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Abstract

Tourette’s Disorder (TD) is a neurodevelopmental disorder that affects about 0.7% of the
population and is one of the most heritable neurodevelopmental disorders. Nevertheless, because
of its polygenic nature and genetic heterogeneity, the genetic etiology of TD is not well
understood. In this study, we combined the segregation information in 13 TD multiplex families
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with high-throughput sequencing and genotyping to identify genes associated with TD. Using
whole-exome sequencing and genotyping array data, we identified both small and large genetic

variants within the individuals. We then combined multiple types of evidence to prioritize
candidate genes for TD, including variant segregation pattern, variant function prediction,

candidate gene expression, protein-protein interaction network, candidate genes from previous

studies, efc. From the 13 families, 71 strong candidate genes were identified, including both

known genes for neurodevelopmental disorders and novel genes, such as HTRA3, CDHR1, and
ZDHHC17. The candidate genes are enriched in several gene ontology categories, such as dynein
complex and synaptic membrane. Candidate genes and pathways identified in this study provide

biological insight into TD etiology and potential targets for future studies.

Introduction

Page 2

Tourette’s Disorder (TD) is a neurodevelopmental disorder (NDD) that affects up to 1%

of the global population 1 2. TD is characterized by chronic motor and vocal tics and

is often diagnosed in early childhood. Some patients do not present the full spectrum of
syndrome for TD and are characterized as TD-related chronic tic disorders, such as chronic
motor tic disorder or chronic vocal tic disorder 1 2. TD has a high comorbidity with

several psychiatric disorders: about 60% of patients are also diagnosed with attention-deficit
hyperactivity disorder (ADHD) 3- and 40%-60% with obsessive-compulsive disorder
(OCD) 710, Autism spectrum disorder (ASD) is also overrepresented in TD, and around 20—
40% of individuals with ASD experience tics 1. It is estimated that the lifetime prevalence
rate of comorbid psychiatric disorders for TD patients is up to 90% °.

TD is a highly heritable polygenic neuropsychiatric disorder (population-based-/2 = 0.77;
SNP-/2 = 0.58) 12. 13 The empirical recurrence risk estimates for TD and other chronic

tic disorders in first-degree relatives is about 30% 14. Because of the high heritability of
TD, many studies have been conducted to identify the genetic etiology of TD (reviewed in
15y, Early TD genetic studies focused on mutations in single genes under the assumption

of a monogenic inheritance model. Although some of the candidate genes were reported,
mutations in these genes only explain a few of the TD cases (reviewed in ). TD is

now believed to have a complex multigenic allelic architecture, similar to other NDDs 16,
More recently, several large studies were performed to identify genes associated with TD,
including whole-exome sequencing (WES) studies of simplex families focusing on de novo
mutations 17- 18 and a meta-analysis of Genome-Wide Association Studies (GWAS) with
about 5,000 TD patients 13. However, only a few susceptibility genes/loci were identified in
the WES and GWAS studies.

Due to its high heritability, one effective approach to identify TD candidate genes is to
study large multiplex families. Children of TD patients are between 10 and 100 times more
likely to be affected 14 19, indicating shared genetic susceptibility among family members.
Therefore, variant segregation pattern in multiplex families can help identify inherited rare
variants with strong effects and provide additional information compared to simplex trios.
The Tourette International Collaborative Genetics Study (TIC Genetics) is a collaboration
that recruits TD affected families for studying the genetic factors of TD 20. In the current
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study, we generated WES and genotyping array data for individuals from 13 TIC Genetics
multiplex families. We then prioritized risk genes with rare mutations in these families to
identify potential risk genes for TD.

