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Abstract 

Patterns of genetic structure are directly dependant on the characteristics of landscape in which 

they occur. The presence of landscape features that act as barriers, distort otherwise smooth 

structure patterns by directly hindering the movement of individuals and their alleles.  By 

influencing or outright preventing gene flow, barriers isolate populations to varying degrees. The 

recent advent of sequencing technology and population genomics tools allow the 

characterization of these mechanisms with higher resolution than ever before. In this thesis, I 

used whole genome sequences, capture-recapture and phenotypic data to explore the genomic 

and phenotypical consequences of barrier-mediated isolation in barn owl (Tyto alba) populations 

over five chapters. 

In the first three chapters, I focused on the populations of three island systems with different 

age, size and distance from the mainland, and on the neutral and selective mechanisms that 

shape their in-situ divergence. First, we investigated the colonisation history of barn owls from 

the British Isles, a set of continental islands, that separated from the mainland after the last 

glaciation. Our aim was to understand the basis of their white plumage, a contrast with the 

nearest mainland populations that are rufous. We found that neutral mechanisms alone suffice 

to describe this phenotypical discrepancy as they were actually founded by a white population. 

Second, we compared the evolutionary histories of the species on two outwardly similar islands 

in the eastern Mediterranean, Crete and Cyprus, which have been separated from the mainland 

for 5 million years. Despite the similarities between the islands, we found that the populations of 

Crete and Cyprus had distinct origins and very different neutral outcomes, with varying population 

sizes and levels of inbreeding. Third, we studied the barn owls of the Canary archipelago, islands 

isolated for over 10 million years and far from the mainland. In addition to the substantial neutral 

divergence, we found striking signals of local adaptation to both the insular conditions as a 

whole, and to each of the lineages’ local environmental conditions. 

Then, in the two last chapters I investigated the impact of mountain ranges in creating and 

moulding barn owl genetic structure and demographic history. In the Western Palearctic, we 

found that the Alps and the contiguous Tauros and Zargos mountains are key barriers to gene 

flow, by isolating specific populations and limiting secondary contact between genetic lineages 

on either side of them. Finally, in North America, we showed that the Rocky Mountains force owls 

to contour it via the south. 

To summarise, this thesis highlights the impact of large water bodies and mountain ranges on a 

widespread bird of prey. It provides empirical evidence of both neutral and adaptive evolutionary 

forces acting on isolated populations, and illustrates the power of genomic data in non-model 

species.  
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Résumé 

La structure génétique des populations dépend directement des caractéristiques de 

l’environnement dans lequel elles évoluent. La présence d’éléments dans l’environnement qui 

agissent comme des barrières influence également cette structure génétique en limitant le 

mouvement des individus et de leurs allèles. En réduisant ou en empêchant entièrement le flux 

génétique, ces barrières isolent les populations à différents degrés. Le récent développement des 

technologies de séquençage et des outils d’analyses génomiques permettent la caractérisation 

des mécanismes structurant les populations comme jamais auparavant. Dans les 5 chapitres de 

cette thèse, j’ai utilisé des données de séquençage de génomes complets, de capture-marquage-

recapture et de mesures phénotypiques pour explorer les conséquences génotypiques et 

morphologiques qu’ont les barrières environnementales sur les populations d’Effraie des clochers 

(Tyto alba). 

Dans les trois premiers chapitres, je me suis intéressée aux mécanismes neutres et sélectifs qui 

ont fait évoluer des populations ayant colonisé trois systèmes d’îles qui diffèrent en âge, taille et 

distance du continent. Premièrement, nous avons étudié les processus de colonisation par l’Effraie 

des clochers des îles britanniques, un groupe d’îles qui se sont séparées du continent après les 

dernières glaciations. Notre objectif était de comprendre pourquoi leur plumage est blanc 

immaculé sur les îles, en comparaison de celui plutôt roux des populations continentales. Nous 

avons montré que la colonisation de ces îles s’est faite par une population blanche, et que des 

mécanismes neutres suffisent ensuite à expliquer le maintien de cette coloration. Deuxièmement, 

nous avons comparé l’histoire évolutive de populations vivant sur deux îles de la Méditerranée 

orientale apparemment similaires, la Crète et Chypre, toutes deux séparées du continent depuis 5 

millions d'années. Malgré les similarités entre ces deux îles, nous avons constaté que leurs 

populations avaient des origines distinctes et des histories évolutives différentes, avec également 

des tailles de population et des niveaux de consanguinité variables. Troisièmement, nous avons 

étudié les Effraies des clochers vivant sur l’archipel des Canaries, ce dernier étant situé loin du 

continent et ayant été isolé depuis plus de 10 millions d’années. En plus d’une divergence neutre 

importante, nous avons trouvé des signaux forts d’adaptation locale aux conditions insulaires dans 

leur ensemble, ainsi qu’aux conditions environnementales locales de chacune des lignées.  

Dans les deux derniers chapitres, j’ai étudié l’impact des chaînes de montagnes dans la création 

et l’évolution de la structure génétique et de l’histoire évolutive de l’Effraie des clochers. Dans le 

Paléarctique occidental, nous avons montré que les Alpes, ainsi que les monts Tauros et Zargos, 

isolent les populations de part et d’autre, et sont donc des barrières importantes aux flux de gènes. 

Finalement, en Amérique du nord, nous avons pu montrer que les montagnes Rocheuses étaient 

également une barrière pour les Chouettes effraie, qui doivent la contourner par le sud.  
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En résumé, cette thèse met en évidence l’influence des barrières, telles que les grandes étendues 

d’eau et les chaines de montagne, sur une espèce répandue de rapace. Elle fournit des données 

empiriques de l'action des forces évolutives neutres et adaptatives sur des populations isolées, et 

illustre l’utilité de données génomiques chez des espèces non modèles. 
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General Introduction 

The variation of visible traits was the focus of the first studies about the diversity of natural 

populations. It was from this type of observations that, with the works of Mendel and Darwin, 

classical population genetics was born in the second half of the 19th century. Nearly 100 years 

after Mendel proclaimed his laws, molecular tools were introduced in the form of gel 

electrophoresis. With the revolutionary studies of Harris1 and Hubby & Lewontin2, came the 

realization that variation among individuals is much more pronounced than originally thought3. 

This dramatically affected not only the contemporaneous debates on evolutionary theory but also 

the fundamental nature of empirical studies as molecular population genetics emerged4. With 

the advent of molecular tools, it became possible to characterize, in higher detail than ever 

before, the genetic makeup of species as well as to elucidate the impact of evolutionary forces in 

the past history of populations. 

 

Population structure in the landscape 

The study of genetic variation within and among populations with molecular data, effectively 

means analysing the distribution of their allelic frequencies. Differences in distribution between 

groups of individuals translate into population structure, a central notion in population genetics 

whose description is frequently a key step in empirical studies. In sexual species, population 

structure essentially stems from non-random mating between individuals5. As most species do 

not have unlimited dispersal capacities within their range, mating is more likely to occur between 

close rather than faraway individuals. Geographical distance between individuals is thus directly 

linked to mate choice and, consequently, to population structure, highlighting how space and the 

landscape in which biological and evolutionary processes occur are crucial to their interpretation. 

Indeed, since most individuals mate with close neighbours, a spatial gradient in allelic 

frequencies will emerge over time, a ubiquitous pattern in natural populations termed isolation 

by distance6,7 (seen in plants8,9, invertebrates10,11 and vertebrates12,13, for example). This and 

other spatial genetic patterns are the specific focus of the discipline of landscape and spatial 

genetics14,15.Yet, hardly any empirical population genetics studies are truly independent from 

these notions.  

On a large scale, landscapes are rarely homogenous, and the presence of barriers – geological or 

ecological features that create gaps between suitable patches of habitat – restricts the 

movement of organisms and thus impacts their mate choice. Barriers vary drastically in 

dimensions and impact, from large-sized structures that impact multiple taxa, to small, species-

specific ones, and some a barrier feature for on species may even be a corridor for another. At a 

planetary scale, continental separation (i.e. the result of plate tectonics) is the most important 
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barrier to terrestrial organisms, driving widespread speciation and bioregionalization16,17, 

although this . More moderately-sized barriers include terrestrial features such as mountains18,19, 

deserts20, forests21 and urban developments22–24; as well as aquatic ones like the open-water 

encircling islands25,26 and rivers24,27. Barriers are an important source of population structure, as 

they directly hinder or impede the movement of organisms and their alleles (i.e. gene flow), and 

can therefore quickly promote genetic and phenotypic divergence and ultimately facilitate 

speciation28. Even though the concept of speciation with gene flow is now widely accepted29, the 

study of diverging isolated (allopatric) populations was crucial to the development of early 

modern evolutionary theory30, and none more so than insular populations31–33. 

 

Insular populations 

Islands, dubbed “nature’s test tubes”, offer ideal settings to study isolated populations. This is 

due to a number of intrinsic characteristics such as their relatively small size, discrete borders, 

geographical remoteness, relatively young (and known) age and, finally, the sheer quantity that 

provides natural replication of events34. The evolution of the genetic composition of any given 

population is shaped by the interplay of mutation, gene flow, genetic drift and selection31,35,36. 

Although these processes clearly occur on the mainland as well, the unique features of islands, 

especially the isolation and limited carrying capacity, fundamentally impact how they operate and 

interact.  

Despite being the fundamental source of diversity, mutation occurs slowly, even in large 

populations, and thus has the smallest impact of all microevolutionary mechanisms both on 

islands and mainland. In addition, the majority of new mutations are swiftly lost due to drift or 

even selection, particularly in small populations. In contrast, the other three mechanisms are 

interlaced in an unsteady balance that is dependent upon its effective size and has major 

impacts on the population’s fate. 

On the one hand, genetic drift is responsible for most neutral divergence and acts by sampling 

individuals and alleles at random at the founding of an island (i.e. founder effect or bottleneck) 

as well as throughout its settling and long-term establishment. The effects of drift are the most 

pronounced in populations of far isolated islands, colonized by a small number of individuals that 

then retain a reduced effective population size36,37. Indeed, drift will remove or fixate new alleles 

more quickly, be them de novo mutations or imported alleles by occasional gene flow, shaping 

allelic frequencies and accentuating divergence from neighbouring populations. A consequence 

of intense drift is the reduction of polymorphism and thus genetic diversity which, if coupled with 

low gene flow, can increase background relatedness between individuals and lead to inbreeding. 
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This is a common phenomenon in insular populations and is likely linked to their higher 

extinction rates, particularly in small islands38,39.  

On the other hand, selection acts non-randomly to direct adaptive divergence of specific alleles 

or morphs and can work to maintain polymorphism. Like drift, it can act both at the founding of 

an island, with some individuals, populations or even species being more prone to colonization, 

as well as after its establishment. While selection is more effective in larger populations, its 

contribution to divergence of insular populations is undeniable36. It is most often invoked to 

explain conspicuous morphological changes, particularly in cases of independent trait 

convergence (i.e. repeated evolution of similar phenotypes) and radiation (i.e. fast evolution of 

multiple phenotypes or species from a single one). The former is perhaps most commonly 

illustrated by the island rule, a trend towards intermediate body size40 first described from 

studies of mammals41,42, and the latter also boasts many examples, from spiders in Hawaii 43 to 

lizards in the Caribbean44.  

Finally, gene flow also plays an important role and directly influences the effects of drift and 

selection. Insufficient immigration may result in a too-small resident population that might easily 

go extinct, whereas high rates of immigration can homogenize allelic frequencies and prevent or 

delay both neutral and adaptive divergence. Therefore, moderate levels of gene flow typically 

facilitate divergence by adding enough diversity and increasing the effective population size.  

Ultimately, an insular population’s fate is influenced by all these mechanisms and their 

respective impacts can vary through time as a result of fluctuating environmental conditions. For 

instance, changes in sea level can alter the distance between neighbouring islands and the 

mainland which directly impacts levels of gene flow. It is also important to note that, even under 

similar circumstances and island characteristics, all these processes have considerable 

stochasticity and thus the outcome each colonisation can be unique.  

 

Island birds 

The study of insular populations was indeed key to the development of evolutionary theory, 

starting with Darwin’s first visit to the Galapagos in 1835 and, in particular, his work with birds 

that ensued. Birds are chief island colonizers and often assist other organisms in doing the 

same, such as plants and invertebrates45. Yet, there is a large variation in dispersal capacity 

among them, from sedentary to long-range migrators, rendering some avian taxa more likely to 

colonize islands than others. Moreover, winds directly influence flight routes46, storm tracks 

provoke accidental displacement45 and humans are responsible for a large amount of 

introductions47, occasionally producing unexpected community assemblies32,34,45.  
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Empirical studies of insular birds have provided evidence of both neutral and adaptive 

mechanisms driving phenotypical divergence (e.g.48,49).  Although early studies denied its validity 

for birds50, the island rule (convergence to intermediate body sizes) has since been shown to 

apply to numerous avian species51,52. Indeed, the examples of convergent trait evolution in 

insular birds are actually plentiful and go far beyond mere size. For example, changes have been 

observed in life-history traits such as higher investment in parental care53, and in physical traits 

with trends towards larger brains54, loss of flight55 and reduced plumage color intensity and 

brightness56,57. Birds are also the protagonists of some of the most spectacular insular adaptive 

radiations34,45,58, with the classical examples of beak adaptation in Hawaiian honeycreepers59,60 

and Darwin’s finches61,62. 

 

Avian genomics 

From allozymes1 to the first complete human genome63, the second half of the 20th century saw a 

staggering advance in sequencing technologies. In parallel, the field of molecular population 

genetics evolved to analyse the ever-increasing amount of markers4, transitioning into the 

genomics era in the 21st century. Birds were no exception to the boom of genomics, with the 

chicken being among the first whole genome sequences of vertebrates in 200464, followed by the 

turkey65 and the zebra finch66 in 2010. The intrinsic characteristics of bird genomes may have 

facilitated this task along with that of subsequent whole-genome resequencing studies. 

Compared to mammals, birds have considerably less repetitive regions as well as shorter introns 

and intergenic regions67. As a result, bird genomes are on average one third the length of that of 

mammals, which reduces their sequencing costs proportionally. 

The early days of avian genomics were heavily skewed towards model species, particularly those 

with an agroeconomic interest (chicken, turkey and domestic duck), however it has since 

expanded nearly-exponentially into non-model species. This is perhaps best illustrated by the 

National Center for Biotechnology Information (NCBI) which, in eight short years, went from 11 to 

667 reported bird reference genomes (April 201368 to April 2021). Despite only a tenth of these 

being at chromosome-level, it speaks to the interest of bird genomes to a range of diverse 

research fields, such as evolutionary biology. The latter was kickstarted in 2012 with the 

sequences of the pied and collared flycatchers (Ficedula sp.) in the first study to look at 

signatures of speciation along the genome in wild birds69. Soon thereafter, the Avian 

Phylogenomics Project (http://avian.genomics.cn/en/index.html) generated the sequences of 45 

bird species and produced their flagship papers on bird comparative genomics70 and 

phylogenomics71, among an extensive collection of 28 papers on the evolution of bird genomes 

in 2014 alone. From it, the Bird 10’000 Genomes (B10K) Project was born with the aim to 

http://avian.genomics.cn/en/index.html
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sequence all extant bird species72, promising a wealth of publicly available data for future studies 

(e.g 73). 

 

Avian molecular population genomics 

With the declining cost of producing genomic data, population-level data is also progressively 

becoming more available to a wider group of researchers. As such, molecular population 

genomics has flourished, and is nowadays far from limited to humans or cattle, being almost 

commonplace for non-model species (albeit rarely with whole-genome sequencing; WGS). The 

most immediate advantage of using genomic data in population studies is the massive increase 

in number of loci, from a few dozens or hundreds provided by microsatellites and Sanger 

sequencing, to tens of thousands (Restriction Associated DNA sequencing; RAD-seq) and up to 

millions (WGS). With the parallel development of analytical tools, this directly translates into 

higher resolution to detect fainter variations in allelic frequencies, and thus population structure, 

than ever before while requiring a less extensive sampling of individuals. Practically, this is a 

major benefit when working with threatened and/or hard-to-sample species as many non-model 

organisms are.  

As the number of loci increases, so does the power to infer the past demographic histories of 

populations, namely changes in population size, population splits and admixture events. A 

number of methods have been developed or improved for this specific purpose (reviewed in 74), 

three of which are most commonly used in non-model species. First, software such as 

fastsimcoal275 and δaδi76 provide likelihood-based frameworks to analyse changes in the shape 

of the site frequency spectrum (SFS). In this approach, one simulates one or more demographic 

scenarios with varying parameters sampled from specified ranges, and then compares the 

simulated SFS to the observed one. This approach allows inferences at moderate speed for 

multiple populations (up to three in δaδi), and can be based either on coalescent (fastsimcoal2) 

or diffusion (δaδi) theories. Second, approximate Bayesian computation (ABC) follows a relatively 

similar workflow by comparing multiple summary statistics (FST, for example) of simulated and 

observed data. However, in comparison to SFS-based methods, it is still highly computationally 

intensive and can be inefficient for large datasets or wide parameter spaces. Thirdly, sequentially 

Markovian coalescent methods, like PSMC77 or MSMC78, infer changes in population effective 

size (Ne) from the coalescent times along the genome. Unlike the previous methods, it does not 

use simulations and is therefore quite fast, however it requires WGS data and not all 

implementations take into consideration population information. Crucially, this type of inference 

is known to be unreliable in recent time (less than about 800 generations). All three methods 

have been used to infer the history of bird populations (recently reviewed in 79), for example, SFS 

in South American passerines80, ABC in rosy-finches81, and PSMC in penguins82. 
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The final, and perhaps most exciting, opportunity offered by genomic data, and WGS in particular, 

is the study of the genomic landscape itself. Indeed, the sequencing of individual genomes from 

multiple populations brought with it the awareness that diversity and differentiation are not 

constant along the genome, sparking widespread interest on the role of microevolutionary 

processes in generating such variation. The genomic landscape was the topic of the first WGS 

study in non-model birds, looking at diverging populations and speciation in flycatchers69,83. Since 

then, it has been widely investigated under different contexts like hybridization84, inbreeding85 

and local adaptation48, and has been the focus of multiple reviews (e.g.86,87). 

 

Study species 

The barn owl (Tyto alba species complex) is a non-migratory nocturnal raptor present on all 

continents but Antarctica. It hunts mainly small rodents in a large range of open habitats in 

temperate, subtropical and tropical zones. Despite being commonly described as one of the six 

bird species with a cosmopolitan distribution88, recent molecular evidences89,90 suggested it 

actually comprises three genetically distinct sister species: the Afro-European (or Western; T. 

alba), American (T. furcata) and Australasian (or Eastern; T. javanica) barn owls. Representatives 

of the barn owl group can be found on many islands around the globe (both naturally and 

introduced), and in some it has diversified into subspecies or even species89. Insular barn owls 

often display specific variation in phenotypic traits compared to their mainland counterparts91, 

providing an assortment of interesting study systems with varying degrees of isolation and 

phenotypic traits. 

The first barn owl genome published was of the American species70 yet it was of poor quality. It 

was followed by a first European barn owl genome92 which increased in quality despite still being 

quite fragmented. It allowed for the pilot analyses of this thesis, while its improved version was 

being produced93. 

 

Variation in plumage colouration 

Bird plumage coloration has long been the object of intense interest from naturalists and 

scientists alike94. One of the most notorious features of barn owls is their extraordinary variation 

in ventral plumage colour, from white to dark rufous (Figure 1), a heritable trait95 that is observed 

within all three species96, and has often been used as a taxonomic criterium to split 

subspecies89. On a larger geographical scale, plumage coloration is strongly associated with 

latitude (and all its covariates), displaying steep clines in Europe and in North and South 

America97. The European colour cline, in particular, has been extensively studied, with rufous 

owls mostly in the north and northeast and white ones in the south. The classically held view for 
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its origin postulated that two parent populations with different colours – a white one from Iberia 

and a rufous one from near the Black Sea – evolved in allopatry, and then met in a secondary 

contact zone in central Europe98,99. This led to the classification of two European barn owl 

subspecies, the white T. a. alba (Scopoli 1769) and the rufous T. a. guttata (Brehm and CL 

1831), with intermediate morphs assumed to be hybrids. However, with the advent of molecular 

markers, the first population genetics studies appeared to contradict the traditional theory. 

Genetic analyses with microsatellites suggested that, not only did barn owls colonize continental 

Europe from a single refugium in Iberia100, but also that the colour cline was the result of local 

adaptation rather than a neutral by-product of recolonization100,101. The obvious question that 

ensues is what selective agents could be responsible for maintaining such a sharp cline, 

especially considering that neutral genetic differentiation across the continent is weak102. A 

definite answer is not yet available, and the correlation of multiple climatic variables with latitude 

makes the question difficult to address. Nonetheless, it has been shown that each morph has its 

own prey and habitat preferences, suggesting disruptive selection on alternative foraging 

strategies103. In addition, a global study on the three barn owl species suggested that convergent 

selection produces darker morphs in regions of higher rainfall and lower temperatures96. 

 

Plumage colour determination 

To understand how a trait may respond to adaptive pressure or neutral processes, it is essential 

to understand how it is determined. Plumage colour in birds normally results from the deposition 

of pigments on the feathers, light scattering on structural components of the feather itself104 or a 

combination of these two105. Pigmentary colour can be obtained by directly synthesising the 

pigment106, ingesting it in food107 or through deliberate staining108. Melanin, the most common 

pigment in vertebrates109, occurs in two types: eumelanin which yields black, grey and brown 

colour, and pheomelanin that generates shades of yellow to rufous (reddish-brown). Its synthesis 

is regulated by the melanocortin-1 receptor (MC1R), part the melanocortin system, and 

mutations in this gene have been linked to melanic colour variation in multiple organisms110–112, 

including birds106,113,114.  

The variation in colour of barn owl plumage from white to dark rufous (see above) is due to 

differential deposition of pheomelanin, yet its genetic basis has not been fully resolved. In 

Europe, a valine-to-isoleucine point substitution (V126I) in the MC1R gene explains roughly 30% 

of colour variation102,115. Owls homozygous for the ancestral valine allele (white allele) tend to be 

whiter, while the derived isoleucine allele (rufous allele) is linked to darker morphs (Figure 1) and 

significantly increases the expression of several key genes involved in melanin synthesis116. This 

very same MC1R mutation has been linked to melanic colour variation in gyrfalcons117 and 

domestic ducks118. Geographically, the distribution of MC1R alleles in European barn owls 
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follows the colouration cline, with high frequencies of the derived rufous allele in the north and 

northeast of Europe100,102. The rufous allele is estimated to have evolved from the ancestral 

white allele shortly before or early during the recolonization process and then have been 

gradually selected in the route north102. As discussed above, it remains difficult to identify the 

agents of selection on the European colour cline. This is further complicated by the pleiotropic 

nature of the melanocortin system, which regulates behaviour and physiology alongside the 

production of melanin, and associations between these traits are common among 

vertebrates119,120. As such, it is conceivable that colouration is not the actual target of selection 

but reflects instead the effect of local adaptation on other linked cryptic traits. 

 

 

Figure 1 – Barn owl plumage colouration and its genetic determination. On the left, white and dark rufous barn owls 
from Switzerland, a central population in the European cline where all morphs occur. Photo ©Isabelle Henry. On the 
right, colour distribution per MC1R genotype (W- white allele; R- rufous allele). Darker birds have higher brown chroma. 
Boxplot adapted from Burri et al.102. 
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Thesis Outline 

The general aim of my thesis was to characterize the impact of landscape barriers on the widely-

distributed barn owl using whole-genome sequences and modern population genomics tools 

(with one exception: chapter 5). Up to the start of this work, population genetic analyses on this 

species had been performed with microsatellites and short mitochondrial sequences100–102. 

While it provided a general picture of neutral genetic patterns around the Mediterranean Sea, it 

lacked the resolution to decipher processes occurring at finer geographical scales. Specifically, 

the history of island populations remained convoluted (for example, Crete and the Canary 

Islands) or even unstudied (for example, Cyprus and the British Isles), while the role of mountain 

ranges was overlooked.  

During my PhD, I focused mainly on insular barn owl populations from the eastern Atlantic Ocean 

and the Mediterranean Sea. Over three chapters, I studied the roles of neutral and adaptive 

processes in generating phenotypic and genetic variation in these populations with different 

levels of isolation. Then, in the two last chapters I studied the impact of mountain ranges in 

creating and shaping genetic structure and demographic history to varying degrees. 

In detail, my thesis was composed of the following chapters:  

Chapter 1: Barn owls from the British Isles are conspicuously white in comparison to their dark 

rufous mainland counterparts at similar latitudes. This is puzzling as owls are assumed to have 

colonised Britain from northern Europe and should thus be rufous, not white. Contrasting 

phenotypes such as this are often assumed to be due to selection, a theory we aimed to test. In 

this chapter, we first confirmed this discrepancy with phenotypical data and then addressed it by 

investigating how barn owls colonised the British Isles after the last glaciation. To do so, we 

coupled demographic modelling based on genomic data with species distribution models. 

Subsequently, we investigated whether northern (i.e. rufous) owls are frequent migrants into 

Britain by analysing patterns of neutral genetic structure supported by ringing data. Lastly, we 

probed genes associated with colouration, other than MC1R, for signals of selection on British 

and Irish owls. 

Chapter 2: The fate of an insular population is shaped by the timing of colonisation, fluctuations 

in population size as well as connectivity to neighbouring populations, is tightly linked to island 

characteristics and the circumstances of colonization. Although the colonization of a new and 

environment can be an opportunity for local adaptation to act and even facilitate speciation, 

small and isolated populations can also suffer the detrimental effects of inbreeding. In this 

chapter, we used 65 whole genome sequences to contrast two insular barn owl populations in 

the eastern Mediterranean. Namely, we focused on Crete and Cyprus, the two largest islands in 

the region, with similar geological age, climate, surface and distance to the mainland. We 
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investigated the mainland origin of each of these populations and attempted to discern their past 

demographic histories and how they impacted the current patterns of relatedness and inbreeding 

on each island. 

Chapter 3: Islands are often the setting of ecological speciation as they provide a new isolated 

environment to adapt to, insulated from encumbering gene flow. In the Canary Islands, the two 

easternmost islands out of the seven that compose the archipelago are home to a subspecies of 

barn owl, T. a. gracilirostris, characterized by its small size. Its presence on the islands closest to 

the continent, while the western islands hold the “standard” T. alba, is suggestive of strong local 

adaptation leading to early onset speciation, supposedly fuelled by the particularly arid local 

climate. In this chapter, we sampled both the subspecies and standard barn owls from the 

Canarias and inspected their genomes for signals of local adaptation, both to the common 

insular environment and to their specific islands. 

Chapter 4: The joint impacts of climatic fluctuations and landscape barriers influence the 

distribution of species by periodically isolating and reuniting populations. With the advent of 

sequencing technology, one can now disentangle the signatures of such events on the genetic 

makeup of individuals. Previous work with traditional genetic markers proposed that barn owls 

colonised Europe from a single glacial refugium and could have created a secondary contact 

zone in the Balkans where it met the Middle Eastern lineage. Using 94 whole-genome 

sequences, we revisited in this chapter the postglacial demographic history of barn owls in the 

Western Palearctic. Specifically, we tested the possibility of cryptic glacial refugia by combining 

demographic and species distribution modelling which allowed us to address the taxonomic 

relevance of the supposed rufous subspecies T. a. guttata. Lastly, we focused on the decisive 

role of mountain ranges in parting genetic lineages of barn owls at a continental scale. 

