSCOs is observed for assemblies with N50s
as low as 3.5 kb (Tetragonula mellipes, stingless bee, 92.1% com-
plete) and 3.9 kb (Chrysomya rufifacies, blowfly, 97.4% complete).
While some with N50s <10 kb are able to achieve >90% (n = 25)
or 80–90% (n = 21) completeness, the vast majority of assemblies
with such low contiguity levels achieve considerably lower BUSCO
completeness scores than contiguous assemblies (i.e., N50 >10
kb). Among the latter, notable anomalies include 24 assemblies
with N50s >10 kb that nonetheless all have completeness scores
of <50%. One-third of these are labelled as alternate pseudohaplo-
types, which offers an explanation for the low completeness levels
because they likely represent collections of purged haplotigs. Oth-
ers include improbably small assembly spans, e.g., Sertania guttata
(butterfly, 30 Mb span of 628 Mb estimate) and Dactylopius coccus
(scale insect, 18 Mb span of 386 Mb estimate), or high proportions
of undetermined sequence, e.g., the brown recluse spider, Loxosce-
les reclusa (45% gaps). Biological complexity may also offer expla-
nations, such as in the case of the Lord Howe Island stick insect,
Dryococelus australis (N50 = 17.3 kb, 43.5% complete), a potentially
hexaploid genome with an estimated size of 4.2 Gb that achieved
an assembly span of 3.4 Gb [46].

The largest assemblies span >5 Gb, with the maximum re-
ported for the Asian longhorned tick, Haemaphysalis longicornis,
at 7.3 Gb, which shows 92% complete BUSCOs (Fig. 3B). The es-
timated genome size for this tick however is only 3.4 Gb, and a
duplicated BUSCO score of 74.4% suggests that the applied as-
sembly methods failed to collapse the alternative haplotypes. In-
deed, an alternative assembly for this tick spans just 2.6 Gb and
scores 89.5% complete and 2.1% duplicated BUSCOs. A handful
of other large assemblies with high duplicated scores are anno-
tated as being non-collapsed, but others with many duplicated
BUSCOs are also likely diploid or partially diploid (Supplemen-
tary Fig. S3). The smallest reported genome size for an arthro-
pod to date is that of the tomato russet mite, Aculops lycopersici
(Trombidiformes), exceptionally streamlined at only 32.5 Mb [47].
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Figure 2: Order-level representation, contiguity, and completeness of 2,024 available assemblies for 1,326 arthropod species from the 21 orders with ≥5
assemblies. Data are presented only for orders with ≥5 assemblies available at the NCBI (2021–06-11). (A) Phylogenetic relationships of the 21 orders as
resolved by the NCBI Taxonomy database. (B) Number of assemblies (entire bars) and unique species (dark fractions) retrieved from the NCBI
Assembly database for each order. (C) Distribution of assembly NCBI scaffold N50 values (base pairs, log scale) for each order. (D) Distribution of
BUSCO completeness (% of 1,013 BUSCOs) for the arthropod lineage dataset (arthropoda_odb10) for each order. Box plots show the median, first and
third quartiles, and lower and upper extremes of the distribution (1.5 × IQR), and all values are overlaid as points to show the full distribution.

It achieves a Eukaryota completeness score of 83%, but only 67%
Athropoda complete, which could reflect the evolutionary stream-
lining process but may also be related to challenges during gene
prediction in such a gene-dense genome where genes have also
experienced large-scale intron losses. The smallest assembly with
a >80% Arthropoda completeness score is that of a grasshopper,
Xenocatantops brachycerus (42 Mb, 92% complete); however, inspect-
ing the metadata reveals this to be a transcriptome rather than a
genome assembly [48]. Amongst the smallest true genome assem-
blies achieving >80% completeness are other Trombidiformes as
well as Sarcoptiformes, e.g., the house dust mite Dermatophagoides
farinae (54 Mb, 84% complete). Although there are fewer large as-
semblies spanning >1 Gb, across the full range of their sizes most
achieve good completeness scores of >90%, indicating that se-
quencing technologies and assembly methods are able to over-
come challenges often associated with large genomes.

Comparing assembly N50s and sizes with BUSCO duplicated
scores (Supplementary Fig. S3) identifies several assemblies with
high duplication levels. Some of these are labelled as “unresolved-
diploid” assemblies, which explains these high duplication levels,
but this mechanism to inform users about the non–strictly hap-
loid status of certain assemblies is not widely nor consistently ap-
plied. Fragmented BUSCO scores (Supplementary Fig. S4) are ex-
pectedly higher for most of the less contiguous assemblies, high-
lighting those where many genes are likely split across 2 or more
scaffolds. The survey results therefore provide the community
with a comprehensive overview of genomic dataset qualities and

of how contiguity and size relate to gene content completeness
across currently available arthropod genome assemblies.

BUSCO dataset lineage and version comparisons
The reference BUSCO lineage datasets are defined at different
taxonomic levels that capture sets of near-universal single-copy
orthologues from OrthoDB [49] at ancient, intermediate, and
younger nodes of the tree of life [8,9]. As duplication and loss
events over evolutionary time erode the numbers of identifiable
BUSCOs, datasets defined for more ancient lineages are smaller
than for the younger ones, e.g., n = 255 for Eukaryota and n = 954
for Metazoa, versus n = 3,285 for Diptera and n = 13,780 for Pri-
mates (OrthoDB v10 datasets). An advantage of the smaller older
lineage datasets is that compute runtimes are shorter because
there are fewer individual genes to search for. The larger younger
lineage datasets on the other hand offer greater resolution, mean-
ing that scores are less affected by small differences in counts of
complete, fragmented, or missing BUSCOs.

Our results provide the opportunity to compare the scores
obtained using different lineage datasets for a large number of
arthropod assemblies (Fig. 4). Comparing percentages of complete
BUSCOs identified with the Eukaryota (n = 255) and the Arthro-
poda (n = 1,013) lineage datasets for a total of 1,977 arthropod as-
semblies shows highly linearly correlated scores, especially for the
highest-scoring assemblies (Fig. 4A). For those scoring <80% there
is a small but noticeable shift towards Arthropoda producing
slightly higher scores than Eukaryota, indicating that proportion-
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Figure 3: BUSCO completeness compared with assembly contiguity and size. Complete BUSCOs (in % of total BUSCOs for the arthropoda_odb10
dataset) are plotted against assembly N50 in bp (A) and assembly size in bp (B) for each assessed assembly. Both assembly N50 and assembly size are
represented with a log scale. The colour of a point indicates the order of the sequenced species. Dotted lines indicate N50 values of 1, 10, 50, and
500 kb and 5 Mb in A and assembly size values of 50 Mb, 250 Mb, 1 Gb, and 5 Gb in B. BUSCO completeness scores >90% are highlighted with a grey
background.

ately more of the larger set of Arthropoda BUSCOs can be re-
covered from lower-quality assemblies. Outlier points above the
identity (y = x) axis suggest that the lower-resolution Eukaryota
lineage dataset occasionally produces overestimates of complete-
ness, where proportionately more of the smaller set of ancient Eu-
karyota BUSCOs are recovered. Similar trends are observed when
comparing the Arthropoda results to the higher-resolution Insecta
(n = 1,367) lineage dataset, with highly linearly correlated scores
and occasional small overestimates of completeness using the
Arthropoda lineage dataset (Supplementary Fig. S5A).

Comparing Arthropoda results to those from 4 insect order-
level lineage datasets shows high agreements for the highest-
scoring assemblies (Fig. 4B). For lower-scoring assemblies, results
from applying the Lepidoptera and Hemiptera lineage datasets
tend towards slightly higher scores than for Arthropoda. In con-
trast, using the Hymenoptera and Diptera lineage datasets gen-
erally produces lower completeness scores than for Arthropoda.
These shifts could arise from the uneven representations of these
orders in the 90-species Arthropoda lineage dataset, which is
dominated by 20 hymenopterans and 15 dipterans, with only 9
species each for Lepidoptera and Hemiptera. The same trends
are observed when comparing results from the order-level lineage
datasets to those from the Insecta dataset (Supplementary Fig.
S5B).

In addition to updates to the codebase, BUSCO v4 was released
with updated lineage datasets based on orthology data from Or-
thoDB v10 [49], while BUSCO v3 used data from OrthoDB v9 [50].
Comparing completeness scores using the 2 Arthropoda datasets
shows high levels of agreement for the highest-scoring assemblies
with a consistent shift towards lower scores reported by BUSCO v4
for lower-quality assemblies (Fig. 4C). A similar pattern is observed
when comparing results from the 2 Insecta datasets (Supplemen-
tary Fig. S5C). The Diptera comparisons on the other hand reveal

some score variations, which nevertheless agree well over the full
range of assembly qualities (Fig. 4D), similarly to results from the
Hymenoptera datasets (Supplementary Fig. S5D). The different
versions therefore produce generally consistent and comparable
estimates of completeness, with a tendency for the OrthoDB-v10–
based Arthropoda and Insecta datasets to report lower scores, es-
pecially for lower-quality assemblies. For objective quantitative
comparisons it is thus necessary to assess assemblies using the
same BUSCO versions, parameters, and lineage datasets, as pre-
sented here for the phylum-wide assessments of available arthro-
pod genome assemblies.

The Arthropoda assembly assessment catalogue:
A3Cat
Running the workflow on the selected taxon of Arthropoda
(NCBI:txid6656) produced the first version of the Arthropoda As-
sembly Assessment Catalogue (A3Cat v.2021–06-11), demonstrat-
ing how the workflow can be used to build a community re-
source. The A3Cat is provided as a searchable online table [51]
(Arthropoda Assembly Assessment Catalog, RRID:SCR_021864)
that makes it possible to browse and download the collated
metadata and BUSCO assessment results for arthropod assem-
blies available from the NCBI (n = 2,083 for A3Cat v.2021–06-11).
Through simple text searches and/or applying query filters, users
are able to quickly obtain downloadable overviews of the avail-
ability and quality of genome assembly resources for their arthro-
pod taxa of interest. Without the computational burden of having
to evaluate publicly available resources themselves, users can di-
rectly compare the assessments of their own assemblies with the
precomputed results available from the A3Cat. In addition, for ver-
sion and parameter controlled like-for-like comparisons, a user-
workflow is provided to compute quality metrics on user-provided
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Figure 4: Comparisons of BUSCO lineage datasets and BUSCO versions. Congruence of BUSCO completeness scores is assessed by comparing results
from (A) the Eukaryota (n = 255) and the Arthropoda (n = 1,013) lineage datasets, (B) the Arthropoda and 4 insect order-level lineage datasets
(Hemiptera [n = 2,510], Hymenoptera [n = 5,991], Lepidoptera [n = 5,286], Diptera [n = 3,285]), and lineage datasets from BUSCO v4 (OrthoDBv10) and
BUSCO v3 (OrthoDBv9) for (C) Arthropoda (odb9: n = 1,066) and (D) Diptera (odb9: n = 2,799). In each panel, the dotted lines show the identity (y = x).

assemblies and compare them with A3Cat results for species from
the same taxonomic clade (code and documentation are available
from [52]).

Conclusions
Results from applying the assessment workflow to the phylum
Arthropoda demonstrate the utility of building resources that pro-
vide a standardized overview of the current taxonomic coverage
and quality of genome assembly resources available from the
NCBI. The large-scale dataset also offers the opportunity to ex-
amine how widely used assembly metrics relate to BUSCO genes-

pace completeness across a heterogeneous collection of genomes.
Some anomalies point to errors or inconsistent use of metadata
annotations where retractions or revisions would help to avoid
misleading users about these resources. Furthermore, compar-
ing results using different BUSCO datasets on large collections of
assemblies reveals trends associated with using ancient (lower-
resolution) or younger (higher-resolution) lineages, and datasets
built for BUSCO v3 or v4. While congruence is high especially for
high-scoring assemblies, truly objective comparisons require re-
porting of the BUSCO versions, parameters, and lineage datasets
used. Our data will enable future large-scale comparisons with re-
sults from the recently released BUSCO v5, which includes a new
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genome assessment strategy that improves efficiency and run-
times [53]. Future workflow developments would aim to capture
new metadata attributes made available from the NCBI such as
summary information on repeat content, or computed locally, e.g.,
nucleotide compositions from k-mer analyses. The automated
analysis workflow to build and maintain NCBI genome assembly
assessment catalogues for selected taxa allows users to build up-
datable community resources, here exemplified with the A3Cat,
which facilitates surveying of species coverage and data quality
for available arthropod assemblies and serves to guide ongoing
and future genome generation initiatives.

Materials and Methods
Assembly selection and assessment workflow
implementation
Accession numbers for all assemblies in the user-specified taxon
are retrieved by querying the NCBI datasets API [54] with the
ncbi-datasets-pylib library (version 12.3.0 in version 1.0 of a3cat-
workflow) (Step 1 in Supplementary Fig. S1). For each assembly,
the data package is downloaded to a temporary zip file using the
“datasets” command-line utility (version 11.22.0 in version 1.0 of
the a3cat-workflow). The nucleotide sequence and metadata are
extracted from each data package with the ncbi-datasets-pylib li-
brary and stored as fasta and JSON files, respectively (Step 2 in
Supplementary Fig. S1). For each assembly, complete taxonomic
information is retrieved from the NCBI Taxonomy database [37]
using the ete3 python module [55], version 3.1.2 in version 1.0
of the a3cat-workflow) and stored in a JSON file (Step 3 in Sup-
plementary Fig. S1). Taxonomic information is used to determine
all BUSCO lineage datasets relevant for each assembly (Step 4 in
Supplementary Fig. S1). During this step, assemblies are filtered
by size, scaffold N50, and a manual filter list to discard assem-
blies that are too short and/or fragmented to contain any BUS-
COs; this is necessary because BUSCO returns an error if no BUS-
COs are found. The completeness of each assembly is assessed
using BUSCO in genome mode and all other settings to default
(version 4.1.4 in version 1.0 of the a3cat-workflow) for each appli-
cable lineage dataset (Step 5 in Supplementary Fig. S1). The re-
sults folder generated by BUSCO is saved as a compressed archive
with the exception of the BLAST database (blast_db) and BLAST
input sequences (<run_name>/blast_output/sequences). The full
results table, missing BUSCO list, and short summary are also
retained in the final output for convenience. Metadata retrieved
from NCBI and BUSCO scores for all assemblies are aggregated
into a JSON file that summarizes all the raw information retrieved
and computed by the workflow (Step 6 in Supplementary Fig.
S1). This JSON file is converted into a table with formatted head-
ers stored in a tab-separated file where columns represent meta-
data and BUSCO scores and each line corresponds to an assembly
(Step 7 in Supplementary Fig. S1). Finally, an interactive table is
generated as an HTML page using the Data Tables JavaScript li-
brary [56] (version 1.10.24 in version 1.0 of the a3cat-workflow)
(Step 8 in Supplementary Fig. S1). The entire workflow is imple-
mented using the Snakemake workflow management engine [34,
35] and all software dependencies are managed by the Conda
package manager; this implementation ensures that the workflow
is portable and entirely reproducible. Parameters for each step of
the workflow are specified in a YAML file and additional config-
uration files can be used to customize the table and HTML out-
put. The code and documentation for the workflow are available
from [36].

Assessment workflow deployment and data
analyses
Results presented in this study were obtained by running ver-
sion 1.0 of the a3cat-workflow on 11 June 2021. Species estimates
were retrieved from the NCBI Taxonomy database using ete3 (ver-
sion 3.1.2) on 21 August 2021 and from the Catalogue of Life ver-
sion 2021–06-10. Phylogenetic trees were automatically generated
from NCBI taxonomy data with ete3. BUSCO scores for version
4.1.4 were obtained directly from the output of a3cat-workflow,
while scores for version 3.12 were obtained with a development
release version of the workflow [57]. Figures were generated with
ggplot2 version 3.3.5 [58] and ggtree version 3.0.1 [59] in R version
4.1.0 [60]. All data-related figures, numbers, and supplementary
material were generated with a Snakemake workflow [35] avail-
able from [61] using Snakemake version 6.3.0.

Availability of Supporting Source Code and
Requirements
Project name: The Arthropoda Assembly Assessment Catalogue
Workflow
Project home page: https://gitlab.com/evogenlab/a3cat-workflow
Operating system: Platform independent
Programming language: Snakemake, Python
Other requirements: Snakemake, Conda
License: GPLv3
RRID:SCR_021864
biotools ID: arthropoda_assembly_assessment_catalogue

Data Availability
The data underlying this article are available in the NCBI As-
sembly Database at https://www.ncbi.nlm.nih.gov/assembly. An
archival copy of the code and supporting data is also available via
the GigaScience database GigaDB [62].

Additional Files
Supplementary Figure S1. Overview of the automated workflow
for assembly assessments. The NCBI GenBank database is queried
using the NCBI "datasets" python library (1) and assembly pack-
ages are downloaded with the "datasets" utility to obtain the
genome sequence in a fasta file and metadata in a JSON file (2).
The complete taxonomy is retrieved from the NCBI taxonomy
database for each assembly using ete3 (3) and used to determine
relevant BUSCO lineage datasets (4). BUSCO is then run with each
lineage dataset on each assembly (5), and BUSCO results are ag-
gregated with taxonomy information and metadata into a sin-
gle complete JSON summary file (6). Finally, the summary is con-
verted to a tab-separated table (7) and an HTML/Javascript search-
able table is generated (8).
Supplementary Figure S2. Accumulation over time and BUSCO
completeness of contig-level, scaffold-level, or chromosome-level
assemblies. (A) The cumulative numbers of assemblies labelled
as contig-level, scaffold-level, and chromosome-level according to
their submission dates at the NCBI Assembly database. (B) Distri-
butions of BUSCO completeness scores for assemblies labelled as
contig-level, scaffold-level, and chromosome-level at the NCBI As-
sembly database, and (C) those labelled as simply haploid, or dis-
tinguishing between the principal and alternate haplotypes. Box
plots show the median, first and third quartiles, and lower and
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upper extremes of the distribution (1.5 × IQR), and all values are
overlaid as points to show the full distribution.
Supplementary Figure S3. Proportion of duplicated BUSCOs com-
pared with assembly contiguity and size. Duplicated BUSCOs (in
% of total BUSCOs for the arthropoda_odb10 dataset) are plotted
against assembly N50 in bp (A) and assembly size in bp (B) for each
assessed assembly. Both assembly N50 and assembly size are rep-
resented with a log scale. The colour of a point indicates the order
of the sequenced species. Dotted lines indicate N50 values of 1,
10, 50, and 500 kb and 5 Mb in panel A and assembly size values
of 50 Mb, 250 Mb, 1 Gb, and 5 Gb in panel B.
Supplementary Figure S4. Proportion of fragmented BUSCOs
compared with assembly contiguity and size. Fragmented BUS-
COs (in % of total BUSCOs for the arthropoda_odb10 dataset) are
plotted against assembly N50 in bp (A) and assembly size in bp
(B) for each assessed assembly. Both assembly N50 and assembly
size are represented with a log scale. The colour of a point indi-
cates the order of the sequenced species. Dotted lines indicate N50
values of 1, 10, 50, and 500 kb and 5 Mb in panel A and assembly
size values of 50 Mb, 250 Mb, 1 Gb, and 5 Gb in panel B.
Supplementary Figure S5. BUSCO dataset comparisons for In-
secta and Hymenoptera. Congruence of BUSCO completeness
scores is assessed by comparing results from the Arthropoda (n
= 1,013) and Insecta (n = 1,367) lineage datasets (A), the Insecta
and 4 insect order-level lineage datasets (Hemiptera [n = 2,510],
Hymenoptera [n = 5,991], Lepidoptera [n = 5,286], Diptera [n =
3,285]) (B), and lineage datasets from BUSCO v4 (OrthoDBv10) and
BUSCO v3 (OrthoDBv9) for Insecta (odb9: n = 1,658) (C) and Hy-
menoptera (odb9: n = 4,415) (D). Dotted lines represent the iden-
tity (y = x).
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Introduction 
Model organisms can be described as non-human spe
cies that are studied to advance the understanding of 
biological phenomena, with traditional model species 
being easily bred in the laboratory and amenable to 
experimental manipulation [1]. The common ancestry of 
living organisms means that insights from such models 
also inform knowledge of molecular and genetic me
chanisms underlying common biological functions across 
the tree of life. Representing insects is the renowned 
model, the fruit fly Drosophila melanogaster, with ground- 
breaking work on fields from genetics and heredity to 

behaviour, physiology, development, immunity, and 
countless others [2]. A major contributing factor to the 
success of Drosophila as a versatile model over the last 
two decades was the establishment of a reference 
genome assembly and its functional genomic element 
annotations [3]. Developing new models with reference 
genomes and experimental tools analogous to those 
available for Drosophila can be challenging, but is im
portant for diversifying the systems we use to learn 
about organismal biology [4,5]. Currently, substantial 
advances in sequencing technologies mean that it can be 
more readily feasible to generate a high-quality genome 
for a new species than it is to rear in the laboratory. This 
genomics revolution is opening up a whole new set of 
possibilities considering a shift from the traditional 
model organism to the concept of species or groups of 
species that offer the ability to develop new model 
systems for studying a large variety of biological phe
nomena at many different levels [6,7]. 

Conserved orthologues help gauge gene 
content completeness of accumulating 
genome resources 
Recent surveys of the current status of available genome 
resources for insects focus on taxonomic representation, 
assembly quality metrics, gene content completeness, 
and sequencing technology use [8–10]. These highlight 
the continued rapid accumulation since previous sur
veys, for example [11,12], and show current biases in 
species sampling with several insect orders still lacking 
publicly available resources. Notably, long-read data, for 
example, from approaches developed by Pacific Bios
ciences (PacBio) or Oxford Nanopore Technologies 
(ONT) are helping to improve assembly contiguity and 
produce more complete and accurate representations of 
new and upgraded insect genomes. For these resources 
to support the development of emerging model systems, 
they need to be of the highest possible quality, not only 
in terms of assembly statistics but also with respect to 
gene content representation. 

The need to assess quality in terms of expected gene 
content prompted the proposal of Benchmarking 
Universal Single-Copy Orthologues (BUSCOs) [13]. 
BUSCO relies on the expectation that single-copy or
thologues present in most species within a taxonomic 
lineage should be identifiable in any new genome from a 
species in the same clade. The BUSCO lineage datasets 
are built by identifying near-universal single-copy 
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orthologues from the OrthoDB orthology resource  
[13–15]. Using these to evaluate assemblies starts with 
BUSCO sequence searches to guide gene predictions, 
then orthology classifications identify complete, dupli
cated, or fragmented BUSCOs. The numbers of identi
fiable BUSCOs provide an indication of gene content 
completeness based on expected subsets of evolutiona
rily conserved genes for a given lineage. High com
pleteness scores thereby imply that a genome assembly 
confidently represents the complete gene repertoire. 

Development of BUSCO assessments resulted in an initial 
implementation [16] with three lineage datasets relevant 
for insects (Eukaryota, Metazoa, and Arthropoda) based on 
the orthology data from OrthoDB v8 [14]. Subsequent 
updates in BUSCO v3 [17] provided four more lineage 
datasets within the Arthropoda (Insecta n=1658 BUSCOs, 
Endopterygota n=2442, Diptera n=2799, Hymenoptera 
n=4415), using orthologues from OrthoDB v9 [15]. The 
latest BUSCO releases [18] now provide additional insect- 
relevant lineage datasets for Hemiptera (n=2510) and Le
pidoptera (n=5286), from OrthoDB v10 [19]. The assess
ments provide measures of data quality, and protocols for 
applications to insect genomic data [20] and for wider uses  
[21] help users to identify the best available genomic re
sources. BUSCO completeness is also recognised as an 
important quality check of resources for new model sys
tems and for cataloguing eukaryotic genomic biodiversity, 
for example, the Earth BioGenome Project (EBP) re
commendations on standards for genome generation in
clude achieving recovery of more than 90% single-copy 
conserved genes [22]. 

Using results from the Arthropoda Assembly Assessment 
Catalogue (A3Cat) [10,23] to survey BUSCO complete
ness of insect genome assemblies deposited at the 
United States National Center for Biotechnology In
formation (NCBI) shows that while many do 
meet EBP’s recommendations, quality in terms of gene 
content completeness still varies dramatically (Figure 1). 
Thus, while the NCBI may currently offer more than 
2500 assemblies for insects, fewer than half of these 
achieve a complete and single-copy BUSCO score > 90% 
and most do not yet reach the EBP’s standard of having 
the majority of sequences assigned to chromosomes. 
Notably, however, accuracy-enhanced long-read tech
nologies together with scaffolding approaches such as 
high-throughput chromatin conformation capture (Hi-C) 
are more consistently producing high-quality new 
genome resources, which are greatly expanding the 
possibilities for developing new insect model systems. 