Subjects and Methods

Human subjects

Multiplex families were recruited through the TIC Genetics study 20 and the New Jersey
Center for Tourette Syndrome (NJCTS) 2! with informed consent from all participants. The
study protocol was locally approved at all TIC Genetics sites. All sequenced individuals
were categorized as “white” race, except for the sperm donor (4001) in FAM4, whose
ancestry is unknown (Table 1). The clinical assessment and definition of TD and chronic
tic disorders were described in detail previously 20, and were based on the Diagnostic

and Statistical Manual of Mental Disorders — Fourth edition, Text Revision (DSM-IV-TR)
or Fifth edition (DSM-5) 22: 23, |n this study, a TD-affected individual is defined as an
individual who was diagnosed with TD or other tic disorders (/.e., chronic motor or vocal tic
disorder, a combined subtype, transient tic disorder or tic disorder-Not Otherwise Specified
20). A multiplex family is defined as a family with at least three TD-affected individuals.

Whole-exome sequencing, variant calling and annotation

SureSelect Human All Exon V4, Human All Exon V4+UTR (Agilent Technologies, Santa
Clara, CA, USA), or NimbleGen SeqCap EZ Exome V2 (Roche, Wilmington, MA, USA)
kits were used for the WES library preparation. Sequencing was performed on the lllumina
HiSeq platform with 100 PE or 150 PE format (Illumina, San Diego, CA, USA). Variant
calling was performed using the Genome Analysis Toolkit (GATK) following the best
practice pipeline 24 and variant annotation was performed using ANNOVAR 23, To control
for the batch effect, joint variant calling was performed on all samples and only variants
that are in the smaller set of the enrichment regions (SeqCap EZ Exome V2) among

the multiple exome capture kits were considered (see Supplemental Methods for detailed
steps and commands). The sequencing data is available at dbGaP under study accession
phs001423.v2.p2.

Candidate gene prioritization, annotation, and filtering

pVAAST (pedigree Variant Annotation, Analysis and Search Tool) was used to identify
candidate genes in each pedigree 26 27, pVAAST is a likelihood-based tool that prioritize
candidate genes using several types of variant information in each gene, including the
segregation pattern, the predicted functional impact, and the allele frequency (AF) in general
populations. pVAAST was run under dominant mode of inheritance for all families and
under recessive mode of inheritance for families where the recessive mode of inheritance
cannot be ruled out (Table 1, see Supplemental Methods for details).

For gene function predictions, the pLI (probability of being loss-of-function intolerant)
score and the missense Z score were extracted from gnomAD for each gene 28, Brain
developmental gene expression data were obtained from the Gene Tissue Expression project
(GTEXx) 29.30, the BrainSpan Atlas of the Developing Human Brain project 31, and the
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Human Developmental Biology Resource (HDBR) 32 (see Supplementary Methods for
detail). Diseases related to NDDs were extracted and curated from the DISEASES database
33 (https://diseases.jensenlab.org). The gene knock-out mouse behavior were downloaded
from the International Mouse Phenotyping Consortium (IMPC) 34 (ftp:/ftp.ebi.ac.uk/pub/
databases/impc/latest/).

Gene lists from previous NDD studies

Risk genes for several NDDs were collected from previous studies, including TD, OCD,
ADHD, ASD, intellectual disability, epileptic encephalopathies, and schizophrenia. The
gene sets and the genes in the gene sets are summarized in Table S1.

Protein—Protein interaction network, Gene Ontology, pathway, and protein complex
enrichment analysis

Three databases were used to investigate Protein-Protein Interaction (PPI) networks among
candidate genes, including STRING 35, ConsensusPathDB 36, and GIANT _v2 37: 38

(see Supplementary Methods for detail). These databases were shown to have the best
performance in a recent benchmark paper 3°. The benchmark paper also showed that
interactions present in at least two databases provide higher confidence than those specific to
one database.

Enrichment analyses were performed for all NDD genes with over-representation analysis
provided by ConsensusPathDB 36. An enriched term (i.e., Gene Ontology (GO), pathway, or
protein complex) was selected for further analysis if: 1) the total number of genes belong to
the term is < 200; 2) the term includes more than one gene from TD_multiplex gene list and
more than two genes from all TD genes (TD_multiplex + TD_simplex + TD_CNV); and 3)
the term includes genes from more than one multiplex family. Enrichment p-value for each
gene list was calculated with Fisher’s exact test (see Supplementary Methods for detail).