Chapter 5: In this final chapter, we were also interested in the impact of mountains as barriers 

but focused on the American barn owl, the largest of the sister taxa. We first assessed how North 

American and European owls differ in terms of overland connectivity using both genetic and 

ringing data from both continents. Then, we concentrated on the role of the biggest mountain 

barrier in this geographic range – the Rocky Mountains – and tested its impact on barn owl 

dispersal and gene flow. Chronologically, this chapter was published early in my thesis while we 

were still in the process of obtaining the genomic data for the remainder of the chapters. As 

such, it was not based on whole-genome sequences like the rest, but rather microsatellites and 

mitochondrial sequences from approximately 300 American museum specimens, and combined 

with European data from Burri et al.102. 
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Abstract 

The climate fluctuations of the Quaternary shaped the movement of species in and out of glacial 

refugia. In Europe, the majority of species followed one of the described traditional postglacial 

recolonization routes from the southern peninsulas towards the north. Like most organisms, barn 

owls are assumed to have colonized the British Isles by crossing over Doggerland, a land bridge 

that connected Britain to northern Europe. However, while they are dark rufous in northern 

Europe, barn owls in the British Isles are conspicuously white, a contrast that could suggest 

selective forces are at play on the islands. However, analysis of known candidate genes involved 

in colouration found no signature of selection. Instead, using whole genome sequences and 

species distribution modelling, we found that owls colonised the British Isles soon after the last 

glaciation, directly from a white coloured refugium in the Iberian Peninsula, before colonising 

northern Europe. They would have followed a yet unknown post-glacial colonization route to the 

Isles over a westwards path of suitable habitat in now submerged land in the Bay of Biscay, thus 

not crossing Doggerland. As such, they inherited the white colour of their Iberian founders and 

maintained it through low gene flow with the mainland that prevents the import of rufous alleles. 

Thus, we contend that neutral processes likely explain this contrasting white colour compared to 

continental owls. With the barn owl being a top predator, we expect future research will show this 

unanticipated route was used by other species from its paleo community. 

 

Keywords 

Demographic inference; MC1R; Plumage colouration; Reference genome; Species distribution 

modelling; Whole-genome resequencing. 
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Introduction 

The dramatic climate fluctuations of the Quaternary were key in shaping the global distribution of 

species and communities observed today16,121. During the last glaciation, northern Europe was 

largely covered by ice caps, and the resulting lower sea levels unveiled an expanded coastline 

widely different from that of today. The inhospitable conditions throughout the continent forced 

many temperate species into warmer refugia, most commonly the southern peninsulas of Iberia, 

Italy and Balkans122,123. Once temperatures started increasing about 18 thousand years BP, ice 

sheets melted, the sea rose and these species re-expanded northwards into central and northern 

Europe, a key step in determining their modern distribution and genetic structure across the 

continent. Early comparative phylogeography studies described differences in the route and 

timing of colonisation from each refuge population and identified the main post-glacial 

recolonization patterns from the south 121,123,124. However, advances in sequencing technology 

and the consequent increase in studies with high representation molecular markers have since 

provided numerous examples of alternative routes and cryptic refugia for different taxa in 

mainland Europe as well as on islands125–129. 

The colonisation of the British Isles by terrestrial organisms has often been described in the 

context of the main phylogeographic patterns, with mainland north-western Europe as its origin 
121,123,130. Such a route would have been facilitated by Doggerland, a large land bridge of alluvial 

plains that connected Great Britain (GB) to mainland northern Europe before submerging under 

the north Sea 8’000 years BP131,132. Most terrestrial vertebrates of GB do appear to have arrived 

via Doggerland, as evidenced by the similarity between its mammal fauna and that of northern 

rather than southern Europe130. Nonetheless, some species believed to have followed this path 

were found to have had glacial refugia on the islands themselves125, including plants133, 

amphibians134,135 and mammals136,137. Some taxa revealed other surprising post-glacial patterns 

such as colonization of the British Isles from multiple refugia in independent waves (badger138, 

water vole139) and even separate colonisation of Ireland and GB (stoat140).  

Barn owls (Tyto alba) recolonised western Europe following the last glaciation from a refugium in 

the Iberian Peninsula100,102. On the mainland, barn owl ventral plumage colouration follows a 

latitudinal cline ranging from mostly white in the southern populations to dark rufous in the 

north100,101. Despite their post-glacial expansion route, the clinal variation in colour was not a 

neutral by-product of range expansion, but was rather created and maintained by an 

independent post-glacial selective process100. The genetic basis of this pheomelanin-based trait 

is not fully understood, but a specific non-synonymous variant (V126I) in the melanocortin-1 

receptor (MC1R) gene has been found to explain roughly 30% of its variation in Europe115. The 

derived MC1R rufous allele produces the darkest owl phenotypes and follows the European 

colour cline of increasing frequency with latitude102. 
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It is hypothesised that, given their aversion to crossing large water bodies, barn owls recolonized 

Great Britain following the traditional route by crossing over Doggerland141. However, barn owls 

from the British Isles are famously white141,142 in stark contrast to their darker mainland 

counterparts at similar latitudes. Over-land expansion from a north-western European population, 

inhabited mostly by rufous owls with 10% - 45% rufous MC1R allele, would be at odds with the 

whiteness of the GB population. This disparity is especially startling, given that rufous individuals 

disperse further than white ones143,144, and would thus be more likely to colonise the islands in 

the first place. Finally, with GB being a recently isolated island, its avifauna is very similar to that 

of continental Europe (albeit less species rich), and examples of such phenotypic divergence 

from the mainland are rare; the barn owl is thus an intriguing exception. Being sensitive to 

extreme cold145, a northern refugium seems unlikely. However, such phenotypic disparity 

suggests that, unless strong selective pressure is involved, the colonisation timing and route of 

barn owls of the British Isles might have been less straightforward than has been assumed. 

Here, we address the post-glacial colonisation history of barn owls in the British Isles in light of 

the puzzling whiteness of their plumage. First, with a new broad sampling of 147 individuals from 

western Europe, we confirm that owls from the British Isles do not fit into the expected 

colouration and MC1R pattern of the mainland, with darker individuals at higher latitudes. Taking 

advantage of a highly contiguous newly-assembled reference genome and using the whole-

genome sequences of 61 individuals, we use the neutral genetic structure to model the 

demographic history of barn owl colonisation of the northern part of Europe and the British Isles 

from a glacial refugium in Iberia. Then, we use ringing data to support estimations of current 

gene flow. Lastly, we investigate the potential role of other colour-linked genes in maintaining the 

phenotypic disparity in plumage colour between the British Isles and mainland Europe.  

 

 

Materials & Methods 

Tissue sampling, MC1R genotyping and colour measurement 

In total, 147 individual barn owls were sampled for this study from six European populations 

(Sup. Table 1): Ireland (IR), Great Britain (GB), France (FR), Switzerland (CH), Denmark (DK) and 

Portugal (PT). A denser sampling was performed in the British Isles (n=113) as this was the first 

time these populations were studied, while for the mainland populations data was already 

available102. Genomic DNA was extracted from blood, feathers or soft tissue using the DNeasy 

Blood & Tissue kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions, including 

RNA digestion with RNase A. A previously established allelic discrimination assay115 was used to 

molecularly determine individual genotypes at the amino acid position 126 of the Melanocortin 1 
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receptor (MC1R) gene of the 147 individuals (Sup. Table 1). Additional allelic frequencies at this 

locus published in Burri et al.102 from the mainland populations of interest to this study were 

used for context (N=247 individuals; Appendix 1). 

For all individuals with available breast feathers (n=145), pheomelanin-based colour was 

estimated as the brown chroma of the reflectance spectra (for detailed description see 

Antoniazza et al.101. Briefly, the brown chroma represents the ratio of the red part of the 

spectrum (600–700 nm) to the complete visible spectrum (300–700 nm). The reflectance of 

four points of the top of three overlapping breast feathers was measured using a S2000 

spectrophotometer (Ocean Optics, Dunedin, FL) and a dual deuterium and halogen 2000 light 

source (Mikropackan, Mikropack, Ostfildern, Germany). An individual’s brown chroma score was 

obtained as the average of these four points. Brown chroma data from Burri et. al.102 were used 

to complete the dataset, using the same individuals as for the MC1R analysis (Appendix 1). Given 

the marked non-normality of the data, a non-parametric Kruskal-Wallis test was performed to 

detect differences in coloration between the six populations. Further, a Pairwise Wilcoxon Rank 

Sum test was used to identify significant differences between pairs of populations using a 

Bonferroni correction. 

 

New reference genome 

As the available reference genome for the European Tyto alba was fragmented92, a new 

reference was produced in order to achieve a near chromosome-level assembly. A full description 

of the process and its detailed results are given in Appendix 2. Briefly, a long-read PacBio library 

was produced from a blood sample of a Swiss individual at an expected coverage of 100x for the 

barn owl’s 1.3Gb genome. FALCON and FALCON-Unzip v.3146 were used to assemble PacBio 

reads. Then, a high molecular weight DNA Bionano optical mapping library was used to assemble 

PacBio contigs into scaffolds. Finally, repeated regions were identified using RepeatModeler 

v.1.0.11147 and masked with RepeatMasker v.4.0.7148. Coding regions were identified using the 

Braker2 pipeline v.2.0.1149–153. 

 

Whole-genome resequencing and SNP calling 

For the population genomics analyses of this study, the whole genomes of 61 out of the 147 

individual barn owls were sequenced (Sup. Table 1). In addition, one eastern (T. javanica from 

Singapore) and one American barn owl (T. furcata from California, USA) were used as outgroups. 

See Supplementary Methods for a complete description of the library preparation, sequencing, 

SNP calling and filtering. Briefly, individual 100bp TruSeq DNA PCR-free libraries (Illumina) were 

sequenced with Illumina HiSeq 2500 high-throughput paired-end sequencing technology at the 



23 

 

Lausanne Genomic Technologies Facility (GTF, University of Lausanne, Switzerland). The 

bioinformatics pipeline used to obtain analysis-ready SNPs was adapted from the Genome 

Analysis Toolkit (GATK) Best Practices154 to a non-model organism following the developers’ 

recommendations, producing a full dataset of 6’721’999 SNP for the 61 European individuals 

with an average coverage of 21.1x (3.36 SD). 

 

Population structure and genetic diversity 

To investigate population structure among our samples, sNMF v.1.2155 was run for K 2 to 6 in 25 

replicates to infer individual clustering and admixture proportions. For this analysis, singletons 

were excluded and the remaining SNPs were pruned for linkage disequilibrium (LD) with PLINK 

v1.946156 (parameters -indep-pairwise 50 10 0.1) as recommended by the authors, yielding 

319'801 SNP. The same dataset was used to perform a Principal Component Analysis (PCA) with 

the R package SNPRelate157. Treemix158 was used to infer population splits in our data, using the 

LD-pruned dataset further filtered to include no missing data (180’764 SNP). To detect 

meaningful admixture between populations, 10 replicates were run for 0 to 8 migration events, 

with the tree rooted on the PT population, representative of the glacial refugium. An extra run 

without migration events was conducted with a north-American owl as an outgroup in the dataset 

to verify that the root did not affect the topology of the tree.  

To estimate population statistics, individuals found to be mis-assigned to their given population 

based on genetic structure analyses (PCA and sNMF) were removed so as not to bias allelic 

frequencies (N=3 individuals from Ireland). Individual expected and observed heterozygosity and 

population-specific private alleles were estimated using custom R scripts for each genetic lineage 

identified by sNMF with K=4. To account for differences in sample sizes, private alleles were 

calculated by randomly sampling 9 individuals from the larger populations (GB and central 

Europe) 10 times in a bootstrap-fashion and estimating the mean. Individual-based relatedness 

(β159), inbreeding coefficient for SNP data, overall and population pairwise FST160 were calculated 

with SNPRelate.  

 

Gene flow and migration analyses 

Migration surface estimate 

The Estimated Effective Migration Surface (EEMS) v.0.0.9 software161 was used to visualize 

geographic regions with higher or lower than average levels of gene flow within our dataset. The 

provided tool bed2diff was used to compute the matrix of genetic dissimilarities, from the dataset 

pruned for LD produced above. The free Google Maps api v.3 tool 
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(http://www.birdtheme.org/useful/v3tool.html) was used to draw the polygon outlining the study 

area in western Europe. EEMS was run with 750 demes in three independent chains of 5 million 

MCMC iterations with a 1 million iterations burn-in. Results were checked for MCMC chain 

convergence visually and through the linear relation between the observed and fitted values for 

within‐ and between‐demes estimates using the accompanying R package rEEMSplots v.0.0.1161. 

The three MCMC chains were combined to produce maps of effective migration and diversity 

surfaces with the provided functions in rEEMSplots. 

 

Treatment and analyses of capture-recapture data 

In addition to genomic data, recapture data of ringed barn owls across Europe were obtained 

from the EURING database (obtained in March 2020162,163). Specifically, we estimated the 

frequency of crosses over open water between GB and central and western Europe, as well as 

between GB and Ireland. To do so, we kept records of birds that had been recaptured at least 

once after ringing (n=94’797 recaptures, n=80’083 individuals, from 1910 to 2019) and filtered 

the accuracy of the “time of capture” parameter to a period of within 6 weeks of the reported 

date to exclude potentially unreliable data points. We extracted the number of birds ringed and 

recaptured in GB and Ireland, as well as in the countries that produced or received migrant birds 

from these islands and central Europe (Belgium, Denmark, France, Spain, Germany, Switzerland 

and The Netherlands). Crosses between islands and to/from the mainland are reported and 

include birds that were found dead in the sea (n=8). All counts and percentages reported are 

relative to the number of individual birds recaptured (rather than number of recapture events, as 

a single bird can be recaptured multiple times).  

 

Post-glacial species distribution  

To support the demographic scenarios tested in the following section, we modelled the past 

spatial distribution of barn owls in western Europe, in order to identify the regions of high habitat 

suitability at the last glacial maximum (LGM, 20’000 years BP). A complete description of the 

models can be found in Supplementary Methods. Briefly, using Maximum Entropy Modelling 

(MaxEnt), a presence-only based modelling tool, we built species distribution models (SDM) for 

the Western Palearctic (Sup. Fig. 1) based on climatic variables extracted from the WorldClim 

database164 at 5 arc min resolution. The best combination of feature and regularization multiplier 

based on the corrected AIC (as recommended by Warren & Seifert, 2011) was achieved with a 

quadratic model with 1 as regularization multiplier (Sup. Table 5). Then, the output of the models 

was transformed into a binary map of suitability in which only cells suitable in 90% of the models 

are presented as such in the map. All models were then projected to the mid-Holocene (6’000 

http://www.birdtheme.org/useful/v3tool.html
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years BP) and LGM (20’000 years BP) conditions extracted from WorldClim at the same 

resolution as current data. For each timepoint, the results of the models were merged and 

transformed into a binary map as for the current data. 

 

Maximum-likelihood demographic inference 

Data preparation 

To discriminate between different demographic scenarios for the colonisation of the British Isles 

by barn owls we used the software fastsimcoal275,166. Individuals and variants in the dataset 

used here as input went through additional filtering steps in an attempt to ensure neutrality and 

homogeneity between samples (Sup. Methods). Given their similarity (Fig. 1b&c), the original 

populations of France, Denmark and Switzerland were combined into a central European 

population (EU). The remaining populations were Portugal (PT), Great Britain (GB) and Ireland 

(IR), with 8 individuals each (Sup. Table 1). Population pairwise SFS were produced from the 

filtered dataset of 739'168 SNP. 

 

Demographic scenarios and parameters 

Three different scenarios of colonization of central Europe and the British Isles from the Iberian 

Peninsula were simulated (Figure 3), distinguishable by the difference in timing and origin of the 

insular populations: north-western (NW) European origin, Iberian origin and insular refugium. 

Each scenario was further split in two versions (A and B) to accommodate small changes in 

topology. For all scenarios, wide search ranges for initial simulation parameters were allowed for 

population sizes, divergence times and migration rates while accounting for census and 

geological data (Sup. Table 7). Splits were preceded by instantaneous bottlenecks, in which the 

founding population size was drawn from a log-uniform distribution between 0.01 and 0.5 of 

current population sizes. All times were relative to the end of the last glaciation (18’000 years 

BP, rounded to 6000 generations ago), bounded between the present and the previous 

demographic event in the model. 

In scenario NW European origin A, after an initial post-glaciation size expansion, the ancestral PT 

population colonized central Europe. From here, barn owls sequentially reached Great Britain and 

Ireland, potentially across the Doggerland land bridge. In version B, a smaller second glacial 

refugium is hypothesized to have existed in southern France, above the Pyrenees, as the founder 

of the central European population after the glaciation. In both versions, barn owls reached the 

British Isles from central Europe. In the Iberian origin scenarios, the insular populations 

originated directly from PT. Spatially, this could have taken place across now-submerged land in 
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the Bay of Biscay, west of current-day France and north of Spain. Genetically, the insular birds 

would have been derived from the initial genetic pool in Iberia rather than from the subset in 

central Europe. Versions A and B of this scenario differ in the timing of colonization, with Europe 

being colonized before the islands in A and after in B. Lastly, the insular refugium scenarios 

hypothesize a separate and smaller glacial refugium in the south of the British Isles that would 

have been the origin of today’s populations on the islands. Such refugia have been described for 

some terrestrial organisms albeit not birds125,133,134,167. Central Europe would be colonized post-

glacially from PT. In version A and B of this scenario, the second glacial refugium would be part of 

an ancestral GB or IR population, respectively. 

In summary, the NW European origin scenario reflects the shortest overland path based on 

current geography, whereas the remaining scenarios attempt to address the whiteness in the 

British Isles by avoiding shared ancestry with darker-coloured populations at different time 

scales, as well as the changes in the coastline during and after the last glaciation. For all 

scenarios, migration was allowed between neighbouring populations (Figure 3; Sup. Table 7). 

 

Demographic inference 

Demographic simulations and parameter inference were performed under a composite-likelihood 

approach based on the joint site frequency spectrum (SFS) as implemented in fastsimcoal275,166. 

For each scenario, 100 independent estimations with different initial values were run (Sup. 

Methods). The best-fitting scenario was determined based on Akaike’s information criterion (AIC; 

Akaike 1974) and confirmed through the examination of the likelihood ranges of each scenario 

as proposed in Kocher et al.169. For the best-fitting scenario, non-parametric bootstrapping was 

performed to estimate 95% confidence intervals (CI) of the inferred parameters. For each block-

bootstrapped SFS, 50 independent parameter inferences were run for the best-fitting scenario 

(see Sup. Methods for a detailed explanation).   

 

Genome scans of colour-linked genes 

Genome-wide scans were used to compare patterns of divergence and diversity between 

populations. SNPs were filtered to a minimum derived allelic frequency of 5%, and VCFtools was 

used to calculate nucleotide diversity (π) for each population and to estimate FST160 between 

pairs of populations in 20kb sliding windows with 5kb steps across the whole genome. For our 

comparisons, Great Britain and Ireland were combined as British Isles; France and Switzerland as 

central Europe. Denmark was not included in the latter due to its markedly darker phenotype 

(Fig. 1a). The British Isles were compared to all other groups of individuals: white in Portugal, 
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intermediate in central Europe and dark rufous in Denmark. Further, Portugal and Denmark were 

also compared.  

In our genomic dataset, owls from the British Isles and Portugal carried the same genotypes at 

the MC1R mutation (100% V allele) despite there being considerably more variation in colour 

among Portuguese individuals (Fig. 1a). As such, we first investigated whether insular individuals 

showed particular diversity or divergence at the surrounding positions within the MC1R gene that 

could relate to their pure white colour. Since the MC1R gene in barn owls is particularly GC rich115 

and is embedded in a region with a lot of homopolymeric sequences, the sequencing in this 

region has a considerably lower coverage than the average of the genome. To account for this, 

the scaffold containing this gene was extracted from the raw SNP set and re-filtered with similar 

site thresholds as described above, except for allowing 25% overall missing data (instead of 5%), 

limiting the minimum individual DP to 5 (instead of 10) and the minimum minor allelic count to 3. 

VCFtools was used to calculate nucleotide diversity for each population and to estimate FST160 

between pairs of populations in 5kb sliding windows with 1kb steps along this scaffold. 

Second, to widen our search to other colour-linked genes besides MC1R, we mapped 22 

autosomal candidate genes (Appendix 3) onto the reference genome using Blast v.2.9.0170. 

Windows including the candidate genes were plotted onto genomic scans (5kb windows with 1kb 

step) to check for overlap with peaks or drops in diversity and/or differentiation. 

 

Results 

MC1R genotyping and colour measurements 

Plumage colour comparisons showed that the British Isles have the whitest owls of all measured 

European populations (Fig. 1a; X2 = 243.28, p < 0.001). Most pairwise comparisons were 

significantly different after correction, with the exception of between GB and IR owls, and 

between CH and FR. As for MC1R genotyping, notably no I allele was found among the 113 

genotyped individuals of the British Isles indicating it is absent from these populations or at very 

low frequency. 

 

New reference genome 

The new reference genome produced for European barn owl was a near chromosome level 

assembly, and has been deposited at DDBJ/ENA/GenBank under the accession 

JAEUGV000000000. Sequencing of the new reference genome’s PacBio library yielded 7.3 

million long reads with a total sum length of unique single molecules of 135 Gbp (N50 > 31Kb) 

yielding a realized coverage of 108x. Its assembly with FALCON and FALCON-Unzip resulted in 
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478 primary contigs partially phased, and 1736 fully phased haplotigs which represented 

divergent haplotypes. Optical mapping with Bionano produced a final assembly of 70 scaffolds, 

slightly more than the barn owl’s karyotype of 46 chromosomes 92. The final assembly was 1.25 

Gbp long, with an N50 of 36 Mbp and BUSCO score of 96.9% (see Appendix 2 Table 1 for full 

assembly metrics). In comparison, the previous reference assembly 92 had 21,509 scaffolds, with 

an N50 of 4.6 Mbp.  

 

Population structure and genetic diversity 

Our dataset was composed of four main genetic clusters identified by individual ancestry 

analyses (sNMF) and PCA clustering. Individuals from Portugal (PT), Great Britain (GB) and Ireland 

(IR) belonged to their specific population ancestry, while individuals from France (FR), Denmark 

(DK) and Switzerland (CH) formed a single central European cluster (Fig. 1b,c; Sup. Fig. 3). 

Consistently, the first axis of the PCA opposed PT to GB & IR, as seen with sNMF K=2 (Sup. Fig. 

3). The second axis clustered the central European individuals together and opposed them to PT 

(Fig. 1b). GB and IR segregate in both the first and second axes. Three barn owls sampled in 

Ireland showed a clear genetic signal of belonging to the Great Britain genetic cluster (Fig. 1b,c; 

Sup. Fig. 3). To avoid their interference in estimating allelic frequencies, they were omitted when 

estimating diversity and differentiation statistics.  

Analyses of genetic drift with Treemix yielded a population tree with two branches splitting from 

PT. The first is a long branch of drift that divides into GB and IR, while the second, shorter branch, 

diversified into the three central European populations (Fig. 4a). Plotting the likelihood of runs 

and the standard error (SE) of each tree showed that including one migration event from PT to CH 

(migration edge weight = 0.27) considerably increased the fit of the tree to the data (Sup. Fig. 5). 

The overall FST was 0.035. Population pairwise FST were the highest between Ireland and central 

Europe (Sup. Table 3). Overall, populations within central Europe showed the smallest 

differentiation (FST below 0.02) and the British Isles had the highest values in comparison to all 

mainland populations (Sup. Table 3). Diversity estimates showed higher levels in PT than in any 

other population and the British Isles had the lowest (Sup. Table 2). Individual relatedness was 

highest within IR, followed by GB (Sup. Fig. 4). On the opposite end, PT had the lowest within-

population relatedness as well as with the other populations, consistent with its higher diversity. 
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Figure 1 – Colouration and genetic structure of barn owl populations in Western Europe. (a) Brown chroma distribution 
and MC1R allelic frequencies of each studied population (total N=145). Higher brown chroma indicates redder owls. 
NS denotes the non-significant pairwise comparisons. The pies below the plot indicate the populations’ allelic 
frequencies at the MC1R mutation: the rufous allele in brown and the white in beige. (b) PCA based on the pruned SNP 
set of the 61 individuals whose whole genome was re-sequenced. Point shape and colour denote populations 
according to the legend. Dashed circles enclose sample clusters observed in sNMF. Values in parenthesis indicate the 
percentage of variance explained by each axis. (c) Population structure. Small pie charts denote the individual 
proportion of each of K=4 lineages as determined by sNMF. Black dots are located at the approximate centroid of each 
sampled population.  

 

 

Migration and gene flow 

The English Channel – including the strait of Dover and the southernmost part of the North Sea – 

was identified by Estimated Effective Migration Surface (EEMS) as a region with lower than 

average gene flow between populations (Fig. 2a). This corridor extended west to the Atlantic. 

Furthermore, this analysis highlighted a region of low gene flow between the British and Irish 

populations. It put a barrier in Ireland by separating the north from the rest of the island, 

effectively isolating the three individuals sampled in Ireland that genetically resemble the British 

and clustering them with GB. 

Analyses of capture-recapture data of ringed owls (N=80’083 individuals, from 1910 to 2019) 

revealed that all individuals ringed in Ireland (N=81 individuals) were recaptured in Ireland. As for 

GB, the vast majority (99.92%) of its ringed individuals (N=17’903) were also recaptured in GB 

and only 14 migrated out of the island: seven to Ireland (100% of this island’s immigrants) and 
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seven to mainland Europe (Fig. 2b – Emigrants; Sup. Table 4a). In the opposite direction, GB 

received 21 individuals from the mainland (Fig. 2b - Immigrants), specifically from Belgium, the 

Netherlands and northern Germany (Sup. Table 4b). Of the immigrant birds, 19 were found dead, 

one severely injured with unknown fate, and one breeding. The latter was a female from the 

Netherlands, but the fate of its brood is not known. In the mainland, central European countries 

show considerably higher exchanges of individuals with each other (Sup. Table 4c) than with GB 

(Sup. Table 4b). 

 

 

Figure 2 – Barn owl gene flow and dispersal between the British Isles and mainland Western Europe. (a) Estimated 
effective migration surface (EEMS) based on whole-genome data. Blue and brown shading denote regions of higher 
and lower than average gene flow, respectively. Black dots indicate individual sampling location. (b) Ringing and 
recapture locations of barn owls known to have flown out of (Emigrants) or into (Immigrants) Great Britain from 1910 
to 2019, based on data courtesy of EURING. Lines simply connect two capture points and do not represent the actual 
path travelled by birds. Emigrant ringing locations in GB are coloured in blue, and recaptures in red. Immigrants into 
GB are coloured according to country of origin (orange – Belgium; green – Germany; blue – The Netherlands).  

 

 

Post-glacial species distribution  

Habitat suitability projections for barn owls in the past showed that, at the time of the last 

glaciation, there was suitable land for barn owls outside of the known refugium of Iberia from a 

climatic perspective (Fig. 4c). Specifically, south of today’s British Isles there was a corridor of 

suitable land submerged nowadays, as well as along the south and western coasts of France, 

and a small cluster inland southern France. At the mid-Holocene (6’000 years BP), the coastline 

resembled that of present day, and the distribution of suitable habitat for barn owls resembled 

that of nowadays (Fig. 4c). 
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F 
 
Figure 3 – Hypothesized demographic scenarios for the colonization of the British Isles by barn owls. (a) Tested 
demographic scenarios for the colonization of the British Isles by barn owls. There are three main topologies – NW 
European Origin, Iberian Origin and Insular Refugium – each with two version (A & B; first and second line respectively). 
The four main genetic clusters in our dataset were used: Portugal (PT), Central Europe (EU), Great Britain (GB) and 
Ireland (IR). Population EU in this analysis is composed of individuals from FR and DK. Indicated times were fixed in the 
models (6’000 and 8’000 generations ago), and the remaining time parameters were inferred relative to them or to 
the event immediately before (for example, T3 was bound between the present and T2). Cones depict post-glacial size 
increase and arrows gene flow between adjacent populations. In Insular Refugium topologies, TSG= time of start of 
glaciation in the insular lineage, TEG= time of end of glaciation in the insular lineage. (b) Schematic representation of 
the colonisation route to the British Isles for each scenario. 
 