Emerging insect model systems are 
supported by high-quality genome resources 
Advances in taxonomic sampling of insects for genome 
sequencing have been reviewed for ants and other 

Hymenoptera [24,25], hemipterans [26], beetles [27], 
flies and other Diptera [28,29], butterflies and other 
Lepidoptera [30], and many others [9,11,31]. Here, we 
focus on a selection of recent examples of high-quality 
genomics resources (Table 1) that are supporting the use 
of new species or groups of species to develop and ex
pand emerging model systems that help advance un
derstanding of insect biology and evolution. 

Mayflies have long been the focus of many ecological 
studies, and together with dragonflies and damselflies 
they form the sister group to all other winged insect 
lineages. Recent establishment of a continuous culture 
system of the Cloeon dipterum mayfly [32] allows for 
comprehensive life-stage and tissue sampling for de
tailed transcriptional profiling. Combining short reads 
with ONT sequencing data enabled the assembly of its 
relatively compact genome of 180 Megabasepairs (Mbp) 
in 1395 scaffolds with 96%–97% complete BUSCOs 
(Table 1), and annotated with 16357 protein-coding 
genes. These resources lay the foundations for in
vestigating genomic adaptations to aquatic and aerial life 
and the origin of insect wings in this emerging model 
system [32]. 

Combining long reads with Hi-C data is proving to be an 
effective approach for generating chromosome-level as
semblies. This has been recently demonstrated by Sun 
et al. [33] for 5 of 17 new high-quality bumblebee gen
omes (Table 1), where comparisons revealed how the 
25-chromosome karyotype of the social parasite species 
derived from the ancestral karyotype of 18 chromo
somes. These resources are helping to set up the Bombus 
genus as a new model for quantifying genetic and 
genomic variations underlying important ecological and 
behavioural traits of key pollinators. Along with other 
new bumblebee reference genomes [34,35], they also 
offer opportunities to explore the genetic factors influ
encing the plastic and adaptive responses impacting in
sect resilience to climate change [36]. 

Rearrangements like those observed for the social para
site bumblebees seem to be infrequent in some well- 
studied groups such as Diptera and Lepidoptera, where 
global genome architectures are generally conserved. 
Therefore, models from other diverse insect groups are 
needed to investigate the different modes of genome 
structure evolution. Indeed, analyses of high-quality 
chromosome-level assemblies of aphids (Table 1) show 
that their autosomes have undergone dramatic re
organisations in contrast to their sex chromosomes, 
where gene content of the X chromosome has remained 
highly stable [37,38]. As a model system to investigate 
the evolution of resistance to insecticides, reference- 
quality aphid genomes are also enabling comprehensive 
assessments of within-species variation to understand 
genomic responses to strong selective forces [39]. 
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The pea aphid was one of the first insects to be se
quenced and has served as a valuable model for under
standing genomic consequences of host-symbiont 
interactions. However, genomic resources for new sys
tems are needed to explore the many types of en
dosymbioses found across different insects. The genome 
of the rice weevil, Sitophilus oryzae, is not yet assembled 
to the chromosome level but shows high BUSCO com
pleteness (Table 1), thereby providing a confident basis 
from which to investigate how key metabolic processes 
might be partitioned between the host and the en
dosymbiont [40]. Quality and completeness are also 
particularly critical when tracing cases of horizontal gene 
transfer, for example, duplicated bacterial-origin man
nosidases in the 1150 Mbp genome assembly of the stink 
bug Halyomorpha halys [41], and bacterial cell wall hy
drolase genes acquired by Coccinellinae ladybird beetles 
identified in the high-quality genome of Cryptolaemus 
montrouzieri [42]. 

Among the most well-known of the Coccinellinae, the 
harlequin ladybird Harmonia axyridis is widely con
sidered to be one of the world’s most invasive insects. 
Many insects are, or have the potential to become, in
vasives that can cause great damage to natural ecosys
tems or agricultural crops. Accumulating genomic 
resources from a variety of insect groups are helping to 
diversify the models used to study invasion biology and 
potentially develop new genetic control measures. Hi-C 
data helped to build a chromosome-level assembly for 
the two-spot harlequin morph, but with lower BUSCO 
completeness than the earlier Hi-C scaffolding [43] 
(Table 1). These data, along with assemblies for other 
morphs, for example [44], also offer new opportunities to 
develop the use of these ladybirds, which display more 
than 200 described colour forms, as an important model 
system for investigating the genetics of colour pattern 
polymorphisms [45,46]. 

Being laboratory tractable is a key feature of the most 
versatile model species. For example, the painted lady 
butterfly, Vanessa cardui, can be easily reared in the la
boratory and is amenable to CRISPR/Cas9 genome 
editing, making this widespread, generalist species with 
complex wing patterns an excellent model. The genome 
assembly, recently upgraded to chromosome level [47], 
with transcriptomics data from multiple tissues and de
velopmental stages provides the framework to employ 
genetic manipulations and functional genomics data for 
studying migration, host-plant coevolution, and colour 
patterning [48]. CRISPR/Cas9 has also been established 
for the tea geometrid moth, Ectropis grisescens, which, 
along with its relevance as an agricultural pest, presents 
an interesting system for studying insect interactions 
with plant allelochemicals as well as shape and colour 
adaptations for effective camouflage. Hi-C scaffolding of 
PacBio data placed 97.8% of the assembly on 31 chro
mosomes with an assembly span of 785 Mbp (Table 1) 
and 18746 annotated protein-coding genes. The genome 
maintains the ancestral lepidopteran karyotype (n=31), 
and separate resequencing of male (ZZ) and female 
(ZW) individuals allowed for the identification of the Z 
chromosome and several W candidate scaffolds [49]. 

While still often challenging, long reads are proving 
particularly useful for assembling such repeat-rich insect 
sex chromosomes. For example, the Pieris macdunnoughii 
assembly (Table 1) was built using ONT long reads, 
where polishing with additional short-read data in
creased complete lepidopteran BUSCOs by almost 3%. 
Comparing the resolved sex chromosomes in Pieris 
butterflies of European and North American lineages 
shows that the fusion event that created the neo-Z 
chromosome occurred before their divergence [50]. 
These genome resources support this emerging model 
system for studying maladaptation in plant–insect in
teractions, where the North American butterflies lay 

Figure 1  

Current Opinion in Insect Science

BUSCO completeness of insect genome assemblies deposited at the 
United States NCBI. The boxplots show distributions per year of the 
percentage of complete BUSCOs assessed using the Arthropoda 
lineage dataset for insect assemblies available from the NCBI Assembly 
database. The first decade is characterised by a slowly increasing 
number of genome assembly releases, usually for what are regarded as 
some of the most charismatic and well-studied model insect species, 
and mostly showing high BUSCO completeness. The subsequent years 
are characterised by a much faster rate of growth in the numbers of 
genome assembly releases, accompanied by large variations in quality 
in terms of gene content completeness. The large numbers of low- 
completeness assemblies deposited in 2017 and 2021 comprise mainly 
those for the lepidopteran species. Insect silhouettes depict, from left to 
right: Bombyx mori silkmoth, Apis mellifera honey bee, Aedes aegypti 
mosquito, Tribolium castaneum beetle, and Acyrthosiphon pisum pea 
aphid, linked to the year their genome was first published. Boxplots 
show the median, first and third quartiles, and lower and upper extremes 
of the distribution (1.5 x interquartile range). Data are sourced from the 
Arthropoda Assembly Assessment Catalogue (A3Cat) [10, 23]; data for 
2021 are shown only for assemblies available up to June 11.   
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Table 1 

Selected examples of emerging models supported by high-quality genome resources.       

Taxon Assembly 
Size (Mbp) 

Scaffold 
N50 (Mbp) 

Insecta BUSCO % C,[S,D],F,M Arthropoda BUSCO % 
C,[S,D],F,M  

Mayfly: Cloeon dipterum 180 0.46 96.1,[94.1,2.0],0.9,3.0 97.2,[95.0,2.2],1.2,1.6 
Bumblebees: Bombus haemorrhoidalis 241 15.09 99.7,[99.4,0.3],0.2,0.1 99.4,[99.3,0.1],0.3,0.3 
Bumblebees: Bombus ignitus 243 15.19 98.3,[98.1,0.2],0.7.1.0 97.6,[97.5,0.1],1.3,1.1 
Bumblebees: Bombus turneri 243 9.70 99.6,[99.3,0.3],0.2,0.2 99.2,[99.2,0.0],0.5,0.3 
Bumblebees: Bombus breviceps 248 14.71 99.6,[99.4,0.2],0.1,0.3 99.1,[99.1,0.0],0.4,0.5 
Bumblebees: Bombus pyrosoma 255 15.22 99.7,[99.5,0.2],0.1,0.2 99.6,[99.6,0.0],0.1,0.3 
Bumblebees: Bombus hortorum 296 17.02 99.6,[99.2,0.4],0.1,0.3 99.5,[99.2,0.3],0.3,0.2 
Aphids: Myzus persicae * 395 69.48 NA 97.1,[94.2,2.9],0.5,2.4 
Aphids: Acyrthosiphon pisum * 526 126.60 NA 97.6,[94.7,2.9],0.4,2.1 
Aphids: Rhopalosiphum maidis 326 93.30 97.0,[94.8,2.2],0.7,2.3 98.3,[95.4,2.9],0.5,1.2 
Weevil: Sitophilus oryzae 770 2.86 97.8,[95.8,2.0],0.7,1.5 98.5,[97.1,1.4],0.3,1.2 
Stink bug: Halyomorpha halys 1150 0.80 97.4,[96.0,1.4],1.0,1.6 96.7,[95.2,1.5],1.4,1.9 
Ladybird: Cryptolaemus montrouzieri 988 10.38 97.1,[96.0,1.1],0.6,2.3 97.0,[96.4,0.6],1.1,1.9 
Ladybird: Harmonia axyridis 417 2.05 92.4,[90.0,2.4],1.2,6.4 91.7,[89.3,2.4],1.4,6.9 
Butterfly: Vanessa cardui (Ph) 425 14.62 98.9,[98.8,0.1],0.4,0.7 98.9,[98.6,0.3],0.4,0.7 
Butterfly: Vanessa cardui (Ah) 401 2.75 96.1,[96.0,0.1],0.4,3.5 95.6,[95.4,0.2],0.5,3.9 
Moth: Ectropis grisescens 785 26.91 96.4,[95.7,0.7],1.2,2.4 95.6,[95.2,0.4],1.9,2.5 
Butterfly: Pieris macdunnoughii 317 5.20 97.2,[96.3,0.9],0.4,2.4 97.2,[96.5,0.7],0.9,1.9 

Completeness assessments with BUSCO v4.1.4 and assembly statistics sourced from the A3Cat [10], or (*) directly from [38]. C=Complete, 
[S = Complete Single, D = Complete Duplicated], F = Fragmented, M = Missing. Ph = Principal Haplotype, Ah = Alternative Haplotype.  

Figure 2  

Current Opinion in Insect Science

Number of BioProject entries for the 15 most represented insect species. Counts of BioProjects sourced from the United States NCBI (January 2022) 
show that the classical model species, Drosophila melanogaster, is associated with an order of magnitude more registered projects than the other 
most represented species. Bar colours represent a simplified ‘principal research interest/relevance’ category for each species. ‘Word Clouds’ for 
selected species are built from the collated titles of all their available BioProjects. Drosophila melanogaster (Diptera): fruit fly, Apis mellifera 
(Hymenoptera): western honey bee, Aedes aegypti (Diptera): yellow fever mosquito, Bombyx mori (Lepidoptera): domestic silk moth, Anopheles 
gambiae (Diptera): African malaria mosquito, Drosophila simulans (Diptera): fruit fly, Bemisia tabaci (Hemiptera): silverleaf whitefly, Spodoptera 
frugiperda (Lepidoptera): fall armyworm, Aedes albopictus (Diptera): tiger mosquito, Bactrocera dorsalis (Diptera): oriental fruit fly, Nilaparvata lugens 
(Hemiptera): brown planthopper, Locusta migratoria (Orthoptera): migratory locust, Acyrthosiphon pisum (Hemiptera): pea aphid, Tribolium castaneum 
(Coleoptera): red flour beetle, Helicoverpa armigera (Lepidoptera): cotton bollworm. 
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their eggs on invasive Eurasian mustard plants that are 
lethal to the larvae. 

These examples of emerging models with reference 
genome assemblies show how technological advances 
are supporting new models by delivering high-quality 
data. The reference genomes themselves provide a fra
mework onto which new knowledge can be mapped, 
from comparative genomic analyses, molecular biology 
experiments, as well as functional and population 
genomic datasets (transcriptomics, proteomics, metabo
lomics, resequencing, etc.). Using the number of NCBI 
BioProjects as a proxy to gauge the extent of genome- 
enabled research activities shows how the classical 
model insect species, Drosophila melanogaster, is asso
ciated with an order of magnitude more registered pro
jects than the other most represented species (Figure 2). 
Among the others are well-known species that are eco
nomically important, vectors of human diseases, or 
agricultural pests, all of which have had publicly avail
able draft assemblies for more than 5 years and almost all 
of which now have published high-quality assembly 
upgrades, including most recently for the fall armyworm  
[51], the tiger mosquito [52], the brown planthopper  
[53], and the red flour beetle [54]. Species representing 
emerging model systems such as the examples outlined 
above are expected to similarly build genome-anchored 
knowledge bases that support and enrich the exploration 
of the diversity of insect biology and evolution. 

Conclusions 
New technologies are helping to greatly expand the di
versity of insect species for which genome resources are 
being generated across Insecta [9,10], presenting op
portunities to develop new model systems for studying a 
large variety of biological phenomena. Within-genus 
sampling is also reaching new levels of resolution, ex
emplified by the genome assemblies for 101 lines of 93 
drosophilid species spanning 14 species groups and 35 
subgroups [55]. Nevertheless, challenges such as 
working with large repeat-rich genomes or very small 
specimens from which to extract high-molecular-weight 
DNA mean that achieving reference-quality standards 
can still be arduous [12]. The active participation of the 
arthropod genomics community in the development of 
standards and provision of guidelines and protocols 
through initiatives coordinating the scaling up of re
ference genome generation help overcome many of 
these challenges [22,56,57]. Gene content completeness 
and other quality assessments during production and of 
the resulting chromosome-level assemblies will there
fore continue to play a key role in establishing genome 
resources that best support the development of new 
model systems and advance understanding of insect 
biology and evolution. 
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Chapter 2: A reproducible workflow for Multispecies

Whole Genome Alignments

Summary

This thesis chapter summarises the research and development work performed to build a

reproducible, portable, and scalable workflow for computing multispecies whole genome

alignment (MWGA) datasets. The mwgaw-align workflow was developed and tested using

publicly available genome assemblies for different groups of arthropods. It employs tools

developed by the GenomeBrowser team at the University of California Santa Cruz (UCSC)

integrated in a Snakemake workflow which manages all the required data processing steps and

enables parallelisation of the compute-intensive pairwise alignments. This chapter describes the

implementation and application of the workflow while the technical solutions developed to

address specific data processing steps are presented in Chapter 5. The mwgaw-align workflow

was applied to generate MWGA datasets for 22 mosquitoes, 6 tse-tse flies, and 11 bees

presented in this chapter to demonstrate the results that can be obtained using the workflow.

The outputs of this chapter provide the community with a comprehensive workflow that others

can use to build MWGA datasets for their own groups of species in a reproducible and scalable

manner. The resulting MWGA datasets also serve as a foundation for the work presented in

Chapter 3 and Chapter 4, where the alignments are used as inputs for quantifying sequence

conservation and protein-coding potential.

Introduction

The majority of multispecies whole genome alignments (MWGA) published to date were

computed following a workflow developed by the GenomeBrowser team at the University of

California, Santa Cruz (UCSC). This team played a crucial role in publishing and annotating the

first Human genome, and in setting up an ecosystem of utilities which evolved into the modern

version of GenomeBrowser. Thanks to this historical role, GenomeBrowser was the original

repository for updates to the Human genome, before being superseded by the National Center

for Biotechnology Information (NCBI) and later the Genome Reference Consortium (GRC).

Naturally, other major genomes released around that time were integrated into GenomeBrowser.

The need soon arose to compare these available genomes to identify their shared - and unique
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- sequences, mostly to assist with annotating the Human genome (ENCODE Project

Consortium, 2012) and to compare gene sequences between species. With this goal in mind,

the GenomeBrowser team implemented a workflow to align entire genome assemblies to a

reference assembly using BLASTZ (Schwartz et al., 2003), combine these pairwise alignments

into a multispecies whole genome alignment using the Threaded-Blockset Aligner (TBA) or

roast (Blanchette et al., 2004), estimate sequence conservation across species with phastCons

(Siepel et al., 2005), and integrate these results into the Genome Browser. Alignments produced

by this workflow are thus intrinsically linked to the GenomeBrowser internal data structure and

computational platform, which is, as mentioned previously, focused on the human genome.

While this development effort yielded many pieces of software and scripts which are essential in

computing whole genome alignments to this day, the entanglement of these tools with

GenomeBrowser coupled with a lack of accessible documentation on the workflow to compute

MWGAs resulted in a strong dependence on the UCSC GenomeBrowser team to publish

alignments. In fact, the vast majority of MWGAs available until recent years were published by

or in collaboration with that team (Christmas et al., 2023; Lindblad-Toh et al., 2011; Miller et al.,

2007). Others interested in computing alignments, including our group, had to rely on patchy

and unorganised information scattered around GenomeBrowser data pages, GenomeBrowser

wiki pages, and personal notes; some of these pages have disappeared in the past few years;

one could argue that the lack of documentation and convenient workflow is one of the main

reasons why so few MWGAs have been computed so far, despite the valuable data they provide

to address many scientific questions. At the start of this project, however, there was no viable

alternative to the UCSC GenomeBrowser workflow to compute MWGAs. As we planned to

compute MWGAs for different arthropod clades, we needed a reliable implementation of that

workflow. Such an implementation would benefit the genomics research community both as a

way to reproduce past MWGAs and analyses performed on them, and as a tool facilitating

computation of new MWGAs outside of the GenomeBrowser ecosystem. Consequently, we

decided to invest in the development and publication of a reproducible, documented, and

portable implementation of the standard workflow to compute MWGAs. In this chapter, we will

describe our implementation of the MWGA workflow and the alignments we computed using it.
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Methods

Summary of the mwgaw-align workflow

The mwgaw-align workflow takes as input one fasta file for each assembly to include in the

alignment and a simple tree describing the phylogenetic relationship between the species to

which these assemblies belong. These input files are parsed to extract relevant information, and

formatted to comply with the requirements of the tools used in the workflow. Among the

assemblies provided to the workflow, the user specifies a reference assembly, which is the

assembly to which all other assemblies are aligned, and the resulting MWGA will use the

genomic coordinates of this reference assembly. All pairwise whole genome alignments are

merged into the MWGA, which is then ordered and sorted. Each step of this workflow is detailed

in the following sections, and a simplified flowchart of the main steps of the workflow is

presented in Figure 2.1 below; for reference, a Directed Acyclic Graph visualisation of the

complete workflow for three bacterial assemblies is shown in Appendix 3.
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Figure 2.1: Simplified diagram of the mwgaw-align workflow. This diagram shows the main
steps of the workflow for three assemblies, one reference and two other assemblies (1). Each
assembly is first formatted and converted into a binary format (2), before being split into
batches. For each non-reference assembly, all batches are individually aligned to all batches
from the reference assembly (3), and alignment batches are gathered into a single pairwise
alignment for each non-reference assembly (4). These pairwise alignments undergo chaining,
sorting, netting, and multiple conversion steps (5) before being merged into a MWGA with the
roast software from MULTIZ (6). The resulting Multiple Alignment Format (MAF) file is ordered,
sorted, and completed to produce the final MAF output of mwgaw-align (7).

Page 38 of 137



Processing the assembly and phylogeny inputs

Assemblies to include in the MWGA are provided directly as fasta files by the user in a tabulated

file specifying a name for the assembly, which will be used as the assembly’s identifier in the

final alignment, and the path to the fasta file. Input assemblies are processed with a custom

Python script to rename contig headers following the format assembly:contig, using only the

contig identifier from the original fasta file - e.g., discarding any additional information included

in standard headers from NCBI assemblies. This contig header format is required by most tools

used in later parts of the workflow. For convenience, and to retain all the information from the

original assemblies, a correspondence table between original contig headers and formatted

headers is generated during this step. Most pre-existing tools included in the workflow require

assemblies in a binary 2bit format; therefore, assemblies with formatted contig headers are

converted to this 2bit format using the UCSC utility faToTwoBit, and a table of contig lengths is

generated with the twoBitInfo utility. The resulting formatted assemblies in binary format and the

corresponding tables of contig lengths are ready to be used as input for the following alignment

step. In parallel, the input Newick phylogenetic tree is converted to the format required by the

multiple alignment software MULTIZ using a custom Python script relying on the ete3 Python

library (Huerta-Cepas et al., 2016). The resulting tree is space-separated and without branch

lengths, e.g. “((holophaga_bacterium holophaga_foetida) geothrix_fermentans)” for three

bacterial species.

Partitioning input assemblies to parallelise pairwise alignments

Pairwise alignments are the most CPU-intensive steps of the workflow, at least for MWGAs

including a small to medium number of assemblies; for MWGAs including a large number of

assemblies, combining pairwise alignments into a MWGA may become the longest step.

Regardless, in order to reduce the effective compute time of pairwise alignments, input

assemblies are partitioned in batches using a process described in the following paragraph, the

size of which is adjusted in the user config file based on the length of assemblies and the

desired total number of individual jobs in the workflow. Because the runtime of a pairwise

alignment job is proportional to the size of each sequence aligned, a smaller batch size strongly

reduces the runtime of pairwise alignment jobs. However, smaller batches also increase the

total number of individual jobs multiplicatively, which can dramatically slow down dependency

resolution and job selection by the workflow management engine. For these reasons, the ideal

batch size should provide a balance between the duration of a single alignment job, with limiting
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factors like maximum runtime on a computational platform, and total number of jobs, to avoid

overloading the workflow management engine and the system to which jobs are submitted.

In practice, a partition file is generated for each assembly using the partitionSequence.pl Perl

script from UCSC Kent utilities; for the reference assembly, batches are created with a slight

overlap in order to minimise the effect of breaking up assembly sequences on the alignment

process; overlaps are handled in the downstream merging process. This Perl script generates

two types of batches: batches comprising a single sequence, i.e. part of a contig which total

length is higher than the size of a batch, and batches comprising multiple sequences, i.e.

multiple entire contigs, each smaller than the size of a batch. All single-sequence batches are

exported as entries in an output file by the partitionSequence.pl script, while multi-sequence

batches are each exported in a separate file in an output folder. All these output files are

collected, processed, and combined into a single list of partitions using a custom Python script;

this list is required in some of the downstream steps of the workflow.

When aligning sequences from two batches, genomic coordinates in the resulting pairwise

alignment are relative to the input sequences. These coordinates need to be converted back to

the coordinates in the original assemblies; to do so, a coordinate lift file is created with the

constructLiftFile.pl script from UCSC Kent utilities, and this file is later used to “lift over” the

coordinates from a pairwise alignment.

Computing pairwise whole genome alignments

Each batch of sequence(s) from each non-reference assembly is aligned to each batch of

sequence(s) from the reference assembly; to illustrate this process, in an alignment including a

reference assembly partitioned into three batches and five non-reference assemblies each

partitioned into four batches, the total number of pairwise alignment jobs would be 3 x 5 x 4 = 60

jobs. For a single alignment job, the two batches of sequences to align are first extracted in

fasta format from the assembly 2bit files using the UCSC utility twoBitToFa, and a table of

sequence lengths is generated with the utility faSize for each resulting fasta file. The two

batches of fasta sequences are then aligned with LASTZ using parameters defined in the config

file; default parameter values are based on that from the UCSC 124 insects conservation tracks

(https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=dm6&g=cons124way). By default, LASTZ

generates alignments in axt format, which stores the entire sequences in each alignment block;

these files are directly converted to psl format, which is more compact and readable by all
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downstream tools, using the axtToPsl utility. When sequences are extracted from the assembly

files, their original genomic coordinates are lost, and the alignment generated by LASTZ uses

coordinates relative to the actual sequences aligned. Therefore, genomic coordinates in the

alignment need to be “lifted”, i.e. converted back to the coordinates in the original assembly file,

using the liftUp utility and the coordinate lift file mentioned above. The final result of a pairwise

alignment of a batch of sequences from the reference assembly and a batch of sequences from

one of the non-reference assembly is a compact psl format with genomic coordinates from the

original assemblies.