Copy Number Variant (CNV) analysis

Genotyping was performed at the Keck Biotechnology Resource Laboratory at Yale
University School of Medicine and at RUCDR Infinite Biologics® at Rutgers University
using the lllumina HumanOmnil-Quad or OmniExpressExome BeadChip (Illumina, San
Diego, CA). Samples from each pedigree were genotyped on the same platform. Genotype
calling and CNV detection were performed as previously described 49 (see Supplementary
Methods for detail). A pCNV threshold of <=0.05 was used for initial selection of CNVs.
CNV annotation was performed by CNVision, AnnotSV 41, and a custom program for
inheritance pattern analysis. CNVs that are smaller than 1,000 base pairs or larger than 2
million base pairs were excluded.

Results

Families and phenotypes

Figure 1 describes the overall design of the project. A total of 13 multiplex families were
included in this study. Family size ranged from 4 to 23, with a total of 151 individuals
(Table 1, Figure S1). The percentage of individuals diagnosed with TD and other chronic tic
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disorders was 60% (51/85) and 47% (31/66) for males and females, respectively. Details of
individual phenotypes are summarized in Table S2.

Whole-exome sequencing and candidate gene prioritization

Among the 13 families, we obtained DNA samples from 110 individuals for WES, including
72 individuals with TD and 38 non-TD family members. At least three individuals with TD
were sequenced in each family (Table 1). Overall, the 110 individuals sequenced had an
average mean depth of coverage of 42.5x and an average median coverage of 34.9x (Table
S2). Using the sequencing data, we identified single nucleotide variants (SNVs) and small
insertions and deletions (indels). The total number of variants that passed quality control
was (6.64  0.72) x 104 in each individual. After removing common variants (see Methods
and Supplemental Methods), the number of variants in each individual ranged from 3,970 to
8,673, with an average of 6,710 (Table S2).

Next, we used the candidate gene prioritization tool pVAAST to identify candidate genes in
each pedigree. The number of candidate genes reported among the 13 families varied from
1 to 218, with a total of 1,018 genes (Table 1). Because the variant segregation pattern is

a major factor for candidate gene prioritization in multiplex families, small families (e.g.,
FAMO9) and families where all individuals were affected (e.g., FAM2) have less power to
distinguish variant segregation patterns, thus producing a higher number of candidate genes
than the larger families. To reduce the number of candidate genes, we applied additional
filters based on variant segregation pattern (true positive events = 2 and false rate < 0.3),
gene expression level in brain (max TPM > 5), and AF in general populations (gnomAD
2.1.1 AF < 0.05) (see Methods and Supplemental Methods for detail). After filtering, the
number of candidate genes ranged from 1 to 125 among the 13 families, with a total of 543
unique genes (Table 1). Hereafter we refer to these genes as “TD_multiplex” genes (Table
S3). Among the 543 unique genes, 25 were identified in more than one family, most of
which were identified in families with many candidate genes (Table S2).

Fourteen of the TD_multiplex genes were identified in a previous study of TD simplex
trio families 18 (Table S4). In addition, two genes were reported in previous TD studies:
DNAJC13 (Dnal heat shock protein family (Hsp40) member C13) 42 and SLC6A4 (solute
carrier family 6 member 4) 43. Some of these genes are also reported to be associated with
other NDDs (Table 2, Table S1B). For example, ANK3 (ankyrin 3) has been reported to be
associated with ADHD and ASD, in addition to TD.

Candidate genes in individual families

To understand the functional impact of TD_multiplex candidate genes, we collected several
types of evidence for each gene, including their expression pattern in brain, known disease
association, tolerance to mutations, knock-out mouse phenotypes, and their interaction with
other genes (Figure 2, see Methods and Supplemental Methods for detail). We favored
candidate genes that contain variants with good segregation patterns, low AF in the
generation population, and genes that were identified in previous studies of TD or other
NDDs, with nervous system related functions, with higher or tissue-specific expression in
brain, and genes that causes a related-behavior change in mouse knockout models. Using
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these annotations, we further refined the TD_multiplex candidate genes and selected a final
list of 71 candidate genes (Table 2). Below we briefly describe the high-confidence top
candidate genes in several families.