 

Demographic inference 

AIC and raw likelihood comparisons showed the Iberian origin B model to be the best at 

explaining the SFS of our dataset (Sup. Table 6; Fig. 4b). In this model, an ancestral insular 

lineage split from the mainland refugium lineage in Iberia fairly soon after the end of the 

glaciation, estimated at approximately 13’000 years ago (95% CI: 7’000-17’000 years BP; 

calculated with 3-year generation time). Only much later, the model predicted the split of the 

central EU population from PT at 4’000 years BP (95% CI: 1’000-5’000 years BP) and the 



32 

 

separation between GB and IR at 1’200 years BP (95% CI: 220-2’200 years BP). Estimated 

effective population size was the largest in the PT population, followed by EU, GB and IR (Fig. 4b). 

Migration between populations was higher before these split than in recent times (Sup. Table 8; 

Ancestral vs Recent migration). Highest recent gene flow was observed from PT to EU, agreeing 

with Treemix’s first migration event (Sup. Fig. 5). Migration levels between the two islands and 

with the mainland were of a similar order of magnitude and less than half of that between 

mainland populations, consistent with the two barriers to gene flow identified by EEMS (Fig. 2a). 

Point estimates with 95% confidence intervals for all parameters of the best model are provided 

(Sup. Table 8), as well as single point estimates for the rest of the models (Sup. Table 7). 

 

 

Figure 4 – Demographic history of barn owls in the British Isles. (a) Treemix analysis with zero migration events. (b) 
Best supported demographic model for the colonisation of the British Isles as determined by fastsimcoal2. Time is 
indicated in thousands of years, determined using a 3-year generation time, confidence intervals at 95% are given 
between brackets. Population sizes (haploid) are shown inside each population bar; arrows indicate forward-in-time 
migration rate and direction. Population EU in this analysis is composed of individuals from FR and DK. (c) Species 
distribution model of barn owls projected into past conditions – last glacial maximum (20’000 years BP) and mid-
Holocene (6’000 years BP) – compared to today’s distribution. Only locations with high suitability in at least 90% model 
averaging are coloured in dark grey. Below that threshold cells were considered as unsuitable (lightest grey shade on 
the graph). Modern coastline is shown in blue. 
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Genome scans of colour-linked genes 

Genome-wide scans revealed some high peaks of differentiation between populations, but none 

overlapped with the colour-linked candidate genes tested (Appendix 3). In particular, the MC1R 

region showed no particular sign of increased differentiation between pairs of populations, nor 

drop in diversity, with the exception of the known causal SNP between populations with different 

genotypes (Fig. 5b; Appendix 3).  

 

Figure 5– Differentiation at the colour-linked locus 
V126I of the MC1R gene between differently coloured 
barn owl populations in Europe. (a) Genome-wide FST 
values per window (in grey, 20Kbp windows with 5Kbp 
steps), between two white barn owl populations on the 
horizontal axis – British Isles (BI) and Portugal (PT) – 
and between one white and one rufous on the vertical 
axis – British Isles and Denmark (DK). The distribution 
of each variable is shown on the histograms. Blue dots 
indicate the FST at windows containing the tested 
colour-linked genes. Windows containing the MC1R are 
encircled in blue, and their mean is shown with the blue 
line on the histograms. (b) FST along the genome 
around the MC1R gene (grey box). Dots are per site 
values, and lines the mean over sliding windows 
(500bp with 100bp step), for the same comparisons as 
above: British Isles and Portugal in blue; British Isles 
and Denmark in green. Circled dots indicate the V126I 
locus in both comparisons. 

 

 

 

 

 

 

 

 

Discussion 

Like most terrestrial species, barn owls are assumed to have colonized the British Isles after the 

last glaciation by crossing over Doggerland, a land bridge that connected GB to northern Europe. 

In continental Europe, barn owls display a marked latitudinal colour cline maintained through 

local adaptation101. However, in the British Isles they are conspicuously white in comparison to 

their nearest mainland counterparts questioning whether this is their source population. The 

currently held interpretation for their whiteness is a strong selection on this trait after 
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colonisation. Here we provide evidence for a simpler explanation that does not require selection. 

Using whole-genome sequences and demographic simulations, we show that the colour disparity 

can be explained by the patterns in neutral genetic differentiation, resulting from an unexpected 

colonization route to the British Isles. We provide evidence for an early split of the insular lineage 

and low levels of gene flow with the mainland. Having found no evidence of selection on colour in 

the British Isles, it is plausible that this population has simply remained the white colour of its 

founders. 

 

Genetic isolation from the mainland 

Our results based on whole genomes revealed genetic structure among western European barn 

owls despite shallow differentiation for a cosmopolitan bird (overall FST 0.035) and showed 

genome wide genetic isolation between the islands and the mainland, accompanied by low levels 

of gene flow and migration. On the mainland, Portugal displayed the highest levels of genetic 

diversity (Sup. Table 2) and the largest estimated population size (Fig. 4b; Sup. Table 8), in 

accordance with its known role as a glacial refugium 100. While forming its own population cluster 

(Fig. 1b,c), we found evidence of considerable gene flow towards central Europe (Fig. 2a, 4a,b; 

Sup. Table 8), consistent with a recent split between the two populations (less than 5’000 years 

BP; Fig. 4a) and the relatively low differentiation between them (Sup. Table 3). This suggests that 

the Pyrenees are permeable to barn owl migration, unlike other higher and larger mountain 

ranges 171. In central Europe, barn owl populations appear to be remarkably homogenous 

genetically, despite covering a large geographical and colour range (Fig. 1, Sup. Table 3), in 

accordance with previous studies of continental Europe with traditional markers101, and 

supported by capture-recapture data that revealed high amounts of exchanges in central Europe 

(Sup. Table 4c).  

Ireland and GB showed the lowest diversity and estimated effective population sizes in our study 

(Fig.4; Sup. Tables 2, 8). Barn owl populations of each island are genetically distinct from each 

other as well as from the mainland (Fig. 1, 4a; Sup. Table 3). Genomic differentiation (Fig. 1, 2a, 

4a,b; Sup. Table 3) and capture-recapture data with only a handful of exchanges recorded in the 

last century (Fig. 2b; Sup. Table 4a&b), suggest gene flow with the mainland is low. Specific 

analyses highlighted a barrier to gene flow extending from the Celtic Sea, through the English 

Channel to the North Sea (Fig. 2a), effectively isolating the British Isles from the mainland. 

Between the two islands, isolation appears to be recent (less than 2230 years BP; Fig. 4a,b; Sup. 

Table 8), despite relatively high genetic differentiation (Sup. Table 3) likely exacerbated by an 

important effect of genetic drift in such small populations. There is little sign of current pervasive 

admixture in either direction (Fig. 1c), consistent with the role of the Irish Sea as a strong barrier. 

However, there are records of owls from GB migrating into northern parts of Ireland (Fig. 2b – 
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Emigrants), the most easily accessible part of the island, while avoiding major water bodies by 

island-hopping from Scotland. Curiously, three of the individuals we sampled in Ireland for whole-

genome sequencing (all sampled from found carcasses) appeared to be genetically from GB (Fig. 

1b,c), driving EEMS to place a gene flow barrier nearly along the political border between the two 

countries of Ireland instead of the sea (Fig. 2a). Northern Ireland appears to be inhospitable for 

barn owls, at least in modern times, with only 1 to 3 pairs recorded per year in the whole 

country172. It could be acting as an extension of the sea barrier with the birds that fly in from GB 

being unable to find mates and thus not contributing to the genetic pool of the southern 

population, accentuating the differentiation between the two islands. 

 

Disparity in plumage colouration 

Plumage colouration in barn owls, and the linked MC1R locus, follow a clinal distribution in 

continental Europe maintained by local adaptation101,102. Here, we formally establish that barn 

owls from the British Isles do not follow the continental latitudinal cline and are whiter than any 

continental population in Europe, including even Portugal (Fig. 1a), confirming what was 

previously untested common knowledge among ornithologists. The rufous MC1R allele appears 

to be virtually absent in these populations in contrast to its close to 50% frequency at similar 

latitudes on the mainland, where dark morphs are positively selected (Fig. 1a 100,102). While 

genome-wide scans confirmed the important role of the known MC1R mutation in determining 

rufous colouration (Fig. 5a), it appears to be restricted to the SNP variant itself and not the 

adjacent genomic regions (Fig. 5b). Our results are consistent with previous studies that showed 

that carrying a single copy of the rufous allele is sufficient to ensure a darker phenotype, while 

individuals homozygous for the white allele can have a wide range of colouration102,115.  

This colour trait is likely polygenic, given that the known MC1R mutation explains only 30% of its 

variation102,115 and its high heritability95. Other loci could act in conjunction with a homozygous 

white MC1R to either produce whiter birds in GB or slightly darker morphs in Iberia. However, 

none of the other known colour-linked genes tested here explain how white owls homozygous for 

the white MC1R allele from Portugal reach darker phenotypes than those of the British Isles (Fig. 

1a, 5a; Appendix 3). Alternatively, it is conceivable that the phenotype we observe – colouration – 

simply reflects the pleiotropic effect of insular local adaptation on other linked cryptic traits. The 

melanocortin system regulates behaviour and physiology alongside the production of melanin, 

and associations between these traits are common among vertebrates119,120. Further work, 

potentially focusing on colour-varied populations to avoid the confounding factor of population 

structure could help elucidate the genetic basis of barn owl plumage colouration. If such other 

loci are found, it would be fascinating to investigate their distributions and interaction with MC1R 

along the continental colour cline as well as on the British Isles. 



36 

 

Colonisation of the British Isles  

Demographic simulations based on neutral sites showed that the British Isles were colonized 

from the glacial refugium in the Iberian Peninsula soon after the end of the glaciation (Fig. 3b). 

This would have occurred while the British Isles were still connected to the mainland and the 

landmass extended considerably further south than today’s islands, following a corridor of 

suitable climatic conditions along the coast leading west (Fig. 4c) completely separate from 

Doggerland. It is also possible that this corridor was already occupied by barn owls in a 

continuous population with Iberia before becoming isolated, as this species easily maintains high 

over-land gene flow (Fig. 1b&c, 2a; Sup. Table 4c). Our wide confidence intervals make it hard to 

pin-point exactly the time of the actual split between the insular lineage from that of Iberia, but 

with the fast rise of sea levels and opening of the delta in the English Channel, the southern 

route to the islands would have been closed by 10’000 years BP173,174. Crucially, at this time prey 

would already be available in the form of voles, shrews, lemmings and bats130. Once separated, 

the insular lineage underwent a long period of genetic drift, isolated from the mainland 

population in Iberia but homogenous within itself before splitting between the two islands (Fig. 

4a,b). 

On the mainland, central European populations split genetically from the Iberian refugium much 

later (less than 5’000 years BP). Large population sizes and high overland gene flow (Fig. 4b; 

Sup. Table 8) might thus have maintained low differentiation for a long period of time, but also 

climatic conditions north of the Pyrenees may have taken longer to become favourable. The latter 

hypothesis would further counter the traditional point of view of Doggerland as the point of arrival 

for barn owls, as they could have not yet reached such high latitudes before Doggerland 

submerged 8’000 years BP. Intriguingly, our demographic model predicts high migration from GB 

into central Europe between the splits of the latter with Iberia and between the two islands (Fig. 

4b), which appears unlikely with all land bridges submerged at this point (less than 5’000 years 

BP). It is possible that the migration rate was inflated as the model did not allow for gene flow 

between the ancestral insular and mainland populations before the first split and thus forced all 

migration to occur in a short time interval (Fig. 3).  

In light of the inferred demographic history, barn owls of the British Isles would have inherited 

their whiteness from their source mainland population, the refugium in the Iberian Peninsula, 

and kept it through small population size, genetic drift and low gene flow. Although it is 

conceivable that some copies of the rufous MC1R allele were present in the founding insular 

population, similar to its frequency in Iberia (1%; Fig. 1a), in the absence of strong positive 

selection in the insular environment, it could have disappeared through genetic drift given the 

small effective sizes (Fig. 4b; Sup. Table 8). Thus, the selective pressure that renders the rufous 

colour and allele adaptive in northern continental Europe101,102, may be absent in the British 
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Isles. Still, we cannot rule out that gene flow with the mainland is too weak and over too short a 

period of time to offer selection sufficient variation in the British Isles to increase the frequency 

of imported rufous alleles. If, conversely, the white morph was positively selected on the islands 

– potentially explaining its purer shade – we would have expected to find extended haplotypic 

differentiation when comparing it to the white mainland birds, which we did not (Fig. 5; Appendix 

3). Therefore, it appears the white insular morph can be most parsimoniously explained by 

relaxation or absence of selective pressure in contrast to the mainland. Such a pattern is actually 

common among insular birds which, due to relaxed selection, tend to display less colourful 

plumage than their mainland counterparts 57,175, as also observed in the barn owl worldwide176. 

This early history of colonisation of the British Isles inferred here from whole-genome sequences 

and supported by SDM projections on past climatic features is apparently unique among 

terrestrial vertebrates, but it is far from the first to deviate from the most common colonisation 

route over Doggerland (e.g.125,133–136) or to indicate an earlier colonisation than generally 

assumed140,177. The case of the stoat (Mustela erminea) is particularly interesting as it was found 

to have had an isolated glacial refugium also in now submerged land southwest of today’s French 

coastline on the Bay of Biscay (Fig. 4c – LGM 140). From there they reached Ireland very early as 

the temperatures started rising but, as the Celtic Sea opened 15’000 years BP, only colonized 

GB much later over Doggerland140. The key difference between the two cases lies in the fact that 

barn owls maintained a homogenous population between GB and Ireland through flight. 

 

Conclusion 

Our study demonstrates that barn owls followed a highly uncommon post-glacial colonisation 

route to the British Isles. Likely taking advantage of the since submerged suitable habitat on the 

Bay of Biscay, barn owls reached the islands much earlier than expected from this southern 

point. The inferred demographic history could explain the whiteness of these populations through 

a combination of founder effect and low gene flow, and without the need to invoke selective 

pressures. We contend high quality population genomic data associated with species distribution 

hindcasting will reveal an unusual demographic history and post-glacial colonization for many 

non-model species. We wonder how often an intuitive selective explanation for a conspicuous 

phenotype could turn out to be the result of purely neutral processes. 
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Chapter 1 - Supporting Information 

 
Supporting Methods 

Whole-genome resequencing  

The whole genomes of 63 individuals (61 European and 2 outgroups) were sequenced in this 

study. Their sex was determined with molecular markers178 prior to sequencing. DNA quality and 

fragmentation were assessed with Fragment AnalyzerTM (Advanced Analytical Technologies Inc.). 

Sample Purification Beads (SPB; Illumina, California, USA) were used to remove fragments 

smaller than 500 bp prior to library preparation of samples that showed high spread of DNA 

fragment size. Further, the intensity of the initial mechanical fragmentation step (Covaris, 

Woburn, MA, USA) was adjusted based on Fragment Analyzer profiles to promote homogenous 

library sizes. Individually tagged 100bp TruSeq DNA PCR-free libraries (Illumina) were prepared 

according to manufacturer’s instructions. Whole-genome resequencing was performed on 

multiplexed libraries with Illumina HiSeq 2500 high-throughput paired-end sequencing 

technology at the Lausanne Genomic Technologies Facility (GTF, University of Lausanne, 

Switzerland).  

 

Data preparation and SNP calling 

Raw reads were trimmed with Trimommatic v.0.36179 for Illumina adapters, and minimum 

sequence length of 70 bp. BWA-MEM v.0.7.15180 was used to map the trimmed reads to the 

newly generated reference barn owl genome. Despite our libraries being PCR-free, potentially 

duplicate reads were marked with Picard-tools v2.9.0 (http://broadinstitute.github.io/picard) 

MarkDuplicates per run and per library. 

Base quality score recalibration (BQSR) was performed following the iterative approach 

recommended for non-model species for which a set of “true variants” is not available, using 

high-confidence calls on the un-calibrated calls in a bootstrap-fashion to achieve convergence of 

the quality of variant calls. Here, a first calling of high-confidence variants was done with a 

combination of GATK’s HaplotypeCaller and GenotypeGVCF v.4.1.3 and ANGSD v.0.921181. Both 

sets of calls were filtered for a maximum of 5% missing data, individual depth (DP > 10 and DP < 

30), mapping quality (MQ > 40) and minor allelic frequency (MAF > 0.02). The intersect of the 

two call sets was used as the known set of variants to run BQSR a first time with 

BaseRecalibrator and ApplyBQSR in GATK v.4.1.3. The calibrated output was used to recall 

variants with GATK and ANGSD as above, and the intersect was used on a second round of 

recalibration. The results were similar to the previous run suggesting convergence had been 

http://broadinstitute.github.io/picard
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achieved as observed in other bird genomics studies 83. Thus, the recalibrated calls obtained in 

the first round were kept for the remainder of the pipeline. Following BQSR, sequence variants 

were called with GATK’s HaplotypeCaller and GenotypeGVCFs v.4.1.3 from the recalibrated bam 

files. 

Genotype calls were filtered for downstream analyses using a hard-filtering approach as 

proposed for non-model organisms, using GATK and VCFtools182. Calls were removed if they 

presented: low individual quality per depth (QD < 5), extreme coverage (800 > DP > 1800), 

mapping quality (MQ < 40 and MQ > 70), extreme hetero or homozygosity (ExcessHet > 20 and 

InbreedingCoeff > 0.9) and high read strand bias (FS > 60 and SOR > 3). We filtered further at 

the level of individual genotype by removing calls for which up to 5% of genotypes had low quality 

(GQ < 20) and extreme coverage (GenDP < 10 and GenDP > 40). Lastly, we kept only bi-allelic 

sites with less than 5% of missing calls across individuals yielding a dataset of 6’721’999 SNP. 

For analyses of neutral population structure and demography, an exact Hardy-Weinberg test was 

used to remove sites that significantly departed (p<0.05) from the expected equilibrium using the 

R183 package HardyWeinberg184,185. 

 

Post-glacial species distribution  

We built species distribution models (SDM) using Maximum Entropy Modelling (MaxEnt), a 

presence-only based modelling tool, to identify the regions of high habitat suitability for barn owls 

at the last glacial maximum (LGM, 20’000 years BP). Current climatic variables for the Western 

Palearctic (Sup. Fig. 2) were extracted from the WorldClim database164 at 5 arc min resolution 

using the R package rbioclim186. The chosen set of variables represents the climatic conditions 

experienced by the species through the year and were filtered to be correlated at less than 0.8. 

Retained variables were: mean diurnal range (bio2), minimum temperature of coldest month 

(bio6), temperature annual range (bio7), mean temperature of wettest quarter (bio8), 

precipitation seasonality (bio15), precipitation of driest quarter (bio17) and precipitation of 

coldest quarter (bio19). 

To determine which combination of feature and regularization multiplier use in the model to 

optimise the prediction without over complexifying the model, we built models with linear, 

quadratic and hinge features, and models with a range (1 to 5) of regularization multipliers. The 

best combination of feature and regularization multiplier based on the corrected AIC (as 

recommended165) was achieved with a quadratic model with 1 as regularization multiplier (Sup. 

Table 5). We ran 100 independent maxent models, omitting 25% of the data during training to 

test the model. To avoid geographic bias due to different sampling effort in the distribution area 
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of the species, we randomly extracted 1000 presence points within the IUCN distribution map187 

for each model run188.  

Predictive performances of the models were evaluated on the basis of the area under the curve 

of the receiver operator plot (AUC) of the test data. For all models with an AUC higher than 0.8 

(considered a good model 189,190), the output of maxent was transformed into a binary map of 

suitability by assuming that a cell was suitable when its mean suitability value was higher than 

the mean value of the 10% test presence threshold. This conservative threshold allows to omit all 

regions with habitat suitability lower than the suitability values for the lowest 10% of occurrence 

records. We averaged the values of the models for each cell, and only cells suitable in 90% of the 

models are presented as such in the map. 

All models were then projected to the mid-Holocene (6’000 years BP) and LGM (20’000 years 

BP) conditions extracted from WorldClim at the same resolution as current data. When projecting 

to past climates, the multivariate environmental similarity surface (MESS) approach191 was used 

to assess whether models were projected into climatic conditions different from those found in 

the calibration data. Cells with climatic conditions outside the distribution used to build the 

model were considered as unsuitable for barn owls (0 attributed to cell with negative MESS) as 

we intended to highlight only the highly suitable regions. For each timepoint, the results of the 

models were merged and transformed into a binary map as for the current data. 

 

Maximum-likelihood demographic inference with fastsimcoal2 

Data preparation 

To build a set of variants approaching neutrality, we kept only autosomal SNPs found outside of 

genic regions and CpG mutations192. The sites were filtered to include no missing data and to 

within two thirds of the standard deviation of the mean coverage to ensure homogeneity. To 

determine the ancestral state of the SNP using a parsimony approach, the genomes of the two 

outgroups were used as outgroups based on the Tytonidae phylogenetic tree89. Sites for which it 

was impossible to attribute a state based on the available outgroups were discarded (868 sites). 

 

Demographic inference 

For each run of each of the six tested demographic scenarios, the following options were set: -n 

500000 (number of coalescent simulations), -M and -L 50 (estimate the parameters from the 

SFS with 50 expectation-maximization (EM) cycles to estimate parameters). As we do not 

currently have a good estimation of the barn owl mutation rate, the end of the glaciation 
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(rounded to 6000 generations ago, 18’000 years BP with a 3-year generation time) was fixed and 

all other parameters were scaled relative to it using the -0 option (based solely on polymorphic 

sites).  

In the non-parametric bootstrapping of the best-fitting model, a block-bootstrap approach was 

employed as suggested by the authors to account for LD75,166. As such, the SNPs were divided 

into 100 blocks of similar size and then 100 bootstrap datasets were generated by sampling with 

replacement 100 blocks each, so as to obtain the same number of SNPs as the real dataset. For 

each bootstrapped SFS, 50 independent parameter inferences were run under the best-fitting 

scenario out of the six tested. Due to computational constraints, bootstrap runs were performed 

with only 10 EM cycles, an approach that has been previously used and described as 

conservative193. The highest maximum-likelihood run of each scenario was used to estimate 95% 

CI of all parameters. 

 

 

Supporting Tables 

 
Supplementary table 1 – Summary of the sampling scheme for the different analyses in this study. Full 
sample detail available in Appendix 1. 

Number of samples for: N Colour – colour comparison analysis; N MC1R – MC1R genotyping; N WGS – whole genome 
re-sequencing and population genomics analyses; N FSC – demographic inference with fastsimcoal2. 

 

Supplementary table 2 – Lineage genetic diversity for of 61 European barn owls. Individuals were 
grouped into the four main lineages identified in sNMF (Fig. 1 & Sup. Fig. 3). 

Lineage Abbrev. N Priv. Alleles HO (SD) FIS (SD) 

Ireland IR 9 84061 0.157 (0.004) -0.023 (0.027) 

Great Britain GB 17 93144 0.158 (0.011) 0.029 (0.068) 

Central Europe EU 25 191666 0.174 (0.010) -0.004 (0.057) 

Portugal PT 9 784099 0.188 (0.008) -0.012 (0.041) 
N – number of individuals; Priv. Alleles – private alleles accounting for different population sizes; HO – observed 
heterozygosity and its standard deviation; FIS – inbreeding coefficient. 

Population Abbrev. N Colour N MC1R N WGS N FSC 

Ireland IR 44 44 12 8 

Great Britain GB 67 68 15 8 

France FR 48 48 5 5 

Denmark DK 88 88 10 3 

Switzerland CH 65 65 10 0 

Portugal PT 70 71 9 8 

Total  382 384 61 32 
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Supplementary table 3 – Pairwise Weir & Cockerham’s FST between barn owl populations in Western 
Europe. Above the diagonal, a heat map provides a visual representation of the FST values given below the 
diagonal. 

 IR GB FR DK CH PT 

IR       

GB 0.037      

FR 0.064 0.041     

DK 0.061 0.038 0.016    

CH 0.054 0.032 0.012 0.005   

PT 0.060 0.041 0.021 0.022 0.017  

 
 

 

Supplementary table 4 – Summary of barn owl capture-recapture events in Great Britain (GB) and 
Central Europe from 1910 to 2019, courtesy of EURING. Table shows number and percentages (%) of (a) 
emigrant and (b) immigrant owls to GB. Table (c) shows exchanges of individuals between countries in 
Central Europe; number of owls indicates migrants from the country on the row towards the country in 
column; background heatmap represents the values on top; two last columns give the number of ringed 
birds per country and how many of those emigrated elsewhere. BL= Belgium; CH=Switzerland; 
DE=Germany; DK=Denmark; FR=France; NL=Netherlands. 

(a) 

Country Total immigrants 
to this country 

Immigrants  
from GB 

% immigrants 
from GB 

Belgium 338 1 0.30 

France 1506 1 0.07 

Germany 1364 1 0.07 

Netherlands 1107 1 0.09 

Spain 39 3 7.69 

Ireland 4 4 100 

Northern Ireland 4 3 75 

 

 

(b) 

Country Total ringed 
owls 

Total emigrant 
owls 

% emigrant 
owls 

Emigrant owls 
to GB 

% emigrant  
owls to GB 

Belgium 6166 1070 0.28 3 0.049 

Germany 20816 1493 0.35 5 0.024 

Netherlands 25849 1177 1.19 13 0.050 
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(c) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary table 5– Comparison of SDM model fit. AICc is reported for the multiple combinations of 
feature (linear, quadratic, hinge) and Beta multiplier (1 to 5).  

 1 2 3 4 5 

Linear 23953.4 23994.8 24037.1 24086.8 24125.8 

Quadratic 23950.8 24002.6 24042.7 24095.2 24148.5 

Hinge 24099.1 24185.4 24241.2 24304.4 24340.2 

 

 

 

 

Supplementary table 6 – Likelihood and AIC of the demographic models tested with fastsimcoal2. Three 
main model topologies were tested, each with two versions (Figure 3). Models are sorted from best to 
worst according to the estimated likelihoods. 

Model Type Model Est. Lhood Δ Lhood AIC Δ AIC 

Colour-based B -6410181 4342 29520023 0 

Refugia A -6410377 4537 29520926 904 

Colour-based A -6410439 4599 29521216 1193 

Refugia B -6410674 4834 29522291 2269 

Stepping-Stone B -6410811 4971 29522935 2912 

Stepping-Stone A -6410865 5025 29523172 3150 
Est. Lhood – Maximum-likelihood estimated for the simulated SFS per demographic model; Δ Lhood – difference 
between the likelihood of the simulated and observed SFS; Δ AIC – delta AIC 

 
 

→ BL CH DE DK FR NL N ringed Emigrants 

BL  3 80 3 342 616 7786 1118 

CH 3  502 0 518 6 7862 1074 

DE 61 66  136 486 424 24245 1522 

DK 1 0 44  0 4 1003 57 

FR 9 6 36 0  8 1318 67 

NL 251 6 652 10 104  29487 1177 
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Supplementary table 7 – Parameter ranges and point estimate inferred for the demographic model 
tested with fastsimcoal2. Model “Iberian origin B” – identified as the best fitting model – is given in Sup. 
Table 8. All range distributions were uniform except for bottlenecks (†) which were log-uniform. When a 
parameter was absent in a model, the case was left blank. 