Then, for each non-reference assembly, all pairwise alignments of a batch of sequences to a

batch from the reference assembly are concatenated into a final alignment in psl format with the

cat unix utility and directly compressed with gzip to reduce disk space. Although LASTZ can

merge local alignments into ungapped blocks called chains, this process is disabled in our

default settings. Instead, chaining is performed with the axtChain UCSC utility. Chains obtained

with this approach are defined as a succession of non-overlapping gapless alignment blocks

separated by gaps on either one or on both sequences, similar to the final output of LASTZ.

Computing chains with axtChain instead of relying on LASTZ’s output allows to filter out

sequences with very strong bias towards one or two nucleotides (degenerated sequences) and

sequences that are composed mainly of repeated elements that were masked in the input

assembly using tools like RepeatMasker (repeated sequences). Degenerated and repeated

sequences are filtered out using the chainAntiRepeat utility and the resulting chains are

extended into nets, which are an organised collection of chains sorted by score so that the

reference sequence is only covered once. To obtain nets, chains are first sorted with chainSort

and cleaned with chainPreNet to filter out small chains entirely contained within higher-scoring

chains; the final net output is obtained with chainNet. The resulting alignments are then

converted back to axt format with netToAxt, sorted by reference sequence position with axtSort,

and finally converted to Multiple Alignment Format (MAF) with axtToMaf. The multiple format

conversions are required because the tools used in the steps described above have different

input format requirements. The resulting MAF files are filtered with the single_cov2 software

from the MULTIZ package to ensure that both reference and non-reference sequences are

covered only once in the alignment, and the final MAF output is ordered to ensure that

sequences always appear in the same order within an alignment block, and finally sorted by

genomic coordinates on the reference sequence. The final result of a pairwise alignment of a
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non-reference assembly to the reference assembly is a sorted, ordered, and single-coverage

MAF file.

Merging pairwise alignments into an MWGA

Pairwise alignments are integrated into a MWGA with the roast software from MULTIZ. This

software requires that all MAF pairwise alignments and all fasta assembly files are located in the

same directory. Therefore, the first step of the MWGA process is to create symbolic links for all

pairwise alignments and all assembly files in a temporary directory, and roast is then run within

this directory. The result of running roast is a MAF file with merged alignment blocks from all the

input pairwise alignment files. This MAF file is then ordered so that assemblies appear in the

same order in all alignment blocks using the maf_order tool included in MULTIZ. Regions from

the reference assemblies that were not aligned to any non-reference assembly are added to the

MWGA with our missing_regions software from mwga-utils

(https://github.com/RomainFeron/mwga-utils, see Chapter 5 for details), and the resulting MAF

file is sorted by position on the reference sequence using the maf_sort utility included in

MULTIZ. The final output from this step - and from the workflow - is a multispecies whole

genome alignment file in MAF format that contains the entire reference sequence, is sorted by

genomic coordinates on the reference sequence, and in which assemblies are ordered

consistently within each alignment block.

Reproducible, portable, and scalable implementation of the workflow

The workflow is implemented using the Snakemake workflow management engine (Köster &

Rahmann, 2012). Snakemake provides both a language to describe a workflow and an engine

to execute the workflow for specific inputs and parameter values. This engine can be executed

on a local machine, in the cloud, and can also distribute tasks to a load manager on a

computational platform (e.g. SLURM, the load manager used by the UNIL computational

platform Curnagl). The Snakemake language is based on the GNU Make paradigm (Stallman et

al., 2004), but implemented as an extension of Python, thus inheriting the easily readable syntax

and convenient libraries included in this programming language. Furthermore, in a Snakemake

workflow following official guidelines, users interact with the workflow via a well-documented

config file using the easily readable YAML syntax. These features make Snakemake workflows

easy to use and to understand, which helps detecting potential implementation errors when

reviewed by peers. Altogether, Snakemake strongly facilitates the implementation of entirely
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reproducible, verifiable, and portable workflows, a requirement for modern bioinformatics

analyses.

Snakemake can use the Conda environment and package manager to deploy specific versions

of the software used in a workflow; all pieces of software used to compute MWGAs and perform

downstream analyses were either already available in the Bioconda channel (Grüning et al.,

2018) or were packaged by us if missing (a detailed list of packaged software is provided in

Chapter 5), making the workflow entirely portable on all platforms supported by Conda. The

workflow was implemented following Snakemake’s official guidelines for workflow organisation

and implementation, making it easy to use by experienced Snakemake users and efficient to

review by experienced Snakemake developers. The config file, repository, and implementation

are thoroughly documented to promote transparency and encourage improvements by the

community. Finally, we developed a batching system to optimise performance-critical steps,

which will help to compute MWGAs including a large number of high-quality assemblies.

Results

To test our mwgaw-align workflow described in the previous section, we computed MWGAs for

multiple arthropod clades which were of particular interest to us or to our collaborators. In this

section, we describe the data used to compute these MWGAs as well as the resulting

alignments. We also report runtime and memory usage for different steps of the workflow to

illustrate our efforts in optimising performance-heavy steps of the alignment process.

MWGA of 22 mosquito species

The first alignment computed using our workflow was an alignment of 22 mosquito species,

using Anopheles gambiae as the reference assembly. As the vectors of some of the viruses and

parasites deadliest to humans, mosquitoes are the target of considerable research interest both

in the medical field and in evolutionary biology. We computed this alignment with the goal of

improving existing annotations of mosquito assemblies to assist research efforts, identifying

putative functional elements involved in interactions with pathogens, and exploring evolutionary

patterns of sequence conservation on mosquito coding sequences; this latter question is the

focus of Chapter 4 (Applying the MWGA workflows to explore functional constraints in
immunity genes). Pathogen-vectoring mosquitoes are mainly represented by three genera in

the Culicidae family: Aedes, which includes Aedes aegypti, vector of Dengue fever, Yellow fever,
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Zika, and Chikungunya among many other viruses; Culex, which species transmit West Nile

virus, several encephalitis, and several nematodes; and Anopheles, the genus of Anopheles

gambiae, vector of human malaria and model species for mosquito research. We included

assemblies from these three genera in our mosquito genome alignment, with the vast majority

of assemblies belonging to Anopheles species, reflecting both the higher diversity of species

and sampling bias in genome assemblies in this genus compared to Culex and Aedes. The full

list of species included in our alignment, the assembly used, assembly size, as well as

contiguity and completeness are presented in Table 2.1 below.

Species GenBank Accession Length Scaffold number Scaffold N50
BUSCO
Score

Aedes aegypti GCA_002204515.1 1,278,715,314 2,309 409,777,670 93.6

Aedes albopictus GCA_001444175.2 1,923,476,627 154,782 201,017 75

Anopheles albimanus GCA_000349125.2 173,339,239 236 9,735,467 96.9

Anopheles arabiensis GCA_000349185.1 246,567,867 1,214 5,604,218 97.2

Anopheles atroparvus GCA_000473505.1 224,290,125 1,371 9,206,694 96.9

Anopheles christyi GCA_000349165.1 172,658,580 30,369 9,057 96.2

Anopheles coluzzii GCA_000150765.1 224,417,174 10,521 4,437,438 93.5

Anopheles culicifacies GCA_000473375.1 202,998,806 16,162 22,320 96.2

Anopheles darlingi GCA_000211455.3 136,935,538 2,220 115,072 96.3

Anopheles dirus GCA_000349145.1 216,307,690 1,266 6,906,475 97.6

Anopheles epiroticus GCA_000349105.1 223,486,714 2,673 366,526 97.5

Anopheles farauti GCA_000473445.2 183,103,254 310 12,895,223 97.6

Anopheles funestus GCA_000349085.1 225,223,604 1,392 671,960 97.4

Anopheles gambiae GCA_000005575.1 265,011,681 8,144 12,309,988 96.4

Anopheles maculatus GCA_000473185.1 141,894,015 47,797 3,841 70.3

Anopheles melas GCA_000473525.2 224,162,116 20,229 18,103 92.6

Anopheles merus GCA_000473845.2 288,048,996 2,027 1,489,982 97.6

Anopheles minimus GCA_000349025.1 201,793,324 678 10,313,149 97.9

Anopheles quadriannulatus GCA_000349065.1 283,828,998 2,823 1,641,272 97.4

Anopheles sinensis GCA_000472065.2 375,763,635 10,448 579,086 94.1

Anopheles stephensi GCA_000349045.1 225,369,006 1,110 837,295 97.3

Culex quinquefasciatus GCA_000209185.1 579,042,118 3,171 486,756 90.6
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Table 2.1: species, assembly accession, assembly length in base pairs, number of scaffolds,
scaffold N50, and BUSCO score for all assemblies included in the 22 mosquitoes alignment.
The assembly for Anopheles gambiae (GCA_000005575.1) is used as reference for the
alignment, as it is by far the best annotated mosquito assembly. Other assemblies belong to
members of the Anopheles genus, except for Culex quinquefasciatus, Aedes aegypti, and
Aedes albopictus which represent the Culex and Aedes genera, respectively.

The size of assemblies ranged from ~142 Mbp to ~376 Mbp for Anopheles species; these

values are typical for arthropod genome assemblies, which have a median size of ~360 Mbp

and an average size of ~250 Mbp (N=5627, available Arthropod assemblies obtained from

A3Cat release 2024-02-01). Culex and Aedes assemblies are bigger, from ~579 Mbp for Culex

quinquefasciatus to ~2Gbp for Aedes albopictus. Assembly contiguity, one of the variables used

to estimate assembly quality, is estimated both from the total number of scaffolds in the

assembly and from the scaffold N50 value, which is the length of the scaffold so that the

cumulative length of all scaffolds longer than that scaffold adds up to 50% of the assembly span;

therefore, a high N50 value indicates that the assembly is highly contiguous. The contiguity of

assemblies included in the mosquitoes alignment varied greatly: scaffold N50 ranged from >10

Mbp for chromosome-level assemblies like the reference Anopheles gambiae, to an extremely

low 3,841 bp for Anopheles maculatus. It is worth noting that assembly contiguity does not

strongly affect the results of the alignment process, because assemblies are split into small

regions (seeds) to generate small local alignments in the first step of the alignment process.

However, including contiguous assemblies in the alignment facilitates the interpretation of

downstream results, for instance comparison of large genomic regions between species.

A better indicator of assembly quality for MWGAs is assembly completeness, which is estimated

with BUSCO; here, we report the percentage of single-copy, complete BUSCOs found in each

assembly using the Arthropoda dataset. The principles underlying BUSCO and interpretation of

BUSCO results are detailed in Chapter 1; here, we observe that 20 out of 22 assemblies had a

BUSCO score higher than 90%, 15 of which were higher than 95%, indicating an overall high

completeness for these assemblies. Lower BUSCO scores were usually - but not always -

correlated with low contiguity, with the highly fragmented Anopheles maculatus assembly only

reaching 70% single-copy complete BUSCOs. Assemblies of Anopheles maculatus and Aedes

albopictus were retained for the alignment despite their relatively lower quality to maintain the

evolutionary resolution of the alignment (for instance, Aedes albopictus was one of the only two

available Aedes assemblies), with the goal of upgrading the alignment once high quality

assemblies were released for these species. The maximum divergence time between species
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included in the alignment was ~150 My, which corresponds to the divergence between the

Culicinae and Anopheles mosquitoes; divergence time within Anopheles, to which most species

in the alignment dataset belong, is ~100 My (Neafsey et al., 2015).

Pairwise alignments were generated using lastZ parameter values from the UCSC 124 insect

alignment (see workflow description above): HoxD55 scoring matrix, chaining disabled (C=0),

dynamic target masking disabled (M=0), a gap open penalty of 400 (O=400), a gap extension

penalty of 30 (E=30), a minimal score threshold to perform more sensitive alignment for gapped

block of 2,000 (H=2000), a minimal HSP score for the x-drop extension method of 2,200

(K=2200), a minimal score to retain gapped extension blocks of 4,000 (L=4000), a maximum

drop-off score for gapped extension of 3,400 (Y=3400), and seeds set to a 19 bp word with at

least 12 matching positions, allowing one match to be a transition instead (T=1).

The cumulative runtime of mwgaw-align to generate this mosquito MWGA was 10 days, 16

hours, and 13 minutes (total wall time); the longest step was generating the MWGA from

pairwise alignments, which lasted for 11 hours and 50 minutes. In comparison, the user runtime

- the actual time between the start and the end of the workflow - was one day, 12 hours, and 58

minutes, illustrating the time gains from parallelising pairwise alignment steps; runtime and peak

memory usage for the pairwise alignment steps for each non-reference assembly are detailed in

Table 2.2 below. The highest memory usage also occurred during the computation of the

MWGA from the pairwise alignments, with a peak memory usage of ~24 Gb.
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Species Runtime (H:M:S) Memory (Mb)

Aedes aegypti 18:05:00 2,681

Aedes albopictus 36:23:46 1,752

Anopheles albimanus 12:02:57 1,879

Anopheles arabiensis 14:57:15 1,884

Anopheles atroparvus 14:32:18 1,981

Anopheles christyi 17:06:43 1,750

Anopheles coluzzii 15:50:37 1,867

Anopheles culicifacies 16:32:56 1,744

Anopheles darlingi 8:48:04 1,742

Anopheles dirus 14:08:45 1,857

Anopheles epiroticus 14:52:47 1,776

Anopheles farauti 12:58:14 1,892

Anopheles funestus 14:18:46 1,764

Anopheles maculatus 12:06:20 1,733

Anopheles melas 18:52:54 1,796

Anopheles merus 15:04:03 1,847

Anopheles minimus 13:26:58 1,883

Anopheles quadriannulatus 14:51:16 1,835

Anopheles sinensis 14:51:58 1,757

Anopheles stephensi 13:49:10 1,763

Culex quinquefasciatus 14:02:04 1,745

Table 2.2: total runtime in hours, minutes, and seconds, and peak memory usage of the
pairwise alignment step - including chaining, netting, and file conversion - for each assembly on
the reference assembly of Anopheles gambiae.

The final MWGA for these 22 mosquito species includes 2,545,524,446 aligned bases across all

assemblies. The reference assembly Anopheles gambiae is contained entirely in the MWGA,

with regions aligned to no other assemblies included in the alignment using mwga-utils (see

methods). For non-reference assemblies, the fraction of aligned bases ranged from 1.26% for

Aedes albopictus to 95.55% for Anopheles coluzzii, with the full results presented in Table 2.3
below. As expected, assemblies of species evolutionarily closest to Anopheles gambiae

generally had the highest proportion of aligned bases, e.g. species from the gambiae complex:
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Anopheles arabiensis (~88%), Anopheles melas (~91%), Anopheles merus (~73%), Anopheles

quadriannulatus (~75%), and Anopheles coluzzii (~96%). In contrast, the assemblies of species

most distant to the reference species - namely, species in the Culicinae subfamily - had the

lowest proportion of aligned bases: Aedes albopictus (~1%), Aedes aegypti (~2%), and Culex

quinquefasciatus (~4%). These low numbers are exacerbated by the fact that assemblies of

species in the Culicinae subfamily are 5 to 8 times bigger than that of the reference species

Anopheles gambiae, and this size difference is not a result of a recent genome duplication but

rather due to the proliferation of transposable elements. The final alignment is summarised in

Figure 2.2 showing assembly size, evolutionary distance to the reference, pairwise alignment

runtime, and proportion of aligned bases for all the assemblies included in the alignment.
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Assembly Size Scaffold N50 BUSCO Score BP Aligned BP Aligned (%)

Aedes aegypti 1,278,715,314 409,777,670 93.6 25,145,181 1.97

Aedes albopictus 1,923,476,627 201,017 75 24,194,569 1.26

Anopheles albimanus 173,339,239 9,735,467 96.9 48,511,410 27.99

Anopheles arabiensis 246,567,867 5,604,218 97.2 216,312,367 87.73

Anopheles atroparvus 224,290,125 9,206,694 96.9 81,005,961 36.12

Anopheles christyi 172,658,580 9,057 96.2 156,655,212 90.73

Anopheles coluzzii 224,417,174 4,437,438 93.5 214,426,655 95.55

Anopheles culicifacies 202,998,806 22,320 96.2 128,699,238 63.4

Anopheles darlingi 136,935,538 115,072 96.3 43,315,036 31.63

Anopheles dirus 216,307,690 6,906,475 97.6 115,358,385 53.33

Anopheles epiroticus 223,486,714 366,526 97.5 160,544,258 71.84

Anopheles farauti 183,103,254 12,895,223 97.6 108,854,839 59.45

Anopheles funestus 225,223,604 671,960 97.4 138,504,685 61.5

Anopheles maculatus 141,894,015 3,841 70.3 94,426,810 66.55

Anopheles melas 224,162,116 18,103 92.6 204,175,974 91.08

Anopheles merus 288,048,996 1,489,982 97.6 212,345,680 73.72

Anopheles minimus 201,793,324 10,313,149 97.9 134,181,073 66.49

Anopheles quadriannulatus 283,828,998 1,641,272 97.4 212,802,296 74.98

Anopheles sinensis 375,763,635 579,086 94.1 69,887,087 18.6

Anopheles stephensi 225,369,006 837,295 97.3 131,499,269 58.35

Culex quinquefasciatus 579,042,118 486,756 90.6 24,678,461 4.26

Table 2.3: size, scaffold N50, BUSCO score (as defined in Table 2.1 above), number of bases
aligned in the 22 mosquitoes MWGA and the corresponding percentage of the assembly for
each non-reference assembly included in the MWGA.
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Figure 2.2: graph representation of the 22 mosquitoes Multispecies Whole Genome Alignment
(MWGA). Each ellipse represents one assembly included in the alignment, with the reference
assembly of Anopheles gambiae in the centre, highlighted in green. The size of each ellipse is
proportional to the size of the corresponding assembly in bp. The physical distance between an
ellipse and the central Anopheles gambiae ellipse is proportional to the evolutionary distance
between the corresponding species. The thickness of the connection between two ellipses
represents the proportion of bases from the non-reference assemblies that were aligned to the
reference assembly in the MWGA, and the colour of the connection indicates the total runtime of
the pairwise alignment step between the two corresponding assemblies. Expectedly, this
visualisation shows that species evolutionarily closer to the reference, i.e. physically closer to
the centre of the graph, had a higher proportion of aligned bases in the final MWGA than
species more evolutionarily distant. However, there was no striking correlation between total
runtime and any other variable included in this graph: for instance, both Aedes albopictus, a
large and distant assembly, and Anopheles melas, a small and close assembly, had a high total
runtime.
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As the first MWGA computed using our workflow, this mosquito alignment was used to test and

finish implementing mwgaw-align and was also the main test dataset to develop the

mwgaw-analyses workflow described in Chapter 3. As a result, this was the first dataset for

which we computed all sequence conservation metrics, and we included these metrics in a

GenomeBrowser track hub that was hosted on the GenomeBrowser instance of the former

VectorBase website (which is now part of the larger VEuPathDB portal); this track hub is

described in the results section of Chapter 3. In addition, we used the sequence conservation

results in an analysis of evolutionary genomic diversity versus population-level genomic

diversity, which is the focus of Chapter 4.

MWGA of 6 Glossina species (Tse-tse flies)

Another infamous parasite-vectoring clade are tse-tse flies, comprising all species in the genus

Glossina, which transmits trypanosomes responsible for trypanosomiasis (sleeping sickness).

Both mosquitoes and tse-tse flies belong to the order Diptera and diverged around 240 Mya,

and thus comparing patterns of sequence conservation across their genomes could provide

insights on evolutionary adaptations to harbouring pathogens. In a first step towards enabling

such comparisons, we computed an MWGA including all available Glossina assemblies, which

are summarised in the Table 2.4 below.

Species GenBank Accession Length
Number of
scaffolds

Scaffold
N50

BUSCO
Score

Glossina austeni GCA_000688735.1 370,264,922 2,205 812,585 97.5

Glossina brevipalpis GCA_000671755.1 315,360,362 1,651 1,209,507 97.2

Glossina fuscipes GCA_000671735.1 374,774,708 2,395 561,190 97.2

Glossina morsitans GCA_001077435.1 363,107,242 24,071 49,769 96.6

Glossina pallidipes GCA_000688715.1 357,332,231 1,726 1,038,751 97.5

Glossina palpalis GCA_000818775.1 380,104,241 3,926 575,037 94.4

Table 2.4: species, assembly accession, assembly length in base pairs, number of scaffolds,
scaffold N50, and BUSCO score for all assemblies included in the 6 Glossina alignment. The
assembly for Glossina morsitans was used as reference because it is a major vector species
and the model species for tse-tse flies.
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The sizes of Glossina assemblies included in the alignment are homogeneous, ranging from

~315 Mbp to ~380 Mbp, similar to the average arthropod assembly size (median ~360 Mbp,

average ~250 Mbp, N=5627). Assembly contiguity, estimated by the number of scaffolds and

scaffold N50, is also homogeneous across assemblies with the exception of Glossina morsitans,

whose assembly is more fragmented than that of other species (~10x higher number of

scaffolds, ~10-20x lower N50); this discrepancy originates from the fact that the genome of

Glossina morsitans was sequenced and assembled before and using older technologies than

those of other Glossina species. Assembly completeness, estimated using the percentage of

complete, single-copy BUSCOs from the Arthropoda dataset, is consistently high (>95 except

for Glossina palpalis with a score of 94.4) across all included assemblies. While contiguity is not

high according to modern standards (Feron & Waterhouse, 2022a), with none of the assemblies

reaching chromosome level, it is high enough to yield large alignment blocks; furthermore,

assembly completeness is more important than contiguity for MWGAs, and therefore these

Glossina assemblies are of good quality for whole genome alignments.

The final MWGA for these 6 Glossina species includes 1,885,615,996 aligned bases across all

assemblies. Similar to the mosquito alignment, the reference assembly Glossina morsitans is

contained entirely in the MWGA, with regions aligned to no other assemblies included in the

alignment using mwga-utils (see methods). For non-reference assemblies, the fraction of

aligned bases ranged from 69.81% for Glossina brevipalpis to 95.34% for Glossina pallidipes,

with the full results presented in Table 2.5 below. As expected, and as we observed in the

mosquito alignment, the proportion of aligned bases in the MWGA was directly related to the

evolutionary distance between the assembly’s species and the reference Glossina morsitans:

Glossina pallidipes is the closest, followed by Glossina austeni, then Glossina fuscipes and

Glossina palpalis, and finally Glossina brevipalpis. The final alignment is summarised in Figure
2.3 showing assembly size, evolutionary distance to the reference, pairwise alignment runtime,

and proportion of aligned bases for all the assemblies included in the alignment.

Page 52 of 137



Assembly Size Scaffold N50 BUSCO Score BP Aligned BP Aligned (%)

Glossina austeni 370,264,922 812,585 97.5 333,704,024 90.13

Glossina brevipalpis 315,360,362 1,209,507 97.2 220,160,746 69.81

Glossina fuscipes 374,774,708 561,190 97.2 316,358,767 84.41

Glossina pallidipes 357,332,231 1,038,751 97.5 340,680,703 95.34

Glossina palpalis 380,104,241 575,037 94.4 308,515,900 81.17

Table 2.5: size, scaffold N50, BUSCO score (as defined in Table 2.4 above), number of bases
aligned in the 6 Glossina MWGA and the corresponding % of the assembly for each
non-reference assembly included in the MWGA.

Figure 2.3: graph representation of the 6 Glossina Multispecies Whole Genome Alignment
(MWGA). Each ellipse represents one assembly included in the alignment, with the reference
assembly of Glossina morsitans in the centre, highlighted in green. The size of each ellipse is
correlated to the size of the corresponding assembly in bp. The physical distance between an
ellipse and the central Glossina morsitans ellipse is proportional to the phylogenetic distance
between the corresponding species. The thickness of the connection between two ellipses
represents the proportion of bases from the non-reference assemblies that were aligned to the
reference assembly in the MWGA, and the colour of the connection indicates the total runtime of
the pairwise alignment step between the two corresponding assemblies (yellow meaning faster,
and red meaning slower).
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We computed the first version of the Glossina MWGA shortly after the mosquito MWGA, as the

Glossina alignment was of interest to collaborators in Kenya working on the characterisation of

immune genes in this clade. We computed an updated version of the MWGA later in this project

to incorporate updates to Glossina assemblies as well as technical improvements in our

workflow, also provided to our Kenyan collaborators.