FAM3—CDHR1 (Cadherin Related Family Member 1) was the only candidate gene with a
perfectly segregating variant within the pedigree (ENST00000372117.3:p.Asn623Ser). The
mutation is in the Cadherin domain which was predicted to be deleterious by SIFT 44,
CDHR1 shows specific high expression in brain regions including caudate, hypothalamus,
and nucleus accumbens 2% 30, CDHR1 is a calcium-dependent cell-cell adhesion membrane
protein and is involved in vision related diseases such as cone-rod dystrophy 4°.

FAM5— TADAS3 (Transcriptional Adaptor 3) was the top candidate gene as

ranked by pVAAST. The candidate mutation is a hnonsynonymous mutation
(ENST00000301964.2:pArg171Cys) that is predicted to be deleterious by SIFT and
damaging by Polyphen-2 46. The variant was present in all seven affected individuals in
the three-generation pedigree, but also present as a heterozygous variant in the unaffected
grandfather. This gene is a component of the histone acetyl transferase (HAT) coactivator
complex and a regulator of p53 and it is important for chromatin modulation and cell
cycle progression 47. TADAZis universally highly expressed in brain regions (> 70 TPM
in the GTEXx data) 3°. As a multifaceted protein, TADA3 plays an important role in
chromatin remodeling, cellular proliferation, cellular senescence, DNA damage response,
and embryonic development 47,

FAM11—HTRASZ (HtrA Serine Peptidase 3) had a nonsynonymous mutation
(ENST00000307358.2:p.Val269Met) in the protease domain, predicted to be deleterious

by SIFT and Polyphen-2. The mutation was present in all eight affected individuals and an
unaffected grandchild. HTRAZis highly expressed (TPM > 10) during some of the early
brain developmental stages 31: 32, HTRA3 is a secreted protein with four domains, which

is highly conserved in vertebrates 8. Several mouse models for Wolf-Hirschhorn syndrome
with deletions of Htra3 cause significant phenotypic changes including seizures, a behavior
similar to tics 49.

FAM12—NCL (Nucleolin) exhibited a perfectly segregating in-frame deletion
(ENST00000322723.4:p.Asp261del). NCL is involved in the synthesis and maturation of
ribosomes and is LoF intolerant (pLI = 1) 0. This gene is highly expressed in brain (Table
S3). In a GWAS study, NVCL was associated with ADHD 1. Disrupting the function of
NCL causes nucleolar stress, which is believed to be one of the pathogenic mechanisms
for neurodegenerative diseases including polyglutamine (polyQ) diseases and Parkinson’s
diseases 22 93, In Huntington disease, the polyQ mutation in the H77 gene functionally
disrupts the normal ribosomal interaction with NCL 2.

FAM4—Pedigree FAM4 includes a single sperm donor, six mothers, and nine offspring,
among which eight are TD cases. As four of the mothers were unaffected, it is highly
likely that there are one or a few dominant mutation(s) from the sperm donor which were
passed to the affected children. In the pVAAST dominant run, 10 genes remained after
filtering. Among those genes, DCAF1 (DDB1 And CUL4 Associated Factor 1, also known
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as VPRBP) contains a perfectly segregating variant. DCAFL1 is a Serine/threonine-protein
kinase which is also a component of E3 ubiquitin-protein ligase complexes and plays key
roles in various biological processes including cell cycle, telomerase regulation, and histone
modification %5,

Besides DCAF1, several other genes also contain variants with one genotype/ phenotype
discrepancy (Table 2). ZDHHC17 (Zinc Finger DHHC-Type Palmitoyltransferase 17)
contains a rare honsynonymous variant (ENST00000426126.2:p.11e582Thr), which is
predicted to be possibly damaging by Polyphen-2. The variant is present in the sperm

donor, five affected children, and absent in one affected child and all unaffected

individuals. ZDHHC17was previously named Huntingtin interacting protein 14, based on its
interaction with the Huntington disease gene, H77. It is a membrane protein with palmitoyl-
transferase activity which is specific for several critical neuronal proteins including

HTT 56 and GRIN2B (Glutamate lonotropic Receptor NMDA Type Subunit 2B) 37, A
mouse model for Huntington disease, Zdhhc17CGtRRI233)Byg/7dhhc1 7GURRIZIZBYY shows a
series of phenotypes in the nervous system and behavior/neurological changes, including
increased neuronal apoptosis, decreased brain weight, abnormal striatum morphology,

and hyperactivity. ZDHHC1 7 showed significant interactions with genes in TD_simplex,
ADHD, and ASD_high lists (Table S3), suggesting it plays important roles in multiple
NDDs.