  NW European Iberian Insular Refugium 

Parameter Ranges A B A A B 

Current Population Sizes (haploid)      
PT 10000 – 4e5 58059 14700 10518 35058 61402 
EU 1000 - 3.5e5 1018 4097 1011 1007 5314 
GB 100 - 25000 1008 139 137 200 1712 
IR 10 - 2500 421 221 232 179 390 

Ancestral Population Sizes (haploid)      

PT in glac 200 – 2e5 39179  6637   

Ancestral island 200 – 2e5   11277   

PT before glac 1000 - 1e6  16066  8603 13846 
GB before glac 1000 - 50000    41926 23204 
EU before glac 1000 – 3.5e5  207200    

Times of Divergence (generations)      

T1  4875 12758 3656 11705 30398 
T2  3635 256 3055 2843 2469 
T3  304 204 288 1219 3318 
TSG 8000 - 9000    8452 8148 
TEG 3000 - 6000    3409 4482 

Current Migration (flow is backwards in time)     

EU → PT 0 - 0.05 0.004 0.0001 0.005 0.007 0.001 
PT → EU 0 - 0.05 0.011 0.005 0.011 0.004 0.001 
GB → EU 0 - 0.05 0.004 0.058 0.054 0.039 0.005 
EU → GB 0 - 0.05 0.011 0.002 0.013 0.005 0.0007 
IR → GB 0 - 0.05 0.014 0.032 0.027 0.042 0.018 
GB → IR 0 - 0.05 0.007 0.042 0.042 0.025 0.0001 

Older Migration (2nd level from present in Sup. Fig. 1)     

EU → PT 0 - 0.05 0.002 0.018 0.0004   

PT → EU 0 - 0.05 0.035 0.014 0.001   

GB → EU 0 - 0.05 0.006 0.032 0.002   

EU → GB 0 - 0.05 0.021 0.049 0.030   

Ancestral Migration (oldest)      

EU → PT 0 - 0.05 0.002 0.004 0.008   

PT → EU 0 - 0.05 0.00002 0.022 0.011   

Instbot- bottleneck intensity at diverge †     

T1 0.01 - 0.5 0.052 0.006 0.006 0.009 0.003 
T2 0.01 - 0.5 0.004 0.139 0.696 0.037 0.019 
T3 0.01 - 0.5 0.010 0.016  0.044 0.110 

Glacation Bottleneck size (haploid) †     

PT 0.01 - 0.5  295  2747 23223 
EU 0.01 - 0.5  490    

GB 0.01 - 0.5    8 39 
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Supplementary table 8 – Parameter point estimates and 95% confidence interval for the best 
demographic model – Iberian origin B. Parameter names correspond to Figure 3. Times of divergence are 
in years calculated with a generation time of 3 years. Migration rates and number of individuals are given 
forward in time. 

Parameter Point Estimate Lower Limit CI Upper Limit CI 

Current Population Sizes (haploid)    

PT 10541 10501 364413 

EU 1052 1005 2382 

GB 440 131 1838 

IR 199 138 1071 

Ancestral Population Sizes (haploid)    

Iberia glacial period 7986 5451 137520 

Ancestral pop to GB & IR 6187 2112 20742 

Times of Divergence (years)    

Split GB - PT 12940 7316 17812 

Split EU - PT 3822 945 4984 

Split IR - GB 1149 224 2229 

Current Migration Rate (2Nm)    

PT → EU 0.005 (52) 0.0009 (10) 0.0089 (93) 

EU → PT 0.0074 (8) 0.0038 (4) 0.0158 (17) 

EU → GB 0.0152 (16) 0.0003 (0.3) 0.0548 (58) 

GB → EU 0.0093 (4) 0.0051 (2) 0.0206 (9) 

GB → IR 0.0361 (16) 0.0019 (1) 0.0473 (21) 

IR → GB 0.0103 (2) 0.0011 (0.2) 0.0438 (9) 

Ancestral Migration Rate (2Nm)    

PT → EU 0.0029 (262) 0.0002 (2) 0.0524 (552) 

EU → PT 0.0248 (3) 0.0031 (3) 0.0585 (62) 

EU → GB 0.0001 (0.1) 0.0004 (0.4) 0.0159 (17) 

GB → EU 0.03 (186) 0.0121 (75) 0.0633 (392) 

Instant Bottlenecks (N)    

Split GB - PT 0.015 (65) 0.288 (4) 0.01 (98) 

Split EU - PT 0.018 (56) 0.032 (31) 0.002 (535) 
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Supporting Figures 

 
Supplementary Figure 1 – The map in grey represents the area considered for producing the Species 
Distribution Model (SDM) for the barn owl; shading denotes altitude according to the scale. The current 
distribution of barn owls is plotted atop the map in purple (data from IUCN: BirdLife International 2019). 
Random presence points were extracted within this distribution for the SDM. 
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Supplementary Figure 2 – Pairwise correlation between retained climatic variables to produce the SDM. 
Only variables correlated at less than 0.8 were kept in the models, namely: Mean Diurnal Range (Bio2), 
Min Temperature of Coldest Month (Bio6), Temperature Annual Range (Bio7), Mean Temperature of 
Wettest Quarter (Bio8), Precipitation Seasonality (Bio15), Precipitation of Driest Quarter (Bio17) and 
Precipitation of Coldest Quarter (Bio19). 

 

 

 

 
Supplementary Figure 3 – Individual clustering estimated by sNMF for K 2 to 4 lineages. Each vertical 
bar represents one individual, and the colours represent the relative contributions of each genetic lineage 
K. 
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Supplementary Figure 4 – Individual relatedness (β) matrix. Grey lines separate the populations. 
Population abbreviations follow Sup. Fig. 3. 

 

 

 

 
 

Supplementary Figure 5 – Treemix results for 0 to 2 migration events. Highest likelihood runs are 
depicted, with the corresponding matrix of standard errors. With two migration events there was no 
topology convergence between replicates; the topology of the best run shown here was only present in 4 
out of 10 runs. 
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Abstract 

The study of insular populations was key in the development of evolutionary theory. The 

successful colonisation of an island depends on the geographic context, and specific 

characteristics of the organism and the island, but also on stochastic processes. As a result, 

apparently identical islands may harbour populations with contrasting histories. Here, we use 

whole genome sequences of 65 barn owls to investigate the patterns of inbreeding and genetic 

diversity of insular populations in the eastern Mediterranean Sea. We focus on Crete and Cyprus, 

islands with similar size, climate and distance to mainland, that provide natural replicates for a 

comparative analysis of the impacts of microevolutionary processes on isolated populations. We 

show that barn owl populations from each island have a separate origin, Crete being genetically 

more similar to other Greek islands and mainland Greece, and Cyprus more similar to the Levant. 

Further, our data show that their respective demographic histories following colonisation were 

also distinct. On the one hand, Crete harbours a small population and maintains very low levels 

of gene flow with neighbouring populations. This has resulted in low genetic diversity, strong 

genetic drift, increased relatedness in the population and remote inbreeding. Cyprus, on the 

other hand, appears to maintain enough gene flow with the mainland to avoid such an outcome. 

Our work provides a comparative population genomic analysis of the effects of neutral processes 

on a classical island-mainland model system. It provides empirical evidence for the role of 

stochastic processes in determining the fate of diverging isolated populations. 

 

Keywords 

Demographic inference; Inbreeding; Population genomics; Tyto alba; Whole genome sequencing 
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Introduction 

Given their discrete borders, geographical isolation and abundance, islands are ideal systems to 

study patterns of genetic diversity in natural populations34. Due to the combination of biotic, 

abiotic, and stochastic forces, no two insular populations share the same demographic history33. 

Their fate is shaped by the timing of colonisation, fluctuations in population size and connectivity 

to neighbouring populations. These are directly impacted by the characteristics of the island, like 

carrying capacity and distance to the mainland, as well as the circumstances of colonisation such 

as bottlenecks and founder effects. The combined actions of reduced gene flow, in situ genetic 

drift, selection and potentially mutation influence the degree to which insular populations 

diverge31,35,36. Small populations are particularly sensitive to the effect of genetic drift, 

accelerating divergence from the surrounding populations. While high levels of gene flow can 

counter this effect, the lack of it can facilitate local adaptation by maintaining locally 

advantageous alleles 194 but can also lead to inbreeding with detrimental consequences38.  

In small isolated populations, without other sources for genetic diversity besides mutation and 

recombination, the relatedness among insular individuals increases over time under the effect of 

drift. As a result, levels of remote inbreeding may rise even with the avoidance of mating between 

close relatives. Although this is a common occurrence in island populations, mating between 

related individuals can lead to inbreeding depression195 and, in extreme circumstances, local 

extinction38,196. As such, the study of the genetic makeup of insular populations can provide key 

information from a conservation perspective. Despite being widely used to estimate inbreeding 

and infer demographic histories, traditional genetic markers lack resolution to reconstruct 

particularly convoluted systems such as, for example, multiple islands or among modestly 

differentiated populations. Technological advances now provide more affordable high-

representation genomic data such as the sequencing of whole genomes. Combined with 

increasingly sophisticated methods, it allows for more accurate inferences, even for non-model 

species68. 

The eastern Mediterranean offers an excellent setting to study insular demographic history. A 

biodiversity hotspot 197, the area is riddled with islands, the largest of which are Crete (CT) and 

Cyprus (CY). While fluctuating sea levels intermittently connected smaller islands to the mainland 

in the Quaternary, CT and CY have been isolated since the end of the Messinian salinity crisis 

(approx. 5 Mya198). They share many common features such as distance to mainland (95 and 75 

km, respectively), surface area (8500 and 9200 km2) and a Mediterranean-subtropical climate 

with mild winters and warm summers. Their strategic position makes them pivotal stop-overs in 

the seasonal migration of many bird species, and movements of bird populations are widely 

studied (e.g. 199,200). However, thus far they have been the subject of only few genetic studies, 
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most on each island individually rather than comparatively, and typically focusing on human 

commensal small mammal species201–203.  

The Afro-European barn owl (Tyto alba) is a non-migratory bird of prey present across the African 

and European continents, as well as most of the surrounding islands and archipelagos89. In spite 

of being quite widespread and maintaining high gene flow overland101,171, populations separated 

by water barriers appear to accumulate differentiation more quickly, with numerous insular 

subspecies89,93,102. In the eastern Mediterranean, the continental European barn owl lineage 

meets the eastern subspecies T. a. erlangeri (W. L. Sclater, 1921) from the Levant102,204. 

Although Crete and Cyprus populations supposedly belong to T. a. erlangeri205, the low resolution 

genetic data previously available was insufficient to clarify the history of each island and how 

they relate to the mainland. Barn owls from Crete appeared to be quite distinct from all 

surrounding mainland, including the Levant102, and the demographic history of the Cyprus owl 

population has never been studied. 

Here, we investigate the genetic structure and past demographic history of insular and mainland 

barn owl populations in the eastern Mediterranean. We focus in particular on Crete and Cyprus, 

the two largest islands in the region, that have very similar intrinsic characteristics and are 

thought to harbour barn owls from the eastern subspecies found in the Levant (T. a. erlangeri). 

As such, the populations should have originated, independently or not, from the Levant. However, 

being closer to other Greek islands and the Greek mainland, Crete could have actually been 

colonised from there, which would be incompatible with it belonging to the same subspecies as 

Cyprus. Taking advantage of the whole genome sequences of 65 individuals and the recent 

publication of a high-quality reference genome93, we address this by modelling the colonisation of 

both islands from the mainland. Lastly, we compare how their different demographic histories 

impacted their current genetic diversity and inbreeding levels. 

 

Materials and Methods 

Sampling, Sequencing and Genotyping 

A total of 67 barn owl individuals from seven populations were used in this study (Table 1; 

Supporting Table 1): 10 in Italy (IT), 5 in islands of the Ionian Sea (IO), 10 in Greece (GR), 11 in 

islands of the Aegean Sea (AE), 11 in Crete (CT), 10 in Cyprus (CY) and 10 in Israel (IS). Of these, 

47 were sequenced in Cumer et al.204 (GenBank BioProject PRJNA727977; Sup. Table 1). One 

additional individual of the Eastern barn-owl species (Τ. javanica from Singapore89) was used as 

an outgroup for specific analyses. The outgroup was sequenced in Machado et al.93 (GenBank 

BioProject PRJNA700797). The remaining 20 samples followed the same protocol described in 
93,204. In brief, we extracted genomic DNA using the DNeasy Blood & Tissue kit (Qiagen, Hilden, 
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Germany) and prepared individually tagged 100bp “TruSeq DNA PCR-free” libraries (Illumina) 

following the manufacturer’s instructions. Then, whole-genome resequencing was performed on 

multiplexed libraries with Illumina HiSeq 2500 high-throughput paired-end sequencing 

technologies at the Lausanne Genomic Technologies Facility (GTF, University of Lausanne, 

Switzerland) with an expected sequence coverage of at least 15X.  

The bioinformatics pipeline used to obtain analysis-ready SNPs from the raw sequenced of the 

65 individuals plus the outgroup was the same as in Machado et al.93 adapted from the Genome 

Analysis Toolkit (GATK) Best Practices 154 to a non-model organism following the developers’ 

recommendations. Briefly, we trimmed the reads to 70bp length with Trimommatic v.0.36179 and 

aligned them with BWA-MEM v.0.7.15180 to the barn owl reference genome (GenBank accession 

JAEUGV000000000 93). Then, we performed base quality score recalibration (BQSR) following the 

iterative approach recommended for non-model species that lack a set of “true variants” in GATK 

v.4.1.3 using high-confidence calls obtained from two independent callers: GATK’s 

HaplotypeCaller and GenotypeGVCF v.4.1.3 and ANGSD v.0.921181. Following BQSR, we called 

variants with GATK’s HaplotypeCaller and GenotypeGVCFs v.4.1.3 from the recalibrated bam 

files. 

For variant filtering we followed GATK hard filtering suggestions for non-model organisms, with 

values adapted to our dataset and expected coverage using GATK v4.1.3.0 and VCFtools 

v0.1.15182. A detailed documentation of the filters applied can be found in Sup. Table 2. We also 

removed scaffolds that belong to the Z chromosome due to it being hemizygous in females (Sup. 

Table 1). In preliminary analyses we corrected the origin of a sample, an injured owl found at sea 

and reported to a port in mainland Greece but that was genetically of Cretan origin and 

considered as such hereafter. We also removed one Italian (IT10) and one Israeli (IS10) 

individuals as relatedness analyses revealed they were each part of a sibling pair. The final 

dataset contained 5’493’583 biallelic SNPs with a mean coverage of 16.4X (4.38 SD) across 65 

individuals (Sup. Table 1). 

 

Mitochondrial DNA 

Sequencing and assembly of mitochondrial genome 

We produced a complete mitochondrial reference genome for the barn owl, from the same 

individual used for the reference nuclear genome recently published93. The mitochondrial 

genome was thus produced from the high molecular weight (HMW) DNA extraction described in 

detail in Machado et al.93. Briefly, HMW DNA was extracted from a fresh blood sample using the 

agarose plug method as described in Zhang et al. 206. Then, 15-20 kb DNA fragments were 
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obtained with Megaruptor (Diagenode, Denville, NJ, USA) and checked on a Fragment Analyzer 

(Advanced Analytical Technologies, Ames, IA, USA). 5 µg of the sheared DNA was used to prepare 

a SMRTbell library with the PacBio SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences, 

Menlo Park, CA, USA) according to the manufacturer's recommendations. The resulting library 

was size-selected on a BluePippin system (Sage Science, Inc. Beverly, MA, USA) for molecules 

larger than 13 kb. It was then sequenced on 1 SMRT cell 8M with v2.0/v2.0 chemistry on a 

PacBio Sequel II instrument (Pacific Biosciences, Menlo Park, CA, USA) at 30 hours movie length 

to produce HIFI reads. 

After sequencing, we searched the circular consensus sequences (ccs) HIFI reads for sequences 

matching the 18128 bp mitochondrial genome of the previous assembly (NCBI Reference 

Sequence: NW_022670451.192 using minimap2207 with the option -x asm5. We obtained twelve 

reads, which were reverse complemented as needed in order to be in the same orientation as 

our seed mitochondrial genome. No read was long enough to obtain a closed circular 

mitochondrial genome. Thus, we selected a css read of particularly high quality as an anchor and 

used two other overlapping reads to complete the circular sequence. From these three high 

quality reads, we manually assembled a full-length mitochondrial genome of 22461 bp. 

Mitochondrial css are provided in supplementary material and the reference sequence has been 

deposited at GenBank (currently awaiting the accession number). 

We annotated the mitochondrial genome using MitoAnnotator v3.52208 and removed the hyper-

variable D-loop for the subsequent analyses, yielding a 15’571bp sequence. 

 

Mitochondrial population structure and genetic diversity 

To obtain the mitochondrial sequences of each individual, we mapped their trimmed whole-

genome resequencing reads onto the newly assembled barn owl mitochondrial genome using the 

BWA-MEM v.0.7.15 algorithm180. We then called variants using the bcftools v1.8182 mpileup (with 

mapping quality > 60, depth < 5000) and call (consensus calling, -c) for haploid data (ploidy=1). 

We then created a consensus fasta sequence with bcftools consensus, applying variants called 

above on the reference genome. We aligned individual fasta sequences using ClustalOmega 

v1.2.4209 and manually checked the alignment for errors in MEGA X v10.1.7210. We generated a 

mitochondrial haplotype network using the R package pegas v0.14211 and grouped similar 

haplotypes into haplogroups (Sup. Fig. 1). Finally, we quantified population diversity (nucleotide 

diversity, π) and divergence (ΦST) with Arlequin v3.5.2.2212. 
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Population structure, diversity and inbreeding 

To elucidate population structure in our dataset, we performed a principal component analysis 

(PCA) using the R-package SNPRelate v3.11157 and inferred individual admixture proportions with 

the software sNMF v1.2155. sNMF was run for values of K ranging from 2 to 9, with 10 replicates 

for each K. Runs were checked visually for convergence within each K. For both analyses, we 

used a dataset of 603’496 biallelic SNPs obtained by pruning our SNP dataset for linkage 

disequilibrium (LD) using PLINK v1.9156 (--indep-pairwise 50 10 0.1) as recommended by the 

authors. To investigate whether an island population was the product of admixture between two 

sampled populations, we used the f3 statistic213 and ΤreeΜix158 both calculated with the ΤreeΜix 

v1.13 software. ΤreeΜix was run in 20 replicates, using a bootstrap per 500 SNP interval, with 0 

to 3 migration events, using the same LD-pruned dataset as above, to which any sites with 

missing data were removed yielding a total of 598’599 SNPs. 

We used SNPRelate to calculate an allele sharing matrix between individuals (β159) individual 

inbreeding coefficients relative to the total and then averaged per population (FIT). We used the R 

package hierfstat v.0.5-9214 to estimate population pairwise and population-specific FST as in 

Weir & Goudet159. Confidence intervals were obtained by bootstrapping 100 times 100 blocks of 

contiguous SNPs. We also used hierfstat to quantify individual inbreeding coefficients relative to 

their population of origin and then averaged per population (FIS). For population genetic diversity, 

we calculated the observed individual observed heterozygosity and estimated the number of 

private alleles (i.e. alleles present in only one population) using custom made R scripts. To 

account for sample size differences in the estimation of private alleles, we subsampled 5 

individuals (without replacement) from each population 100 times and calculated the mean 

number of private alleles in a population. When calculating the lineage-specific private alleles for 

K=5 from sNMF, we merged the populations of Greece, Ionian and Aegean islands and followed 

the same approach, this time sampling 9 individuals instead of 5 (corresponding to the new 

lowest sample size). 

The Estimated Effective Migration Surface (EEMS) v.0.9 software161 was used to visualize relative 

gene flow over the sampled region. First, we used the tool bed2diff to compute the matrix of 

genetic dissimilarities for the LD-pruned dataset mentioned above and utilized the Google Maps 

API v.3 tool (http://www.birdtheme.org/useful/v3tool.html) to draw a polygon outlining the study 

area. Then, EEMS was run with 700 demes in 3 independent chains of 2 million MCMC iterations 

with a 1 million iterations burn-in. We tested convergence of the results through a plot of 

observed-fitted values and the trace plot of the MCMC chain as suggested by the authors and 

plotted the results using the accompanying R package (rEEMSplots v.0.0.1).  

We inferred runs of homozygosity (ROH) in the dataset by using the plink command --homozyg 

with default parameters (minimum 1 Mb length and 50 SNP). Only autosomal scaffolds of length 

http://www.birdtheme.org/useful/v3tool.html
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more than 1 Mb were considered in ROH inference (47/70 scaffolds) covering 92% of the total 

assembly length. Given that bird chromosomes are typically shorter than those of humans70, for 

whom such methods were developed, we also called ROH with a minimum of 100Kb length. As 

the qualitative results were unchanged (data not shown), we kept the standard 1Mb threshold in 

a conservative approach to identify only identity by descent (IBD) segments and to facilitate 

potential comparisons with other studies. To estimate the index FROH we divided the sum of 

lengths of ROH in an individual with the length of the scaffolds215 used after subtracting the 

number of ‘N’s (gaps) in the assembly. To visualize the distribution of ROH lengths per 

population, we divided ROH into five length classes: i) from 1Mb to under 2Mb, ii) from 2Mb to 

under 4Mb, iii) from 4Mb to under 6Mb, iv) from 6Mb to under 8Mb and finally, v) 8Mb or longer. 

We then calculated the number of base pairs falling within each ROH length class for every 

individual and averaged the values for each population. 

To compare the levels of inbreeding, we tested whether FIT, FROH and β differ significantly between 

populations using a non-parametric Kruskal-Wallis rank sum test since the normality assumption 

did not hold. Further, we performed a pairwise Wilcoxon rank sum exact test with a Bonferroni 

correction for multiple testing to assess significance in the differences between pairs of 

populations. Given the small sample sizes (Table 1), we excluded obvious hybrid individuals 

(AE01, CT06) to avoid biasing the average of their respective populations. 

 

Demographic history  

Demographic scenarios and parameters 

To infer the origin and connectivity of the major insular barn owl populations (CT and CY), we 

used the software fastsimcoal275. It uses coalescence simulations to estimate the composite 

likelihood of simulated demographic models under the observed site frequency spectrum (SFS). 

To model both island systems together, we would need to simulate the coalescence of the 

European and Levant lineages (sNMF K=2, Sup. Fig. 2) for which we have no time calibrating 

event and could be hundreds of thousands of generations in the past. Such inference would 

likely be unreliable as well as extremely consuming computationally. Thus, we inferred the 

demographic history of each island system separately, including their closest populations. For 

each island system, ‘Crete’ and ‘Cyprus’, we tested three demographic scenarios (Figure 2b).  

To infer the history of ‘Crete’, we did not include IS in the simulated scenarios as population 

structure analyses show that CT’s origin is not in the Levant, but rather from the European 

lineage (Figure 1). As such, we only considered the populations of AE and GR. The first two 

scenarios assume that both the Aegean islands and the island of Crete were colonized 
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independently from the Greek mainland population. In the first one, the colonization of Crete 

takes place after the colonization of the Aegean islands, while in the second scenario Crete is 

colonized first. The third demographic scenario assumes the islands are colonized in a stepping-

stone fashion, with owls from mainland Greece reaching the Aegean islands first and from there 

colonizing Crete (Figure 2b). Due to the low sea levels at Last Glacial Maximum (LGM), the 

Aegean islands were part of a larger emerged land mass that allowed nearly continuous overland 

connectivity to the mainland216. As such, for every demographic scenario in ‘Crete’ we assumed 

that the colonization of the Aegean islands from Greece occurred at the LGM (rounded to 18’000 

years BP, 6’000 generations with a 3-year generation time). While the exact date is an 

approximation, allowing for migration between all populations after they split should reduce 

potential biases. 

For ‘Cyprus’, in addition to IS as a representative of the Levant origin, a ghost population was 

incorporated in an attempt to represent the unsampled Turkish coast north of Cyprus, where the 

distance from the island to the mainland is the shortest. Including this ghost population in the 

model served two purposes. First, to account for unsampled sources of migrants into CY. Second, 

to avoid inflating artificially the effective population size of the CY population to justify the non-

negligible admixture signal from AE (Figure 1a) that the simulator might interpret as in situ 

mutations. In the first two scenarios, both the Ghost and Cyprus populations originate from Israel, 

with the difference being the order in which they are colonized (same topology as Figure 2b). For 

the third scenario, owls from Israel would give origin to the Ghost population first and from there 

reach Cyprus. 

 

Data preparation 

Population sizes were reduced to the number of the smallest population in each model, resulting 

in 10 individuals per population for ‘Crete’ and 9 for ‘Cyprus’ (Sup. Table 1). To calculate the 

observed SFS for both systems, we filtered the data to a homogenous set of neutral markers. 

Specifically, we only kept sites with no missing data and with a depth of coverage less than 2/3 

standard deviation from the mean. We also excluded CpG mutations192 and SNPs in genic 

regions. We inferred the ancestral state of the SNPs using the barn owl from Singapore, an 

outgroup to all our populations89. Where the outgroup was homozygous for an allele, we marked 

that allele as the ancestral under rules of parsimony, while any other sites were removed. 

Population pairwise SFS were produced from the filtered datasets, giving 479’244 and 477’987 

SNPs for ‘Crete’ and ‘Cyprus’, respectively. 
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Demographic inference with fastsimcoal2 

For each system and each scenario, we specified a range of parameters from which the software 

drew an initial number as input in the optimization cycle (Sup. Table 4, 6). We modelled 

population splits with an instantaneous bottleneck in which the founding population size is a 

fraction of the present size.  

For each scenario and each island, we performed 100 software runs. For each run we set the 

number of coalescent simulations to 500’000 and estimated the parameters through 50 

expectation-maximization (EM) cycles. As we do not currently have a good estimation of the barn 

owl mutation rate, the end of the glaciation (rounded to 6000 generations ago) was fixed and all 

other parameters were scaled relative to it using the -0 option (based solely on polymorphic 

sites). 

The best-fitting scenario was determined using Akaike’s information criterion (AIC168). For the 

best scenario of each system, we performed non-parametric bootstrapping to estimate the 95% 

confidence intervals of the inferred parameters. Specifically, we divided the SNP dataset in 100 

blocks with an equal number of SNPs, from which we created 100 bootstrapped-SFS and 

performed 50 independent runs of the software for each, with 250’000 simulations. Due to 

computational constraints we reduced the number of EM cycles to 10, an approach used 

previously and characterized as conservative193. The highest likelihood run for each bootstrapped 

replicate was used to calculate the 95% CI of the inferred parameters.  

 

Ancient population size inference 

For inference of past effective population sizes, we used the Pairwise Sequential Markovian 

Coalescent (PSMC77). Specifically, we intended to estimate sizes in the distant past as this 

method is inaccurate for recent events. We ran the software on every individual of every 

population and calculated the median size for a population for each time interval. PSMC was 

executed with the same parameters as in Nadachowska-Brzyska et al.217 (-N30 -t5 -r5 -p 

4+30*2+4+6+10). For plotting we used a mutation rate of 8.28*10-9 mutations per site per 

generation as estimated for avian species by Smeds et al.218 and a generation time of 3.6 

years145.   
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Results 

Population structure and divergence in the eastern Mediterranean 

Mitochondrial DNA exhibited an overall ΦST of 0.13 (AMOVA) across all sampled individuals and a 

range of nucleotide diversity (0.0013 – 0.0023; Table 1). The mitochondrial DNA analyses failed 

to show consistent population structure in the dataset. The first two haplogroups constructed 

from the haplotype network (Sup. Fig. 1) were present in all populations, while haplogroup 3 

which was missing from Israel despite being predominant in nearby Cyprus, and haplogroup 4 

which was found only on the mainland populations (Figure 1a). Cretan owls had the lowest 

haplogroup diversity with mostly haplogroup 3 present and the lowest nucleotide diversity 

(0.0013). 