MWGA of 11 bee species

As part of a collaborative research project centred on a new genome assembly for the

Hymenoptera species Tetragonula carbonaria (an Australian stingless bee), our group

computed a set of evolutionary metrics to investigate the evolutionary trajectories of genes both

at the Hymenoptera (Order) and at the Apidae (Family) levels. Among these metrics were

evolutionary sequence conservation, which was estimated at the gene level using an MWGA we

computed for 11 bee species. Assemblies included in the alignment are described in the Table
2.6 below:

Species GenBank Accession Length
Number of
scaffolds Scaffold N50 BUSCO Score

Apis mellifera GCA_000002195.1 250,270,657 5,644 997,192 97.9

Bombus impatiens GCA_000188095.4 246,856,484 5,460 1,399,493 99.7

Ceratina calcarata GCA_001652005.1 199,936,949 50,568 632,424 96.2

Dufourea novaeangliae GCA_001272555.1 279,505,983 4,178 2,549,405 99.7

Eufriesea mexicana GCA_001483705.2 595,427,025 187,373 352,794 97.8

Euglossa dilemma GCA_002201625.1 588,199,719 22,698 143,590 92.4

Habropoda laboriosa GCA_001263275.1 296,954,667 27,566 1,784,116 98.8

Lasioglossum albipes GCA_000346575.1 336,521,443 12,599 628,061 97.3

Megachile rotundata GCA_000220905.1 272,660,569 6,266 1,699,680 99.5

Melipona quadrifasciata GCA_001276565.1 256,302,695 2,866 1,864,352 99.2

Tetragonula carbonaria No accession 288,375,904 1,534 16,281,332 -

Table 2.6: species, assembly accession, assembly length in base pairs, number of scaffolds,
scaffold N50, and BUSCO score for all assemblies included in the 11 bees alignment. The
assembly for Tetragonula carbonaria was used as reference as it was the species of interest for
this collaborative project; this assembly has not yet been released and thus does not have an
accession number.
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The size of assemblies selected for the alignment ranged from ~200 Mb to ~600Mb, similar to

the average arthropod assembly size (median ~360 Mbp, average ~250 Mbp, N=5627). These

assemblies were highly contiguous, as illustrated by their high Scaffold N50, despite not being

chromosome-level; completeness was also high (Arthropoda complete single-copy BUSCOs

>95%) with the exception of Euglossa dilemma, with a lower BUSCO score of 92.4%. Overall,

assemblies included in this Bee MWGA were of high quality.

The resulting MWGA for these 11 bee species comprises 1,934,378,481 aligned bases across

all assemblies. The proportion of aligned bases ranged from 29.51% for Euglossa dilemma to

97.67% for Melipona quadrifasciata, with the full results presented in Table 2.7 below. As

observed in the previously described alignments, the proportion of aligned based in an

assembly was related to the evolutionary distance between the focal species and Tetragonula

carbonaria. However, the two species from the Euglossini tribe, Euglossa dilemma and

Eufriesea mexicana, appeared as outliers in this trend: they had the lowest proportions of

aligned bases (29.51% and 31.47% respectively) while being closer to Tetragonula carbonaria

than most other species. This observation may be explained by the larger assembly size for

these two species, almost double the average size of other assemblies in the alignment: the

absolute number of bases aligned for both assemblies follows the trend with respect to the

evolutionary distance, but the larger size decreases the proportion of aligned bases. This larger

size is likely the result of an accumulation of transposable elements (Brand et al., 2017). The

final alignment is summarised in Figure 2.4 showing assembly size, evolutionary distance to the

reference, pairwise alignment runtime, and proportion of aligned bases for all the assemblies

included in the alignment.
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Assembly Size Scaffold N50 BUSCO Score BP Aligned BP Aligned (%)

Apis mellifera 250,270,657 997,192 97.9 158,118,896 63.18

Bombus impatiens 246,856,484 1,399,493 99.7 205,446,432 83.23

Ceratina calcarata 199,936,949 632,424 96.2 111,292,323 55.66

Dufourea novaeangliae 279,505,983 2,549,405 99.7 136,134,911 48.71

Eufriesea mexicana 595,427,025 352,794 97.8 187,358,233 31.47

Euglossa dilemma 588,199,719 143,590 92.4 173,587,336 29.51

Habropoda laboriosa 296,954,667 1,784,116 98.8 168,404,995 56.71

Lasioglossum albipes 336,521,443 628,061 97.3 120,424,779 35.79

Megachile rotundata 272,660,569 1,699,680 99.5 134,896,449 49.47

Melipona quadrifasciata 256,302,695 1,864,352 99.2 250,339,480 97.67

Table 2.7: size, scaffold N50, BUSCO score (as defined in Table 2.6 above), number of bases
aligned in the 11 bees MWGA and the corresponding percentage of the assembly for each
non-reference assembly included in the MWGA.
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Figure 2.4: graph representation of the 11 bees Multispecies Whole Genome Alignment
(MWGA). Each ellipse represents one assembly included in the alignment, with the reference
assembly of Tetragonula carbonaria in the centre, highlighted in green. The size of each ellipse
is correlated to the size of the corresponding assembly in bp. The physical distance between an
ellipse and the central Glossina morsitans bubble is proportional to the phylogenetic distance
between the corresponding species. The thickness of the connection between two ellipses
represents the proportion of bases from the non-reference assemblies that were aligned to the
reference assembly in the MWGA, and the colour of the connection indicates the total runtime of
the pairwise alignment step between the two corresponding assemblies (yellow meaning faster,
and red meaning slower).
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Our role in this collaborative project was to provide evolutionary metrics for all genes in the new

Tetragonula carbonaria assembly; these metrics were computed at several taxonomic levels by

a member of our group who implemented a workflow dedicated to this task. We computed the

11 bees MWGA to estimate two metrics measuring conservation of genomic sequence between

the aligned species for all the genes in the annotation for Tetragonula carbonaria, using the

mwgaw-analyses workflow described in Chapter 3. Briefly, we computed alignability per

nucleotide with mwga-utils and an evolutionary conservation score per nucleotide with

phastCons, and these scores were averaged over the coding parts of each gene to obtain

gene-level metrics. Together with other evolutionary metrics, sequence conservation can be

used to make informed predictions on gene functional constraints (Ruzzante et al., 2022), the

collaborators are exploring the use of these data in the context of sperm evolution in these

stingless bees compared with other bees.

Discussion

At the start of this PhD project, all published Multispecies Whole Genome Alignments, either

from studies of conservation of sequence or published as resources by the UCSC, were

computed using the UCSC workflow, but this workflow was not publicly available or even

described in a way which made it easily usable outside of the UCSC GenomeBrowser

ecosystem. This lack of availability was a major reason for the lack of adoption of MWGAs as a

resource in comparative genomics studies and genome annotation, which in turn inhibited

methodological advances in MWGA computation and downstream analyses of sequence

conservation, thus initiating a negative feedback loop. In light of this observation at the start of

this project, we decided to first focus our efforts on implementing our own version of the UCSC

workflow using modern workflow development tools and practices. To this aim, we leveraged the

strengths of the workflow management system Snakemake as well as the package ecosystem

Conda to develop mwgaw-align, described in this chapter. The result of this effort is a

reproducible, documented, scalable, and modern implementation of the UCSC workflow to

compute MWGAs, addressing the issue of quasi-unavailability of documented and reproducible

approaches for this task.

The main outcome of the work presented in this chapter is the release of a usable workflow to

facilitate the computation of new MWGAs. The usability of our workflow was validated by

several users who were not familiar with alignments, and were able to compute new MWGAs
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with minimal effort for several clades, including stick insects (Timema) and fruit flies

(Drosophila). The latter in particular included 36 assemblies and was used to compute

coding-potential scores and identify putative novel functional elements using another workflow

developed as part of this thesis work and detailed in Chapter 3. In addition to these practical

outcomes, our work on mwgaw-align provides several benefits for the wider comparative

genomics research community. First, because the vast majority of MWGAs computed before the

start of this project resulted from the UCSC workflow, our implementation contributes, in an

indirect way, to improving the reproducibility of these existing results. Indeed, it is now easier for

users interested in these alignments to re-compute them, test the effect of parameter values for

key steps in the workflow, and update the alignments with new assemblies if desired. Second,

the modern and documented implementation of the workflow greatly facilitates testing

improvements for some of the crucial steps of the workflow. Indeed, the Snakemake

implementation enables users familiar with workflow management systems to easily remove and

add steps in the workflow, or to replace a software used in a step with another software. For

example, the pairwise alignment process is handled by LastZ, which was first released as

BlastZ in 2000 (Schwartz et al., 2000); although LastZ has received considerable improvements

since its release and is still widely used in genome alignments, new software to align genomic

sequences has been released since then. One example of such software is minimap2 (Li,

2018), which aligns large genomic sequences efficiently. Our implementation of mwgaw-align

effectively provides interfaces for crucial steps of the alignment process and would therefore

enable testing the use of minimap2 over LastZ with minimal efforts, namely some additional

format conversion scripts.

One limitation of the work presented in this chapter is that although we demonstrate the efficient

applicability of the mwgaw-align workflow to several sets of genome assemblies, we did not

complete a comprehensive testing of its scalability to hundreds of species. The 3-day runtime

hard-limit on the UNIL compute facilities meant that such testing of scalability was not

realistically achievable using the resources available to us. Given the investment in batching

and parallelisation we believe that the pairwise alignment steps should be well-designed to

scale to hundreds of species. However, from the results presented for our computed MWGAs it

is clear that peak memory usage occurs during the computation of the MWGA from the pairwise

alignments. Although we have not been restricted by this memory usage for the datasets

computed in this project, we anticipated two solutions to this potential problem when scaling to

larger datasets. First, the memory-intensive step can be specifically run on high-memory nodes,
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which can provide five to ten times more memory than the peak recorded in the computation of

our datasets. Second, the computation of the MWGA from pairwise alignments can be

parallelised by splitting the reference assemblies into regions - for instance, using the batches

already computed in the workflow - and computing the MWGA for each region separately before

merging all the resulting MWGAs into a final, global MWGA. The alternative solution of

redesigning the MULTIZ merging algorithm was considered beyond the scope of this thesis.

Although the UCSC workflow remained the standard approach to compute MWGAs when we

started implementing mwgaw-align, the UCSC GenomeBrowser team had already published

Cactus as an alternative workflow to align genomes. Cactus was first published in 2011 in a

methodological paper showcasing the power of a new data structure, cactus graphs, to

represent genome alignments (Paten et al., 2011); in this first paper, Cactus is shown to have

similar precision to MULTIZ but a higher recall on test datasets, making it a promising alternative

to these approaches. However, as usual at the time, Cactus was released only as unpackaged

and uncompiled software with limited documentation

(https://github.com/ComparativeGenomicsToolkit/cactus/tree/genome_research_alignment_pap

er), and was thus difficult to adopt for users outside its development team. Consequently, there

were no MWGAs computed using Cactus following this first publication, and in fact, the software

saw little improvements for a long time. It is only years later that a new team - still within UCSC -

took over the development of Cactus, with the first modern release published in 2020

(Armstrong et al., 2020). The software is now under active development and provides notable

improvements over the classic UCSC workflow: 1) it implements a reference-free format for

MWGAs, HAL (Hierarchical ALignment format, Hickey et al., 2013), 2) it incorporates many

intermediary steps to refine pairwise alignments, thus generally producing better alignment

results than the classical workflow, and 3) it is released as a docker image, making it actually

available to external users. Thanks to these improvements and to the active development efforts

still ongoing to improve both the alignment process and usability, Cactus established itself as

the default workflow to compute MWGAs and will most likely solidify this status in the coming

years, as illustrated in a recent publication computing large-scale alignments (Christmas et al.,

2023; Zoonomia Consortium, 2020).

However, despite these improvements and the recent success of the Cactus development team

in computing large scale MWGAs, the software is not without some drawbacks. First, despite a

much improved availability since its earlier releases, Cactus is still lacking in user-friendliness
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and usability. Second, our workflow enables the production of MAF files that are the common

starting point for many downstream analyses, where the desired results are meant to be

constrained to the coordinate system of a single reference species assembly (several of these

are described in Chapter 3). Although the reference-free HAL format implemented in Cactus is

intuitively a great improvement, almost all downstream alignment processing and analysis tools

still require a referenced-based alignment, so the HAL data still need to be transformed into the

traditional MAF file; the Cactus development team has started implementing reference-free

versions of some of these downstream processing tools, but most of them remain only available

for reference-based alignments. Third, although it should be possible to update an assembly in

a Cactus-generated alignment without re-running the entire pipeline, this process is currently

complicated for users to do and requires considerable manual intervention. Our mwgaw-align

workflow was designed with user-friendliness in mind, making it relatively simple to set up and

run, especially for experienced Snakemake users but also for relative novices. The workflow

management system also greatly simplifies the task of updating existing MWGAs, allowing for

the addition, removal, or replacement of assemblies with subsequent execution of only the

required steps to recompute the new MWGA (i.e. avoiding re-running many already computed

pairwise alignments). Fourth, as we illustrated in this chapter, the optimisations we brought to

mwgaw-align enable efficient computation of MWGAs including more than 20 assemblies. In

contrast, the extra steps implemented in Cactus to improve the alignment process greatly

increase the computational cost of generating MWGAs; in fact, in a comparison with an

alternative alignment tool for closely-related assemblies, Sibelia (Minkin & Medvedev, 2020), the

authors noted that Cactus was not able to align eight mouse genomes in seven days. Finally,

the implementation of mwgaw-align will contribute to the ongoing technical development of

Cactus itself, as our workflow enables the streamlined generation of MULTIZ-based MWGAs

that can be used to benchmark the outputs from the Cactus approach.

In the field of computational biology it is often observed that healthy competition amongst

methods designed to solve similar challenges promotes advances in accuracy and

performance. Solving the technical challenge of multiple whole genome alignments is no

exception, as evidenced by the 12 participant methods in the Alignathon initiative (Earl et al.,

2014). Until the development of Cactus, the MULTIZ-based approach developed by the UCSC

team was arguably the only practically feasible approach with good accuracy and performance,

albeit only usable essentially by the UCSC team themselves. This thesis work to build a

reproducible, portable, and scalable workflow for running the MULTIZ-based approach is

Page 61 of 137



therefore an important contribution to the field as a whole. Instead of being consigned to history

as a near-unusable and poorly documented set of utilities and complex wrappers, the

MULTIZ-based approach was given a new lease of life by our mwgaw-align workflow, enabling

its continued use for generating high-quality MWGAs, and possibly for participation in future

Alignathon initiatives.
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Chapter 3: Computing metrics from a Multispecies

Whole Genome Alignment with mwgaw-analyses

Summary

This chapter describes the mwgaw-analyses workflow that facilitates the downstream analysis

of multispecies whole genome alignments (MWGAs), interfacing with the mwgaw-align workflow

described in Chapter 2 to build MWGAs. We first describe the types of analyses implemented in

the workflow for computing estimates of sequence conservation and protein-coding potential.

We then detail the methodological implementations for input data processing, computing

conservation and coding-potential metrics, creating gene-level summaries, and building data

track hubs for visualisations using genome browser platforms. The development of supporting

tools and utilities are detailed in Chapter 5. The results section then summarises the types of

outputs produced by the workflow, highlighting the data visualisation options from

nucleotide-level to gene-level and even genome-wide data summaries. Importantly, the

mwgaw-analyses workflow’s primary input is a MWGA in MAF format, meaning that it can be

applied to MWGAs produced by other workflows, e.g. Cactus, and it is not dependent on our

mwgaw-align workflow to build the required MWGA.

Introduction

MWGAs are a powerful resource for any analysis comparing multiple genomes. In the context of

this thesis, we want to use MWGAs to 1) compare patterns of sequence conservation for

different families of functional genomic elements across arthropods, and 2) generate clues to

assist the annotation of coding and noncoding functional elements in assemblies. Both these

goals require computing metrics to estimate conservation of sequences across the alignment to

identify conserved regions in the reference assembly.

A first and naive approach to explore sequence conservation in a MWGA is to compute simple

metrics like the proportion of aligned assemblies (alignability) and the proportion of assemblies

with the same nucleotide as the reference (identity) for all positions in the reference assembly.

These metrics do not consider the evolutionary history of species in the alignment and thus

cannot be used to accurately estimate conservation or constraint of sequences among these
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species. However, the information they provide can help understand some of the patterns

potentially observed in more complex estimates of sequence conservation. We implemented the

computation of alignability and identity in the metrics utility of our mwga-utils software suite

(technical description presented in Chapter 5).

Accurately estimating sequence conservation requires reconstructing the evolutionary

relationship between species included in the alignment. In practice, this task involves the use of

a statistical model taking into account substitution rates in each aligned species while

accounting for patterns in the mutational process, e.g. transitions being more frequent than

transversions. When genome sequencing and computational advances made MWGAs possible

in the early 2000s, several tools were developed to identify conserved elements in MWGAs e.g.

(Margulies et al., 2003; Ovcharenko et al., 2005), yet few of these methods actually used an

evolutionary model, but see (Boffelli et al., 2003). The first software to properly implement a

statistical model taking into account phylogenetic relationships between aligned species and

substitution patterns was phastCons (Siepel et al., 2005), which was quickly adopted as the

standard to identify conserved elements and has been used in most studies investigating

conservation of sequence since then (Hecker & Hiller, 2020; Hupalo & Kern, 2013; Lindblad-Toh

et al., 2011; Stark, Lin, et al., 2007) and in conservation tracks from the UCSC Genome Browser

(Miller et al., 2007). PhastCons implements a phylogenetic Hidden Markov Model (phylo-HMM)

with a state for conserved regions and a state for non-conserved regions. Both states are

described by the same phylogenetic model, with the average substitution rate in conserved

regions expressed as a fraction of the average substitution rate in non-conserved regions. A

defining feature of phastCons is that all model parameters (e.g. branch lengths, substitution

rates, nucleotide matrix, …) are inferred from the data by maximum likelihood except for two

constraints: expected proportion of conserved bases in the reference assembly, and average

length of conserved elements. Models estimated from the MWGA are then used to identify

conserved elements using a variable-size sliding window and to compute a conservation score

for each base in the reference assembly; in practice, these conservation scores represent the

probability that a site was generated by the conserved state of the model and thus varies

between 0 and 1. Phylo-HMMs enable phastCons to integrate the phylogenetic relationships

among aligned species and complex substitution models allowing multiple substitutions, and to

efficiently identify conserved elements.

Identifying conserved elements is the first major step to generate annotation clues for the

reference assembly. This information can be supplemented with additional metrics to infer the
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functional role of identified conserved elements; a crucial distinction between types of functional

elements is whether these elements encode proteins. Most assemblies undergo an annotation

process to identify protein-coding functional elements, i.e. protein-coding genes. Often,

RNA-seq data can be used to delimitate the boundaries of these genes and data from functional

studies can be added to curate the annotation. However, in many cases, protein-coding genes

are identified de novo using only homology to genes in other species and patterns of nucleotide

sequence. Annotations generated by this automated process are a valuable resource, but they

are often incomplete and some genes may not be properly delimited. Specific patterns of

conservation of sequence in MWGAs can provide information to 1) determine whether a gene

encodes a protein, 2) delimit the boundaries of annotated genes, and 3) identify new genes

missed by automated annotation. A particular method looking at Codon Substitution

Frequencies (CSF) has been implemented in the software PhyloCSF (Lin et al., 2011), which

has been successfully used to identify and characterise protein-coding genes in a diversity of

species (Khan et al., 2020; Lian et al., 2018; Mudge et al., 2019). The approach implemented by

PhyloCSF is very similar to that of phastCons: PhyloCSF also uses two phylogenetic models,

one for coding regions, and one for non-coding regions. For each codon, PhyloCSF then

estimates the probability that the sequence is generated by the coding model based on the

log-likelihood ratio of the two models. In contrast to phastCons, however, PhyloCSF relies on

complex empirical codon models (ECMs) inferred from alignments of coding and non-coding

regions using thousands of parameters. To be accurate, these ECMs require precisely

annotated coding regions, and therefore PhyloCSF provides curated ECMs for several datasets;

based on a personal communication with the author of PhyloCSF, these curated models are

much favoured over models generated using new data without curation, and thus the most

efficient way to use PhyloCSF is to adjust curated models to the new input data.

In practice, all these analyses involve many steps and greatly benefit from parallelisation to

optimise user runtime. We efficiently implemented these steps in our automated but

customisable mwgaw-analyses workflow, which computes multiple metrics and outputs from a

multispecies whole genome alignment. Base metrics - alignability and identity - are estimated

only at the nucleotide level, but both phastCons and PhyloCSF can generate two types of

outputs: a raw score per nucleotide (for phastCons) or per codon (for PhyloCSF), and a list of

most conserved (for phastCons) or putative coding (for PhyloCSF) elements. Nucleotide-level

data for base metrics and phastCons scores can be averaged over the length of annotated

coding regions for each gene in the reference assembly to generate gene-level metrics, which
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can be useful to understand the gene’s evolutionary trajectory and potentially inform on its

function (Ruzzante et al., 2022); in Chapter 4, we use our gene-level metrics to characterise

families of immune-related genes in mosquitoes. Finally, the amount of data generated by these

analyses can be daunting; to help understand and make sense of these results, we focused on

implementing several visualisation approaches at multiple levels. First, a GenomeBrowser track

is generated for each output - at the nucleotide, element, and gene level, in order to visualise

the associated metric value along the assembly for the reference species; this visualisation is a

powerful tool to explore patterns of a chosen metric along a region of interest, or to visually

identify new regions of interest. These tracks are integrated in a GenomeBrowser track hub,

which provides a convenient way to load multiple tracks and associated metadata in a

GenomeBrowser instance. Second, gene-level metrics are integrated in a web interface

displaying 1) all gene-level metrics in a table with information on the gene and potential links to

an alignment viewer (CodAlignView), and 2) figures showing sequence conservation metrics per

nucleotide along with optional information (e.g. gene model, or sequences marked as repeated)

across the length of each gene in the reference annotation.

The automated and customisable mwgaw-analyses workflow described in this chapter provides

the tools required to turn the “raw data” contained in a MWGA into quantified metrics that

describe nucleotide level sequence conservation along the length of the genome, which can

also be averaged over any annotated features such as exons or genes. Importantly, the results

are organised and formatted so they can be easily integrated into widely-used genome data

visualisation platforms, enabling users to explore the results as data tracks in genome browsers.

Methods

Processing the MWGA, annotation, and phylogeny inputs

The mwgaw-analyses workflow uses as the main input an MWGA in standard MAF format, for

instance one generated using our mwgaw-align workflow or one transformed from the HAL

format produced by Cactus. In addition, the workflow requires an assembly file and an

annotation file for the reference assembly as well as a phylogenetic tree defining the

relationships between species included in the alignment, including branch lengths which are

required to compute coding potential with PhyloCSF. The reference assembly fasta file is

processed as it would be for inclusion in the MWGA generation workflow, i.e. it is formatted,

converted to a binary format, indexed, and partitioned into batches as detailed in the Methods
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section of Chapter 2. This partitioning is required to parallelise the costly computation of

per-base sequence conservation and coding potential scores by splitting the MWGA into

batches which can be processed concurrently. The annotation file, in General Feature Format

(GFF), for the reference assembly is re-formatted following the same rules as the fasta file for

the reference assembly, and is split into scaffold-level annotation files. These are required to be

able to average per-nucleotide metrics over any selected annotated features, such as exons or

whole genes. Finally, while PhyloCSF uses the phylogeny as provided, the tree provided is

converted to a topology-only dendrogram format required by phastCons, i.e.

(species1,species2,(species3,species4)).

Computing per-base alignment metrics

In addition to conservation score (phastCons) and coding potential (PhyloCSF), basic metrics

are generated for each nucleotide in the reference assembly using our metrics software from

mwga-utils (technical description presented in Chapter 5). This software computes two metrics:

alignability, defined as the proportion of assemblies that were aligned at a position in the

reference assembly, and identity, defined as the proportion of assemblies with the same

nucleotide as the reference at a position. These basic metrics can help understand and interpret

some of the patterns observed for conservation score and coding potential. The design and

implementation of mwga-utils are explained in Chapter 5; briefly, the software parses the MAF

file to extract nucleotide information in all assemblies for each genomic position in the reference

assembly. This information is used to compute alignability and identity for the current position,

and these scores are stored to be exported after processing the entire input MAF file. The

output is a WIG file (https://genome.ucsc.edu/goldenPath/help/wiggle.html) for each computed

metric, containing the computed value for each position in the reference assembly, including a 0

for positions where metrics could not be computed, e.g. regions where no assembly was aligned

to the reference.