Other small families

Because smaller families contain less information in variant segregation, these families
typically present more candidate genes than larger ones and it is more difficult to rank

the genes. However, several candidate genes are known to associate with other NDDs

or were identified in previous TD genetic studies (Table 2). For example, CNTNAP5
(Contactin Associated Protein Family Member 5) in FAM11 is a known NDD gene and
variants in CNTNAP5 have been reported to be associated with ASD and other NDDs
(https://gene.sfari.org/database/human-gene/CNTNAPS). ANK3 (ankyrin 3) in FAM8 is a
high-confidence ASD candidate gene and has also been reported in TD_simplex family
studies 8. The overlap between our top TD_multiplex family genes with NDD candidate
genes suggest a shared genetic etiology for TD and other NDDs.

Individual family CNV analysis

For nine families, we also obtained CNVs using genotyping array (Table 1). A total

of 1,799 high quality CNVs were identified, with an average of 200 CNVs per family
(ranging from 116 to 289). The majority of the CNVs were unique to one individual.
After filtering on the segregation pattern, gene overlap, and the CNV size (See Methods
for filtering detail), we obtained 22 genic CNVs, including 16 exonic CNVs (Table

S5). Risk genes predicted by CNVs did not overlap candidate genes from the SNV
analysis (Table 3). We further prioritized the 22 CNVs based on their population
prevalence (AF <1%), encompassed candidate gene brain expression level, and candidate
gene function. After prioritization, three candidate CNVs remained. The first CNV is a
heterozygous deletion in FAM1 (g.chr5:73980065-73992881) overlapping the first several
exons of HEXB (Hexosaminidase Subunit Beta). This deletion was perfectly segregating
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with the phenotype and the genomic region only contains two rare CNVs in human
populations in the gnomAD structure variation database (https://gnomad.broadinstitute.org/
region/5-73980065-739928817dataset=gnomad_sv_r2_1). HEXB encodes a subunit of the
lysosomal enzyme beta-hexosaminidase, and mutations in HEXB has been associated with
neurodegenerative Sandhoff disease 8. The second CNV is a heterozygous deletion in
FAMO (g.chr20:5281253-5289644). The deletion is rare in populations and overlaps the last
exon of gene PROKRZ (Prokineticin Receptor 2). PROKRZ has increased brain expression
and has been associated with Kallman syndrome 9. The third CNV, from FAM5, is in

the intron of ZNF385D (Zinc Finger Protein 385D). This heterozygous deletion segregated
in five out of eight affected individuals in the family and is rare in general populations.
ZINF385D has been associated with other neuropsychiatric disorders, such as schizophrenia
60 and reading disability 51, supporting ZNV/F385D as a candidate gene for TD.

Pathways implicated in multiple families

Because of the apparently high genetic heterogeneity of TD, it is likely that each multiplex
family have different underlying genetic risk factors. Although only 25 of the 543
TD_multiplex genes were present in more than one family, the families could share the
underlying TD genetic etiology beyond the single gene level, such as pathways and gene
groups. In support of the latter, a polygenic risk score has been associated with TD 12.
Therefore, we examined the interaction for the top 71 candidate genes (Table 2), as well

as their interactions with other NDD genes. Our result showed strong interactions among
our top candidate genes: 35 of the 71 genes showed interactions and form a single PPI
network (Figure 3A). Many of the remaining genes showed extensive interaction with other
NDD genes (Figure 3B), suggesting the shared genetic etiology among NDDs. Interestingly,
submodules emerging from the PPI network include potassium voltage-gated channel genes,
and axonemal dynein genes (Figure 3B).