Principal component analysis based on whole nuclear genome SNP separated the populations 

approximately from West to East along the first axis with individuals for each population 

clustering together (Fig. 1b), similar to K=2 in sNMF (Sup. Fig. 2). The second axis separated the 

two islands (CT & CY) from the rest of the populations, with admixed individuals dispersing 

between sources of admixture. Admixture analyses with sNMF were consistent between runs up 

to K=5 (Sup. Fig. 2, Fig. 1a). For K=3, Crete separates from the European lineage and for K=4 CY 

separates from the Levant lineage (Sup. Fig. 2). For K=5 (Fig. 1a), Italy, Crete, Cyprus, and Israel 

formed separate clusters while owls from the Ionian islands, mainland Greece and the Aegean 

were grouped into a single population. Owls from the Aegean islands showed the highest 

proportion of admixture (mean=0.2, SD=0.1) with components from Crete, Cyprus, and Israel in 

addition to their majority Greek component (Fig. 1a). Some individuals from Crete and Cyprus 

appeared admixed between their respective island’s and the Greek component (blue in Fig. 1a).  

Tests for population admixture with f3 yielded a single slightly but significantly negative value 

(f3=-0.00065, SE=6e-05, Z=-10.375), which showed the Greek population to be the product of 

admixture between the Aegean and the Ionian populations. None of the insular populations 

appeared to be the product of admixture between any population sampled in this study. The 

topology created by Treemix was rooted at IS, with CY splitting first. CT displayed the longest 

branch of genetic drift and split before AE and the rest of the European populations (Fig. 2a). The 

first migration event was from AE to GR (Sup. Fig. 3), and it was the only one consistent across 

runs. 
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Figure 1 – Population structure of barn owls in the Eastern Mediterranean. (a) Nuclear and mitochondrial population 
structure. Horizontal bars indicate individual admixture proportions for K=5 as determined by sNMF. Black dots on 
map indicate the approximate centroid of each population; coloured pie charts represent the mean admixture 
proportions per population; pie charts in shades of beige represent mitochondrial haplogroup proportions per 
population. (b) PCA based on the pruned nuclear SNP set. Values in parenthesis indicate the percentage of variance 
explained by each axis. (c) Pairwise FST between sampled barn owl populations. Heat map illustrates the given values 
according to the legend. 

 

Pairwise nuclear FST values ranged from 0.014 to 0.088 (Fig. 1c), with the highest found between 

Cyprus and Ionian (0.088), followed by between Crete and Israel (0.087). Crete exhibited overall 

the highest pairwise values with any population (all above 0.056). Matching population 

divergence, the quantitative depiction of gene flow through EEMS identified a strong barrier to 

migration around the island of Crete and regions of reduced migration around the southern 

Ionian islands and the island of Cyprus (Sup. Fig 5). 
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Genetic diversity and inbreeding 

Genetic diversity based on nuclear SNP was generally highest in Israel and lowest in Crete, with 

Cyprus bearing comparable levels to any mainland population (Table 1). This was consistent for 

nuclear heterozygosity, population specific FST and gene diversity as well number of polymorphic 

sites in mtDNA. Private alleles were lowest among the closely related populations of Greece, the 

Ionian and Aegean Islands with Israel boasting the highest number. When considering GR, IO and 

AE as a genetic cluster (Fig. 1a), Crete actually had the lowest number of private alleles (Table 1). 

 

Table 1 – Population genetic diversity, inbreeding and divergence estimates for barn owls of the eastern 
Mediterranean. The standard deviations of the values are provided between brackets for each parameter 
except for population specific FST where values are the standard error of the mean. 

Pop Abbr. N # PA # PA lin. 
 

#MT π MT HO Pop FST FIS FIT FROH β 

Italy IT 9 118’152 
(202) 188’285 

 
68 

(23) 
0.0021 

(0.0011) 
0.164  

(0.002) 
0.058 

(0.005) 
-0.024 
(0.012) 

0.014 
(0.009) 

0.028 
(0.01) 

0.112 
(0.007) 

Ionian 
Islands IO 5 46’340 

239’089 
(294) 

 

87 0.0021 
(0.0013) 

0.16 
(0.004) 

0.091 
(0.004) 

-0.039 
(0.027) 

0.019 
(0.02) 

0.067 
(0.02) 

0.143 
(0.041) 

Greece GR 10 73’108 
(220) 

 
86 

(19) 
0.0021 

(0.0012) 
0.165 

(0.005) 
0.047 

(0.003) 
-0.02 

(0.029) 
0 

(0.022) 
0.038 
(0.02) 

0.101 
(0.008) 

Aegean 
Islands AE 11 79’357 

(198) 

 
81 

(18) 
0.0023 

(0.0012) 
0.164 
(0.01) 

0.038 
(0.002) 

0 
(0.059) 

0.013 
(0.049) 

0.043 
(0.03) 

0.092 
(0.014) 

Crete CT 11 82’202 
(177) 

124’440 
(129) 

 
51 

(24) 
0.0013 

(0.0007) 
0.153 

(0.006) 
0.115 

(0.005) 
-0.018 
(0.037) 

0.05 
(0.034) 

0.086 
(0.04) 

0.165 
(0.024) 

Cyprus CY 10 121’550 
(196) 

177’675 
(113) 

 
72 

(22) 
0.002 

(0.001) 
0.165 

(0.008) 
0.061 

(0.005) 
-0.032 
(0.05) 

0.029 
(0.039) 

0.04 
(0.03) 

0.114 
(0.024) 

Israel IS 9 271’400 
(235) 413’375 

 
43 

(20) 
0.0013 

(0.0007) 
0.175 

(0.003) 
0.007 

(0.003) 
-0.035 
(0.016) 

0.027 
(0.008) 

0.019 
(0.01) 

0.063 
(0.012) 

N: number of individuals in the population; #PA: private alleles per population, bootstrapped to the smallest N of 5 
individuals; #PA lin.: private alleles per lineage of K=5 identified with sNMF, bootstrapped to the smallest N of 9 
individuals; #MT: mitochondrial polymorphic sites per population, bootstrapped to the smallest N of 5 individuals; π 
MT: mitochondrial nucleotide diversity; HO: observed heterozygosity; FST: population specific FST as in 159 bootstrapped 
over 100 blocks of contiguous SNP; FIS: population level inbreeding coefficient; FIT: mean individual inbreeding 
coefficient relative to the meta-population; FROH: mean inbreeding coefficient estimated from ROH; β: mean pairwise 
relatedness within population. 

 

FIS, the average inbreeding coefficients of individuals relative to their population, was slightly 

negative in all populations (Table 1), as expected with random mating  in a species with separate 

sexes 219. A Cretan individual had a local inbreeding coefficient below -0.1, likely due to it being a 

F1 hybrid between CT and AE (see individual bars in Fig. 1a and PC2 in Fig. 1b) and two samples 
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in the Aegean islands had a local inbreeding coefficient larger than 0.1 (Table 1; Fig. 3b). FIT 

values, the average inbreeding of individuals relative to the total set, but averaged per 

population, were highest on the island of Crete followed by the Aegean and Cyprus. Israel had 

significantly lower FIT than all other populations, whereas Crete’s was higher than all but the 

Aegean (Fig. 3a; Table 1; X2= 36.043, p < 0.001). Thus, Cyprus had higher FIT than Israel, smaller 

than Crete and similar to every other population. Individual relatedness (β) was highest between 

two Ionian individuals found to be half-sibs (Sup. Fig. 4). Otherwise, individuals from Crete were 

more related to each other than any other pair of individuals in the dataset (Table 1; X2= 195.77, 

p < 0.001). In its turn, individuals from Cyprus were only more related to each other on average 

than the populations of Israel and the Aegean.  

Mean population FROH (i.e. proportion of the genome in runs of homozygosity) were also highest in 

Crete, followed by the Ionian, Aegean and Cyprus (Table 1). Individuals from Crete showed the 

highest proportion of ROH of all sizes (Fig. 3c; Sup. Fig. 6), while individuals from Israel had the 

lowest proportion in all categories. Individuals from Cyprus and the Aegean were also enriched in 

ROH segments compared to their mainland origin in most length classes, but much less so than 

Crete (Fig. 3c). Indeed, while FROH was significantly higher in Crete than in Greece, it was not the 

case between the Aegean and Greece nor between Cyprus and Israel (X2= 11.862, p < 0.001). 

 

 

Demographic history   

We simulated three different demographic scenarios for each island system, two where the 

island was colonized from the mainland either before or after the other population in the model 

(AE for “Crete” and Ghost for “Cyprus”) and one where the populations are colonized in a 

stepping-stone manner (Fig. 2b). The best demographic scenario inferred with fastsimcoal2 for 

the island of Crete was the stepping-stone model (Fig. 2c; Sup. Table 3). Here, the Cretan 

population originates very recently from the Aegean islands 321 generations BP (68-1400 95% 

CI), itself colonized from mainland Greece at the fixed time of 6000 generations BP (Sup. Table 

5). Estimated migration rates were higher towards the island from both GR and AE (6.7 and 3.7, 

respectively) and lower in the other direction (0.7 and 1.7). Inferred effective population sizes 

were highest for the Greek (1465 haploids; 509-7880 95% CI) mainland and lowest for Crete 

(373 haploids; 107-944 95% CI). Past instantaneous bottlenecks at colonisation were 

pronounced both for the Aegean and Cretan populations (48 [13-2922 95% CI] and 74 [6-243 

95% CI] haploids, respectively). 
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Figure 2 – Demographic history of barn owl insular populations in the Eastern Mediterranean. (a) Treemix analysis with 
zero migration events. Population abbreviations follow Figure 1. (b) Hypothesized demographic topologies for the 
colonisation of Crete. The same topologies were tested for Cyprus, with IS instead of GR, “Ghost” instead of AE and CY 
instead of CT. (c) Best supported demographic model for the colonisation of Crete as determined by fastsimcoal2. Time 
is indicated in generations, confidence intervals at 95% are given between brackets. Population sizes (diploid) are 
shown at the bottom of each population bar; arrows indicate forward-in-time number of migrants per generation. 

 

 

For the island of Cyprus, the best-fitting scenario consisted of colonization from Israel after the 

colonization of the ‘Ghost’ population coinciding with a hypothesized mainland population 

residing on the southern coast of Turkey (similar topology as Fig. 2b; Sup. Table 3). Colonization 

time for CY was much more recent than the last glaciation (986 generations, less than 3’000 

years BP; Sup. Table 7). However, the Ghost population was estimated to have an unrealistic 

large effective population size (65’310 diploids), and CY an extremely small one (61). The 

migration rates inferred indicate a complete replacement of CY each generation by the Ghost, 

suggesting this model is far from being an accurate representation of reality. As such we interpret 

its results with caution. 

PSMC identified a pronounced bottleneck for all populations (around 20’000 years BP) but failed 

to show a clean split for the two Islands, particularly Crete, and any mainland population (Sup. 

Fig. 7).  
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Figure 3 – Comparison of inbreeding in insular barn owls to their closest mainland counterparts in the Eastern 
Mediterranean. (a) FIT measure of inbreeding calculated from individual allele matching proportions relative to the 
average in the dataset (dashed line is FIT=0). (b) FIS measure of inbreeding calculated from individual allele matching 
proportions relative to the average in the subpopulation (dashed line is FIS=0). (c) Per population average length of 
ROH segments (in Mb) in each ROH length class.  
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Discussion 

Although insular populations have greatly contributed to the development of evolutionary 

theory31–33, the study potential of many of these remains untapped. The colonisation and 

settlement of an island by a given organism depend not only on the geographic context and 

specific island characteristics but also on stochastic events. As such, seemingly identical islands 

may yield populations with contrasting fates. Here, we investigate the demographic history and 

current patterns of inbreeding and genetic diversity of insular barn owls in the eastern 

Mediterranean Sea. In particular, we are interested in owls from Crete and Cyprus which, 

alongside the Levant region, were thought to form a subspecies Tyto alba erlangeri. These two 

similar islands in terms of size, climate and distance to mainland provide natural replicates for a 

comparative analysis of the colonisation and ensuing demographic processes. Using whole 

genome sequences, we show how each island and archipelago have unique histories and exhibit 

different degrees of isolation and the effect this has on the genomes of individuals. Specifically, 

Crete and Cyprus were colonized from distinct mainland locations, each from a different 

ancestral lineage, inconsistent with them belonging to the same subspecies. The population in 

Crete originated from the European lineage, more precisely from the Aegean islands, while the 

population in Cyprus came from the Levant in the east. Additionally, Crete underwent stronger 

genetic drift and inbreeding than Cyprus, resulting in a smaller and less diverse population. 

 

Insular populations in the eastern Mediterranean 

In the broader context of the Western Palearctic, our study targets two islands in the region 

where the European and eastern lineages of barn owls meet204. This is clearly shown in the 

genomic PCA, where the mainland populations of Italy and Greece in southern Europe were 

opposed to that of Israel in the Levant, with insular populations placed along this west-to-east 

genetic gradient roughly according to their geographic position (Fig. 1b, Sup Fig K=2). The main 

islands of Crete and Cyprus are the most genetically distinct populations (Fig. 1a,c), consistent 

with previous results for Crete102. Conversely, the Greek archipelagos – Ionian and Aegean – 

were genetically very similar to the Greek mainland population (Fig. 1a,c) suggesting they remain 

highly connected genetically. Such patterns of genetic differentiation reflect the geographical 

isolation of CT and CY, in contrast to the Aegean and Ionian archipelagos that are closer to the 

mainland through a network of adjacent islands and islets. 

Overall, our results confirm that water bodies are strong barriers to barn owl movement 93,204. For 

example, distant populations in the mainland, such as GR and IT, were much more similar to 

each other than any insular population, regardless of how distant each of them are (Fig. 1). 

Nonetheless, all insular populations showed small signals of admixture with their neighbouring 
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populations (Fig. 1a). This likely reflects the intricate geographic setting, as well as the overall low 

differentiation within this species (overall FST in our dataset 0.03, and 0.047 in the whole 

Western Palearctic204, that mtDNA data lacked the resolution to detect (Fig. 1a, Table 1, Sup. Fig. 

1; 102). Insular populations had generally lower levels of population private diversity, while 

displaying similar levels of heterozygosity (Table 1), and higher within-population relatedness 

compared to the mainland (Sup. Fig. 4), reflecting their isolation. However, despite all 

populations appearing to mate randomly within localities (FIS slightly negative as is expected from 

a dioecious species219; Fig. 3b, Table 1), the inbreeding levels of insular barn owls relative to the 

whole set of populations were quite large (FIT and FROH; Fig. 3a,b, Table 1). 

 

Crete and Cyprus 

Despite the inherent physical similarities between the islands of Crete and Cyprus, their barn owl 

populations differ in many aspects. These natural replicates of island-mainland comparisons, 

with similar climatic conditions, supposedly harbour the subspecies T. a. erlangeri from the 

Levant (W. L. Sclater, 1921). However, while Cyprus’ genetically closest mainland population is 

indeed Israel, Crete is actually most similar genetically to Greece (Fig. 1b). This demonstrates 

that Crete is not home to barn owls of the eastern subspecies, but rather from the European 

mainland lineage (T. a. alba). Not only they have separate geographic origins, but we also show 

that their in situ demographic histories are quite distinct. 

Since its colonisation and founding bottleneck, Crete maintained a low population size with little 

gene flow with neighbouring populations (Fig. 2c; Sup. Fig. 5), generating background 

relatedness among individuals (Sup. Fig. 4). The low gene flow it maintains with the surrounding 

populations (Sup. Fig. 5) may be due to the very strong winds that surround the island220 acting 

as a barrier by hindering flight. Thus, despite random mating within the island (low FIS), remote 

inbreeding increased (high FIT and FROH) due to high relatedness (high β), making CT the most 

inbred population by far in our dataset, as well as the least diverse (Table 1; Fig. 3a,b). 

Accordingly, it carried the highest proportion of ROH compared to any other populations (Table 1). 

Notably, CT was enriched in ROH of all sizes (Fig. 3c), suggesting a small effective size over a long 

time period until today221. This strong isolation coupled with small population size resulted in a 

very distinct genetic composition through the effect of genetic drift (Fig. 2a) as well as high 

individual relatedness and inbreeding.  

In contrast, Cyprus appears to have maintained enough gene flow with the mainland preventing it 

from accumulating remote inbreeding, while allowing for differentiation. Winds in this region are 

weaker than around Crete220, potentially facilitating the contact between Cyprus and Israel in the 

Levant, the most diverse population in our study. This could explain the surprisingly similar 



68 

 

patterns of genetic diversity in CY to that of mainland populations (Table 1), which suggest a 

higher effective population size in spite of the inference from fastsimcoal2 (Sup. Table 7). 

Furthermore, CY had considerably less runs of homozygosity (ROH) than CT, carrying only a slight 

enrichment in short length classes, similar to the Aegean and Ionian islands (Fig. 3c). Given the 

high inter-individual variability in relatedness and inbreeding coefficients (Table 1; Fig. 3a; Sup. 

Fig. 4), it appears that the gene flow with Israel and/or an unknown, unsampled population 

prevents the rise of population-wide inbreeding as observed in Crete. Interestingly, the most 

common mitochondrial haplogroup in CY was found in European populations but absent in IS 

(haplogroup 3, Fig. 1a). Although it could simply have been unsampled in the Levant, it may also 

be evidence of some gene flow between the European and eastern lineages as seen in the two 

admixed individuals of CY (Fig. 1a; see also paragraph after next) 

Overall, the different levels of connectivity (i.e. levels of gene flow) of each island appear to be 

the main driver of their diverging histories. However, insular specificities may also contribute to 

this effect. The carrying capacity of CT and CY for barn owls could be different due to cryptic 

differences in nesting or roosting site availability, for example, in spite of their similar surface 

area. In addition, the mountainous landscape in CT could restrict dispersal movements as well as 

reduce the suitable surface for breeding.  Finally, intrinsic characteristics of the colonisation of 

both islands may also have contributed to their diverging histories.  

On the one hand, CY was colonised directly from the highly diverse and large mainland 

population of IS (Sup. Table 7). As such, both the settlers of the island and subsequent 

immigrants were likely unrelated and diverse, preventing the insular population from increasing 

steeply in relatedness. Our simulations suggest that colonisation occurred about 3000 years BP 

(1900 – 10000 years BP). However, this result should be interpreted cautiously as the modelling 

for this island system yielded unreasonable population size estimates (Sup. Table 7) likely due to 

our use of a ghost population to represent mainland Turkey. This is suspected to be a contact 

zone between the European and eastern barn owl lineages with sporadic gene flow204. Our 

observations support this hypothesis as islands on both sides of Turkey, namely CY and AE, 

carried some small genetic components from the other (Fig. 1a). In this context, our modelled 

ghost population would likely be admixed or even outbred which would explain its exaggerated 

population size. Sampling in Turkey will be key to clarify this hypothesis and fully describe the 

dynamics between barn owl populations in the eastern Mediterranean. 

On the other hand, demographic simulations showed that CT was colonised from the AE 

archipelago rather than directly from mainland Greece (Fig. 2c; Sup. Table 5). This was supported 

by the second axis in the PCA which placed individuals in a gradient from GR to AE and then CT 

(Fig. 1b). Remarkably, one AE owl from the south-eastern island of Rhodes had approximately 

50% Cretan origin hinting at how the patchwork of islands and islets in the region could have 
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been used as stepping stones during colonisation. Thus, CT was colonised from what is already a 

less diverse insular population, which in turn came from the GR mainland, itself less diverse than 

Israel (Table 1). This cumulative loss of diversity through recurrent bottlenecks and possible 

expansion could contribute to the quick increase in relatedness in the island given its small 

population size, despite its recent colonisation. Indeed, CT was inferred to have been colonised 

by barn owls around 1000 years BP (204 – 4200 years BP; Fig. 2c; Sup. Table 5).  Accordingly, 

PSMC failed to uncover any signal of older divergence (Sup. Fig. 7). Nonetheless, considering the 

geological age of the island (5 million years BP) and that agricultural practices have been 

established there for millennia222, this estimation appears extraordinarily recent. Absent any 

other source of evidence, one can only speculate as to why this population is so recent. It is 

possible that a massive migration led to population replacement at a time when sea levels were 

lower and the surrounding islands closer, masking any trace of an earlier settlement. 

Alternatively, earlier settlers could have been extinct due, for example, to a natural disaster such 

as the catastrophic Minoan volcanic eruption (3’500 years BP)223.  

 

Conclusion 

Our work provides a comparative study on two natural replicates of island colonisation by the 

barn owl, a bird that despite being found in many islands avoids flying over open bodies of water. 

The use of whole genome sequences allowed us to demonstrate that Crete and Cyprus owls 

come from different genetic backgrounds, as each island originates from a distinct continental 

genetic lineage (Fig. 1). Further, their histories diverge resulting in noticeably different 

populations. Cyprus was colonised directly from the most diverse mainland population, 

accumulated differentiation but also remained sufficiently connected with it to maintain high 

levels of genetic diversity and prevent inbreeding (Table 1, Fig. 3). Crete was reached by island 

hopping in the Aegean from a less diverse mainland population. The small size and isolation of 

this island population facilitated the impact of genetic drift which, along with inbreeding, led to it 

diverging considerably from its founders despite the recent colonisation (Table 1, Fig. 2). 

Although further analyses would be necessary to study the functional consequences of 

inbreeding in Crete, this study shines a light on a real-life illustration of stochasticity in the 

classical island-mainland model systems. 
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Chapter 2 – Supporting Information 

 

Supplementary Tables 

 
Supplementary Table 1 – Description of samples used in this study. Individuals retained for the inference 
with fastsimcoal2 are indicated with †. Individuals marked with ‡ were removed from the analyses as they 
were each part of a sibling pair. 

# Pop ID Country Location Year Tissue Sex Ref 

1 Italy IT01 Italy Roma 2011 blood Female 1 
2 Italy IT02 Italy Roma 2015 blood Female 1 
3 Italy IT03 Italy Roma 2016 blood Male 1 
4 Italy IT04 Italy Roma 2016 blood Male 1 
5 Italy IT05 Italy Roma 2009 blood Female 1 
6 Italy IT06 Italy Grosseto 2014 blood Female 1 
7 Italy IT07 Italy Livorno 2001 blood Female 1 
8 Italy IT08 Italy Firenze 2011 blood Female 1 
9 Italy IT09 Italy Firenze 2016 blood Male 1 
10 Italy IT10‡ Italy Firenze 2017 blood Female 2 
11 Ionian IO01 Greece Kefalonia Island 2014 soft tissue Male 2 
12 Ionian IO02 Greece Kerkyra island 2013 soft tissue Female 2 
13 Ionian IO03 Greece Kerkyra island 2014 soft tissue Female 2 
14 Ionian IO04 Greece Zakynthos island 2015 blood Male 2 
15 Ionian IO05 Greece Zakynthos island 2015 blood Female 2 
16 Greece GR01† Greece Agrinio 2014 blood Male 1 
17 Greece GR02† Greece Athens 2014 blood Male 1 
18 Greece GR03† Greece Chalandri 2012 blood Male 1 
19 Greece GR04† Greece Corinth 2015 blood Female 1 
20 Greece GR05† Greece Stoupa 2015 soft tissue Female 2 
21 Greece GR06† Greece Lamia 2014 soft tissue Female 1 
22 Greece GR07† Greece Mesolonghi 2014 soft tissue Male 1 
23 Greece GR08† Greece Morfovouni 2015 blood Female 1 
24 Greece GR09† Greece Panetolio 2014 blood Female 1 
25 Greece GR10† Greece Spata 2015 blood Male 1 
26 Aegean AE01 Greece Rhodes island 2014 soft tissue Female 1 
27 Aegean AE02† Greece Rhodes Island 2014 soft tissue Female 1 
28 Aegean AE03† Greece Chios island 2015 blood Male 1 
29 Aegean AE04† Greece Chios island 2012 blood Female 1 
30 Aegean AE05† Greece Leros island 2012 blood Male 1 
31 Aegean AE06† Greece Lesvos Island 2012 blood Male 1 
32 Aegean AE07† Greece Lesvos Island 2013 soft tissue Female 1 
33 Aegean AE08† Greece Rhodes island 2013 blood Male 1 
34 Aegean AE09† Greece Leros island 2014 blood Male 1 
35 Aegean AE10† Greece Rhodes Island 2015 blood Female 1 
36 Aegean AE11† Greece Andros island 2015 blood Male 2 
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37 Crete CT01† Greece Crete 2015 soft tissue Male 2 
38 Crete CT02† Greece Crete 2015 soft tissue Male 2 
39 Crete CT03† Greece Crete 2015 blood Male 2 
40 Crete CT04† Greece Crete 2015 soft tissue Male 2 
41 Crete CT05† Greece Crete 2015 blood Male 2 
42 Crete CT06 Greece Crete 2015 blood Female 2 
43 Crete CT07† Greece Crete 2013 soft tissue Female 2 
44 Crete CT08† Greece Crete 2014 blood Male 2 
45 Crete CT09† Greece Crete 2014 blood Female 2 
46 Crete CT10† Greece Crete 2014 blood Female 2 
47 Crete GR11† Greece Kalamata 2012 blood Female 2 
48 Cyprus CY01† Cyprus Cyprus NA soft tissue Female 1 
49 Cyprus CY02† Cyprus Cyprus 2016 soft tissue Female 1 
50 Cyprus CY03† Cyprus Cyprus 2016 soft tissue Male 1 
51 Cyprus CY04† Cyprus Cyprus NA soft tissue Female 1 
52 Cyprus CY05† Cyprus Cyprus NA soft tissue Male 1 
53 Cyprus CY06† Cyprus Cyprus NA soft tissue Female 1 
54 Cyprus CY07† Cyprus Cyprus 2017 soft tissue Female 1 
55 Cyprus CY08† Cyprus Cyprus 2015 soft tissue Female 1 
56 Cyprus CY09† Cyprus Cyprus 2017 soft tissue Female 1 
57 Cyprus CY10 Cyprus Cyprus 2018 soft tissue Female 1 
58 Israel IS01† Israel Lachish 2005 blood Female 1 
59 Israel IS02† Israel Beit Shean 2005 blood Male 1 
60 Israel IS03† Israel Hula 2005 blood Female 1 
61 Israel IS04† Israel Beit Shean 2005 blood Female 1 
62 Israel IS05† Israel Beit Shean 2005 blood Male 1 
63 Israel IS06† Israel Beit Shean 2005 blood Female 1 
64 Israel IS07† Israel Beit Shean 2005 blood Female 1 
65 Israel IS08† Israel Hula 2005 blood Female 1 
66 Israel IS09† Israel Hula 2005 blood Female 1 
67 Israel IS10‡ Israel Hula 2005 blood Female 2 
68 Outgroup SGP Singapore Singapore 2015 soft tissue Female 3 

 

[1] Cumer et al. In Prep– GenBank BioProject PRJNA727977 204 
[2] This study – GenBank BioProject PRJNA727915 
[3] Machado et al. 2021 – GenBank BioProject PRJNA700797 93 
 
 
 
 
 
 
 
 
 

 

 



72 

 

Supplementary Table 2 – Filters applied to raw variant calls. In the last column x denotes the values of 
the sites kept in the dataset.  

 

Parameter Abbreviation in VCF file Retained values 

Quality by Depth QD 5 < x 

Root Mean Square Mapping Quality MQ 40 < x < 70 

Mapping Quality Rank Sum Test MQRankSum -12.5 < x 

Read position Rank Sum Test ReadPosRankSum -8.0 < x 

Strands Odds Ratio SOR x < 3.0 

Fisher strand FS x < 60 

Excess Heterozygosity ExcessHet x < 20 

Inbreeding coefficient InbreedingCoeff x < 0.9 

Site Depth DP 500 < x < 1600 

Genotype Depth DP 10 < x < 40 

Genotype Quality (Phred score) GQ 20 < x 

Percent of missing data per site  x < 5% 

HWE exact test (p-value)  0.05 < x 

 

 

 

Supplementary Table 3 – Likelihood and AIC comparison between simulated scenarios for systems Crete 
and Cyprus. Three topologies were tested for each system (Figure 2). The best scenario for each system is 
highlighted in bold.  