Estimating sequence conservation with phastCons

Conservation of sequence per nucleotide is estimated with phastCons, which relies on two

phylogenetic models to compute conservation scores, one for conserved regions and one for

non-conserved regions. The recommended way to estimate these models for alignments

including more than a few species is to 1) infer the phylogenetic model for non-conserved

regions from fourfold degenerate (4d) sites in coding regions, i.e. sites forming the third base of
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a codon for which any base will encode the same amino acid, and 2) infer the phylogenetic

model for conserved regions from conserved sites, usually the first position in codons. This

method requires information on coding regions in the reference assembly, which is inferred from

an annotation file supplied by the user in the workflow’s config file. The first step of this process

is to extract all 4d sites and 1st codon positions from the alignments. First, the corresponding

genomic region is extracted from the input MWGA for each alignment batch using the

maf_parse software from the PHAST suite, and features for the corresponding region are

extracted from the user-supplied annotation file using a Python script. The msa_view software

from PHAST is then used to identify 4d sites and first codon positions in the alignments; details

of this procedure are implemented in the wrapper script phastCons_models_batch.py which

processes all sequences in a batch. First codon positions and 4d sites for all batches are

respectively merged into a single file each, and used to estimate the phylogenetic model for

conserved and non-conserved sites with the phyloFit software from PHAST. Model estimation

requires a tree describing the relationships among species, which is generated from the

user-supplied Newick tree using a Python script. Finally, conservation scores are computed for

each batch with phastCons, and results from all batches are concatenated to create a WIG file

of conservation scores for all bases in the reference assembly.

Per-nucleotide conservation scores are used to compute a list of most conserved elements

using the --most-conserved mode in phastCons. This mode uses the WIG files generated in the

previous step to identify continuous regions of high sequence conservation, based on two

user-supplied parameter values: estimated length of a conserved element, and estimated

coverage of conserved elements in the reference assembly. The process is parallelised by

running phastCons on each contig separately, and the output is a Browser Extensible Data

(BED) format file of conserved elements for each contig in the reference assembly. These BED

files are then aggregated into a single file containing all conserved elements identified in the

alignment.

Estimating coding potential with PhyloCSF

Coding potential per nucleotide is estimated with PhyloCSF (Lin et al., 2011); similar to

phastCons, this software relies on models to estimate scores. PhyloCSF models consist of three

files: 1) a phylogenetic tree in Newick format with branch lengths describing the relationship

between species included in the model, 2) a table describing transition probabilities between all

possible codon pairs in the coding-sequence model model, and 3) a table describing transition

Page 68 of 137



probabilities between all possible codon pairs in the non-coding-sequence model. Unlike

phastCons models, however, models used by PhyloCSF require fine tuning to perform

accurately, and we learned from communicating with the main author of PhyloCSF that using

the model developed for a dataset of 12 Drosophila species (12flies) would yield better results

than estimating a new model with PhyloCSF for subsets of arthropod species. In practice, this

would require creating a new model using the same transition probability as the 12flies model,

but replacing the phylogenetic tree with one describing the relationship between species in the

focal subset of species, i.e. species included in the input alignment. Consequently, the first step

in running PhyloCSF in our analyses workflow is creating a dummy model in the datasets folder

of PhyloCSF by copying the user-specified Newick tree and the coding and non-coding models

from the 12flies dataset into a new model.

PhyloCSF is then run using this model to estimate per-base coding potential for each of the

three forward and three reverse reading frames for all positions in the reference assembly. To do

so, each alignment batch is first extracted from the MWGA with maf_parse and is then split into

overlapping 3bp alignments representing potential codons. Because this process can generate

millions of temporary files, thus overloading the file system, each batch is processed in

successive sub-batches of 1,000 bp to limit the number of concurrent temporary codon files.

PhyloCSF is run on all codon files for each sub-batch using a fixed strategy (--strategy=fixed) to

optimise compute time and non informative output columns are filtered out on the fly to further

optimise disk usage. Output files for all batches are merged and processed with a Python script

to generate six final WIG files, one for each of the six reading frames.

Coding potential scores per codon can be used to generate a list of putative coding elements,

similar to phastCons’ list of most conserved elements. This approach was used to identify 353

and 51 cases of functional readthrough of stop codons in Anopheles gambiae and Drosophila

melanogaster (Jungreis et al., 2016), respectively, and to add 144 conserved protein-coding

genes to the human GENCODE gene set along with additional coding regions within 236

previously annotated protein-coding genes (Mudge et al., 2019). However, the actual method to

produce lists of high-scoring putative coding elements was never directly implemented in

PhyloCSF. Instead, these results were achieved using a collection of unreleased scripts that

were implemented and designed for the author’s working environment. After a personal

communication, the author agreed to share these scripts and include them in our workflow. The

vast majority of the work to convert these scripts from Python 2.7 to Python 3, update the

dependencies, and integrate them in the framework of mwgaw-analyses was performed by
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another member of the lab and will not be described here. I personally assisted with integrating

this updated utility into the workflow, and mwgaw-analyses can thus produce a list of putative

coding elements as an output.

Computing per-gene metrics for the reference assembly

The workflow computes alignability, identity, and conservation scores for each genomic position

in the reference assembly, including coding and non-coding regions. To this day, many biological

questions still focus on coding regions, since they are the regions best associated with a known

biological function and most easily comparable between individuals and species. When an

annotation detailing coding regions is available for the reference assembly, usually a GFF file,

the workflow can compute the average value of each of three aforementioned metrics over the

length of each gene. The resulting per-gene metrics can be used to inform evolutionary

characterisations of genes and gene families, i.e. quantifying evolutionary sequence

conservation per gene to be able to distinguish between functional categories of genes that are

normally highly conserved/constrained and functional categories of genes that show high

variability in their sequences over evolutionary time. An example of the application of gene-level

metrics to evolutionary questions is presented in Chapter 4.

The first step in computing gene-level metrics is loading the information contained in the GFF

annotation file into a custom GFFFile Python object. This object contains all important

information from the GFF for each annotated gene, as well as an index associating each

genomic position in the reference assembly with the relevant gene. Then, for each metric, the

WIG file of per-base metric values generated in one of the previous steps is read position by

position. When the current genomic position falls within a gene, as indicated by the index

created while loading the annotation file, gene-level metric values are incremented for the

relevant gene in a data structure. After processing the entire file, incremented metric values are

divided by the length of the gene for each gene in the annotation. These averaged values are

exported to a tabulated file containing the gene name and average value of each computed

metric on each line.

To facilitate exploring the computed metrics and identifying genes of interest, the resulting

tabulated file can be converted into an interactive web table that can be filtered, ordered, and

searched. This table also links each gene to the corresponding genomic region in a

CodAlignView instance (a web-based tool developed by the PhyloCSF developers), which
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visualises the alignment used to compute the metrics. To generate this table, we implemented a

Python workflow which takes as input the tabulated file of average metric values for each gene

and automatically generates a static website with the interactive table. This workflow is available

at https://gitlab.com/evogenlab/mwga/mwga-website and allows to easily browse gene metrics

results for any alignment computed with our mwgaw-analyses.

Creating a Genome Browser track hub

The output generated by the analyses performed in the workflow consists of WIG files and BED

files; these file formats are standard for use in downstream analyses tools and easily parsable,

but they are not easy to browse to visualise results. To assist with visualisation and exploration

of analyses results, a Genome Browser track hub is generated for all metrics specified by the

user in the config file. In practice, a track hub is a folder that contains the reference assembly in

2bit format, an index file for this assembly, a data track file for each metric, and two files

describing the tracks. The reference assembly and index files are copied from the first steps of

the workflow; a data track file in bigWig is obtained from the final WIG output for each metric

with the wigToBigWig utility from UCSC kent utilities, or from the final BED output using

bedToBigBed from the same software package. The two files describing the track hub are

generated using our py-GB-tracks python package (https://pypi.org/project/py-GB-tracks/) from

a track description YAML file provided with the workflow; tracks can be customised by editing

this YAML file. Implementation details for the py-GB-tracks package are provided in Chapter 5.

The resulting track hub can be automatically loaded in a genome browser (GenomeBrowser or

JBrowse) instance to visualise conservation scores, coding potential scores, and putative

conserved / coding elements.

Reproducible, portable, and scalable implementation of the workflow

Similar to the mwgaw-align workflow, the mwgaw-analyses workflow is implemented using the

Snakemake workflow management engine (Köster & Rahmann, 2012). Conda environments

were implemented to handle dependencies for all steps in the workflow; all pieces of software

used to perform analyses were either already available in the Bioconda channel (Grüning et al.,

2018) or were packaged by us if missing (a detailed list of packaged software is provided in

Chapter 5), making the workflow entirely portable on all platforms supported by Conda. The

workflow was implemented following Snakemake’s official guidelines for workflow organisation

and implementation, making it easy to use by experienced Snakemake users and efficient to
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review by experienced Snakemake developers. The config file, repository, and implementation

are thoroughly documented to promote transparency and encourage improvements by the

community. Performance-critical steps in computing conservation scores and coding potential

were parallelised, and a batching system was implemented to avoid overloading the file system

with too many small files. These performance optimisations can reduce the runtime of the

workflow by multiple days and are a key factor allowing to scale the workflow to large MWGAs.

We implemented detailed resources requirements for each step of the workflow (see Chapter 5
for a description of the resources system); coupled with the portability of Conda environment,

this enables executing the workflow on a local computer, a computational platform, or a

cloud-based environment with minimal efforts.

Results

Overview of the mwgaw-analyses workflow output

The final output of running the mwgaw-analyses workflow is a series of files for each of the

computed metrics, and a track hub output that organises these files into an easy to load

package for visualisations of the tracks in GenomeBrowser or JBrowse, these outputs are

summarised in Figure 3.1. The first output generated by each analysis is a “wiggle” (WIG) file

which contains the value of the corresponding metric along the genomic coordinates of the

reference assembly. These per-nucleotide metrics are provided for each genomic position for

Alignability, Identity, and phastCons, and for each codon (whether it is a real codon or not) in

each of the six reading frames for PhyloCSF. The WIG files are used by phastCons and

PhyloCSF to generate a set of most conserved elements and putative coding elements,

respectively, which are exported as Browser Extensible Data (BED) format files - one element

per line with the corresponding genomic location and associated score. The nine WIG files and

two BED files are integrated in the track hub, along with metadata to assist their visualisation

when loaded in a genome browser. Finally, the WIG files for Alignability, Identity, and phastCons

are used to compute per-gene average metric values, which are exported as a tabulated file as

well as a browsable HTML table to explore the data.
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Figure 3.1: summary of the output of mwgaw-analyses. Per-nucleotide values for alignability,
identity, phastCons conservation score, and PhyloCSF coding potential are produced as WIG
format files, while the most conserved elements and the putative coding elements are output as
BED format files. Finally, gene-level metrics are first output as a TSV file and converted to BED
format files for future display. A GenomeBrowser track is created for each of these metrics and
the tracks are packaged together as a track hub for convenient loading into GenomeBrowser or
JBrowse. The visualisation shows an example genomic region displaying tracks from top to
bottom: Alignability scores, phastCons scores, PhyloCSF scores for the six reading frames
(forward in green and reverse in red).

Exploring and visualising the output

GenomeBrowser track hub

The majority of the output of mwgaw-analyses - and the output that has to be computed first -

consists of per-nucleotide (or per-codon) metric values along the entire length of the reference

assemblies, exported as WIG files. This output is low-level and comprehensive, but because of

its size and format, it is not easily browsed and visualised by users. Yet, when processing such

a large amount of complex data, visualisation is a powerful tool to explore global patterns and to

better understand local patterns identified with quantitative analyses. A major medium to

visualise data along a genome takes the form of a genome browser, a usually online-based

platform allowing to navigate across a genome sequence while displaying multiple information

tracks - metrics, annotations, etc. One of the first genome browsers was released to support

exploration of the first assembled human genome, highlighting the importance of such a tool in
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understanding large amounts of data. Modern genome browsers implement loading multiple

related tracks together through the use of track hubs, and one of the last steps of

mwgaw-analyses generates a track hub for all the output computed by the workflow. The track

hub generated for the MWGA of 36 Drosophila assemblies after loading in the modern genome

browser JBrowse is displayed in Figure 3.2.A. The panel shows phastCons scores, the

six-frame PhyloCSF coding potential scores, and genome annotations for a region spanning

from 19.35 Mbp to 19.6 Mbp on scaffold NC_04628.1 in the assembly of Drosophila albomicans.

This region harbours three genes, and therefore conservation of sequence is generally high

across the entire window, albeit lower in untranslated regions and heterogeneous in some parts

of the exons (blue track). Exons in all three genes are matched with regions of high coding

potential, each located on different reading frames; it is worth noting that a region of high coding

potential on one reading frame corresponding to the actual reading frame on which the exon is

translated is mirrored by a region of high - but lower - coding potential on the matching reverse

reading frame, because of conserved codon sequences.

The track hub generated for the MWGA of 22 mosquito assemblies after loading in VectorBase’s

GenomeBrowser instance is displayed in Figure 3.2.B, which shows phastCons scores per

nucleotide (in yellow) as well as PhyloCSF coding potential scores for two forward reading

frame (red) and one reverse reading frame (blue) and genome annotations for a region between

41.257 and 41.260 Mbp on chromosome 2L in the assembly of Anopheles gambiae, which

contains the gene AGAP007033. The tracks reveal a relatively low level of sequence

conservation and coding potential for this gene, which can happen for fast-evolving genes (see

Chapter 4). In contrast, a region a few Kbp upstream of AGAP007033, which does not match

any gene in the annotation, exhibits high overall sequence conservation as well as several

blocks of high coding potential. Available expression data for Anopheles gambiae revealed low

but existing level of expression in this region; by comparing this expression data with the

phastCons and PhyloCSF results, we were able to delimitate the structure of a gene in this

region, which was submitted as a new annotation for this assembly. It is possible that automated

annotation pipelines discarded this region despite existing expression data because of its close

proximity to AGAP007033, which is highly expressed. This example illustrates how the

exploration of MWGA metrics in specific genomic region, enabled by the track hub, can benefit

genome annotation efforts.
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Figure 3.2: track hub visualisation on two different platforms. A) Track hub generated for a 
MWGA of 36 Drosophila genomes visualised in a JBrowse-based genome browser and 
annotator (Apollo), showing a region located between 19.35 Mbp and 19.6 Mbp on NC_04628.1 
in the assembly of Drosophila albomicans. From top to bottom, the figure displays the following 
tracks: phastCons score per codon (blue), PhyloCSF coding potential per codon for forward 
reading frames (three green tracks), PhyloCSF coding potential per codon for reverse reading 
frames (three red tracks), and gene models from the annotation. The figure shows high coding 
potential on PhyloCSF tracks matching each exon in the annotated genes. B) Track hub 
generated for a MWGA of 22 mosquito species visualised in VectorBase’s GenomeBrowser 
instance; the figure shows a region in the vicinity of the gene AGAP007033, between 41.257 
and 41.260 Mbp on chromosome 2L in the assembly of Anopheles gambiae. From top to 
bottom, the following tracks are displayed: phastCons score per nucleotide (yellow), PhyloCSF 
coding potential per codon for two forward reading frames (in red), and PhyloCSF coding 
potential per codon for one reverse reading frame (in blue). The figure highlights a region 
showing peaks of phastCons score per nucleotide matched by two regions of high coding 
potential on the forward reading frames. After comparing this information with available 
RNA-seq data, it was determined that this region was likely an unannotated gene with two 
exons, which could have been missed because of its proximity to the highly expressed 
AGAP007033 gene.
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Browsable table of gene-level metrics

MWGAs enable the exploration of sequence conservation and evolutionary constraints along 

the entire genome, including all types of genomic elements. Although an increasing number of 

studies attempt to unravel the role of non-coding functional elements in controlling biological 

functions, most of the focus in research remains on protein-coding genes, whose link to 

biological function is more straightforward and better understood; our work presented in 

Chapter 4 highlights the power of gene-level sequence conservation metrics in understanding 

gene function. To assist with the exploration of gene-level metrics computed by 

mwgaw-analyses, we implemented an automated workflow to programmatically generate a 

browsable table of metrics, as illustrated in Figure 3.3 for the 22 mosquito MWGA. This table 

can be filtered, for instance to focus on genes encoding a specific class of product - kinases in 

the figure; advanced filters are available to easily select genes of interest. In the example 

displayed in the figure, each gene ID is linked to the corresponding gene information page on 

VectorBase. In addition, the raw MWGA data for the genomic region around each transcript for 

each gene can be visualised using a CodAlignView instance (Figure 3.3.B), accessed by a 

hyperlink on the transcript ID. The browsable table paired with the CodAlignView visualisation is 

a powerful tool to extract sets of genes fulfilling conditions of interest to a user, and to explore 

patterns of evolutionary sequence conservation at the nucleotide level for a set of genes of 

interest.
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Figure 3.3: online browsable table of gene-level metrics generated from the results of
mwgaw-analyses. A) Table displaying the gene ID (from the input GFF), associated product,
genomic location, phastCons score, alignability and identity scores, and transcripts for each
gene in the reference annotation. B) CodAlignView visualisation of the input MWGA around the
genomic region containing a transcript, accessed by clicking the hyperlink on the corresponding
transcript ID in the main table.

Genome-wide sequence alignability in mosquitoes

Building reference MWGAs for available anopheline mosquito genome assemblies provides a

rich nucleotide-level comparative data resource with which to explore the evolution of their

genes and genomes. Using the alignability scores computed by the mwgaw-analyses workflow,

a genome-wide visualisation of the extent and distributions of alignable sequences across

multiple mosquito species’ genomes provides a synthesis of the alignment information

contained in the MWGA (Figure 3.4). Each reference genome assembly exhibits variable

fractions of the total assembly that are alignable to all, some, or none of the others, with total

alignable fractions ranging from 55% for A. sinensis to 82% for A. darlingi. A conserved core of

about 14 Mbp is alignable across all 21 assemblies, representing 5.2% of the A. gambiae PEST

genome. Most of the other alignable fractions vary for each assembly in a manner that reflects

the species phylogeny, e.g. larger fractions of seven-species alignments for the seven

closely-related members of the A. gambiae complex, and larger fractions of two-species
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alignments for the two members of each of the Nyssorhynchus and Anopheles subgenera, and

the Neomyzomyia group. Much of the remaining unalignable sequence corresponds to masked

repetitive sequences or assembly gaps. Anopheline chromosomes consist of five major

elements, the X chromosome and the L and R arms of chromosomes two and three. These

elements generally show a high level of conservation of gene content (macrosynteny) with

large-scale rearrangements occurring via translocations of intact elements, unlike in Drosophila

where fusions or fissions have occurred (Neafsey et al., 2015). Plotting the numbers of aligned

species along the lengths of each major A. gambiae element averaged over 2-Kbp overlapping

windows reveals dramatic regional differences in genome alignability. Small peaks of

anopheline-wide alignable regions are distributed throughout each element, emerging from a

plateau of less-alignable regions interspersed with valleys of poorly-alignable regions. Regions

with high proportions of masked or gapped base pairs show an expected reduction in

alignability, and are clearly evident at the starts of arms 2L and 3L and the ends of arms 2R and

3R and the X chromosome, which correspond to the locations of the centromeres. These

chromoplots also highlight how the X chromosome sharply contrasts the autosomes with its

generally lower levels of alignability, suggesting a faster rate of sequence evolution that leads to

the loss of significantly recognisable homology. These visualisations demonstrate the

genome-wide levels of and local variations in alignable genomic sequences using the

alignability metric computed by running the mwgaw-analyses workflow on an input MWGA.
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Figure 3.4: whole-genome multiple sequence alignments of 21 Anopheles genome assemblies.
(A) The species phylogeny shows the relationships amongst the 21 anophelines with
substitutions per site (s.s.) computed with the phyloFit tool from the PHAST analysis suite using
four-fold degenerate sites of Anopheles gambiae protein-coding genes. The bars partition each
genome assembly showing their alignability across the anophelines from 55% for A. sinensis to
82% for A. darlingi, with a conserved core of about 14 Mbps that is alignable across all 21
genomes. Approximately 180 Mbps are alignable for each of the seven members of the A.
gambiae species complex, while for the remaining Cellia species this ranges from 105 Mbps for
A. maculatus to 180 Mbps for A. stephensi (Indian). (B) The chromoplots show the genome
alignability averaged over 2-Kbp windows along each of the five chromosomal arms for the A.
gambiae genome assembly. Greyscale tracks beneath each plot show the proportion of masked
or gapped base pairs over the same 2-Kbp windows. Densely masked or gapped regions exhibit
reduced alignability, some of which correspond to the locations of centromeres at the starts of
arms 2L and 3L and the ends of arms 2R and 3R and the X chromosome.
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Discussion

Following the work presented in Chapter 2 to build a reproducible workflow to compute

MWGAs, this chapter describes a second reproducible workflow which efficiently implements

multiple analyses quantifying patterns of sequence conservation from a MWGA. Indeed, the

outcome of computing a MWGA is a large file in a format difficult to process without using

specialised tools; the mwgaw-analyses transforms this fairly unusable and large file into 1)

nucleotide-level resolution metrics, 2) gene-level metrics, and 3) visual representations of the

information contained in the MWGA. Such metrics and visualisations are powerful tools to

understand global patterns of sequence evolution contained in the alignment, as well as to

explore the subtlety of local patterns in specific regions. To illustrate this point, we provide

examples of analyses using the data generated for the 22 mosquito assemblies MWGA and the

36 Drosophila assemblies MWGA, showing how conservation of sequence expectedly matches

the structure and content of the genome - for instance, capturing the higher rate of sequence

evolution that is generally observed on the sex chromosomes in a heterogametic sex

determining system (Beukeboom & Perrin, 2014). We also illustrate the usefulness of the two

main visualisation outputs of mwgaw-analyses, genome browser track hubs and an interactive

table of gene-level metrics, in exploring local patterns of sequence conservation - eventually

leading to updating the existing annotation of Anopheles gambiae - and in identifying sets of

genes of interest for gene-focused studies, which will be developed in Chapter 4.

In practice, the work presented in this chapter achieves two principal objectives: 1) through the

mwga-utils software, which is further described in Chapter 5, it implements a framework for the

computation of low-level metrics along a MWGA in the form of a MAF file, and 2) it greatly

facilitates the computation of the most standard analyses of sequence conservation by

encapsulating the usage of complex tools into a standardised and reproducible workflow. In both

cases, the efforts expanded to implement the software and workflow in a documented fashion

and following recommended practices for reproducible science greatly facilitate future additions

to the workflow. In fact, both mwga-utils and mwgaw-analyses were designed to be extended,

the former by implementing the computation of new metrics such as major allele frequency or

allelic diversity per nucleotide, and the latter by adding additional analyses using MWGAs as the

main input. Examples of such analyses include the phyloFit (Hubisz et al., 2011) and phyloP

(Pollard et al., 2010) software, which were not implemented in the first version of

mwgaw-analyses because of the redundancy of their results with that of phastCons, but could
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be easily added to the workflow to provide additional support to quantification of evolutionary

constraints leading to sequence conservation.

In addition to providing a user-friendly, reproducible method of performing analyses on an

MWGA, the mwgaw-analyses leverages the work invested in optimising runtime and peak

memory usage of mwgaw-align to improve the scalability of compute-intensive analyses, namely

the computation of metrics using phastCons and PhyloCSF. The latter in particular requires

weeks of user runtime that were reduced to days thanks to the batching process implemented in

mwgaw-analyses. One potential concern stemming from this batching process is that both

PhyloCSF and phastCons rely on genome-level computations of estimates to adjust internal

models prior to the scoring computation step; splitting the reference into batches and analysing

these batches separately may therefore affect the value of estimates used in the models.

However, the authors of each software both recommended a similar batching process in their

user guides, and testing confirms that the impact of performing analyses on batches of

sequences is negligible compared to estimating at the genome level. In the case of PhyloCSF, it

is worth noting that a recent study attempted to optimise performance by releasing a novel

efficient re-implementation of the underlying algorithm using a high-performance programming

language (Pockrandt et al., 2022). We were involved in testing this new software and provided

feedback during its development; while it does significantly decrease the runtime of the

nucleotide-level estimation of coding potential, it is hindered by two limitations: first, it does not

generate some intermediary files produced by the original implementation of PhyloCSF, which

are necessary for the pccr analysis implemented in our workflow to generate a list of putative

coding elements, and second, it does not allow the user to easily provide a custom model,

making it effectively unusable to estimate coding potential for a MWGA comprising a set of

assemblies for which existing models might be inappropriate. Because of these limitations, and

although the performance increase is promising, this software was not included in

mwgaw-analyses and the original implementation of PhyloCSF was used instead.