To further explore relationships among TD candidate genes and to identify potential

shared mechanisms between TD and different NDDs, we performed enrichment analysis

for all 2,345 NDD genes (NDD_all, Table S1) using ConsensusPathDB, and calculated

the significance of enrichment for each gene list using Fisher’s exact test (Table S6).
NDD_all, TD_multiplex, as well as several other gene lists were highly enriched in GO
terms and pathways related to brain function and developmental processes, highlighting

that many genes in this group are involved in brain development (Table S6). Among GO
terms enriched in TS_multiplex gene list, “dynein light intermediate chain” (GO:0051959,
29 genes) is the top molecular function term and “axoneme part” (GO:0044447, 37 genes) is
the top cellular component term. Seven genes from five multiplex families are defined under
the dynein light intermediate chain term, including DNAH3, DNAH5, DNAH7, DNAH11,
RABI11FIP3, DYNCZ2H1, and CCDC88B. Interestingly, four genes in the TD_simplex gene
set (DNAH5, DNAH6, DNAH10, and RAB11F/P3) and four genes in the ASD gene

set (DNAH3, DNAH10, DNAH17, and CCDC88C) are also present in the “dynein light
intermediate chain” gene set and the NDD _all genes showed significant enrichment for the
term as well (q = 5.1x1074, Table S6). These genes encode dynein motor proteins that

are parts of the cellular cytoskeleton and showed extensive interaction in the PPI network
(Figure 3C). The overlapping candidate genes within the dynein complex in both TD and
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other NDDs suggests that microtubule function might be an important factor for NDDs

and TD in particular. In the enrichment analysis of all NDD genes, the most enriched GO
terms included synaptic vesicle cycle and presynaptic membrane (hypergeometric test, g =
9.2x10723 and 2.7x10720, respectively, Table S6). Most of these genes were also under the
GO term “synaptic membrane” and showed extensive interaction in the PPI network (Fig.
3D). In addition to their enrichment in overall gene list, genes in the “synaptic vesicle cycle”
and “presynaptic membrane” GO terms were also enriched in most individual gene lists
(excluding TD_CNYV and OCD), indicating the importance of genes in these two categories
in multiple NDDs.

Discussion

TD is a highly heritable and frequently occurring neurodevelopmental disorder that

can cause significant burden in patients and families 14. As a complex disease with
heterogeneous etiology, it is difficult to study its mechanism with classic candidate gene
methods and only a few genes have been reported from single gene studies (Reviewed in
15), Multiplex families provide additional information compared to simplex trio studies: as
multiple affected individuals are identified in a single family, the variant segregation pattern
within the family can help identify inherited rare variants with strong effects. In this study,
we examined 13 multiplex families to identify potential TD candidate genes.

Among our multiplex families, the co-occurrence of OCD and ADHD is consistent with
previous studies 35 7-9: a total of 37.8% (31/82) of individuals with TD and other tic
disorders were also diagnosed with OCD, and 20.7% (17/82) had comorbid ADHD (Table
S2). On the other hand, the sex ratio between male and female is 1.3, smaller than the
ratio in population studies where boys are affected three to five times more often than girls
1. It has been proposed that the lower affectation rate in girls could be explained by a
“female protective effect” which protects females from many variants with small effects.
This increased rate of affected females in multiplex families may be consistent with the
segregation of large-effect variants that are needed to affect females in these families.