System Scenario Likelihood Δ likelihood AIC Δ AIC 

CRETE 

A -2’506’864 5’219 5’013’755 603 

B -2’508’348 6’703 5’016’724 3’572 

C -2’506’562 4’917 5’013’152 0 

CYPRUS 

A -878’596 -1’025 1’757’220 0 

B -878’826 -1’277 1’757’679 460 

C -878’794 -1’246 1’757’617 397 

Likelihood – Maximum-likelihood estimated for the simulated SFS per demographic model; Δ likelihood – difference 
between the likelihood of the simulated and observed SFS; Δ AIC – delta AIC 
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Supplementary Table 4 – Parameter ranges and estimates of fastsimcoal2 for system “Crete”. Initial 
range is the range from which the software draws initial the parameter values. The distributions are 
uniform for every parameter except Bottleneck Intensity which is log-uniform. Highest likelihood estimates 
are provided for every parameter. In scenarios A, C the Aegean islands diverge first from mainland Greece 
and therefore time of divergence for Crete is scaled to be less than 6’000 generations, and ancient 
migration is only between GR and AE. For scenario B, Crete is more ancient than AE and the time of split is 
≥ 1 and ancient migration rates are between GR and CT. GR: Greece AE: Aegean CT: Crete. 

 

 

 
 

 

 

Parameter Initial Range 
Point estimates 

Crete A Crete B Crete C 

Haploid population sizes    

GR 500 – 100’000 502 7156 1465 

AE 50 – 100’000 283 638 802 

CT 10 – 4’000 162 1468 373 

Bottleneck Intensity (fraction of current population size) 

AE 0.01 – 0.5 0.187 0.064 0.060 

CT 0.01 – 0.5 0.206 0.070 0.198 

Time of divergence (proportion of 6000; generations) 

TCRETE (scenario A, C) 0.001 – 0.999 0.039 - 0.053 

TCRETE (scenario B) 1 – 3 - 1.218 - 

Ancestral migration rates (backwards in time) 

GR → AE (scenario A, C) 0 – 0.05 1e-06 - 1e-06 

AE → GR (scenario A, C) 0 – 0.05 0.0018 - 0.0009 

GR → CT (scenario B) 0 – 0.05 - 0.0029 - 

CT → GR (scenario B) 0 – 0.05 - 0.0009 - 

Current migration rates (backwards in time) 

GR → AE 0 – 0.05 0.0332 0.0002 0.0006 

AE → GR 0 – 0.05 0.0678 0.0429 0.0417 

GR → CT 0 – 0.05 0.0005 0.0003 0.0021 

CT → GR 0 – 0.05 0.0198 0.0003 0.0046 

AE → CT 0 – 0.05 0.0128 0.0074 0.0045 

CT → AE 0 – 0.05 0.001 0.0022 0.0046 
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Supplementary Table 5 – System “Crete”; Point estimates and 95% confidence intervals from non-
parametric bootstrapping for the best-fitting demographic scenario for system Crete – scenario C. 
Haploids/ generation in migration rates were estimated by multiplying each migration rate with the point 
estimate haploid size of the population of origin. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Parameter 95% Lower limit Point estimate 95% Upper limit 

Haploid population sizes   

GR 509 1’465 7’880 

AE 383 802 60’962 

CT 107 373 944 

Bottleneck intensity (haploid size) 

AE 13 48 2922 

CT 6 74 243 

Time of divergence (generations ago) 

TCRETE 68 321 1’400 

Ancient Migration rates (forward migration in haploids/generation) 

GR → AE  0.1421 1.3185 61.823 

AE → GR  0.0441 0.0577 36.09 

Current Migration rates (forward migration in haploids/generation) 

GR → AE 0.082 61.09 57.867 

AE → GR 7.218 0.481 56.942 

GR → CT 0.063 6.739 10.987 

CT → GR 0.0268 0.7833 6.0426 

AE → CT 0.1604 3.6892 8.3408 

CT → AE 0.0373 1.6785 9.698 
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Supplementary Table 6 – Parameter ranges and estimates of fastsimcoal2 for system “Cyprus”. Initial 
range is the range from which the software draws initial the parameter values. The distributions are 
uniform for every parameter except Bottleneck Intensity which is log-uniform. Highest likelihood estimates 
are provided for every parameter. In scenarios A, C the GH population diverges first from IS and therefore 
time of divergence for CY is scaled to be smaller and ancient migration is only between IS and GH. For 
scenario B, CY is more ancient than GH and the time of split is reversed, and ancient migration rates are 
between IS and CY. IS: Israel; GH: Ghost population; CY: Cyprus. 

 

 

 

 

Parameter Initial range 
Point estimates 

Cyprus A Cyprus B Cyprus C 

Haploid population sizes    

IS 5’000 – 150’000 5’140 7’959 5’631 

GH 100 – 150’000 130’619 487 109’265 

CY 100 – 50’000 122 47’095 292 

Bottleneck intensity (fraction of current population size)  

GH 0.01 – 0.5 0.110 0.296 0.025 

CY 0.01 – 0.5 0.104 0.135 0.023 

Time of divergence (proportion of 6000; generations)  

TCYPRUS (scenario A, C) 0.001 – 0.999 0.164 - 0.075 

TGHOST (scenario A, C) 0.001 – 3 1.709 - 0.715 

TCYPRUS (scenario B) 0.001 – 3 - 0.646 - 

TGHOST (scenario B) 0.001 – 0.999 - 0.198 - 

Ancestral migration rates (backwards in time) 

IS → GH (scenario A, C) 0 – 0.05 0.0001 - 0.0005 

GH → IS (scenario A, C) 0 – 0.05 3e-05 - 0.0004 

IS → CY (scenario B) 0 – 0.05 - 0.0431 - 

CY → IS (scenario B) 0 – 0.05 - 0.0056 - 

Current migration rates (backwards in time) 

IS → GH 0 – 0.05 0.001 0.0001 2e-05 

GH → IS 0 – 0.05 0.0087 0.0086 0.0039 

IS → CY 0 – 0.05 0.0001 0.0001 0.0001 

CY → IS 0 – 0.05 0.0078 0.0005 0.0152 

GH → CY 0 – 0.05 0.0018 0.0094 0.0108 

CY → GH 0 – 0.05 0.0424 0.035 0.0051 
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Supplementary Table 7 – System “Cyprus”; Point estimates and 95% confidence intervals from non-
parametric bootstrapping for the best-fitting demographic scenario for system Cyprus – scenario A. 
Haploids/ generation in migration rates were estimated by multiplying each migration rate with the point 
estimate haploid size of the population of origin. 

 

 

 

 

 

 

 

 

Parameter 95% Lower limit Point estimate 95% Upper limit 

Haploid population sizes   

IS 5’068 5’140 19’159 

GH 34’780 130’619 172’130 

CY 101 122 785 

Bottleneck intensity (haploid size) 

GH 1’176 14’423 11’739 

CY 3 12 145 

Time of divergence (generations ago) 

TCYPRUS 633 986.1 3’336 

TGHOST 2’392 10’250.9 11’739 

Ancient Migration rates (forward migration in haploids/generation) 

IS → GH  4.8948 0.97146 160.38 

GH → IS 231 13.1 6440 

Current Migration rates (forward migration in haploids/generation) 

IS → GH 5.11 44.944 224 

GH → IS 0.2069 133.022 13.4799 

IS → CY 27.5 40.16 171 

CY → IS 0.00026 0.0122 0.02353 

GH → CY 145.9 5538.598 51’880 

CY → GH 0.113 0.216 42.9 
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Supplementary Figures 

 
Supplementary Figure 1 – Haplotype network based on mtDNA of barn owls in the Mediterranean. The 
whole mitochondrial genome, except the D-loop, was used to construct the network. Small black dots 
represent individual mutation steps. Pie size is proportional to number of individuals carrying the 
haplotype. Large dashed circles indicate MT haplogroups 1 to 4, which are plotted in Figure 1a. 
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Supplementary Figure 2 – Individual clustering estimated by sNMF for K 2 to 5 lineages. Each vertical 
bar represents one individual, and the colours represent the relative contributions of each genetic lineage. 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3 – Treemix analysis for 1 migration events with its residual matrix. 
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Supplementary Figure 4 – Pairwise individual relatedness (β) heatmap between all individuals.  

 

 

 

 

 

 
Supplementary Figure 5 – Estimated effective migration surface (EEMS) based on whole-genome data. 
Orange shading denote regions of lower than average gene flow, darker shading indicates a stronger 
barrier. Dots indicate individual sampling location. Dashed lines delimit the Greek archipelagos sampled. 
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Supplementary Figure 6 – Distribution of ROH segments per population. Vertical axes are the same 
between plots but note the differences in the horizontal axes. 

 

 

 

 

 

Supplementary Figure 7 – PSMC results for system Crete and Cyprus, separated for readability. Each line 
represents the median across individuals in each population. Plotted with 8.28x10-9 mutation rate and 3.6 
years generation time. 

  



81 

 

  



82 

 

Chapter 3 
 

Insularity and ecological divergence in barn owls 

(Tyto alba) of the Canary Islands 

 

Tristan Cumera†, Ana Paula Machadoa†, Felipe Siverios, Rui Lourençoe, Motti Charterl,m, Alexandre 

Roulina‡, Jérôme Goudeta,j‡ 

 

† first co-authors, sorted alphabetically 

‡ co-senior authors 

 

Status 

In prep. We have received and are currently sequencing samples from Morocco that will be 

added to this project for publication.   

 

 

 

Author contributions 

APM, TC, AR, JG designed this study; APM produced whole-genome resequencing libraries; TC, 

APM conducted the analyses; FS, RL, MC provided samples; APM led the writing of the 

manuscript with input from all authors. 

 

 

 

 

 

 



83 

 

Abstract 

Islands, and the at-times particular organisms that populate them, have long fascinated 

biologists, and were key to the formulation of modern evolutionary theory. Due to their isolation, 

islands offer unique opportunities to study the effect of neutral and adaptive mechanisms in 

determining genomic and phenotypical divergence. In the Canary Islands, an archipelago rich in 

endemics, the barn owl is thought to have diverged into a subspecies on the eastern islands of 

Fuerteventura and Lanzarote. Taking advantage of 37 whole-genomes and modern population 

genomics tools, we provide the first look at the genetic makeup of barn owls of this archipelago 

and contrast it to mainland populations in the Mediterranean Basin. We show that the Canarias 

hold surprisingly diverse, long-standing and monophyletic populations with a neat distinction of 

genes pools from the different islands. Then, we used a new method, less sensitive to structure 

than classical FST, to detect regions involved in local adaptation to the insular environment. We 

identified a haplotype-like region likely under positive selection in all Canarias barn owls, and 

genes in the region suggest morphological adaptations to insularity. In the eastern islands, where 

the subspecies is present, genomic differentiation pinpoint signs of locally adapted body 

proportions and blood pressure, consistent with the smaller size of this population living in a hot 

arid climate. In turn, genomic regions under selection in the western barn owls from Tenerife, 

showed an enrichment in genes linked to hypoxia, a potential response to inhabiting a small 

island dominated by a large mountain. Our results illustrate the interplay of neutral and adaptive 

forces in shaping divergence and early onset speciation. 

 

 

Keywords 

Local adaptation; Niche analysis; Population genomics; T. a. gracilirostris; Whole genome 

sequencing 
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Introduction 

Due to the often-peculiar organisms that inhabit them, islands have always fascinated naturalists 

and scientists alike. Since Darwin’s first visit to the Galapagos in 1835, the study of insular 

populations has been crucial to the development of evolutionary theory31–33. Labelled nature’s 

test tubes, islands are home to a myriad of endemic (sub)species. Moreover, the combination of 

their relatively small size, discrete borders, geographical isolation and natural replication 

provides an excellent setting to study the evolutionary forces underlying population divergence 

and speciation34. The divergence of insular populations from their founders and surrounding 

islands is the result of neutral and selective forces. Disentangling the respective impacts of these 

two forces is a challenging task, as they are interconnected and can both contribute to genetic 

and phenotypic differentiation. 

Isolated and small populations, such as those frequently found on islands, are under a markedly 

strong influence of genetic drift. It will alter the genetic makeup of the population by randomly 

removing rare alleles and fixating common ones, hence decreasing genetic diversity196. This is a 

common occurrence on islands which, coupled with low gene flow, can lead to inbreeding195 and 

accelerate neutral divergence. Conversely, the absence of regular gene flow, and the often 

distinctive ecological conditions of the islands, can facilitate the action of local adaptation on 

beneficial alleles194,224. This process can lead to the emergence of ecomorphs via ecological 

divergence as populations adapt to unfilled insular niches34, particularly so in remote islands that 

are colonized less often225. Ecomorphs can occur in different islands or in the same one43,226,227, 

a concept mirrored in inland lakes228, the aquatic homologous of islands. Eventually, ecomorphs 

can become new species or subspecies and, in extreme cases, result in adaptive radiations as 

illustrated by Darwin’s finches61,62.  

The Afro-European barn owl (Tyto alba) is a non-migratory, nocturnal raptor present from 

Scandinavia to Southern Africa. It is also found on numerous islands and archipelagos where 

subspecies have often been described89. A recent study of the species’ genetic structure in the 

Western Palearctic204 described two main lineages occupying this region: the eastern lineage in 

the Levant and the western in Europe. In addition, Cumer et al. showed that barn owls from 

Tenerife (Canary Islands) were very distinct from both lineages. The Canarias are a volcanic 

archipelago that was formed several million years ago229 about 100 km from the coast of north-

western Africa. Unlike most other islands in the Western Palearctic, the Canarias’ distance to the 

mainland has remained stable over time. This long-term isolation230, along with its subtropical 

climate and elevation gradients231, has resulted in high endemism, for example in plants232, 

reptiles233–235, mammals236–238 and birds239–241. Among them, an endemic barn owl subspecies, 

T. a. gracilirostris (Hartert, E, 1905) based on its reportedly smaller size205,242. It is present in the 
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eastern Canarias (Lanzarote, Fuerteventura and surrounding islets), and is the only barn owl on 

these specific islands. 

The presence of this subspecies on the eastern islands is surprising however, given that it is 

sandwiched between the western islands and the mainland which both harbour the nominal 

species T. alba. Lacking any evidence of different colonization origins or timing, this could 

suggest that local adaptation acting on the eastern population has accelerated divergence in 

comparison to the western. In both cases, neutral and adaptive microevolutionary processes 

promoting divergence of insular populations would leave traces on their genomic makeup. The 

advances in sequencing technology, and its decreasing costs, now allow to sequence the entire 

genomes of individuals. With the parallel development of sophisticated tools, it is possible to 

analyse changes in allelic frequencies at a high resolution to investigate the history of 

populations and inspect the genomic landscape for signals of local adaptation.  

Here, we investigate the genomic bases of differentiation of barn owls from the Canary Islands. 

Making use of the whole-genome sequences from 37 individuals, we first describe the neutral 

genetic structure and diversity of the Canarias populations in contrast to the mainland, in order 

to retrace their history. Second, we employ a new relatedness-based method to probe the 

genomic landscape of these isolated populations for signals of local adaptation to the insular 

environment in regards to the mainland. Third, we characterize the climatic niches barn owls 

occupy on eastern and western islands, and explore how each population is diverging to adapt to 

their niches from a genomic perspective. Our results elucidate the genomic bases of the 

differentiation of insular populations, thus enlightening the classification of the Canarias barn 

owls. 

 

 

Materials & Methods 

Whole-genome sequencing, SNP calling and identification of coding regions 

For this study, 37 individual barn owls were sampled from four populations (Figure 1; Sup. Table 

1):  Eastern Canaries (EC, Fuerteventura and Lanzarote), Western Canary (WC, Tenerife), Portugal 

(PT) and Israel (IS). All but the EC population have been published in previous work, including a 

North American owl that was used as an outgroup for some analyses93,204. For EC, we followed 

the same molecular and sequencing protocol as in the aforementioned publications. Succinctly, 

genomic DNA was extracted using the DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany) and 

individually tagged 100bp TruSeq DNA PCR-free libraries (Illumina) were prepared according to 

manufacturer’s instructions. Whole-genome resequencing was performed on multiplexed 
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libraries with Illumina HiSeq 2500 high-throughput paired-end sequencing technologies at the 

Lausanne Genomic Technologies Facility (GTF, University of Lausanne, Switzerland).  

The bioinformatics pipeline used to obtain analysis-ready SNPs from the 37 individuals plus the 

outgroup was the same as in Machado et al.93, adapted from the Genome Analysis Toolkit (GATK) 

Best Practices154 to a non-model organism following the developers’ recommendations. Briefly, 

reads were trimmed with Trimommatic v.0.36179 and aligned with BWA-MEM v.0.7.15180 to the 

barn owl reference genome (GenBank accession JAEUGV00000000093). Base quality score 

recalibration (BQSR) was performed in GATK v.4.1.3 using high-confidence calls obtained from 

two independent callers: GATK’s HaplotypeCaller and GenotypeGVCF v.4.1.3 and ANGSD 

v.0.921181. Following BQSR, variants were called with GATK’s HaplotypeCaller and 

GenotypeGVCFs v.4.1.3 from the recalibrated bam files. Genotype calls were filtered using GATK 

and VCFtools182 if they presented: low individual quality per depth (QD < 5), extreme coverage 

(600 > DP > 1000), mapping quality (MQ < 40 and MQ > 70), extreme hetero or homozygosity 

(ExcessHet > 20 and InbreedingCoeff > 0.9) and high read strand bias (FS > 60 and SOR > 3). 

We filtered further at the level of individual genotype for low quality (GQ < 20) and extreme 

coverage (GenDP < 10 and GenDP > 40). Lastly, we kept only bi-allelic sites with less than 5% of 

missing data across individuals resulting in 6'718'804 SNP. For analyses of neutral population 

structure and demography, an exact Hardy-Weinberg test was used to remove sites that 

significantly departed (p<0.05) from the expected equilibrium using the R183 package 

HardyWeinberg184,185 yielding 6’701’905 SNP with a mean coverage of 22.3X (4.53 SD). 

To identify coding regions in the new reference genome, we extracted from NCBI all the 

annotated genes in the previous barn owl reference genome (GenBank assembly accession 

GCA_902150015.192). Gene sequences where then mapped on the new assembly using 

minimap2 v2.8207 with default parameters. Genes mapped with a quality equal or above 60 were 

kept for downstream analyses, in order to keep only high confidence coding regions. 

 

Population structure and genetic diversity 

To investigate population structure among our samples, sNMF v.1.2155 was run for K 2 to 5 in 25 

replicates to infer individual clustering and admixture proportions. For this analysis, singletons 

were excluded and the remaining SNPs were pruned for linkage disequilibrium in PLINK 

v1.946156 (parameters -indep-pairwise 50 10 0.1) as recommended by the authors, retaining 

288'775 SNP. The same dataset was used to perform a Principal Component Analysis (PCA) with 

the R package SNPRelate157.  

Individual observed heterozygosity and population-specific private alleles were estimated using 

custom R scripts for each population. Individual-based relatedness (β159,243), inbreeding 
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coefficients for whole genome SNP data (FIS and FIT), overall and population pairwise FST159 were 

calculated with hierfstat v.0.5-9214. 

 

Demographic history 

To investigate the demographic history of the insular populations and potential admixture events 

we used Treemix158. Using the LD-pruned dataset filtered further to include no missing data 

(228’980 SNP), Treemix was run for 10 replicates with 0 to 6 migration events, rooting the tree 

on the IS population, given its position on the PCA and the phylogeny (see below). 

To explore the space of all possible admixture graphs between our populations, we used the 

heuristic search implemented in qpBrute244,245 on the full set of SNPs, rooting the graph on the IS 

population. This f4 based software runs a stepwise algorithm to add nodes to the graph, adding 

admixture events to prevent outliers. If a graph still yields f4 outliers (i.e. |Z|<3) it is discarded.  

 

Phylogeny 

To infer intraspecific phylogenies along the genome from SNP data, we constructed maximum 

likelihood phylogenetic trees using the Randomized Axelerated Maximum Likelihood (RAxML) 

v8.2.12246, employing a generalized time-reversible (GTR) CAT model with Lewis ascertainment 

bias correction. First, we inferred genes trees in non-overlapping 100kb windows for all the 

individuals, including the American outgroup. Then, the produced gene trees were used to infer a 

concatenated maximum likelihood phylogeny with ASTRAL v5.7.5247. To verify that the consensus 

phylogeny was not driven by a specific region highly similar between the islands (see below and 

Fig. 2), we inferred a second tree with ASTRAL excluding RAxML windows in Super-

Scaffold_1000006. 

 

Detection of genomic regions under selection 

Insular vs mainland barn owls 

In this study, we aimed to identify genomic regions potentially under selection at two different 

levels. First, to detect signatures of selection specific to barn owls of the Canary Islands, we 

grouped insular individuals (EC and WC) and compared them to the mainland ones (PT and IS).  A 

script (https://github.com/simonhmartin/genomics_general/blob/master/popgenWindows.py) 

by Simon Martin was used to estimate genome wide patterns of relative (FST) and absolute (dxy) 

divergence between the insular and mainland groups, and to calculate nucleotide diversity (π) 

per group, in windows of 100kbp with 20kbp steps. 

https://github.com/simonhmartin/genomics_general/blob/master/popgenWindows.py
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SNPrelate was used to calculate a pairwise matrix of linkage disequilibrium (r) from SNPs with 

over 5% minor allelic frequency (MAF), which was then squared to obtain r2. For plotting, we 

estimated the mean of non-overlapping 100 SNP windows. 

The topology weighting method implemented in Twisst248, was used to quantify the relationships 

between the four populations in our dataset and visualize how they change along the genome. 

Twisst estimated the topology based on trees produced using RAxML in sliding windows (100kb 

of length, 20kb of slide; not including the outgroup) and estimated the weighting of each taxon 

topology (defined as the fraction of all unique population sub-trees) per window. 

Finally, we calculated population specific FST from allele sharing matrices (β159,243) in sliding 

windows of 100kbp with 20kbp steps, using hierfstat. For each matrix, we calculated i) the mean 

allele sharing for pairs of individuals from islands and ii) the mean allele sharing for pairs of 

individuals one from an island and the other from the mainland from which we obtain the islands 

specific FST we shall refer to this estimate as FST island-specific (FSTCan; see Sup. Fig. 1 for a 

schematic representation). This method allowed to identify genomic regions of high 

differentiation exclusively on the islands with no confounding effect from the mainland (see also 

Weir et al.249) 

From the genome wide scans, we identified peaks of differentiation with at least two overlapping 

windows of FSTCan higher than 5 standard deviations (SD) from the mean (0.394), and extracted 

the genes in these regions from the list of coding regions of the reference genome identified in a 

previous section. The gene list was then fed to ShinyGo v0.61250 to investigate potential 

enrichment of molecular pathways.  

 

East vs West Canaries 

On a second stage, to investigate potential genomic signals of differentiation, putatively linked 

with ecological adaptation to their distinct niches, we contrasted the two insular lineages (EC 

against WC). We estimated parwise FST, dxy and π as for the island-mainland comparison 

described above. 

Then, as for the island-mainland comparison above, we used hierfstat to calculate population 

specific FST in sliding windows of 100kbp with 20kbp steps based on a dataset including only the 

insular individuals. For each island, we consequently identified genomic regions with at least two 

overlapping windows of pariwise FST higher than 5 SD from the mean (0.157) and above the 99th 

quantile of each population’s F (FSTEC= 0.399; FSTWC = 0.421) and extracted the genes in these 

regions as described above. This yielded two genes lists, one per island, which were input to 

ShinyGo as above. 
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Climatic niche analysis 

To assess whether the barn owl populations of eastern and western Canarias occupy different 

climatic niches, we used the Outlying Mean Index (OMI) approach251 as implemented in the R 

package ade4 v.1.7-16252. Observation points for barn owls were compiled from three different 

sources: Global Biodiversity Information Facility (GBIF), samples sequenced in this study and in 
102. We kept records only from the islands sampled in this study, namely Tenerife (T. alba; N=79) 

and Lanzarote and Fuerteventura (T. a. g.; N=34 and N=39, respectively).  

Climatic variables for the Canary Islands were extracted from the WorldClim database164 at 30 

sec resolution (approximately 1 km2) using the R package rbioclim186. Redundant variables 

(correlation of 1) were trimmed and the final model was run with the following 13 variables: 

Mean Diurnal Range (BIO2), Isothermality (BIO3), Temperature Seasonality (BIO4), Max 

Temperature of Warmest Month (BIO5), Min Temperature of Coldest Month (BIO6), Temperature 

Annual Range (BIO7), Mean Temperature of Driest Quarter (BIO9), Annual Precipitation (BIO12), 

Precipitation of Driest Month (BIO14), Precipitation Seasonality (BIO15), Precipitation of Warmest 

Quarter (BIO18), Precipitation of Coldest Quarter (BIO19). 

 

 

Results 

Population structure, phylogeny and genetic diversity 

The overall FST in our dataset was 0.0698. Individual ancestry analyses with sNMF distinguished 

four genetic clusters in our dataset, separating each population into its own cluster (Fig. 1a). 

Similarly, PCA clustering clearly grouped individuals according to their population (Fig. 1c). The 

first axis opposed opposes the insular populations to the mainland, as did sNMF K=2 (Sup. Fig. 

2), with EC and IS at each extreme. The second axis contrasted the two insular populations EC 

and WC, as in K=3 (Sup. Fig. 2), and finally the third axis segregated the two mainland 

populations PT and IS, as in K=4 (Fig. 1a, 1c). Three individuals from EC (one from Fuerteventura 

and two from Lanzarote) showed small ancestry levels from both WC and PT in sNMF and were 

placed intermediately on axes 1 and 2 of the PCA. In terms of differentiation, pairwise FST were 

the highest between both islands and IS (EC-IS 0.092; WC-IS 0.088) as well as between islands 

(WC-EC 0.084). PT had the lowest FST with all other populations in accordance with its central 

position on the PCA (all below 0.064), the lowest being with IS (PT-IS 0.043). 

The consensus phylogenetic tree obtained with RAxML and ASTRAL grouped all individuals from 

each population together showing four well supported clusters (Fig.1b), despite signs of some 

incomplete lineage sorting (ILS; final normalized quartet score of 0.41). It positioned IS as the 
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basal population to all others of the Western Palearctic, followed by the split of PT and finally EC 

and WC. The tree topology remained the same when the Super-Scaffold_1000006 (see below 

and Fig. 2) was excluded (Sup. Fig. 3). Treemix yielded a population tree highly resembling the 

phylogeny and the first PCA axis, with PT splitting from the root IS first, followed by WC and finally 

EC (Sup. Fig 4). The first migration event was consistently from EC towards IS. Adding more than 

one migration events to the tree did not improve its fit to the data. The search for admixture 

graphs with qpBrute yielded three suitable graphs (i.e. no f4 outliers; Sup. Fig. 5). In all three, the 

root IS was connected directly to PT and EC, while WC was consistently positioned between them. 

 

 

Figure 1 – Population structure of barn owls from the Mediterranean Basin and the Canary Islands. a) Individual 
admixture proportion of each of K=4 lineages as determined by sNMF. Black dots are located at the approximate 
centroid of each sampled population. Dashed lines encircle the island(s) sampled for each Canarias population. b) 
Maximum-likelihood phylogenetic tree inferred by RAxML and ASTRAL. Within-population branch lengths (inside shaded 
rectangles) were collapsed and are not to scale. Root position was obtained with an American barn owl as outgroup. c) 
PCA of the 37 individuals. Point shape and colour denote populations according to the legend. Axes one to three are 
shown and values in parenthesis indicate the percentage of variance explained by each axis. 