Going beyond the computation of nucleotide-level and gene-level metrics, the workflow

presented in this chapter focuses on providing users with multiple visualisation outputs. When

handling large amounts of data, as is often the case in genomics, having access to visualisation

tools which can both summarise the data in a concise but comprehensive manner as well as

enable exploration of the raw data at the genome level is invaluable. This paradigm has driven

the work presented in this thesis, including also other software like radsex, presented in
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Chapter 6, which also provides strong visualisation tools for genomic data. In the case of

mwgaw-analyses, the efforts expanded into facilitating visualisation of data enable users to

easily generate complex data packages in the form of genome browser track hubs, which can

be integrated into existing public reference databases (UCSC GenomeBrowser, Ensembl, etc.)

as well as private browser instance, including annotation platforms like the JBrowse-based

Apollo (Dunn et al., 2019). Furthermore, the gene-level data already generated by the workflow

could form the basis of additional visualisations integrated in the web-based browsable table. In

particular, we developed scripts to generate gene-level figures displaying MWGA metrics for all

genes in a provided annotation, which are used in our study of evolutionary constraints on

immune gene families presented in Chapter 4. Although these tools are not yet mature enough

to be directly plugged into mwgaw-analyses, their integration in both mwgaw-analyses and into

the browsable table would require relatively little additional efforts thanks to the modular

structure of the workflow and the automated generation of the browsable table website.
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Chapter 4: Applying the MWGA workflows to explore

functional constraints in immunity genes

Summary

This chapter serves to demonstrate the utility of the results generated by the workflows

presented in Chapter 2 and Chapter 3 to explore the relationships between sequence

conservation and gene functions in the biological context of the mosquito immune system. The

mosquito multispecies whole genome alignment is used to estimate gene-level sequence

conservation measuring long-term evolutionary constraint for Anopheles gambiae genes. Taking

advantage of available population polymorphism data for this species, we also estimated

gene-level sequence conservation measuring modern-day diversity across sampled populations

from Africa. We use these two metrics to investigate the functional features of the most and

least conserved mosquito genes, as well as examining constraint and diversity levels for

functional categories of genes defined by their co-expression patterns. Comparing patterns of

evolutionary constraint amongst different functional categories of immune-related genes showed

that the ensemble of immunity genes contains both conservatively and dynamically evolving

components, and that these distinctions appear to be linked to their functional roles. These

results provide initial insights into how sequence conservation levels can vary according to a

gene’s functional role and illustrate how the MWGA workflows enable the reliable calculation of

sequence conservation to explore genome-wide variation in evolutionary constraint and how this

relates to gene function.

Introduction

Most of the 3,500 identified mosquito species are harmless to humans (Ruzzante et al., 2019),

but several species act as vectors of some of the diseases causing the most human deaths

around the world, notably malaria, which is caused by parasites of the genus Plasmodium

transmitted by Anopheles mosquitoes, Dengue and yellow fever which are viral diseases

propagated by Aedes aegypti, and West Nile virus which is transmitted by Culex mosquitoes.

Because of their crucial role in public health issues, disease-vector mosquitoes have attracted a

lot of research interest and have been prioritised for genomic studies among insects: the

genome of Anopheles gambiae was the second insect genome to be sequenced (2002) after
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Drosophila melanogaster, and Aedes aegypti was sequenced in 2007. Today, more than 30

genome assemblies are available for Anopheles, Aedes, and Culex mosquito species (Feron &

Waterhouse, 2022a). These genomes constitute a powerful resource which can be leveraged to

provide an evolutionary perspective on our biological understanding of disease-vector insects, in

particular the factors involved in their interactions with pathogens that affect transmission, which

are crucial for controlling the spread of debilitating diseases (Neafsey et al., 2015).

Understanding the evolution and functions of these factors will help to develop novel

approaches to limit the damaging effects of mosquitoes on human health by facilitating targeted

interventions while minimising ecological knock-on effects.

Many of the interactions between mosquitoes and the pathogens they carry involve components

from the innate immune system (Christophides et al., 2002). Like most arthropods, mosquitoes

deploy a strong immune response when facing infection by a pathogen, which makes them

remarkably resistant to these infections. This response incorporates multiple molecular

components to recognize pathogens, transfer the recognition signal, and activate and modulate

the pathogen-killing molecules. Examples of pathogen-recognition receptors include

peptidoglycan recognition proteins (PGRPs) (Q. Wang et al., 2019) and β-1,3-glucan recognition

or gram-negative bacteria-binding proteins (GNBPs) (Rao et al., 2018). Signals from these

receptors are transmitted by cascades like the Toll (Valanne et al., 2011) and the JAK/STAT

(Myllymäki & Rämet, 2014) pathways to regulate the expression of effector genes, for instance

genes encoding antimicrobial peptides (AMPs) (Lazzaro et al., 2020). These different

components interact through a diversity of cellular processes controlled by cells from multiple

tissues to form a complex network of interactions, which provide mosquitoes with a strong

protection against the majority of pathogens.

The overall structure of the immune system and the gene families involved in the immune

response are shared across insects. However, the molecular components of the immune system

are engaged in an arms race with pathogens and therefore the genes encoding these

components are expected to be under strong selective pressure and thus evolve faster than the

majority of genes involved in other biological processes (Obbard et al., 2009). In practice, genes

involved in different processes of the immune response are affected differently by this arms

race, and the genes encoding components interacting directly with pathogens, for instance

recognition proteins, are expected to evolve the fastest. Understanding precisely which immune

genes are under which evolutionary constraints is key to identifying the components of the

mosquito immune system that are involved in this arms race with pathogens; when mosquitoes
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lose this race, they become vectors of the deadly diseases for which they are known

(Bartholomay & Michel, 2018). This outcome was the driver of early studies comparing immune

genes in Anopheles gambiae and Drosophila melanogaster to identify mosquito immune genes

under selection by looking at gains and losses for different families (Christophides et al., 2002).

Later studies targeting Anopheles gambiae and Aedes aegypti expanded on these results by

comparing the sequences of immune genes in 11 insect species, focusing on conserved

domains (Waterhouse et al., 2007). Since then, more than 25 mosquito species have been

sequenced, which allows us to further refine the analysis of evolutionary conservation of

immune genes in mosquitoes by estimating evolutionary constraints from sequence

conservation computed using multispecies whole genome alignments (MWGAs). In parallel,

sequencing projects under the umbrella of the Malaria Genomic Epidemiology Network

(MalariaGEN) now provide population-level genomic diversity datasets in the form of Single

Nucleotide Polymorphism (SNP) for almost 2,800 Anopheles gambiae individuals (The

Anopheles gambiae 1000 Genomes Consortium, 2021). Thanks to these data, it is now possible

to compute estimates of sequence conservation both at the lineage level and at the population

level, and thus compare long-term against short-term evolutionary constraints.

In this chapter, we use the MWGA of the genome sequence of 22 mosquito species that we

described in Chapter 2 to compute gene-level sequence conservation estimates using

mwgaw-analyses, described in Chapter 3, for all genes in the annotation of the reference

assembly for Anopheles gambiae. We then compute an estimate of population-level sequence

conservation using the MalariaGEN SNP data for each of these genes. We first use these data

to survey the landscape of sequence conservation in the entire gene set, identifying most and

least conserved genes in the annotation, and exploring the biological functions associated with

these genes. We then dive into specific sequence conservation patterns for different immune

gene families and investigate how these patterns relate to the functional roles of these genes in

the mosquito immune system.

Methods

Estimating gene sequence conservation from the 22 mosquito MWGA

To compute estimates of conservation of sequence over evolutionary times, we used the 22

mosquito MWGA described in Chapter 2. Briefly, this alignment comprises assemblies for 22

mosquito species: one Culex species, two Aedes species, and 19 Anopheles species, including
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the one whose assembly was used as reference, Anopheles gambiae; the divergence time

between these species is estimated to be ~ 150 Mya. The resulting MWGA was used as the

primary input for mwgaw-analyses, described in Chapter 3, along with the phylogenetic tree

used to generate the MWGA with mwgaw-align, and a GFF file containing the annotation for

Anopheles gambiae (AgamP4, annotation version 4.11). The workflow was run on UNIL’s high

performance computation platform using the following phastCons parameters: a target coverage

of conserved elements of 0.3 (--target-coverage 0.3) and an expected length of conserved

elements of 35 (--expected-length 35). The workflow generated an average score of sequence

conservation for each gene in the provided annotation, exported as a tabulated file.

Estimating gene sequence conservation from population sampling data

The MalariaGEN project provides SNP data for thousands of Anopheles gambiae individuals

and is updated with additional data over time. At the time of this study, data were available for

1,470 individuals from 28 different sample sets, with 10 to 303 individuals per sample set. For

each sample, metadata were first downloaded from a google cloud bucket using gsutil version

5.10 in rsync mode (-m rsync) from the google cloud bucket provided by MalariaGEN

(gs://vo_agam_release/v3/metadata/). The resulting metadata are organised into cohorts

reflecting the sampling process; these cohorts can contain individuals belonging to species

other than Anopheles gambiae. Sample metadata files were processed using a Python script for

each cohort in order to extract Anopheles gambiae samples. Then, a Variant Calling Format

(VCF) file containing individual SNP information was downloaded from google cloud for each

identified sample using wget, and immediately compressed with bcftools view using the

following parameter values to retain only polymorphic sites: --output-type z --min-ac 1:nonmajor

--trim-alt-alleles. Sample information that was not needed for this analysis was removed from

each VCF using a custom script in order to reduce file size. The resulting compressed VCF

were indexed with bcftools index and merged into a single, multi-sample VCF using bcftools

merge. This process was implemented as a small Snakemake workflow executed on UNIL’s

HPC platform and resulted in a single VCF containing all polymorphic sites for all Anopheles

gambiae samples in the MalariaGEN dataset.

Variants in the merged VCF file were annotated with SnpEff version 5.1d (Cingolani et al.,

2012), using the pre-existing database for the Anopheles gambiae genome. This software

creates a new VCF with an added annotation column containing pre-computed information on

each polymorphic site, as well as a summary table of association between each site and a set of
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tags related to the estimated effect of the associated variant. The summary table was parsed

using a custom Python script to classify each polymorphic site into a synonymous or

non-synonymous variant based on the tags annotated by SnpEff. Then, another script was used

to count the number of synonymous and non-synonymous variants for each gene in the

reference Anopheles gambiae annotation, exported as a tabulated file. The counts of

synonymous vs non-synonymous sites in a gene were used to compute the following estimate

of population-level sequence conservation for this gene: NS / (NS + S), with NS being the

number of non-synonymous SNPs and S the number of synonymous SNPs; the value of this

estimate ranges from 0 when all SNPs in the focal gene are synonymous, to 1 when all SNPs

are non-synonymous. Therefore, a low value of this estimate suggests that most of the variable

sites in the focal gene are under constraint to encode a fixed amino acid, and thus the resulting

protein sequence is relatively conserved; conversely, a high value of this estimate suggests that

variable sites in the focal genes are not constrained to encode a fixed amino acid, and thus the

resulting protein sequence is variable in the population. To reliably compute this estimate, genes

with fewer than ten polymorphic sites were discarded from the analysis.

Visualising the metrics computed for all genes

To fully leverage the data generated for this study, we implemented a suite of scripts and

functions using R (R Core Team, 2024). Using these tools, we were able to automatically

generate two novel visualisations: 1) “kite” plots showing the distribution of both population-level

and lineage-level sequence conservation for all genes in the reference annotation, and 2) “track”

plots showing all the computed information for each individual gene in the reference annotation.

Distribution of sequence conservation amongst genes in the reference annotation

In this study, we computed estimates of sequence conservation at the gene level at two different

scales: across species using the 22 mosquito MWGA, and within the Anopheles gambiae

population using SNP data. To visualise the distribution of these two metrics for each gene in

the reference annotation, we implemented a series of R scripts which take as input a table of

each metric for each gene in the annotation and one or more sets of genes to highlight. For

each user-provided set of genes to highlight, the median, first quartile, and third quartile values

of each of the two metrics are computed. The results are displayed in a figure on which the

horizontal axis represents the population-level sequence conservation estimate NS / (NS + S)
for a gene as described in the previous section, the vertical axis represents the phastCons

score for a gene, and each gene is represented by a dot at its respective coordinates, with the
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given set of genes highlighted in user-controlled colours. For each of the highlighted sets of the

genes, the median, first quartile, and third quartile are drawn for both metrics and connected to

form a losange resembling a kite. This “kite” is akin to a two-dimensional box plot, with its centre

indicating the median of both values, and each vertex indicating one of the quartile values.

Examples of kite plots are shown in Figures 4.5 and 4.7.

Visualising computed metrics along the length of a gene

In the context of this study, we computed multiple gene-level metrics for all genes in the

Anopheles gambiae genome annotation dataset. In order to better understand how these

metrics relate to the gene sequence and structure, and to explore local variations along the

sequence of a gene, we needed a way to automatically display all this information for any

chosen gene. To this aim, we developed a suite of R scripts and functions which allowed us to

programmatically generate a figure including multiple information tracks for any user-supplied

gene in our dataset. An example showing all possible information tracks for the gene

AGAP009263 (a member of the CLIP immune gene family) is presented in Figure 4.1. From top

to bottom, the first track displays the gene model, including exons, untranslated regions (UTRs),

coding sequences (CDSs), and known protein domains annotated by PFAM (El-Gebali et al.,

2019); this model is drawn with custom functions using a tabulated input file containing

information on each part of the gene. The second part displays genomic regions identified as

repeated sequences, obtained from a repeat GFF file for the reference assembly. The third track

shows the position of annotated variable sites identified from the SNP data, with variants

annotated as synonymous coloured in blue and variants annotated as non-synonymous

coloured in red. The fourth track shows the density of SNPs in a sliding window, including all

sites from the original SNP data. Finally, the fifth track displays the Alignability (in orange) and

phastCons score (in blue) per nucleotide computed with mwgaw-analyses for each nucleotide

along the sequence of the gene.
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Figure 4.1: individual gene plot with all possible information tracks for the gene AGAP009263.
From top to bottom, the tracks show: 1) the gene model, including exons, untranslated regions
(UTRs), coding sequences (CDSs), and known protein domains annotated by PFAM; 2)
genomic regions identified as repeated sequences; 3) position of annotated variable sites
identified from the SNP data, with variants annotated as synonymous coloured in blue and
variants annotated as non-synonymous coloured in red; 4) density of all detected SNPs in the
original data in a sliding window; 5) alignability (in orange) and phastCons score (in blue) per
nucleotide along the sequence of the AGAP009263.

Results

Functional features of the most and least constrained mosquito genes

The 22 mosquito MWGA was used to compute genome-wide evolutionary conservation scores

with phastCons and the Anopheles gambiae polymorphism data from the MalariaGEN project

were used to qualify synonymous and non-synonymous SNPs in protein-coding genes.

Per-nucleotide phastCons scores were averaged along the coding sequences to estimate

per-gene constraint levels, and the proportion of non-synonymous SNPs out of all SNPs within

each gene was calculated to estimate per-gene diversity levels. The distributions of constraint

and diversity levels measured for ~12,000 Anopheles gambiae protein-coding genes show a

median of 0.57 for diversity and 0.71 for constraint (Figure 4.2). Diversity levels are relatively
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symmetrically distributed with a fairly narrow interquartile range and very few extreme values.

Constraint levels are skewed towards higher values with a wider interquartile range and

substantial numbers of genes across the entire spectrum. Visualising these distributions

demonstrates that genes exhibit a wide range of conservation levels as measured by long-term

evolutionary constraint and population-level diversity.

Figure 4.2: geneset-wide distributions of computed constraint (phastCons) and diversity
(proportion of non-synonymous SNPs) metrics for ~12,000 Anopheles gambiae protein-coding
genes. The distributions span the ranges of low to high diversity and low to high constraint, with
a more symmetrical distribution for diversity and a more skewed distribution for constraint. The
violin plots show kernel density estimates of the distributions, and the boxplots within indicate
the medians (white-border diamonds), the interquartile range (thick lines) and 1.5 x the
interquartile range (thin lines). The values on the x-axis range from 0 to 1, the permissible
values for the computed constraint and diversity values.

To begin to investigate broad relationships between sequence conservation and gene function,

Gene Ontology (GO) enrichment analyses using the Kolmogorow-Smirnow test were performed

with TopGO (Alexa & Rahnenfuhrer, 2024) and visualised using GO-Figure! (Reijnders &

Waterhouse, 2021). Results for enriched GO Biological Processes from the phastCons

constraint levels for the most constrained and least constrained genes are shown in Figure 4.3
and Figure 4.4, respectively. For the most constrained genes, the analysis identifies several

core housekeeping functions such as translation, transcription, splicing, mitosis, protein

transport and secretion, neuronal processes, development and morphogenesis, and

phagocytosis. For the least constrained genes, the analysis identifies several functions
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implicated in potentially dynamically evolving processes such as taste and chemical stimulus

perception, defence responses to viruses, chitin metabolism, GPCR signalling, and courtship

behaviour. The equivalent analyses for gene diversity levels also identified core housekeeping

functions enriched amongst low-diversity genes, such as transcription, splicing, mitosis, protein

transport, and neuronal processes. In contrast, amongst high-diversity genes enriched

processes included taste and chemical stimulus perception, chitin metabolism, and GPCR/iGluR

signalling, which, like for low-constraint genes, are functions implicated in potentially

dynamically evolving processes. This global analysis of protein-coding genes demonstrates that

these conservation metrics correctly characterise genes expected to be constrained by their key

biological functions with low-diversity and high-constraint levels, and conversely genes with

functions associated with more rapidly evolving processes with high-diversity and low-constraint

levels.
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Figure 4.3: summary visualisation of Gene Ontology (GO) enrichment amongst the most
constrained genes (highest phastCons scores). Enrichment analysis identifies several core
housekeeping functions such as translation, transcription, splicing, mitosis, protein transport and
secretion, neuronal processes, development and morphogenesis, and phagocytosis. Each
bubble groups one or more semantically related GO Biological Process terms, the bubbles are
arranged such that those that are most similar in semantic space X and Y are placed nearest to
each other, they are coloured according to the enrichment p-value of the representative term for
each bubble. The GO term names are shown for the top 21 most significantly enriched terms.
The figure was produced using GO-Figure! (Reijnders & Waterhouse, 2021) and the enrichment
analysis using the Kolmogorow-Smirnow test was performed with TopGO (Alexa &
Rahnenfuhrer, 2024).
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Figure 4.4: summary visualisation of Gene Ontology (GO) enrichment amongst the least
constrained genes (lowest phastCons scores). Enrichment analysis identifies several functions
implicated in potentially dynamically evolving processes such as taste and chemical stimulus
perception, defence responses to viruses, chitin metabolism, and courtship behaviour. Each
bubble groups one or more semantically related GO Biological Process terms, the bubbles are
arranged such that those that are most similar in semantic space X and Y are placed nearest to
each other, they are coloured according to the enrichment p-value of the representative term for
each bubble. The GO term names are shown for the top 21 most significantly enriched terms.
The figure was produced using GO-Figure! (Reijnders & Waterhouse, 2021) and the enrichment
analysis using the Kolmogorow-Smirnow test was performed with TopGO (Alexa &
Rahnenfuhrer, 2024).

Gene expression data can provide an orthogonal approach to gene functional categorisation

that does not rely entirely on Gene Ontology annotations. Therefore, to further explore broad

relationships between sequence conservation and gene function, the Anopheles gambiae gene

co-expression network built by (Kuang et al., 2022) was used to define and compare clusters of

co-regulated genes putatively involved in common biological processes. This network included

15 “communities” of co-regulated genes, where each community was enriched for distinct GO

biological processes ranging from fundamental cell functions to specialised physiological roles

associated with specific organs or tissues. For example, Community 4 was associated with

intracellular signal transduction, protein phosphorylation, and neuron function, while Community
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7 was associated with innate immunity and lipid metabolism, and Community 15 was associated

with blood feeding and salivary glands. The network core, characterised by strong gene

expression across the majority of conditions, was enriched in genes required for core

housekeeping processes of oxidative phosphorylation and translation. Visualising the sequence

conservation levels of these sets of putatively functionally related genes as “kite plots” (see

Methods above) clearly demonstrates how different functional categories can show dramatically

contrasting patterns of conservation (Figure 4.5). The network core genes expectedly exhibit

consistently high levels of evolutionary constraint and reduced levels of diversity compared to

the background of all other Anopheles gambiae genes. In stark contrast, Community 15 “blood

feeding and salivary gland” genes exhibit dramatically reduced levels of evolutionary constraint

and generally above average levels of population diversity. Mosquito salivary gland genes are

known to be rapidly and dynamically evolving (Arcà et al., 2017), demonstrating that these

conservation metrics correctly characterise genes expected to be associated with more rapidly

evolving processes with high-diversity and low-constraint levels.

(A) (B)

Figure 4.5: kite plots showing evolutionary constraint and population-level diversity measures of
Anopheles gambiae genes. (A) Network core genes, as defined by the co-expression network
analysis of (Kuang et al., 2022), enriched in genes required for core housekeeping processes of
oxidative phosphorylation and translation, are plotted in green with all other genes shown in
grey. (B) Community 15 “blood feeding and salivary gland” genes, as defined by the
co-expression network analysis of (Kuang et al., 2022), are plotted in pink with all other genes
shown in grey. The “kites” correspond to two-dimensional boxplots, with the centre indicating the
median of both values (constraint and diversity), and each vertex indicating one of the quartile
values.
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Conservation and divergence of mosquito immune-related genes

Immunity gene functional categories display distinct evolutionary constraints

Exploring the relationships between sequence conservation and gene function in the context of

the insect innate immune system has revealed distinct evolutionary dynamics that characterise

different components (Bartholomay et al., 2010; Waterhouse et al., 2007, 2010). These and

other studies developed the framework of classifying immune system components according to

their functional roles, including in pathogen recognition processes, immune signalling pathways,

modulation of response activation or deactivation, antimicrobial activities, autophagy and RNA

interference. Using this framework, together with evolutionary constraint levels computed using

phastCons on the mosquito multispecies whole genome alignment data, we could compare and

contrast levels of sequence conservation amongst different immunity gene functional categories

(Figure 4.6). The immune system is traditionally thought of as rapidly and dynamically evolving,

but this analysis shows that while some functional components do indeed display low constraint

levels, several other functional categories are in fact characterised by genes with much higher

levels of sequence conservation.

Classical recognition gene families such as galectins (GALEs), Gram-negative binding proteins

(GNBPs), peptidoglycan recognition proteins (PGRPs), and scavenger receptors (SCRA,

SCRB) are relatively constrained despite interacting with pathogens. This may reflect the

relatively limited structural diversity of the main microbial ligands - peptidoglycan, β-1,3-glucan,

lipoproteins - they bind to or cleave (Ruzzante et al., 2022). Other recognition gene families

exhibit much lower levels of constraint, especially C-type lectins (CTLs), fibrinogen-related

proteins (FREPs), leucine-rich repeat immune proteins (LRIMs), and thioester-containing

proteins (TEPs). In the case of MD-2-like proteins (MLs), their conservation more closely

resembles classical recognition families, possibly warranting their reclassification, especially

considering that they can bind lipopolysaccharides from the outer membrane of Gram-negative

bacteria (Ruzzante et al., 2022).

Components of the three main signalling pathways - the immune deficiency pathway (IMD),

janus kinase protein (JAK)/signal transducer and activator of transcription (STAT) pathway, and

the Toll pathway are usually subdivided into signalling proteins (SIG) and modulator (MOD)

proteins. The constraint analysis shows that while the sequences of genes that function as

modulators are generally highly conserved, signalling protein sequences are generally less
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constrained. The conservative sequence evolution of modulators may be linked to their

functional roles as enzymes, such as ubiquitinases like Effete and Bendless, or E3 ligases like

Pellino and Pias, where maintaining their enzymatic activities means only low sequence

divergence can be tolerated (Ruzzante et al., 2022).

Almost all families of cascade modulators, which comprise caspases (CASPs), CLIP-domain

serine proteases (CLIPA/B/C/D/E), inhibitors of apoptosis (IAPs), and serine protease inhibitors

(SRPNs), show low sequence conservation levels (in this analysis only CLIPBs were

significantly lower than average). Knowledge of the molecular functions of genes from these

families is limited, nevertheless, it appears that functional modulator modules regularly

re-source components from relatively large gene families, which could explain why long-term

evolutionary constraint is weak (Ruzzante et al., 2022).