Our initial analysis of the 13 families identified hundreds of candidate genes across the
genome. The large number of candidate genes could be due to both the complex genetic
etiology of TD and the lack of segregation information in small families. Therefore, to
facilitate candidate gene prioritization, we considered multiple types of information for
variants and genes, including mutation functional impact prediction, segregation pattern,
gene function, gene known disease association(s), and gene expression patterns in brain
(Figure 2). By combining the evidence, we prioritized candidate risk genes and generated
a top candidate gene list of 71 genes. We also found three segregating genic CNVs that
could also contribute to TD etiology in three families. Some of the top candidate genes
are well known NDD genes, such as GRINZB, CNTNAP5, GABRBS3, and ANK3. For
four patients with diagnosis for ADHD, their exomes contain variants in reported genes
associated with ADHD (SLC6A2, ANK?3). We believe these genes are also TD risk genes
in these families because the variants showed strong segregating patterns with TD patients.
Fourteen genes contained likely damaging de novo mutations in previous studies of TD
simplex trios (Table S4), such as BCAN, DNAHS5, and RAB11F/P3, providing additional
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support for their involvement in TD etiology. More importantly, we identified several novel
candidate genes in the multiplex families that have not been previously linked to TD or
NDDs. For example, TADA3 s the single candidate gene in FAMS. The evidence from this
study warrants close examination of these genes in future TD studies.

The candidate genes also allowed us to identify potential pathways and biological processes
that are important for TD etiology. One of the strongest signals in our dataset is associated
with the components of dynein pathways, the motor proteins for cellular cytoskeleton
(Figure 3C). Dyneins are important for protein transport within neurons, especially for
signaling proteins that function in axons that are far distal to the cell body 2. This

result suggests that the cytoskeleton might play an important role in TD development. One
interesting observation is that although the GO term and pathway enrichments of many NDD
gene lists are related to neuronal and brain function, many enrichments in TD_multiplex
and TD_simplex gene lists are different from enrichments in other NDD lists (Table S6).
This suggests that TD might have distinct genetic risk factors compared to other NDDs.

We also observed shared enrichment in molecular functions and biological pathways among
all NDD genes. For all NDD genes, the most enriched GO terms and pathways showed
strong relationships with brain functions, such as presynaptic membrane, synaptic vesicle
cycle, neurotransmitter secretion, dopamine metabolic process, glutamate receptor signaling
pathway, and GABAergic synapse (Table S6). Therefore, studies from other NDDs may also
contribute to understanding the genetic bases of TD.

As a complex disorder with genetic heterogeneity 18, risk genes in TD are likely to work
together in networks. Our PPI network analysis supports this hypothesis: many PPIs were
predicted within the top TD candidate genes and with genes from other NDD lists by the
three PPI databases (Fig. 3). For these disorders, some of the most enriched terms are related
to the proper function of neurons, such as synaptic membrane, synaptic vesicle cycle, and
voltage—gated ion channel activity.

In summary, by leveraging the segregation information in multiplex families, the power

of whole-exome sequencing and genome-wide CNV analysis, we identified new candidate
genes as well as biological processes and pathways that could contribute to the development
of TD. Future studies of TD with larger sample sizes are needed to provide further support
for the candidate genes. Furthermore, functional studies of these candidate genes, either in
cell-culture systems or animal models, will provide a better understanding of their roles in
TD, eventually leading to improved diagnosis and treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall study design.

WES: whole-exome sequencing; SNP: single nucleotide polymorphism; AF: allele
frequency; CNV: copy number variant; GO: gene ontology; PPI: protein-protein interaction.
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Figure 2. Information used for variant and gene prioritization.
Detailed description of the “Annotation” fields can be found in the Supplemental Methods

and Table 2. PPI: Protein-protein interaction; GO: Gene Ontology; pLI: probability of being
loss-of-function intolerant score; mis_z: Z score for the deviation of observed counts from
the expected number of missense mutations; TPM: Transcript Per Million.
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Figure 3. Protein-protein interaction (PPI) networks.
(A) PPI network of the 71 TD top candidate genes. Only genes that can be connected are

shown. (B) PPI networks of the 71 TD top candidate genes not in (A). Other NDD_all genes
were added as intermediate nodes if they interact with more than one TD top candidate
genes. For intermediate nodes, only interactions with top candidate genes were included.
(C) PPI network formed by NDD_all genes identified in axoneme (GO:0005930). (D) PPI
networks formed by NDD_all genes in synaptic membrane (GO:0097060). To simplify

the network, interactions between non-candidate genes were removed. PPI networks were
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defined by three databases, ConsensusPathDB, STRING, and GIANT_v2. Genes were
colored by the gene lists (see Methods for details).
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