 

Overall, mainland populations presented higher genetic diversity than the insular ones (Table 1). 

Nonetheless, both insular populations showed over 350’000 private polymorphic sites (Table 1). 

Accordingly, individual relatedness was higher within and between insular populations (Sup. Fig. 

6), and PT had the lowest within population relatedness. All populations showed signs of random 

mating with FIS close to zero but slightly negative as expected of dioecious species 219, while the 

inbreeding levels of insular barn owls relative to the whole set of populations (FIT) were higher 

than those on the mainland (Table 1), a reflection of their higher relatedness. 
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Table 1 – Genetic diversity and population differentiation of barn owls from the Mediterranean Basin and the Canary 
Islands. Right-hand-side of the table shows the matrix of population pairwise FST. 

Population Abbrev. N #PA HO FIS FIT FST EC WC PT IS 

Eastern 
Canary EC 10 405’394 0.155 

(0.013) 
-0.013 
(0.09) 

0.10 
(0.08) EC  0.084 0.063 0.092 

Western 
Canary WC 9 357’783 0.158 

(0.008) 
-0.038 
(0.02) 

0.08 
(0.04) WC 0.084  0.056 0.088 

Portugal PT 9 843’347 0.178 
(0.007) 

-0.014 
(0.04) 

-0.03 
(0.04) PT 0.063 0.056  0.043 

Israel IS 9 843’807 0.177 
(0.003) 

-0.025 
(0.05) 

-0.03 
(0.02) IS 0.092 0.088 0.043  

N – number of sampled individuals; #PA – private alleles in each population; HO – mean observed heterozygosity (SD); 
FIS - population level inbreeding coefficient (SD); FIT: mean individual inbreeding coefficient relative to the meta-
population (SD). 

 

 

Detection of genomic regions under selection 

Island vs mainland 

Genomic comparisons of diversity and divergence between insular and mainland barn owls 

yielded 58 100kb windows of high differentiation including 77 genes (Fig. 2a). FSTCan allowed the 

detection of regions of high relatedness in the islands, whereas FST yielded less clear results 

(Sup. Fig. 7). ShinyGo analyses identified an enrichment of four functional categories related to 

morphogenesis in humans (Sup. Table 2). The largest enriched pathway – anatomical structure 

morphogenesis – included 22 of the genes in regions of high genomic differentiation. The 

remaining three categories – anatomical structure formation involved in morphogenesis, tube 

morphogenesis and blood vessel morphogenesis – were subsets of the longest, including 14, 11 

and 9 of the 22 genes, respectively.  

The largest of the peaks, including 21 consecutive windows, encompassed 15Mb of Super-

Scaffold_1000006. Of the 77 genes found in peaks of differentiation, 69 were within this region. 

Here, insular owls showed a strong decrease in relative diversity compared to the mainland 

(FSTCan), as well as a drop of absolute divergence (dxy) and nucleotide diversity (π). The region 

showed strong LD (r2) in insular owls between neighbouring variants compared to the rest of the 

scaffold (Fig. 2b), which was not the case among continental ones (Sup. Fig. 8). In addition, FST 

was higher between island and mainland owls. Twisst showed roughly similar proportions of each 

tree along the genome, except for this region where there was a higher than average proportion 

of trees that joined EC and WC (Sup. Fig. 9). Of the 22 genes of the morphogenesis pathway, 17 

were found in this closely-linked region of Super_Scaffold_1000006 (25% of the total 69 genes 

of the region).  
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Figure 2 – Genomic landscape of differentiation between insular and mainland barn owls. a) Genome-wide FSTCan 
comparison between individuals from the Canary Islands (EC & WC) and from the mainland (PT & IS). Each dot 
represents a 100kb window. Dashed line indicates the 5 SD threshold used to identify genomic regions of high 
differentiation, emphasised in red. Alternating grey colours denote different scaffolds. Shaded vertical bar highlights 
Scaffold 100006. b) Zoom on Scaffold 100006 and, in particular, the ~15 Mb long highly differentiated genomic 
region (background shading) over windows of 100 kb. From top to bottom, we see in this region a high FSTCan between 
insular and mainland barn owls, low absolute distance (dXY) between both islands and reduction of nucleotide diversity 
(π) among insular individuals (red line) compared to the mainland (black line). The bottom triangular matrix shows 
pairwise LD (r2) in between groups of 100 SNP along the chromosome. Darker pixels show higher LD. Grey triangles 
match each pixel in the matrix diagonal to the region it spans on the chromosome above. Red triangles indicate pixels 
that overlap the region of high differentiation. 
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East vs West Canary Islands 

We detected a total 46 putatively adaptive regions on the islands (21 in EC and 25 in WC), i.e. 

with high differentiation (FST) and increased relatedness within each island (FSTEC and FSTWC), from 

which we obtained two lists of genes. For EC, there were 29 such genes (Sup. Table 3). 

Enrichment analyses found no link to a specific GO pathway. For WC, we identified less regions, 

and its list contained 14 genes (Sup. Table 4). ShinyGo detected enrichment of multiple 

pathways linked to hypoxia and the cellular response to decreased oxygen by two genes (Sup. 

Table 5). 

 

Climatic niche analysis 

The OMI analysis yielded two axes that explained the climatic variability in our study area (Fig. 

3b), with the first axis (OMI1) explaining nearly all of it (99.3%). OMI1 was positively correlated 

with temperature and negatively correlated with precipitation (Sup. Fig. 11). The eastern 

population T. a. gracilirostris occupied a narrow niche of high temperature, low precipitation and 

low seasonal and daily variability. T. alba in Tenerife, occupied a broader niche that covered most 

of OMI1, including some of the niche of T. a. gracilirostris. OMI2 explained little of the variability 

(0.7%), spreading slightly each subspecies’ niche without segregating them. 

 

 
Figure 3 – Ecological divergence in barn owls from the Canary Islands. a) Sampling location of western (WC; yellow) 
and eastern (EC; red) Canary individuals, off the coast of north-western Africa. Sampled islands are named. Large dots 
indicate individuals sampled for WGS and population genomics analyses; small transparent dots are barn owl 
observations used in niche analysis. Dashed lines group islands according to barn owl taxonomy. b) Climatic niche 
occupied by the two Canarias populations. The first axis varies from cold and wet to hot arid environments. c) Genome-
wide FST comparison between individuals from each Canarias population. Each dot represents a 100kb window. 
Alternating grey colours denote different chromosomes. Dashed line indicates the 5 SD FST threshold used to identify 
genomic regions of high differentiation in combination with Fβ, highlighted in yellow and red for WC and EC, 
respectively. Arrows denote the location of genes linked with response to hypoxia in WC; and the cluster of 6 genes 
linked to morphological ratios and the main gene related to blood pressure in EC. d) Same FST windows and threshold 
as in c plotted against the difference between the two Fβ, clearly highlight the two sets of windows putatively under 
local adaptation. 
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Discussion 

Islands offer unique conditions for organisms to adapt and expand their niches. In the Canarias, 

an archipelago rich in endemics, the barn owl is one of the few raptors present and is thought to 

have diverged into a subspecies on the easternmost islands. Taking advantage of whole-genome 

sequences, we first describe the population structure of barn owls in the Mediterranean Basin 

and the Canary Islands, revealing that the latter are long-standing populations allowing us to 

address their taxonomic classification. Then, using a new, more sensitive method, we detect 58 

putatively locally adapted genomic regions, many of them grouped in a haplotype-like region 

seemingly under positive selection in the islands. A quarter of the tightly linked genes in it enrich 

a pathway of anatomical morphogenesis suggesting morphological adaptations to insularity. We 

also identify genomic regions putatively locally adapted to either the eastern and western islands. 

For eastern Canarias, the identified genes in regions under positive selection belong to pathways 

linked to body proportions and blood pressure, consistent with the smaller owl size of this 

population living in a hot arid climate. For western Canarias, barn owls from Tenerife showed an 

enrichment of genes related to hypoxia, a potential response to inhabiting an island with a steep 

elevation gradient.  

 

Barn owls from the Canary Islands and Mediterranean Basin 

Our work shows that, while each population has its own unique genetic composition (Fig. 1), barn 

owls from the Canary Islands are distinct from those on the mainland surrounding the 

Mediterranean Basin. Indeed, clustering methods constantly opposed insular individuals to 

mainland ones (PCA axis 1 Fig. 1c; K=2 Sup. Fig. 2). Phylogenetic reconstruction grouped 

individuals per population, starting with IS, followed by PT and finishing with a monophyletic 

branch that split between both insular populations (Fig. 1b). Although there was considerable ILS 

throughout the genome (ASTRAL estimation 0.41; Sup. Fig. 9), as expected in a within-species 

context with overall low differentiation (FST  0.07), genomic data clearly provided the necessary 

resolution to resolve patterns that previous attempts based on a few genes had not89. The 

monophyly of the Canarias populations, which is not driven by selected genomic regions (Sup. 

Fig. 3), was also supported by the drift-based trees of Treemix. Thus, overall, our current results 

indicate that the two insular lineages – eastern and western Canarias – have a similar origin, 

although sampling north-western Africa would provide a more conclusive resolution. 

In terms of genetic diversity, as expected the islands were less diverse than the mainland and 

showed slightly higher levels of inbreeding relative to the whole set196. However, they presented 

nearly 10-fold higher levels of private alleles than those reported for other islands in the Atlantic 

(British Isles93) and in the Mediterranean Sea (Cyprus and Greek islands253). Notably, the two 
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Canarias insular populations, about 165 Km apart, were more distant genetically from each other 

(in terms of pairwise FST) than either was from Portugal, over 1000 Km away. Further, they were 

more distant from each other even than WC was from any population in continental Europe in a 

recent genomic study204, in agreement with previous observations with microsatellites102. Both 

the high private diversity and high differentiation can certainly be partially explained by our lack 

of samples from north-western Africa at the moment, which may be masking any shared 

polymorphisms between the islands and the nearest mainland as private to the former. However, 

as we did sample PT and IS, the most diverse populations in the Western Palearctic assumed to 

meet in northern Africa204, much of this insular diversity is likely indeed private. Therefore, the 

Canarias appear to have been colonized much earlier than the other studied insular populations 

and have thus had the time for in situ mutations to accumulate in spite of genetic drift, which is 

supported by their higher divergence as well.  

 

Insularity 

We found multiple evidence of adaptation common to both barn owl lineages of the Canary 

Islands. To do so, we used a moment based estimator of population specific FST159,243 to identify 

genomic regions with an excess of shared ancestry in all insular individuals relatively to the mean 

shared ancestry between islands and mainland individuals. Such regions, highly similar in insular 

individuals, are thus putatively under selection on the islands. This method provides a clearer 

result than classical pairwise FST scan (Sup. Fig. 7), as it focuses on the diversity in the target 

population rather than taking an average over the set of populations. Being a moment estimator, 

it is also very efficient compared to maximum likelihood or Bayesian estimators (e.g.254), and 

does not rely on the F-model, which assumes independent populations. Effectively, the island 

specific FSTCan identified regions of increased relatedness between insular individuals or, put more 

simply, regions in which all insular individuals resemble each other more, compared to the 

averaged relatedness along the genome. This population specific, moment based and model-free 

estimator of FST should be a useful addition to the population genomic toolbox to detect nested 

signals of local adaptation, especially when there is substructure in the groups one wishes to 

compare.  

The genomic landscape of FSTCan differentiation between insular and mainland owls yielded 58 

windows putatively under selection (Fig. 2a). Among these, a particularly large and clear peak of 

differentiation stood out. This region of approximately 15 Mb in length was highly similar among 

insular individuals (Sup. Fig. 10) as shown by the accompanying drop in dXY and π (Fig. 2b). 

Furthermore, the increased linkage between alleles in this region suggests that it is transmitted 

in a haplotype-fashion. Crucially, the fact that we do not see the slightest surge of LD in mainland 

individuals confirms that it is not a by-product of a region of low-recombination in this species 
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(Sup. Fig. 8). Overall, we provide strong evidence of positive selection in this genomic region in 

Canary Islands owls, suggesting an adaptation to insularity (Fig. 2).  

A quarter of the genes in this haplotype (17 out of 69), in conjunction with 5 other genes in 

potentially adaptative regions, significantly enriched the anatomical structure morphogenesis 

pathway (Sup. Table 2), a biological process related to the organisation and generation of 

anatomical structure during development. This suggests positive selection on some 

morphological trait on insular individuals. Given that there is evidence of gene flow into both 

islands (see admixed individuals in Fig. 1a, 1c), we propose two hypotheses to explain how 

selection might act on this haplotype. First, it could confer a significant advantage to individuals 

carrying it on the island and prevent those that do not carry it from reproducing or surviving. In 

this scenario, immigrants from the mainland not carrying this haplotype would not reproduce in 

both islands, while those that did carry it might. In the second scenario, selection would happen 

on the migrants themselves before reaching the island if, for example, the haplotype facilitates 

long flight over large spans of water. It is widely accepted that, given how dispersal capacity is 

highly variable across species, even among birds, some are more prone to colonizing islands 

than others. Therefore, it is also conceivable that, within a species or population, some 

individuals are morphologically more predisposed or have better dispersal abilities than others. 

Since the barn owl generally avoids flying over open water, as demonstrated by its consistently 

higher differentiation on islands93,204,253, this appears like a plausible explanation. The absence 

of phenotypic measurements from the sequenced birds prevents us from establishing a link 

between phenotypes and genotypes on this data set, and we hence remain cautious on the 

speculation regarding the functional implications of this haplotype. In future work, a larger cohort 

should verify the frequencies of this haplotype as we only had 19 insular individuals in this study, 

and if possible include detailed morphometric measurements to allow a GWAS-like approach. In 

addition, the potential function of the 75% remaining genes in the region should be identified 

once a full genome annotation is available. 

 

Ecological divergence 

In the Canary archipelago, both the eastern islands and Tenerife have many specific endemic 

species across multiple taxa. This is generally attributed to their intrinsic characteristics driving 

ecological speciation namely, the arid and windy conditions of Lanzarote and Fuerteventura, and 

the elevation gradient of the Teide volcano (up to 3’715m tall) in Tenerife. We quantified the 

climatic differences between the two environments with a niche analysis based on reported barn 

owl observations, and show that indeed barn owls occupy significantly different niches on each 

group of islands (Fig. 3b). In the east, they are found on unvaryingly hot and dry locations, 

whereas Tenerife covers a wide range of temperature and precipitation (Fig. 3b). 
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From the genomic data, we found evidence of local adaptation on both insular populations (Fig. 

3c, 3d). The eastern population had more genomic regions, and more genes, potentially under 

selection compared to the west (29 and 14 genes, respectively). Although no significant pathway 

enrichment was detected in the eastern population, there were two groups of genes with similar 

functions in the putatively adapted regions. The first group, composed of 12 genes, has 

significant links to body size and proportions in humans (see Sup. Table 3 and references 

therein). Among these, a specific set of 6 genes – HIP1R, CCDC62, DENR, GPN3, VPS37B and 

ABCB9 – is tightly clustered in the barn owl genome (Fig. 3c), suggesting they might benefit from 

linked selection. These have been linked to body height, body-mass-index and other body 

measurement ratios255–260, which could be evidence of a genetic determination of the smaller 

size of barn owls in the eastern population, thus suggesting it is indeed a morphological 

adaptation to living on these islands. The second group of genes in regions potentially under 

selection, includes 10 genes related to numerous blood parameters (Sup. Table 3), a similar 

signal to that seen in chickens adapted to hot arid environments261. In particular, the gene 

MTHFR has extensive connections to blood pressure262–269, a trait known to vary with 

environmental temperature in mammals270 and birds271, potentially suggesting barn owls have 

circulatory systems adapted to the hot and dry conditions of the eastern Canarias. 

In the western population, regions putatively under selection are enriched in genes involved in 

pathways related to the cellular response to hypoxia (i.e. low levels of oxygen; Sup. Table 5). 

While this analysis highlighted two genes, EPAS1 and PRKCE, there were three other genes in 

highly differentiated regions with similar links to red blood cells and haemoglobin density (Sup. 

Table 4), namely MCFD2, FZD8 and ZNF512255,258,272–274. Red blood cells, and the haemoglobin 

within, are responsible for transporting oxygen in the body and are direct targets of selection at 

high elevation275. The gene EPAS1 in particular, is well known for being involved in adaptation to 

high altitude environments across vertebrates276, hinting at an adaptation of barn owls to higher 

altitude in Tenerife. Indeed, Tenerife is a small island, made even smaller to barn owls by the 

presence of a colossal peak in the centre since mountains are limiting to this species171,204. 

However, being in a warm climate likely allowed the local population to expand their range by 

adapting to slightly higher altitudes than elsewhere. 

Considering its wide range of distribution, even accounting for phenotypic plasticity, barn owls’ 

capacity to adapt to a variety of prey and environments is unquestionable. As such, it is not 

surprising to detect signals of local adaption in the Canary Islands. With islands generally being 

species-poor, the species that do inhabit them adapt to different or broader niches via ecological 

divergence34. This is especially true of volcanic islands that arise isolated and uninhabited, in 

contrast to those intermittently connected to the mainland and more easily colonized. The 

community of birds of prey in the Canary archipelago includes less than half the species found in 
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the nearby mainland205, likely due to the lack of suitable habitat and/or surface. A by-product of 

this is the reduction of inter-specific competition, which could have allowed the barn owl to 

maintain population sizes just large enough on the islands through time for selection to act and 

potentially expand its niche to better exploit the insular environment. Our results suggest this is 

happening in parallel on each island (Fig. 3c, 3d), consistent with their different niches (Fig. 3b) 

and relative genetic isolation, producing two ecomorphs. 

 

Insular subspecies 

The eastern islands of Lanzarote and Fuerteventura (Fig. 3a) are home to the barn owl 

subspecies T. a. gracilirostris (Hartert, E, 1905). This classification is based on its smaller size 

and potentially colouration patterns, although the latter is contested by ornithologists and 

inconsistent with reported phenotypical measurements102. The reduction in size is actually a 

common pattern in insular barn owls176, and could be an adaptation to nesting in very small 

cavities (i.e. old lava hills) and/or to better navigate the strong winds in the eastern islands. The 

genomic data presented here is consistent with this population forming an endemic subspecies. 

It has diverged considerably from the mainland, with higher differentiation levels than barn owls 

from any other studied island in the Western Palearctic93,253. Moreover, we show it forms a 

monophyletic cluster (Fig. 1b) with high levels of private genetic diversity, and multiple genomic 

regions showing signs of local adaptation (Fig. 3c). While we did not find any specific pathway 

enrichment that could be linked to its small size, it is worth noting that our current genome 

annotation is imperfect and thus the extracted list of genes is likely incomplete.  

In contrast, barn owls from Tenerife and the remaining islands are considered to belong to the 

nominal T. alba found also on the mainland surrounding the Mediterranean Basin (Fig. 3a). 

However, it too has considerably diverged from the mainland and shows signs of being locally 

adapted to, at least, Tenerife and its elevation gradient (see previous section). Furthermore, it 

clusters with the other insular Canary population rather than the mainland (Fig. 1). While it is not 

the aim of this study to evaluate what constitutes a subspecies, we provide evidence that the 

Tenerife population is diverging significantly from its founding population, both neutrally and 

adaptively, albeit at a slower pace than the eastern population.  

The reasons why the eastern population is more divergent than the western, a puzzling fact 

considering it is closer to the mainland, are not yet fully resolved. Neutral divergence in FST 

between these two insular populations suggest they are the result of two independent 

colonisation events rather than a strict east-to-west progression as described for other taxa277. 

Although the islands themselves emerged from east to west, Tenerife is at least 11 million years 

old, twice the inferred time of formation of the T. alba species89 and thus available at the time. 

Nonetheless, an earlier settlement of the eastern islands would have given more time for both 
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genetic drift and selection to promote divergence. A very small population size in the east, 

consistent with current census data278, could account for the stronger drift in a scenario of 

simultaneous colonization. However, it would strongly hinder local adaptation, making it a less 

likely hypothesis since we identified more regions putatively under selection in this population. 

Finally, an earlier colonisation of the eastern islands could explain the link between EC and IS 

seen in Treemix (Sup. Fig. 4) and qpBrute (Sup. Fig. 5). The former suggested a migration event 

between these two populations, and the latter always linked EC, but not WC, directly to IS. This 

could suggest that EC has a trace of north or north-eastern African component in its ancestry, 

that WC does not. The inclusion of north-western African individuals in these analyses would be 

particularly useful to fully resolve the origin of the insular populations. 

 

Conclusion 

Due to their intrinsic characteristics, islands house numerous endemics making them ideal 

systems to study the bases of ecological divergence. We provide empirical evidence that both 

neutral and adaptive evolutionary mechanisms shaped divergence from the mainland in barn 

owls from the Canary archipelago. Our results show clear signs of genome-wide differentiation 

(i.e. neutral), a combination of mutations (high private diversity; Table 1) and drift (high FST and 

FIT), consistent with theoretical expectations for populations established and isolated long ago 

despite some admixture. We also identify signals of local adaptation to common insular 

conditions (Fig. 2), as well as to each island’s niche, creating ecomorphs (Fig. 3). While the 

history and functional effect of the putatively adapted genomic regions identified here deserve 

further investigation, these observations highlight how selection can still act on small isolated 

populations. This study illustrates the capacity of a widespread bird to adapt to the local 

ecological conditions of small islands, an adaptative capacity which may prove essential in facing 

a changing global climate. 
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Chapter 3 – Supporting Information 

 

Supplementary Tables 
Sup. Table 1 – Description of samples used in this study. 

# Pop ID Location Year Tissue Sex Ref 
1 East Canary EC01 Lanzarote 2010 muscle Female 1 
2 East Canary EC02 Lanzarote 2010 muscle Female 1 
3 East Canary EC03 Lanzarote 2012 muscle Female 1 
4 East Canary EC04 Lanzarote 2012 muscle Female 1 
5 East Canary EC05 Lanzarote 2012 muscle Male 1 
6 East Canary EC06 Lanzarote 2012 muscle Male 1 
7 East Canary EC07 Lanzarote 2007 feather Male 1 
8 East Canary EC08 Lanzarote 2008 feather Female 1 
9 East Canary EC09 Fuerteventura 2007 feather Male 1 
10 East Canary EC10 Fuerteventura 2007 feather Female 1 
11 West Canary WC01 Tenerife 1905 muscle Male 2 
12 West Canary WC02 Tenerife 2003 muscle Female 2 
13 West Canary WC03 Tenerife 2003 muscle Female 2 
14 West Canary WC04 Tenerife 2003 muscle Male 2 
15 West Canary WC05 Tenerife 2005 muscle Male 2 
16 West Canary WC06 Tenerife 2005 muscle Female 2 
17 West Canary WC07 Tenerife 2006 muscle Male 2 
18 West Canary WC08 Tenerife 2006 muscle Male 2 
19 West Canary WC09 Tenerife 2006 muscle Male 2 
20 Portugal PT01 Pombal 2013 feather Female 3 
21 Portugal PT02 Coruche 2013 feather Male 3 
22 Portugal PT03 Évora 2013 feather Male 3 
23 Portugal PT04 Coruche 2012 feather Female 3 
24 Portugal PT05 Nazaré 2013 feather Female 3 
25 Portugal PT06 Porto de Moós 2013 feather Female 3 
26 Portugal PT07 Setúbal 2012 feather Female 3 
27 Portugal PT08 Fátima 2013 feather Female 3 
28 Portugal PT09 Santarém 2013 feather Male 3 
29 Israel IS01 Lachish 2005 blood Female 2 
30 Israel IS02 Beit Shean 2005 blood Male 2 
31 Israel IS03 Hula 2005 blood Female 2 
32 Israel IS04 Beit Shean 2005 blood Female 2 
33 Israel IS05 Beit Shean 2005 blood Male 2 
34 Israel IS06 Beit Shean 2005 blood Female 2 
35 Israel IS07 Beit Shean 2005 blood Female 2 
36 Israel IS08 Hula 2005 blood Female 2 
37 Israel IS09 Hula 2005 blood Female 2 
38 Syngapore SGP Singapore 2013 soft tissue Male 3 
39 USA USA San Diego, California 2015 soft tissue Female 3 

[1] this study 
[2] GenBank BioProject PRJNA727977 204 
[3] GenBank BioProject PRJNA700797 93 
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Sup. Table 2 – ShinyGo pathway enrichment results for genes in putatively adapted genomics regions in 
the insular Canarias populations. All listed genes are located in the haplotype-like region in Figure 2, except 
those marked with †. 

Enrichment 
FDR 

Genes 
in list 

Total 
genes Functional Category Genes 

0.0271 14 1164 
Anatomical structure 
formation involved in 
morphogenesis  

GNG5 ANXA2† F3 RORA† VAV3 BCL10 
CCN1 PRKACB DDAH1 WDR72† S1PR1 
COL11A1 ADAM12† TGFBR3 

0.0406 22 2785 Anatomical structure 
morphogenesis  

PLPPR4 NEXN GNG5 ANXA2† TGFBR3 
F3 CCN1 COL11A1 RORA† PALMD 
OLFM3 VAV3 BCAR3 BCL10 PRKACB 
BARHL2 DDAH1 NTNG1 WDR72† 
S1PR1 ADAM12† FGD5† 

0.041 11 860 Tube 
morphogenesis  

ANXA2† F3 VAV3 BCL10 CCN1 PRKACB 
DDAH1 S1PR1 RORA† ADAM12† 
TGFBR3 

0.0419 9 603 Blood vessel 
morphogenesis  

ANXA2† F3 VAV3 CCN1 DDAH1 S1PR1 
RORA† ADAM12† TGFBR3 

 

 

 

 

 

 

Sup. Table 3 – List of genes in putatively adapted genomic regions in the Eastern Canary population, 
grouped per location on the barn owl genome. Associated phenotypes are provided for each gene when 
available. Human-specific behavioural phenotypes are not reported (for example, alcohol consumption). 
Genes marked with † have phenotypes related to body size and proportions, and ‡ with blood parameters. 

 

Super-Scaffold Gene Phenotype References 
1 MGMT† Body height 255,260 
3 LRTM1† Body height 255,279 

5 
LAS1L -  

ZC3H12B Alopecia 280 
HEPH Alopecia 280 

16 
DAAM2†‡ 

Body height 255,281 
Platelet count 274 

MOCS1†‡ 
Body height 255  
Platelet count 274 

23 
MMAA‡ Hemoglobin measurement 258,282 
SMAD1‡ Hemoglobin measurement 258,282 
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44 

PITPNM2‡ 
Platelet count 283  
Reticulocyte count 258 
BMI 255 

ARL6IP4 -  

OGFOD2 -  

ABCB9† 
Waist-hip ratio 255 
BMI-adjusted waist-hip ratio 256 

VPS37B† BMI-adjusted waist-hip ratio 256 

HIP1R†‡ 

BMI 257 
BMI-adjusted waist-hip ratio 256 
Waist-hip ratio 255 
Body height 255 
Platelet count 258 

CCDC62†‡ 
BMI-adjusted waist-hip ratio 256 
Platelet count 258 

DENR†‡ 
Mean corpuscular volume 258 
BMI-adjusted waist-hip ratio 256 
BMI 256 

GPN3† 
BMI 255,256,259 
Body height 260 

ARPC3 -  

ANAPC7‡ QT interval 284 

20000042 

P3H1 -  

CLDN19 -  

YBX1 -  

PPIH -  

CCDC30‡ 
Systolic blood pressure 285 
Pulse pressure 285,286 

PPCS -  

KIAA2013† Waist-hip ratio 279 

NPPC† 
Body height 255,287–291 
BMI-adjusted waist-hip ratio 256 

MTHFR‡ 

Mean arterial pressure 267 
Diastolic blood pressure 262,265,266,268 
Systolic blood pressure 262–266 
Pulse pressure 265 
Platelet count 258,274 
Blood pressure 262 
Hypertension 269 
Mean corpuscular volume 255,258,274 
Erythrocyte count 255,258 
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Sup. Table 4 – List of genes in putatively adapted genomic regions in the Western Canary population, 
grouped per location on the barn owl genome. Associated phenotypes are provided for each gene when 
available. Human-specific behavioural phenotypes are not reported (for example, alcohol consumption). 
Genes marked with † are linked to red blood cells and haemoglobin measurements, and with ‡ to other 
blood parameters.  