Amongst the other families analysed, antimicrobial peptides (AMPs) exhibit an average level of

sequence conservation, while lysozymes (LYSs) are much less constrained. The effector

enzymes including glutathione, heme, and thioredoxin peroxidases (GPXs, HPXs, TPXs) as well

as superoxide dismutases (SODs), show high levels of sequence conservation, consistent with

their molecular functions as enzymes controlling the production of reactive oxygen species and

other immune defence biomolecules. Autophagy-related (APHAG) and small regulatory RNA

pathway (SRRP) members are also more conserved than average, consistent with both

autophagy and RNAi being ancient cellular processes with roles beyond immunity (Ruzzante et

al., 2022). The Toll receptors (TOLLs) show generally elevated levels of sequence conservation,

which could be consistent with insect TOLLs being activated by cytokines (e.g. spaetzle-like

proteins, SPZs) rather than by binding pathogens as in the case of vertebrate Toll-like receptors,

where patterns of positive selection are concentrated in ligand-binding domains and suggest

host-pathogen coevolutionary interactions (Liu et al., 2020).
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Figure 4.6: distributions of computed Orthologous Group (OG) metrics for all of the immune
gene families for their phastCons (PHC) scores, with statistical assessments of the significance
of deviations from the typical values across all families. Per family data, coloured by
superfamily: OGs, number of orthologous groups; Genes, number of genes; MW p-val, Mann
Whitney U test p-value; PRM p-val, permutation test p-value. P-values less than 0.1 are
highlighted. Immune gene superfamilies: ClasRec, classical recognition; OtheRec, other
recognition; PathSig, pathway signalling; PathMod, pathway modulation; CascMod, cascade
modulation; AntiMic, antimicrobial peptides; EffEnzy, effector enzymes; AutoPha, autophagy
genes; RNAi, RNA interference; Cytokin, cytokines; TOLL, Toll receptors. Reproduced from
Additional File 1 from (Ruzzante et al., 2022).
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Constraint and diversity within and between immune gene families

The computation of per-gene measures of evolutionary constraint and population diversity

allows for contrasting long-term sequence conservation patterns with current polymorphism

levels of individual genes and gene families. This is demonstrated here (Figure 4.7) by

examining mosquito antimicrobial peptides (AMPs) - attacin (ATT), cecropins (CECs), defensins

(DEFs), and gambicin (GAM); the classical recognition proteins - Gram-negative binding

proteins (GNBPs) and peptidoglycan recognition proteins (PGRPs); and the mosquito-specific

leucine-rich repeat immune proteins (LRIMs). Taken together, AMPs are not substantially

different from the background of all other Anopheles gambiae genes in terms of their median

constraint and diversity levels. Nevertheless, there is a large variation in constraint levels

between the more conserved CEC2, CEC3, and GAM1, and the very low constraint shown by

DEF5. The low sequence conservation levels of DEF5 meant that in early work on immunity in

Anopheles gambiae this gene was completely missed by annotation pipelines and therefore not

included in the evolutionary analyses (Waterhouse et al., 2007). It is evolutionarily young,

appearing after the split between old and new-world mosquitoes some 100 million years ago,

most likely originating from a retroposition event of DEF4. The classical recognition proteins

present a similar distribution to the AMPs in terms of constraint and diversity, with overall slightly

higher conservation levels and no extremely low-conservation members like the DEF5 AMP.

PGRPS1 and PGRPS2 are the most highly conserved of the PGRPs, a situation that might be

impacted by the potential for gene conversion occurring between these two neighbouring genes,

as has been reported for Drosophila PGRPs (Jiggins & Hurst, 2003). While some LRIMs are

amongst the most highly constrained and least diverse genes (e.g. LRIM3, LRIM19), overall

there is a striking contrast between the LRIMs and the classical recognition proteins with the

LRIMs showing dramatically reduced levels of sequence constraint and generally elevated

levels of diversity. LRIMs are a mosquito-specific gene family with several members having

been implicated in immune complement cascades that are important especially for susceptibility

to Plasmodium infection (Waterhouse et al., 2010). Some LRIMs have been extensively studied

and exceptional population-level diversity has been reported e.g. for LRIM1 and ALP1A, ALP1B,

and ALP1C (Holm et al., 2012; Rottschaefer et al., 2011), in agreement with the results from our

constraint and diversity analyses. LRIM9, which also exhibits low constraint and high diversity,

was not amongst the first studied genes, but when tested experimentally it also exhibited a key

role as a Plasmodium berghei antagonist with phenotypes distinct from family members LRIM1

and APL1C (Upton et al., 2015). This suggests that further studies of other low-constraint

high-diversity LRIMs, like LRIM16A, LRIM16B, LRIM8A, LRIM8B, or LRIM26 might prove fruitful
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avenues to dissect mechanisms of pathogen-mosquito interactions, where for example recent

single-cell transcriptomics have identified LRIM26 as a marker gene for immune cells known as

granulocytes (Kwon et al., 2021).

(A) (B)

Figure 4.7: kite plots showing evolutionary constraint and population-level diversity measures of
Anopheles gambiae immunity genes and gene families. The “kites” correspond to
two-dimensional boxplots, with the centre indicating the median of both values (constraint and
diversity), and each vertex indicating one of the quartile values. The named genes shown on the
plots belong to families of antimicrobial peptides (A): attacin (ATT), cecropins (CECs), defensins
(DEFs), and gambicin (GAM); and (B) the classical recognition proteins (purple): Gram-negative
binding proteins (GNBPs) and peptidoglycan recognition proteins (PGRPs); and the
mosquito-specific leucine-rich repeat immune proteins (LRIMs, green).

Discussion

To explore relationships between gene conservation and gene function, we first examined the

functional features of the most and least constrained mosquito genes using conservation scores

estimated with phastCons from whole genome alignment data, and polymorphism-derived

estimates of per-gene diversity levels. The results demonstrated that these two complementary

measures of sequence conservation, one capturing long-term evolutionary constraint and the

other assessing current population-level diversity, identify similar biological processes enriched

amongst genes at the extremes of their value distributions. Genes expected to be constrained

by their key “housekeeping” biological functions exhibit low-diversity and high-constraint levels,

while genes with functions implicated in more rapidly evolving processes show high-diversity

and low-constraint levels. This was particularly striking for the set of core expression network
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genes in contrast to the set of genes associated with blood feeding and salivary glands, i.e.

gene functional groups defined by their co-expression profiles determined through the

meta-analysis of many different experimental gene expression datasets.

The more detailed exploration of relations between conservation and function of immunity genes

was performed in the context of a larger study of mosquito immune system evolution that

included several other measures of gene evolutionary features (Ruzzante et al., 2022). The

results presented here focused on the phastCons constraint metrics and the population-level

diversity computed from the MalariaGEN data, with examples presented for antimicrobial

peptides, classical recognition proteins, and leucine-rich repeat immune proteins. The results

demonstrate that while some functional components of the immune system display low

constraint and high diversity levels expected for rapidly and dynamically evolving immunity

genes, several other functional categories are instead characterised by genes with much higher

levels of sequence conservation. This finding emphasises the main conclusions from Ruzzante

et al. 2022: “where and how genes participate in immune responses limit the range of possible

evolutionary scenarios they exhibit” and how “The test case study system of insect immunity

highlights the potential of applying comparative genomics approaches to characterise how

functional constraints on different components of biological systems govern their evolutionary

trajectories”. Amongst the 18 evolutionary features examined in this paper, evolutionary

constraint as measured using phastCons grouped together with gene age, universality, and

alignability to form one of the three main axes of evolutionary trajectories. The workflows

developed as part of this thesis for building multispecies whole genome alignments (MWGAs),

analysing the MWGAs to quantify per-nucleotide or per-gene metrics of conservation, and for

visualising the results, will facilitate the future exploration of relationships between gene

conservation and gene function for other biological systems and other taxonomic groups.
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Chapter 5: Filling technical gaps to implement

reproducible, scalable, and portable workflows

Summary

A primary focus of this thesis project was the implementation of reproducible workflows to

generate multispecies whole genome alignments (Chapter 2) and to compute metrics to

estimate conservation of genomic sequences using these alignments (Chapter 3). To achieve

reproducibility, the workflows are implemented with Snakemake and software dependencies are

managed with the Conda package manager. Software used in most steps of the alignment and

the analyses workflows was already implemented and ready to be integrated in the workflows;

however, the tools required to perform several specific steps did not exist - or not in a state that

made them usable in a reproducible workflow. In such cases, rather than writing custom scripts

which would be difficult to share and adapt to other scenarios, we chose to develop the missing

software ourselves, focusing on open, documented, and extensible implementation in order to

make them useful to the community. Furthermore, while some tools were already available as

Conda packages, several crucial pieces of software were not available or required fixes to their

package to be integrated in our workflows. Over the course of this project, we added multiple

packages and fixes to the Bioconda channel, thus contributing to global community efforts to

improve portability and reproducibility of scientific software and workflows. Finally, this thesis

project - and an increasing number of other projects in our institute - relied heavily on

Snakemake. Over time, we implemented a collection of tools and utilities to facilitate

implementing complex Snakemake workflows and to execute these workflows on a High

Performance Computing (HPC) platform using a SLURM scheduler. In this chapter, we will

describe the tools, intermediate workflows, and utilities that were developed and released during

this project, providing implementation details when they are relevant, and illustrating our general

contribution to the reproducibility of scientific software and workflows.
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Implementing the missing blocks of MWGA workflows

An extensible collection of utilities for MWGAs: mwga-utils

In part because of how difficult they are to generate, relatively few MWGAs have been

computed so far. Several tools and utility scripts have been developed to process alignments in

MAF format, including MafFilter (Dutheil et al., 2014), mafTools (Mayakonda et al., 2018), and

utilities included in PHAST (Hubisz et al., 2011) and in ROAST (Blanchette et al., 2004).

However, there are no community-based, extensive libraries to work with and interface with

MAF files, similar to htslib and samtools for reads alignment files or BCFtools for variant

annotation files (Bonfield et al., 2021; Danecek et al., 2021). Consequently, several operations

on MAF files not covered by existing tools had to be implemented manually; since all these

operations rely on reading information from a MAF file, they were implemented in a common

software architecture, mgwa-utils. This software is implemented in C and C++ and organised

around an efficient MAF parser used to implement a collection of utilities; at the moment, four

utilities are available: metrics, missing_regions, single_cov, and stats, and the design allows to

easily implement additional functions.

An efficient MAF parser

The MAF format is defined as a plain text file organised into alignment blocks. It can contain

comments line, identified by a starting “#”, and metadata lines, identified by a starting “##”. Each

alignment block consists of an Alignment Block line starting with an “a”, which indicates the

score of the block, followed by one sequence line starting with an “s” for each sequence in the

alignment block. Each sequence line contains six fields separated by a varying number of

spaces: 1) assembly and contig from which the sequence originates, 2) start of the sequence on

the source contig, 3) end of the sequence on the source contig, 4) strand from which the

sequences originates in the source assembly, 5) total size of the contig from which the

sequence originates, and 6) the nucleotide sequence in the alignment, including potential

insertions. The MAF file is read by the MAF parser function using a C-style buffer; all the

information from each line is extracted into a custom MafRecord object, and all the lines in a

block are grouped in a MafBlock object. These MafBlock objects are stored in a queue, which

enables efficient insertion of new elements and deletion of old elements; batches of alignment

blocks are retrieved from the queue and used as the main input for the utilities implemented in

mwga-utils. There are two advantages to this design: 1) it provides a generic interface with a
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common input for all analyses using MAF blocks, and 2) it separates MAF reading from the data

processing steps, which allows parallelisation of the most compute intensive analyses. Thanks

to the efficient C/C++ implementation, the parser is fast and has a low memory footprint. For

reference, an alignment file for 19 mosquito species occupying 9.2 Gb of disk space and

comprising 89,866,813 total lines for 6,691,196 total alignment blocks is parsed in 166 seconds

using a maximum of 9 Mb of memory, without any additional data processing operation, on a

standard compute station.

Computing simple sequence conservation metrics on a MAF file

The metrics utility from mwga-utils implements the computation of simple metrics to estimate

conservation of sequence at the nucleotide. At the moment, two metrics are computed for each

position in the reference assembly: 1) alignability, i.e. the number of non-reference assemblies

aligned at this position as a frequency between 0 and 1, and 2) identity, i.e. the proportion of

non-reference assemblies with the same nucleotide as the reference, also between 0 and 1.

Batches of alignment blocks from the MAF parser are processed in parallel and absolute values

for both metrics are stored in a map of contigs and positions. After the entire MAF is processed,

all values are divided by the total number of assemblies in the alignment (either given by the

user at runtime or estimated from the MAF file) to obtain frequencies. Values for each metric are

then exported in wig format, a compact and standard way to represent nucleotide-level values

for an entire genome. Using a parsing thread and a single processing thread on the same

alignment file described in the previous section, metrics are computed in 12 minutes 43 seconds

using a maximum of 14 Gb of memory. Increasing the number of processing threads to eight

reduces runtime to 6 minutes 57 seconds and peak memory to 2.3 Gb.

Adding missing reference regions to a MAF file

Genomic regions from the reference assemblies on which no non-reference assembly was

aligned are missing from the results of pairwise alignments - only alignment blocks with at least

two assemblies are exported. However, most analyses performed on alignment files only

consider regions from the reference assembly present in the file. To generate results for the

entire reference assembly, including regions that were not aligned to any other assembly, it is

thus necessary to add these missing regions to the MAF file. The missing_regions utility from

mwga-utils implements this step, using as input a MAF file and a fasta file for the reference

assembly, and outputting a complete MAF file. In practice, the input fasta file for the reference

assembly is read to generate 1) a table with the sequence of each contig, and 2) an empty
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coverage map for each position in each contig in the assembly. Then, the entire input MAF file is

parsed and existing blocks are directly written to the MAF output file; genomic positions from the

reference assembly are stored in the coverage map. After the entire MAF is processed, the

coverage map is used to identify the regions from the reference assemblies that were not

present in the original MAF file, and for each of these regions, a single-sequence MAF

alignment block is generated and written to the output file. On the 19 mosquitoes alignment

described above, the total runtime to add missing reference regions is 3 minutes 15 seconds,

with a peak memory usage of 1.8 Gb.

Verifying that all sequences are unique in a MAF file

Genome evolution is a complex process involving a diversity of mechanisms; some of these

mechanisms, for instance duplication of genomic regions or loss of genomic content, can impact

the number of copies of given genomic sequences and the orthologous relationships of these

sequences between species. Although such cases are interesting to understand genomic

evolution, their study requires specialised tools to handle copy number variation and non

one-to-one orthologous relationships. In practice, most software used to estimate conservation

of genomic sequence with MWGAs assumes that sequences from the reference assembly are

present only once in the alignment. To achieve this state, the MAF files from pairwise

alignments generated in our workflow are processed with the single_cov2 utility from MULTIZ.

To ensure that the multispecies MAF file obtained by combining pairwise alignments also

contains only a single copy of each sequence, a single_cov utility was implemented in

mwga-utils. This utility computes the coverage of each genomic position in the reference

sequence and outputs a per-contig summary report. On the 19 mosquitoes MAF file described

above, the check is completed in 1 minute 47 seconds using a maximum of 1.2 Gb of memory.

Computing simple alignment statistics on a MAF file

Simple statistics on a MAF file can be useful to quickly visualise an alignment or to compare

alignment results between different runs, for instance when testing software parameter values.

Moreover, the graph visualisation of MWGAs presented in Chapter 3 requires computation of

the number of bases in the alignment for each assembly. This step was implemented in the stats

utility of mwga-utils; in practice, batches of MafBlocks from the queue are processed and the

number of bases aligned for each assembly in each block is added to a map of total coverage.

After all blocks are processed, a tabulated output file with the name of each assembly and the

number of bases in the alignment for the corresponding assembly is generated. The stats utility
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was designed so that other statistics can easily be added in parallel to the one already

implemented. On the 19 mosquitoes MAF file, alignment statistics are computed in 1 minute 38

seconds using a maximum of 9 Mb of memory.

Distribution and availability of mwga-utils

The mwga-utils software is implemented in C++, and all dependencies are provided with the

source code at https://github.com/RomainFeron/mwga-utils, so that users can easily build the

software for their target platform if needed; the source is distributed under a GPL-3.0 licence.

Development milestones are archived as releases, with the current version being 0.1.5; all

released versions are available from the Bioconda channel

(https://bioconda.github.io/recipes/mwga-utils/README.html).

Leveraging A3Cat to compute phylogenetic trees with Buscophile

Summary of the approach behind Buscophile

One of the inputs required to compute an MWGA is a phylogenetic tree describing the

relationship between the species included in the alignment. In order to be able to compute

MWGAs for any set of arthropod species, which is one of the goals of this thesis work, we

needed a way to generate a phylogenetic tree for the selected set of species. The main

challenge in this task was the first step of building phylogenetic trees: acquiring genomic data

that can be aligned for all species to include in the tree. To solve this problem, we drew

inspiration from Orthophile, a workflow developed in our lab which used orthology data from

OrthoDB (Kuznetsov et al., 2023) and OMA (Altenhoff et al., 2024) to generate a phylogenetic

tree for any set of species included in these databases. We implemented a new version of this

workflow, which we called Buscophile, using as input the genomic sequences of Universally

Single-Copy Orthologues (USCOs) from the results of running BUSCO on all arthropod

assemblies for the A3Cat (the Arthropoda assembly assessment catalogue described in

Chapter 1). This approach relies on the assumption that USCOs are expected to be found in

almost all assemblies of sufficient quality to be included in an MWGA, and therefore we can

extract a set of alignable genomic sequences for any set of species for which at least one

assembly was evaluated in the A3Cat, which by design covers almost all arthropod species

sequenced to date.
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In practice, Buscophile was implemented as a Snakemake workflow which takes as input a set

of NCBI TaxIds (Taxon IDs), collects genomic sequences from USCOs shared between the

corresponding species from the results of A3Cat, aligns and trims these sequences, and

generates a phylogenetic tree from the alignment results. The following sections will provide

details on the implementation of this workflow and how we leveraged it to generate trees used

to compute MWGAs.

Retrieving USCOs genomic sequences from the A3Cat results

The only input required by Buscophile is a list of NCBI TaxIds for the species to include in the

tree, provided as a simple text file with one TaxId per line. The first step of the workflow is then

to retrieve the latest JSON A3Cat summary from the A3Cat website, using a permanent URL of

the latest release. Then, for each species, the assembly with the highest Complete BUSCO

score as evaluated by A3Cat for a BUSCO dataset specified by the user (default: Arthropoda) is

selected as the best assembly for this species and used in the following steps of the workflow.

In the same step, a list of IDs for all single-copy complete USCOs found in this assembly is

generated from the A3Cat results using a custom script. The result of this step is a text file for

each species included in the tree, containing all complete USCO IDs identified in the best

assembly for this species. These USCO IDs are collected in the following step to identify

USCOs shared by all species included in the tree; USCOs found in a user-defined proportion of

these assemblies (default: 95%) are retained and output to a text file with one ID per line. In

practice, this threshold can be adjusted based on the number of species included and the

quality of the corresponding assemblies. Then, the protein sequences of each retained USCO

are extracted from the BUSCO results archive (available from A3Cat) for each assembly into a

fasta file containing the sequence of this USCO in each assembly. The final result of the data

collection step is a fasta file of protein sequences for each USCO found in a user-defined

proportion of the best assemblies for all the species to include in the tree.

Protein sequence alignment and phylogenetic tree reconstruction

Protein sequences obtained in the previous step are aligned separately for each USCO using

muscle (Edgar, 2022), and the resulting alignment is trimmed with trimal (Capella-Gutierrez et

al., 2009). The resulting alignments are concatenated into a single alignment file using a custom

Python script to produce a single fasta file containing concatenated and aligned sequences of

all USCOs in all species. When an USCO is missing from the best assembly for a species, it is

input as a gap in the concatenated alignment. The concatenated alignment is used as input to
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generate a phylogenetic tree; two methods were implemented for this step: fasttree (Price et al.,

2010) and iqtree (Minh et al., 2020). The former is faster but less accurate than the latter, and

the user can decide which method is most suitable for their needs. Settings for fasttree and

iqtree can be defined in the config file. The resulting phylogenetic tree is processed to include

species names, retrieved from the A3Cat summary file, instead of TaxIds, making the tree more

practical to use with recognisable species names.

Practical implementation of the Buscophile workflow

The Buscophile workflow was implemented with Snakemake (Köster & Rahmann, 2012), and

Conda environments were defined for each step, making the workflow entirely reproducible. A

configuration file allows the user to specify parameters for the workflow as well as for the

software used to generate phylogenetic trees. The workflow makes use of the resources system

described in a later section (Quality of life tools and utilities for Snakemake workflows) to specify

runtime and memory usage for each job, thus facilitating running on a computational platform or

in a cloud-based environment. The first implementation of the workflow was designed to access

A3Cat data directly from the computational platform on which it is run (the UNIL HPC platform),

and was thus only suitable for internal use. To make the workflow usable outside our

environment, we implemented a second version which accesses data directly from the A3Cat

website, thanks to the URL patterns we implemented to download the latest summary table and

the BUSCO results archive for any assembly (https://a3cat.unil.ch/downloads.html). The source

code for Buscophile is available on Gitlab (https://gitlab.com/evogenlab/buscophile-public).

A Python package to generate GenomeBrowser track hubs: pyGBtracks

One of the final outputs of the mwgaw-analyses workflow (described in Chapter 3) is a

GenomeBrowser track hub to visualise the results across the reference assembly. This hub

contains a track for each metric computed by the workflow showing the value of that metric for

each position in the reference assembly (alignability, identity, conservation score, and coding

potential). Additional tracks display the most conserved elements identified by phastCons as

well as putative coding elements suggested by PhyloCSF. The data have to be formatted in a

format compatible with GenomeBrowser (Wig, BigWig, Bed, BigBed…) for each track and

organised into a track hub folder. Besides the data, this folder contains multiple files describing

the hub content and providing metadata about each track for display in GenomeBrowser. In

order to automate the task of creating a track hub, we implemented py-GB-tracks, a small

Python package that we published on PyPi (https://pypi.org/project/py-GB-tracks). This package
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implements a TrackHub object that creates a hub directory, converts data files if necessary and

organises them in the hub directory, and generates metadata files in the hub directory using

information provided by the user. The source for py-Gb-tracks is available on Gitlab

(https://gitlab.com/evogenlab/mwga/py_gb_tracks), and the package is used as part of the

mwgaw-analyses workflow.

Contributing to reproducibility of scientific software and workflows

Packaging software for the Bioconda Conda channel

One of the major themes of this thesis work is scientific reproducibility of computational

analyses. While reproducibility of the analysis process is achieved using a workflow

management system, another challenge is to ensure the exact version of the software used in

these analyses can be installed and deployed easily on any supported platform. To this aim, we

defined Conda environments for all the tool-requiring steps of our workflows, which are then

automatically installed and deployed by Snakemake at runtime. A lot of software used in

computational biology is available in the public Bioconda package repository (Grüning et al.,

2018), but some tools used in our workflows were not, including our own software like

mwga-utils. In such cases, rather than including software executables as part of our workflow,

we implemented a Conda package for the software and published it in the Bioconda repository.

In practice, this process consists in 1) writing a file providing metadata on the software as well

as the package itself, and 2) implementing a build system, which can be a simple bash script in

the simplest cases or a more complex system in other cases. The package is then extensively

tested using Bioconda’s build system on both linux and OSX virtual environments and is merged

into the Bioconda channel once it successfully builds on both platforms.

Amongst the tools used in our workflows, the following were not available in any Conda

package repository: PHAST (Hubisz et al., 2011), MULTIZ (Blanchette et al., 2004), PhyloCSF

(Lin et al., 2011), and mwga-utils (Chapter 5). We wrote Conda packages for these four pieces

of software and published them in the Bioconda package repository; packaging PhyloCSF was

particularly challenging as it is written in an old version of OCaml, a seldom-used language with

a complex dependencies management system. In addition, we updated the recipe for lastZ

(Harris, 2007) to use the correct binary, and we wrote Conda packages for other tools not

included in our workflows (for instance radsex, psass, and sgtr, described in Chapter 6 below).
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Quality of life tools and utilities for Snakemake workflows

It should be clear by now that this thesis project made extensive use of the Snakemake

workflow management language and engine. Over the course of this project, we accumulated a

collection of scripts and utilities implementing commonly-used functions and accessory tools to

help develop and run Snakemake workflows. In an effort to make these utilities accessible to the

Snakemake user community, we published them in a series of packages that we will describe in

the following sections.

A collection of utilities for Snakemake workflows

Our Snakemake workflows make extensive use of Python scripts to process data files.

Snakemake provides a way to execute a Python script directly inside a rule; using this method,

variables defined in the Snakemake workflow are directly accessible in the Python script via a

snakemake object. To simplify writing these Python scripts, we implemented commonly-used

utility functions in a small Python package, anguis (https://github.com/RomainFeron/anguis).

One notable feature of anguis is a function to redirect Python logs to the log file defined in

Snakemake; by default, Python logs were exported to stdout and stderr and were not collected

by Snakemake.

Another feature of Snakemake is the allocation of runtime, memory, and disk usage values for

each individual job using the resources directive. By default, these values have to be specified

either manually for each rule in the workflow, which can be tedious, or once for every rule, which

lacks flexibility. To alleviate this issue, we implemented a system which allows to define multiple

resource presets for runtime, memory, and disk usage. For instance, memory usage can be

defined for each rule using the large, medium, small, or tiny preset, and the value for each

preset can be set by the user in the workflow’s config file based on the requirements of the

workflow. Presets are allocated to each rule using a yaml file that is loaded at the beginning of

the workflow execution, and values can be overridden for specific rules in the resources section

of the config file; default values are used when no preset was found for a rule. Our utility

functions retrieve preset values from the config file, load resource preset definitions for each

rule from the yaml file, and allocate resources for all the rules in the workflow based on this

information before executing jobs. In addition, this system automatically increases runtime and

memory for a job that is automatically submitted after failure, in case failure was due to a lack of

resources.
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A Snakemake profile to execute jobs on a SLURM scheduler

To facilitate execution on different systems and using different configurations, Snakemake uses

execution profiles, which define a set of Snakemake runtime parameter values. Some of these

runtime parameters allow Snakemake to interface with job schedulers commonly found on

High-Performance Computing platforms (HPCs), for instance Simple Linux Utility for Resource

Management (SLURM), Sun Grid Engine (sge), Oracle Grid Engine, or Portable Batch System

(PBS). In particular, runtime parameters allow the user to provide scripts to submit jobs and

check job status; therefore, one can implement a Snakemake profile to automate execution on a

computational platform. The Snakemake community released such profiles for the most

common schedulers, including slurm, which is used on the computational platform we accessed

for this project (Curnagl). However, this available profile was missing important features required

to execute our workflows on Curnagl. In particular, for almost two years, Curnagl was split into

two platforms using different configurations but accessed through the same front-end machine

and managed by the same scheduler, and thus required careful management of job submission

settings to execute workflows automatically. For these reasons, we developed our own

Snakemake profile to execute jobs using a SLURM scheduler, implementing missing features

we needed to use Curnagl (https://github.com/RomainFeron/snakemake-slurm). Notable

features implemented in this profile include automated detection of available partitions every

couple days, blacklisting of partitions for job submission, redirection of standard output and error

streams to log files defined in the Snakemake workflow, and interfacing with the resources

system described in the previous section (A collection of utilities for Snakemake workflows) to

facilitate resources allocation for individual jobs. This profile was released publicly and

maintained over time, and it was used by other members of multiple departments at the

university of Lausanne to execute workflows on Curnagl.

Discussion

The work of a bioinformatics or computational biology doctoral thesis will almost always involve

the development of technical solutions to achieve various steps of different computational

analysis workflows. In many cases however, these technical solutions remain as “quick-fix”

answers to solve intermediate hurdles hindering the progress towards completing an analysis in

order to achieve the desired results. Such “quick-fixes” may solve short-term problems, but they

pose considerable risks for analysis reproducibility and workflow portability. The solutions are

often only operational in the hands of the developer and rarely come with documentation,
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making them difficult to share with others who might be facing similar issues and looking for

essentially the same answers to be able to progress with their research. By investing in building

sets of technical solutions in a comprehensive manner that makes them sharable and

deployable by others, this thesis work contributes to the reproducibility of software and

workflows. Specifically, the developed technical solutions for addressing gaps in the provision of

reliable methods to perform key steps required to generate MWGAs will greatly enhance the

ability of the community to exploit the rapidly growing numbers of available reference genomes

for their research. Firstly, they enable researchers to generate and analyse their own MWGAs -

a previously extremely challenging operation achievable essentially only by the UCSC team

themselves - and secondly, to do this in a reproducible and scalable manner that advances best

practices in bioinformatics and computational biology.
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Chapter 6: Complementary contributions to

genomics research applications

Summary

Over the course of my PhD, I was involved in multiple collaborations which eventually resulted

in publications. These projects fall in one of the two following categories: 1) collaborations

established during my former position as a Bioinformatician working on teleost sex

determination, and 2) projects involving other members of the group or established by my thesis

supervisor Robert Waterhouse, focusing on evolutionary genomics of arthropods. In this

chapter, I will summarise my contributions to these collaborative projects, focusing first on a

major project I lead developing a workflow to study genetic sex determination.

User-friendly tools, visualisations, and workflows to study the

genetic mechanisms of sex determination

The central theme of this thesis work is to understand how conservation of sequence across

species relates with function and, ultimately, to advance our knowledge on how the information

encoded in the genome translates into biological functions. Among all the processes and

functions represented across the tree of life, sexual reproduction has received a lot of attention

as a central question in the field of evolutionary biology, sometimes being called the “queen of

problems” (Pan et al., 2016). Sexual reproduction as a process is extremely conserved across

eukaryotes and has many implications in other functions and processes (Beukeboom & Perrin,

2014); in most cases, at least in animals, sexual reproduction involves gonochorism, i.e.

individuals acquire one of two sexes during development. However, the mechanisms underlying

sex determination, the process by which individuals acquire their sex, are highly variable

between clades and sometimes even within orders or genera. Sex can be determined

non-genetically, using environmental cues like temperature or social cues like relative size in a

social group, or genetically, involving a master sex determining gene, i.e. the gene at the top of

the developmental sex determination cascade, harboured by sex chromosomes. Until recently,

most of our knowledge on sex determination came from studies on mammals, avians, and

Drosophila melanogaster, which share similar genetic sex determination mechanisms with
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conserved and “degenerated” sex chromosomes accumulating deleterious mutations and

eventually losing most of their gene content. This apparent similarity spawned rigid theoretical

models of the evolution of sex chromosomes involving their birth after acquiring the master sex

determining gene followed by suppression of recombination in a growing region around the sex

determining locus. In these models, the region with suppression of recombination extends over

time and accumulates deleterious mutations which eventually lead to the loss of most of the sex

chromosome, as observed on the mammalian Y chromosome (Graves, 2006). However, as

advances in sequencing technologies and in genomics enabled studies of sex determining

systems in an increasing number of taxonomically diverse species, it became apparent that

these canonical models of sex chromosome evolution described only one scenario among many

possible evolutionary trajectories. In particular, studies in Teleost fishes, non-avian reptiles, and

in arthropods have uncovered diverse sex determining systems (e.g. XX/XO, ZZ/ZO, and

polygenic systems), sex chromosome turnover - sometimes even between two sister species,

and old sex chromosomes that did not degenerate reviewed in (Bachtrog et al., 2014). These

discoveries highlighted the importance of studying the mechanisms of sex determination, sexual

reproduction, and in general biological processes in a taxonomically diverse range of species to

build evolutionary models that reflect reality. In the case of sex determination, the first step to

achieve this goal was to develop genomics tools to identify sex determination systems and

characterise sex determining regions in a reproducible way to be able to compare results

between different species.

Thanks to personal collaborations that started prior to this PhD thesis, I was involved in multiple

projects to study sex determination in Teleost fishes in an evolutionary framework. My role was

to develop user-friendly tools and visualisation packages, implement reproducible workflows,

and perform genomics analyses to identify the sex determining region and sometimes compare

them between species. The development of these tools, workflows, and visualisations, required

me to become proficient in the use of software frameworks and best practices to maximise

usability and ensure reproducibility. These skills were directly relevant to the work described in

Chapter 1: producing and maintaining regular updates of the Arthropoda Assembly Assessment

Catalogue; Chapter 2: computing multispecies whole genome alignments from high-quality

genome assemblies; Chapter 3: integrating different tools for computing and visualising

standardised metrics from multispecies whole genome alignments, and Chapter 4: applying the

multispecies whole genome alignment workflows to explore functional constraints in mosquito

immunity genes.
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The first and main output of my complementary contributions to genomics research applications

was RADSex, a C++ software to analyse RAD-Sequencing data in order to identify genomic

sequences specific to or overrepresented in one sex. While developing RADSex, I focused on

user-friendliness and documentation, portability, and performance. In parallel, I implemented an

R package, sgtr, which provides easy-to-use functions to visualise the results of RADSex as

well as other generic functions to plot genomics results, for instance plotting metrics along a

genome or along a chromosome. RADSex and sgtr were published together with original results

on 15 Teleost fish datasets, including five species for which novel sex-biassed sequences were

identified. The software and the analyses which I performed are presented in the Associated

publication below. Both tools are provided as Conda packages, along with other tools I

developed to analyse different types of genomic data, e.g. PSASS

(https://github.com/SexGenomicsToolkit/PSASS). Whenever relevant and possible, the

workflows implementing all the analyses I performed for a publication were made available on

GitHub.

Associated publication: RADSex: A computational workflow to study sex determination using

restriction site‐associated DNA sequencing data.

Feron et al. Mol Ecol Resour. 2021 Jul;21(5):1715-1731. doi: 10.1111/1755-0998.13360. Epub

2021 Mar 9. PMID: 33590960

GitHub: https://github.com/RomainFeron/paper-sexdetermination-radsex

RADSex, PSASS, sgtr, and other tools were used to characterise sex determining regions and

sometimes identify candidate master sex determining genes in multiple species of Teleost

fishes. In some cases, we were able to apply the reproducible workflows to multiple species

within a single order and compare the resulting genomic regions, even retracing the

evolutionary history of a master determining gene in the order Esociformes. In these projects,

which resulted in the associated publications listed below, I was a main contributor to the

genomic analyses and I participated in writing and revising of the manuscript.

Associated publication: Characterization of a Y‐specific duplication/insertion of the

anti‐Mullerian hormone type II receptor gene based on a chromosome‐scale genome assembly

of yellow perch, Perca flavescens.

Feron et al. Mol Ecol Resour. 2020 Mar;20(2):531-543. doi: 10.1111/1755-0998.13133. Epub

2020 Jan 27. PMID: 31903688
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Associated publication: Identification of the master sex determining gene in Northern pike

(Esox lucius) reveals restricted sex chromosome differentiation.

Pan et al. PLoS Genet. 2019 Aug 22;15(8):e1008013. doi: 10.1371/journal.pgen.1008013.

eCollection 2019 Aug. PMID: 31437150

Associated publication: Independent Origin of XY and ZW Sex Determination Mechanisms in

Mosquitofish Sister Species.

Kottler et al. Genetics. 2020 Jan;214(1):193-209. doi: 10.1534/genetics.119.302698. Epub 2019

Nov 8. PMID: 31704715

Associated publication: The rise and fall of the ancient northern pike master sex determining

gene.

Pan et al. Elife. 2021 Jan 28;10:e62858. doi: 10.7554/eLife.62858. PMID: 33506762

My experience developing tools and reproducible workflows allowed me to efficiently analyse

diverse types of genomic data to identify regions differentiated between males and females. The

associated publications listed below represent the outcome of collaborations in which I

performed such analyses and contributed to writing the relevant parts of the original manuscript.

Associated publication: The genome of the arapaima (Arapaima gigas) provides insights into

gigantism, fast growth and chromosomal sex determination system.

Du et al. 2019, Scientific reports 9 (1), 5293. doi: 10.1038/s41598-019-41457-x

Associated publication: The sterlet sturgeon genome sequence and the mechanisms of

segmental rediploidization.

Du et al. 2020, Nature Ecology & Evolution 4 (6), 841-852. doi: 10.1038/s41559-020-1166-x

Associated publication: Sex chromosome and sex locus characterization in goldfish,

Carassius auratus (Linnaeus, 1758).

Wen et al. 2020, BMC Genomics 21 (1), 1-12. doi: 0.1186/s12864-020-06959-3

Associated publication: The bowfin genome illuminates the developmental evolution of

ray-finned fishes.

Thompson et al. 2021, Nature Genetics, 1-12. doi: 10.1038/s41588-021-00914-y

Associated publication: A supernumerary “B-sex” chromosome drives male sex determination

in the Pachón cavefish, Astyanax mexicanus.
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Imarazene et al. 2021, Current Biology 31 (21), 4800-4809. e9. doi: 10.1016/j.cub.2021.08.030

Associated publication: A duplicated copy of id2b is an unusual sex-determining candidate

gene on the Y chromosome of arapaima (Arapaima gigas).

Adolfi et al. 2021, Scientific Reports 11 (1), 21544. doi: 10.1038/s41598-021-01066-z

Associated publication: Genome biology of the darkedged splitfin, Girardinichthys

multiradiatus, and the evolution of sex chromosomes and placentation.

Du et al. 2022, Genome Research 32 (3), 583-594. doi: 10.1101/gr.275826.121

Evolutionary genomics in arthropods

In addition to my work to develop tools and workflows and perform analyses to study sex

determination, I was involved in several projects investigating evolutionary and / or genomics

questions in arthropod clades. In the context of these projects, I computed MWGAs and

estimated conservation of sequence, providing data and further downstream analyses results to

our collaborators, including other members of the group. I was also involved in quality control for

multiple mosquito assemblies, implementing tools to validate scaffolding information from

different sources. This work resulted in three publications listed below:

Associated publication: Functional constraints on insect immune system components govern

their evolutionary trajectories. Ruzzante et al. 2022, Molecular biology and evolution 39 (1). doi:

10.1093/molbev/msab352

This work presents a suite of evolutionary metrics developed to characterise the evolutionary

history of genes, and show how these metrics can be used to investigate the relationship

between this history and the gene’s biological function. In the context of this project, I computed

estimates of sequence conservation for all genes in Anopheles gambiae, which were included

as evolutionary metrics for the study of immune gene families presented in the publication.

Computation of these specific sequence conservation metrics was only possible thanks to the

workflows I developed to generate and analyse MWGAs.

Associated publication: Anopheles mosquitoes reveal new principles of 3D genome

organization in insects. Lukyanchikova et al 2022, Nature Communications 13 (1). doi:

10.1038/s41467-022-29599-5

In this study, new assemblies generated for five mosquito species are used to investigate

chromatin structural organisation, revealing conserved long-range looping interaction in these
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species. I provided insight on the quality of generated assemblies by computing completeness

scores using BUSCO.

Associated publication: Evolutionary superscaffolding and chromosome anchoring to improve

Anopheles genome assemblies. Waterhouse et al 2020, BMC Biology 18 (1). doi:

10.1186/s12915-019-0728-3

This publication uses multiple types of physical chromosome anchoring data to improve the

contiguity of draft genome assemblies of 20 mosquito species. I developed the scripts

integrating the mapping data to produce scaffolded assemblies from the draft contig-level

genomes.

Discussion

The contributions to genomics research applications presented here demonstrate the

importance of developing bioinformatics solutions to process and analyse genomics data to

advance understanding of biological function and evolution. While they encompass a much

broader range of questions than using multispecies whole genome alignments to investigate

sequence conservation and function, they share a common theme of tool and workflow

development designed to facilitate the exploitation of genomics data. The mainly technical

contributions served to advance the research of my colleagues while at the same time delivering

methodologies or approaches that can be applied by the wider genomics community. The

projects with more intellectual and leadership contributions (RADSex and yellow perch, both

published in Molecular Ecology Resources) also involved considerable investments in

developing tools and analysis workflows, as well as ensuring these were made available for use

by the community. The opportunity to participate in diverse research projects from fish to

mosquitoes - and even mosquitofish - provided a rich learning environment to develop not only

bioinformatics skills but also to engage with key questions in biology and evolution.
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Conclusion and perspectives
The work presented in this thesis addresses multiple bioinformatics challenges which had to be

overcome in order to explore the relationships between conservation of genomic sequence and

biological function of genomic elements in arthropods. The first obstacle encountered was the

selection of high quality genome assemblies for several arthropod clades to include in

downstream comparative analyses. Indeed, while information on assembled arthropod genomes

was generally available, this information was scattered across multiple online resources and

databases, or even buried within published articles. Our solution to this problem was the

development of a web-based resource presented in Chapter 1, the A3Cat, which aggregates

available information on existing and upcoming arthropod assemblies and incorporates newly

computed estimates of assembly quality generated with a standardised protocol. In addition to

this resource, we published the reproducible workflow that we designed to compute the data

provided in the A3Cat, as well as additional analyses workflows and packages to generate the

website itself. The catalogue is updated monthly to include newly released assemblies,

providing users with an up-to-date assessment of the current landscape of arthropod genome

assemblies. The A3Cat greatly facilitates the process of selecting assemblies when designing

genomics studies and preparing computational analyses; for instance, thanks to the filtering

tools implemented in the table, one could easily identify all assemblies released for a species

and select the one that best fits their needs based on biological information and assembly

quality metrics. The A3Cat also shines when gathering data for the computation of phylogenetic

trees by making available and organising the results of executing BUSCO on each assembly in

the catalogue; this idea was integrated into a workflow described in Chapter 5 which enables

users to compute a phylogenetic tree for any subset of species included in the catalogue. These

features paired with the constant maintenance of the data contributed to the popularity of the

A3Cat in the arthropod genomics community: in the year following its release, the resource was

accessed by close to 700 unique individuals. Overall, our efforts towards reproducibility of

bioinformatics workflows and analyses allowed us to overcome our initial challenge in a way that

can benefit the general community, rather than just implementing a simpler private solution for

the same purpose. These efforts contributed to improving the findability and accessibility of

genomic data for arthropods. It is our hope that in the future the metrics computed for the A3Cat

are directly provided by existing resources like NCBI GenBank and the ENA, and that these

resources integrate high-level data exploration tools directly in their interface. Until this happens,
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the A3Cat will uphold this task for arthropods, and the workflows published can be used to

generate similar resources for other clades across the tree of life.

The second challenge faced in this thesis was the limited accessibility and usability of

computational methods to generate MWGAs, which was likely a major reason preventing their

integration into comparative genomics studies. This problem originated from the lack of a

publicly available and easily usable workflow for MWGA computation outside of the UCSC

GenomeBrowser ecosystem. The same observation was made for downstream analyses using

the MWGAs to investigate conservation of sequence and coding potential. This technical

challenge spawned the development of two reproducible workflows which are presented in

Chapter 2 and Chapter 3. The first workflow, mwgaw-align, implements all the steps to

compute a MWGA from a set of genome assemblies. The second workflow, mwgaw-analyses,

provides an automated and user-friendly way to compute estimates of sequence conservation

and coding potential using a MWGA, and generates powerful visualisations to explore the

results. Both workflows make extensive use of the features provided by workflow the

management tools Snakemake and Conda to ensure reproducibility, documentation, scalability,

and ease of use; by leveraging the strengths of these tools, we were also able to optimise

runtime and memory usage of the most crucial steps, bringing runtime down from potentially

weeks to a couple days. Moreover, in addition to addressing the main issue of computing and

analysing MWGAs, the workflows were designed to contribute to the ongoing advancement of

alignment methodologies thanks to their extensibility and benchmarking capabilities. This is

particularly important in light of the resurgence of Cactus to compute MWGAs since the start of

this project. While Cactus is progressing rapidly and may become the default approach to

compute alignments in the future, the streamlined usability and computational efficiency of

mwgaw-align will maintain it as a viable alternative promoting healthy competition in alignment

method development, thus playing a crucial role in driving innovation and improving the overall

quality of methods in this field. In parallel, the mwgaw-analyses workflow remains the only

automated and reproducible way to efficiently extract insights from a MWGA. The strength of

this workflow is its ability to transform the large and obscure MWGA files into a suite of

informative outputs: nucleotide-level metrics, gene-level metrics, and visual representations.

This feat is achieved thanks to 1) the mwga-utils software described in Chapter 5, which

establishes a framework for computing low-level metrics along MWGAs in MAF file format, 2)

the streamlined computation of standard sequence conservation analyses by encapsulating

complex tools into a reproducible workflow, and 3) the generation of comprehensive yet concise
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visualisations of the generated data in the form of genome browser tracks and a web-based

table. Similarly to mwgaw-align, the extensible design of mwgaw-analyses enables easy

integration of additional analyses tools, which will contribute to advancing research in this field.

Overall, the work presented in these two chapters addressed the need for a reproducible and

accessible method to compute MWGAs and execute downstream analyses, while providing

support for future advancements in alignment methodologies, thus helping to improve relevance

and utility of MWGAs in genomic research. This work represents a significant step towards

enabling comprehensive exploration of MWGA data for the larger genomics community beyond

the core team at the UCSC, and highlights the importance of reproducibility for both

computation and visualisation in genomic analyses.

Each technical chapter in this thesis contributed to building one of the blocks required for

large-scale explorations of the relationships between conservation of genomic sequences and

the biological function of genomic elements. To validate the viability of this work, we applied

them to the case study of conservation of sequence in mosquito genes, comparing the

long-term evolutionary constraints estimated from the MWGA with current population

polymorphism data available for the reference species Anopheles gambiae. This case study,

which forms the focus of Chapter 4, makes use of all the workflows and visualisations described

in the previous chapters and introduces new visualisations that may eventually be implemented

in the main workflows. Our analysis of mosquito genes confirms that the genes essential for

core biological functions exhibit low diversity and high conservation, while those involved in

rapidly evolving processes display the opposite pattern. This was further illustrated by

contrasting sets of genes related to core expression networks versus blood feeding and salivary

gland co-expressed genes, and through a deeper examination of genes involved in different

mosquito immunity functional modules. The insights gained from this preliminary study highlight

the interplay between gene function and conservation of genomic sequence. In addition, some

of the metrics computed for this work were integrated in a larger study of evolutionary metrics

relating to the evolutionary history of genes applied to the same gene set, the results of which

underscore the potential of comparative genomics approaches in characterising the evolutionary

dynamics of biological systems. In light of this observation, the workflows developed within this

thesis for MWGA construction, analysis, and visualisation offer a robust framework for further

investigations into the relationship between gene conservation and function across diverse

biological systems and taxonomic groups.
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As the results of chapter 4 validate our approach at the limited scale of protein-coding genes for

a single clade, the next step in extending the work of this thesis project would be scaling up

these analyses to potentially hundreds or thousands of genomes generated by sequencing

initiatives. Thanks to our development philosophy driven by guidelines for reproducible science,

the tools resulting from our work are designed to handle this scaling up. The first task remaining

to achieve this goal is combining the outputs of each chapter to complete the following process:

1) identify clades and assemblies suitable for the computation of MWGAs using the A3Cat, 2)

gather the necessary data from the A3Cat, including computing a phylogenetic tree with

buscophile, 3) automatically compute MWGAs and estimate sequence conservation and coding

potential over a chosen reference assembly for the selected clades, 4) generate gene-level

metrics as well as a list of conserved elements and a list of putative coding elements that can

drive future research. The foundation for this complex process was already laid out in a

meta-workflow assemblies2alignments, but more work is needed before this framework is

mature and applicable to all arthropods. Using the resources developed to date, users can

already execute each required step to achieve the desired results, but this meta-workflow would

provide the framework for integrating all required steps in a common analysis.

The main outputs of this thesis work profoundly change the perspective on the future use and

integration of MWGAs in large-scale comparative evolutionary genomics analyses. The

methodological advancements in the domain of orthology delineation can serve as an analogy

to support this perspective. Many early comparative genomics efforts that relied on

cross-species comparisons to identify orthologous genes first developed in-house methods that

delivered results but which were rarely, if ever, made public nor usable by others. As methods

matured and the numbers of species involved increased, several public databases emerged and

provided the community with computed orthology data. Nevertheless, the tools and workflows

required to produce these large-scale datasets often remained private to the developers, or if

made public they often proved difficult to set up and run, particularly on large datasets. Through

community efforts such as the Quest for Orthologs (Altenhoff et al., 2020; Nevers et al., 2022;

Sonnhammer et al., 2014), many of the key groups involved concentrated efforts on making

publicly available “standalone” software for users to be able to compute their own orthology

datasets, to the extent that one of the most popular modern methods is implemented only as a

deployable software and without any public database (Emms & Kelly, 2019). These steps

towards enabling the wider research community to build their own orthology datasets have

democratised the ability to independently generate and use orthology data in their own research
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projects. The recent use of MWGAs by the Zoonomia consortium has demonstrated the many

potential outcomes of exploiting alignment data in comparative genomics analyses to a broad

audience of researchers. In this context, the tools and workflows developed through this thesis

work present an opportunity for the democratisation of the ability to independently generate and

use whole genome alignment data. As such, we believe that MWGAs will increasingly become a

feature of comparative genomics research projects that take advantage of the rapidly growing

reference genome resources for eukaryotic biodiversity.
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Appendix 3

Appendix 3 Figure 1: complete Directed Acyclic Graph (DAG) representation of the
mwgaw-align workflow for three bacterial assemblies, automatically generated with Snakemake.
The graph shows parallel processing of assemblies but does not include parallel processing of
batches, which use the advanced dynamic checkpoints Snakemake feature which cannot be
represented in the DAG.
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