Super-Scaffold Gene Phenotype References 

16 

CAMKMT Body height 255,288,290 
TMEM247 -  

EPAS1† 

Erythrocyte count 255 
Hematocrit 258 
Hemoglobin measurement 258,292 
High altitude adaptation 293,294 
PR interval 295 

PRKCE† 
Hematocrit 258,272,274,296–300 
Erythrocyte count 255,258,272,274,297,298,300,301 
Hemoglobin measurement 258,272–274,296–300 

MCFD2† 

Hematocrit 258,272 
Erythrocyte count 258,272 
Hemoglobin measurement 258,272,273 
Body height 255,279 

LRFN2 BMI 255,256,259 

38 

NXPH1 -  
GJD4‡ PR interval 302 

FZD8† 
Hematocrit 274 
Erythrocyte count 258,274 
Hemoglobin measurement 255,258 

40 

ZNF512† 
Erythrocyte count 255 
Hair colour 255,303 

FNDC4 -  

IFT172 Hair colour 255 
KRTCAP3‡ Systolic blood pressure 255 
NRBP1 Hair colour 255 

 

 

Sup. Table 5– ShinyGo pathway enrichment results for genes in putatively adapted genomics regions in 
the Western Canary population. 

Enrichment 
FDR 

Genes 
in list 

Total 
genes Functional Category Genes 

0.0394 2 66 Cellular response to hypoxia EPAS1 PRKCE 

0.0394 2 67 
Cellular response to decreased oxygen 
levels EPAS1 PRKCE 

0.0394 2 78 Cellular response to oxygen levels EPAS1 PRKCE 
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Supplementary Figures 
 

 
Sup. Fig. 1 – Graphical representation of the calculation of Fβ from individual relatedness matrices to 
compare a) insular and mainland individuals and b) individuals from each island. Coloured squares in 
formulas on top, represent the mean of the same-colour section of the matrix underneath, calculated in 
windows of 100kb along the genome. Note that in b) the matrix is smaller as it does not include any owl 
from the mainland. In both matrices, the diagonal, in white, is empty. 

 

 

 

 

 

 

 

 

 

Sup. Fig. 2 – Individual clustering estimated by sNMF for K 2 to 4 lineages. Each vertical bar represents 
one individual, and the colours represent the relative contributions of each genetic lineage. 
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Sup. Fig. 3– Consensus phylogeny produced with ASTRAL, excluding the Super-Scaffold_10006. Note that 
the topology is the same as in Figure 1b with all the genome. 

 

 

 

Sup. Fig. 4 – Treemix analysis with 0 and 1 migration events, and their residual matrices. Note that for 1 
migration event, the residual error is 0 and thus treemix was unable to add more than one migration 
events to the tree. 
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Sup. Fig. 5 – Admixture graphs produced by qpBrute that significantly explain the history of barn owls of 
the Canary archipelago. The first, bigger graph was the most likely. In all three, note that EC is directly 
linked to IS while WC is not. 

 

 

 

 

Sup. Fig. 6 – Pairwise individual relatedness (β) heatmap between all individuals.  
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Sup. Fig. 7 – Comparison of FSTCan and FST scans for a) the whole genome and b) a zoom on the highest FST peak 
(indicated in red). Note that this peak is actually just a specificity of EC and not an overall difference between insular 
and mainland birds. FSTCan did not produce such a peak. 

a) 

b) 
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Sup. Fig. 8 – Matrices of pairwise Linkage Disequilibrium (LD; r2) along Scaffold 10006 of barn owls from 
Islands and from Mainland. Each pixel shows the average r2 of 100 SNP, with higher values being of darker 
colour. The Island matrix clearly shows a region of amplified LD that the Mainland does not. This region 
corresponds to the highly differentiated segment shown in Figure 2. 

 

 

 

 

 

Sup. Fig. 9 – Twisst tree weighting output along the genome. At each 100kb window, the proportion 
explained by each tree topology in shown in shades of grey. Red arrow indicates the haplotype-like region 
selected on the islands (Figure 2). Note the increased proportion of dark grey trees, in which both island 
populations are placed in the terminal monophyletic branch, showing increased convergence among 
insular individuals in this genomic region. 
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Sup. Fig. 10 – Allele dosage representation along Scaffold 10006 of barn owls from the Canary Islands 
and the Mediterranean Basin. Each vertical bar represents the genotype at one biallelic SNP. In yellow, 
homozygote for one allele; light blue, heterozygote; dark blue, homozygote for the other allele. The highly 
differentiated region shown in Figure 2 is visible with in the EC and WC populations but not in the others, 
with clear long yellow segments. 

 

 

 

 

 

Sup. Fig. 11 – Correlation of bioclim climatic variables with OMI1, the first axis of niche variance.  

 

 

 

 

 

 

 

  



110 

 

  



111 

 

Chapter 4 
 

Landscape and climatic variations of the Quaternary 

shaped secondary contacts among barn owls (Tyto 

alba) of the Western Palearctic 

 

Tristan Cumera, Ana Paula Machadoa, Guillaume Dumonta, Vasileios Bontzorlosk.l, Renato 

Ceccherellim, Motti Chartern,o, Klaus Dichmannd, Hans-Dieter Martensg, Nikos Kassinisp, Rui 

Lourençoe, Francesca Manziar, Kristijan Ovarit, Laure Prévosth, Marko Rakovicu, Felipe Siverios, 

Alexandre Roulina†, Jérôme Goudeta,j† 

 

† co-senior authors 

 

Status 

Ready for submission, awaiting on confirmation from some co-authors. 

 

 

 

Author contributions 

TC, APM, AR, JG designed this study; GD and APM produced whole-genome resequencing 

libraries and called the variants; TC and APM conducted the analyses; KD, RL, JL, HDM, PB, VB, 

MC, KD, HDM, NK, RL, FM, KO, LP, MR and FS provided samples to the study; TC led the writing 

with APM with input from all authors. 

 

 

 

 

 



112 

 

Abstract 

The combined actions of climatic variations and landscape barriers shape the history of natural 

populations. When organisms follow their shifting niches, obstacles in the landscape can lead to 

the splitting of populations, on which evolution will then act independently. When two such 

populations are reunited, secondary contact occurs in a broad range of admixture patterns, from 

narrow hybrid zones to the complete dissolution of lineages. A previous study suggested that 

barn owls colonized the Western Palearctic after the last glaciation in a ring-like fashion around 

the Mediterranean Sea, and conjectured an admixture zone in the Balkans. Here, we take 

advantage of whole-genome sequences of 94 individuals across the Western Palearctic to reveal 

the complex history of the species in the region using observational and modelling approaches. 

Even though our results confirm that two distinct lineages colonized the region, one in Europe 

and one in the Levant, they suggest that it predates the last glaciation and identify a narrow 

secondary contact zone between the two in Anatolia. Nonetheless, we also show that barn owls 

re-colonized Europe after the glaciation from two distinct glacial refugia: a western one in Iberia 

and an eastern one in Italy. Both glacial lineages now communicate via eastern Europe, in a wide 

and permeable contact zone. This complex history of populations enlightens the taxonomy of Tyto 

alba in the region, highlights the key role played by mountain ranges and large water bodies as 

barriers and illustrates the power of population genomics in uncovering intricate demographic 

patterns. 

 

Keywords 

Demographic modelling; glacial refugium; Haplotypes; Population genomics; postglacial 

recolonization; Whole-genome resequencing 
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Introduction 

Species distribution patterns fluctuate in response to climatic variations, as populations relocate 

to follow their shifting niches304. When organisms colonize new areas, obstacles in the landscape 

may lead populations to split with varying degrees of geographic isolation. Evolution, via 

mutation, drift, local adaptation and gene flow, will then act independently on each of the 

isolated populations. If two allopatric populations are later geographically reconnected, after a 

certain amount of time and divergence, it can create a secondary contact zone. For example, 

when populations on both sides of an obstacle meet at the end of it in a ring-like fashion, as 

described in birds305, amphibians306,307, or plants308. Likewise, climate oscillations can lead to 

cyclical isolation and secondary contacts between populations as regional suitability varies309.  

This complex interplay between climatic variations and landscape has been extensively studied in 

the Western Palearctic121,123, specifically in light of the cycles of glacial and interglacial periods 

that characterized the Quaternary310. During the last glaciation, colder temperatures and the 

expansion of the ice sheets in the north rendered large areas unsuitable for many species, which 

led them to follow their niches southward. Species found refuge in the Mediterranean peninsulas 

and in northern Africa where climatic conditions were more amenable, forming isolated 

populations. At the end of the last glaciation maximum (i.e. approximatively 20k years ago311), 

this process was reversed as the climate warmed and the melting of the continental ice caps 

exposed free land that could be recolonized. An extensive literature addressing the post-glacial 

history of European organisms describes how the complex landscape of the continent, combined 

with the distribution of species during the glaciation, conditioned their recolonization 

processes121,312. However, the low-resolution of genetic data used before the genomic era was 

often insufficient to resolve the intricate and often fine-scale evolutionary processes that 

occurred during recolonization.  

Rapid development of high-throughput sequencing technologies and corresponding 

methodological tools during the last decades has opened new avenues to study natural 

populations with high precision. In particular, it has allowed biologists to reconstruct the 

evolutionary history of species and highlight the diversity of processes acting when populations or 

subspecies interact in secondary contact. These processes have been found to result in a variety 

of situations. While the prolonged isolation of populations may lead to allopatric speciation (many 

examples in plants313,314, amphibian306, insects315, mammals316 and birds317), secondary contact 

tends to show a broad range of admixture patterns. When admixture occurs, it may vary from 

narrow hybrid zones between lineages84, to the complete dissolution of a lineage318, through a 

gradual level of admixture along a gradient of mixing populations319.  

Microsatellite and mitochondrial suggested that the barn owls (Tyto alba), a non-migratory raptor, 

colonized the Western Palearctic in a ring-like fashion around the Mediterranean Sea after the 
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last glaciation102. Under this scenario, a postglacial expansion from the glacial refugium in the 

Iberian Peninsula to northern Europe formed the western branch of the ring, with the eastern 

branch present across the Levant and Anatolia. While these observations led to conjecture of a 

potential admixture zone in the Balkans, the available data at the time combined with the overall 

low genetic differentiation in this species did not allow to fully resolve this question. Moreover, 

the peculiar genetic makeup of populations in the presumed contact zone brought into question 

the possibility of a cryptic glacial refugium in the eastern Mediterranean peninsulas.  

The difficulty in resolving the post glacial expansion of barn owls is mirrored by their convoluted 

taxonomy in the Western Palearctic. In this region, Tyto alba is classified into different subspecies 

based on geography and plumage coloration. First, T. a. erlangeri (Sclater, WL, 1921) reported in 

Crete, Cyprus and Middle East, may match the Levant lineage. Second, T. a. alba (Scopoli, 1769) 

is white-coloured and supposedly present in western Europe and western Canary Islands, and 

could represent the western arm of the ring colonization. T. a. guttata (Brehm, CL, 1831), the 

third subspecies is a dark rufous morph allegedly found in Northern and Eastern Europe, in the 

Balkans and around the Aegean Sea. This taxonomy does not match any known genetic lineage 

identified so far and overlaps with the area where admixture between the two lineages that 

colonized Europe supposedly happens, making the presence of a subspecies in this area puzzling 

in light of the history known so far. 

Here, taking advantage of whole genome sequences of 94 individuals from all around continental 

Europe and the Mediterranean Sea, we elucidate the demographic history of barn owls in the 

Western Palearctic. Combining descriptive and modelling approaches based on genomic and 

ecological data, we identify how the climatic variations and landscape of the region shaped the 

history of this species. We also investigate how previously isolated populations of barn owls 

interact at secondary contacts between different lineages, and discuss the convoluted taxonomy 

with regards to their history.  

 

 

Material and methods 

Samples and data preparation 

Sampling, Molecular and sequencing methods 

The whole genomes of 96 individual barn owls (Tyto alba) were used in this study (Sup. Table 1): 

94 individuals were sampled in 11 Western Palearctic localities: Canary (Tenerife island - WC), 

Portugal (PT), France (FR), Switzerland (CH), Denmark (DK), Serbia (SB), Greece (GR), Italy (IT), 

Aegean islands (AE), Cyprus (CY) and Israel (IS). In addition, one Eastern (Tyto javanica from 



115 

 

Singapore) and one American barn owl (Tyto furcata from California, USA) were used as 

outgroups (Sup. Table 1). Illumina whole-genome sequences of individuals from PT, FR, CH, DK 

and the outgroups were obtained from the GenBank repository (BioProject PRJNA700797). For 

the remaining 61 individuals, we followed a similar library preparation and sequencing protocol 

as outlined in Machado et al.93. Briefly, genomic DNA was extracted using the DNeasy Blood & 

Tissue kit (Qiagen, Hilden, Germany), and individually tagged. 100bp TruSeq DNA PCR-free 

libraries (Illumina) were prepared according to manufacturer’s instructions. Whole-genome 

resequencing was performed on multiplexed libraries with Illumina HiSeq 2500 PE high-

throughput sequencing at the Lausanne Genomic Technologies Facility (GTF, University of 

Lausanne, Switzerland).  

 

Data processing, SNP calling and technical filtering 

The bioinformatics pipeline used to obtain analysis-ready SNPs was adapted from the Genome 

Analysis Toolkit (GATK) Best Practices154 to a non-model organism following the developers’ 

instructions, as in Machado et al.93. Raw reads were trimmed with Trimommatic v.0.36179 and 

aligned to the reference barn owl genome93 with BWA-MEM v.0.7.15180.  Base quality score 

recalibration (BQSR) was performed using high-confidence calls obtained from two independent 

callers – GATK’s HaplotypeCaller and GenotypeGVCF v.4.1.3 and ANGSD v.0.921181 – as a set of 

“true variants” in GATK v.4.1.3.  

Genotype calls were filtered for analyses using a hard-filtering approach as proposed for non-

model organisms, using GATK and VCFtools182. Calls were removed if they presented: low 

individual quality per depth (QD < 5), extreme coverage (1100 > DP > 2500), mapping quality 

(MQ < 40 and MQ > 70), extreme hetero or homozygosity (ExcessHet > 20 and InbreedingCoeff > 

0.9) and high read strand bias (FS > 60 and SOR > 3). Then, we removed calls for which up to 5% 

of genotypes had low quality (GQ < 20) and extreme coverage (GenDP < 10 and GenDP > 40). 

We kept only bi-allelic sites, excluded SNPs on the heterozome (Super scaffolds 13 and 42 93) 

and an exact Hardy-Weinberg test was used to remove sites that significantly departed (p=0.05) 

from the expected equilibrium using the package HardyWeinberg184,185 in R183, yielding a dataset 

of 6’448’521 SNP (mean individuals’ coverage: 19.99X (sd: 4.38)). Lastly, we discarded 

singletons (minimum allelic count (mac) <2), yielding to a total of 5’151’169 SNP for the 

population genomic analyses.  
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SNP phasing and quality control 

The set of 6’448’521 variants was phased in two steps. First, individual variants were phased 

using a read-based approach in which reads covering multiple heterozygous sites were used to 

resolve local haplotypes. To do so, WhatsHap v1.0320 was run independently for each individual 

with default parameters. Secondly, variants were statistically phased with Shape-It v4.1.2321. This 

algorithm integrates local individual phase and applies an approach based on coalescence and 

recombination to statistically phase haplotypes and impute missing data. Shape-It was run 

following the manual instructions for a better accuracy: the number of conditioning neighbours in 

the PBWT was set to 8, and the MCMC chain was run with 10 burn-in generations, 5 pruning 

iterations, each separated by 1 burn-in iteration, and 10 main iterations. 

To assess the quality of the phasing, we examined phase accuracy by using the switch-error-rate 

metric322. When comparing two phasing for an individual’s variants, a switch error occurs when a 

heterozygous site has its phase switched relative to that of the previous heterozygous site. Thus, 

for each individual, we compared the true local phasing inferred form the read-based approach 

(WhatsHap) and the statistical phasing of this individual’s variants statistically phased by Shape-

It, with read-based phase information ignored only for the individual considered (same version 

and parameters than in the paragraph above). The final estimation of the switch error rate was 

done using the swithError code to compare both phasing sets (custom script by O. Delaneau 

https://github.com/SPG-group/switchError) (Sup. Fig. 1). 

 

History of barn owls around the Mediterranean Sea 

Population Structure and Genetic Diversity 

In order to investigate population structure among our samples, sNMF155 was run for a number of 

clusters K ranging from 1 to 10 with 25 replicates for each K to infer individual clustering and 

admixture proportions. For this analysis, SNPs were pruned for linkage disequilibrium in PLINK 

v1.946156 (parameters --indep-pairwise 50 10 0.1) as recommended by the authors, yielding 

594,355 SNP. Treemix158 was used to calculate a drift-based tree of our populations, using this 

LD-pruned dataset. To detect admixture events between populations, 10 Treemix replicates were 

run for 0 to 10 migration events, with the tree rooted on the WC population, representative of a 

non-admixing population (see results).  

Population expected and observed heterozygosity, population-specific private alleles, population-

specific rare alleles (mac<5) and population-specific total number of polymorphic sites were 

estimated using custom R scripts on the 5’151’169 variants dataset. To account for differences 

in sample sizes, which ranges from 4 to 10, population-specific statistics were calculated by 

randomly sampling 5 individuals from the larger populations (all except FR and SB) 10 times in a 
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bootstrap-fashion and estimating the mean and standard deviation (SD). Individual-based 

relatedness (β)159 and inbreeding coefficient for SNP data were calculated with the R package 

SNPRelate157. Overall FST, population pairwise FST and population specific FST159 were computed 

with the hierfstat package v.0.5-9323. Confidence intervals for population specific FST were 

computed by dividing the SNPs into 100 blocs, and bootstrapping 100 times 100 blocks with 

replacement. Finally, Principal Component Analyses (PCA) were also performed with the R 

package SNPRelate, first with all individuals and second only with the 66 European ones 

(excluding WC, CY and IS). 

 

Haplotype sharing 

To measure shared ancestry in the recent past between individuals, we ran fineSTRUCTURE324 on 

the phased dataset including all individuals. For this analysis we initially modelled haplotype 

sharing between individuals using ChromoPainter to generate a co-ancestry matrix, which records 

the expected number of haplotypes chunks each individual donates to another. For this 

ChromoPainter step, we converted phased haps files to chromopainter phase files using the 

impute2chromopainter.pl script provided at http://www.paintmychromosomes.com and 

generated a uniform recombination map with the makeuniformrecfile.pl script. Using the version 

of ChromoPainter built into fineSTRUCTURE v.2.0.8, we performed 10 EM iterations to estimate 

the Ne and Mu parameters (switch rate and mutation rate). The model was then run using the 

estimated values for these parameters (respectively 570.761 for Ne and 0.0074240 for Mu), 

and we used default settings to paint all individuals by all others (-a 0 0). We ran 

fineSTRUCTURE’s MCMC model on the co-ancestry matrix for 500’000 burn-in and 500’000 

sampling iterations, sampling every 10’000 iterations to determine the grouping of samples with 

the best posterior probability. 

 

 

Modelling of history of European barn owl 

Maximum-likelihood demographic inference 

Data preparation 

To describe the history of barn owls in Europe, we modelled five different demographic scenarios 

using fastsimcoal275,166. Given the position of Italy on the PCA (Fig. 1e), its high FST and lower 

haplotype sharing with the rest of European populations (Fig. 2), we tested in particular whether 

it could have been a cryptic glacial refugium during the last glaciation. To focus on European 

populations and due to computational constraints, we simplified the dataset to model the history 
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of four populations of eight individuals (Sup. Table 1): PT as representatives of the known 

refugium in the Iberian Peninsula100; IT and GR representing the peninsulas of Italy and Balkans, 

respectively; and CH, a product of the recolonization of northern Europe from the Iberian 

refugium100. 

Autosomal SNPs were filtered to retain only neutrally evolving regions by excluding SNPs found in 

genic regions and CpG mutations192. To achieve homogeneity among SNPs, we removed all sites 

with missing data and excluded positions with a coverage outside two thirds of the standard 

deviation of the mean. We employed a parsimony approach based on the Tytonidae phylogenetic 

tree89 to determine the ancestral state of the SNPs using the genomes of the two outgroups. 

Sites for which it was impossible to attribute a state based on the available outgroups were 

discarded. The remaining 770’718 SNPs were used to produce population pairwise site 

frequency spectra (SFS).  

 

Demographic scenarios and parameters 

Five different scenarios were tested to model the history of barn owls in continental Europe, with 

a special focus on the period since the last glaciation (Fig. 2; Sup. Fig. 8). Three models included 

only one refugium in the Iberian Peninsula and various possibilities of colonization scenarios, 

thus excluding the persistence of barn owls in a second refugium during the glaciation. The two 

last models included two refugia during the LGM, a western refugium in the Iberian Peninsula 

and an eastern refugium, in the Italian peninsula. 

The models 1R-1, 1R-2 and 1R-3 included only one refugium in the Iberian Peninsula. 1R-1 

model assumed only one colonization route around the north side of the Alps (forming the CH 

population), and from there move southeast to reach first the Balkans (GR) and then Italy (IT). 

The two other single-refugium models (1R-2 and 1R-3) assumed two distinct colonization routes, 

one north of the Alps to CH and the other south of the Alps along the Mediterranean coast to IT. 

1R-2 assumes current Greece would have been colonized by owls from the Italian peninsula, 

following the route along the Mediterranean coast. In 1R-3, Greece would have been colonized 

via northern Europe, while the Mediterranean expansion would have stopped in Italy. 

The last two models included a second, eastern, refugium (2R-1 and 2R-2). In these models, the 

western linage expansion from the Iberian population would have colonized Europe before the 

last glaciation, thus occupying all the Mediterranean peninsulas. During the last glaciation, two 

distinct populations would have survived, respectively in the Iberian (western refugium) and 

Italian (eastern refugium) Peninsulas. Both models assume that northern Europe was recolonized 

from the Iberian lineage after the glaciation, but they differ in the scenario of recolonization of 

southeastern Europe. In 2R-1, Greece was recolonized from the Italian refugium while in 2R-2 the 

expansion from the Iberian Peninsula would have recolonized all eastern Europe, including 
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current Greece. In this last scenario, the Italian population would be the only relic from the 

eastern refugium. For all scenarios, migrations between populations was allowed (see Fig. 2 and 

Sup. Table 3). 

Wide search ranges for initial simulation parameters were allowed for population sizes, 

divergence times and migration rates (Sup. Table 3). Each population split was preceded by an 

instantaneous bottleneck, in which the founding population size was drawn from a log-uniform 

distribution between 0.01 and 0.5 proportion of current population sizes.  

 

Demographic inference 

Demographic simulations and parameter inference were performed under a composite-likelihood 

approach based on the joint SFS as implemented in fastsimcoal275,166. For each of the five 

scenarios, 100 independent estimations with different initial values were run. For each run, there 

were 500’000 coalescent simulations (option -n), with 50 expectation-maximization (EM) cycles (-

M and -L). As we do not have an accurate mutation rate for barn owls, we fixed the end of the 

glaciation to 6000 generations BP (approximately 18’000 years BP with a 3-year generation 

time) and scaled all other parameters relative to it using the -0 command option (using only 

polymorphic sites). The best-fitting scenario out of the five tested was determined based on 

Akaike's information criterion168 (AIC) and confirmed through the examination of the likelihood 

ranges of each scenario as suggested in Kocher et al.169. Non-parametric bootstrapping was 

performed to estimate 95% confidence intervals (CI) of the inferred parameters under the best-

fitting scenario. To account for LD, a block-bootstrap approach was employed as suggested by 

the authors75,166: the SNPs were divided into 100 same-size blocks, and then 100 bootstrap SFS 

were generated by sampling these blocks with replacement. Due to computational constraints, 

for bootstrapping we ran 50 independent parameter inferences per bootstrapped SFS with only 

10 EM cycles each, instead of 50 cycles used for comparing scenarios above. This procedure has 

been defined as conservative193, and is expected to produce quite large confidence intervals. We 

accepted this trade-off as our main goal was to determine the best demographic topology, 

accepting uncertainty on specific parameter values. The highest maximum-likelihood run for each 

bootstrapped SFS was used to estimate 95% CI of all parameters. 

 

Niche modelling  

In order to identify the regions of high habitat suitability for barn owls at the last glacial maximum 

(LGM, 20’000 years BP) and to support the demographic scenarios tested in the previous 

section, we modelled the past spatial distribution of the species in the Western Palearctic (Sup. 

Fig. 10). We built species distribution model (SDM) using Maximum Entropy Modelling (MaxEnt), 
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a presence-only based tool325. Current climatic variables for the Western Palearctic (Sup. Fig. 11) 

were extracted from the WorldClim database at 5 arc min resolution using the R package 

rbioclim186, and filtered to remove variables with a correlation of 0.8 or higher. The variables 

retained were: Mean Diurnal Range (Bio2), Min Temperature of Coldest Month (Bio6), 

Temperature Annual Range (Bio7), Mean Temperature of Wettest Quarter (Bio8), Precipitation 

Seasonality (Bio15), Precipitation of Driest Quarter (Bio17) and Precipitation of Coldest Quarter 

(Bio19). We built models with linear, quadratic and hinge features, and with a range (1 to 5) of 

regularization multipliers to determine which combination optimized the model without over 

complexifying it. The best combination based on the corrected AIC (as recommended by Warren 

& Seifert165) was achieved with a quadratic model with 1 as regularization multiplier (Sup. Table 

5). We ran 100 independent maxent models, omitting 25% of the data during training to test the 

model. To avoid geographic bias due to different sampling effort in the distribution area of the 

species, we randomly extracted 1000 presence points within the IUCN distribution map187 for 

each model run188.  

Predictive performances of the models were evaluated on the basis of the area under the curve 

(AUC) of the receiver operator plot of the test data. For all models with an AUC higher than 0.8 

(considered a good model189,190), we transformed the output of Maxent into binary maps of 

suitability.  We assigned a cell as suitable when its mean suitability value was higher than the 

mean value of the 10% test presence threshold. This conservative threshold allows us to omit all 

regions with habitat suitability lower than the suitability values of the lowest 10% of occurrence 

records. Finally, we averaged the values of the models for each cell, and only cells suitable in 

90% of the models were represented as such in the map. 

We projected the models to the climatic conditions of the mid-Holocene (6’000 years BP) and the 

LGM (20’000 years BP), which we extracted from WorldClim at the same resolution as current 

data. When projecting to past climates, the Multivariate Environmental Similarity Surface (MESS) 

approach325 was used to assess whether models were projected into climatic conditions different 

from those found in the calibration data. As our goal was to highlight only areas of high suitability 

for barn owls, cells with climatic conditions outside the distribution used to build the model were 

assigned as unsuitable (0 attributed to cell with negative MESS). For each timepoint, the results 

of the models were merged and transformed into a binary map as described for current data (Fig. 

2c). 
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Barriers and corridors 

Migration Surface Estimation in the Western Palearctic 

The Estimated Effective Migration Surface (EEMS) v.0.0.9 software161  was used to visualize 

geographic regions with higher or lower than average levels of gene flow between barn owl 

populations of the Western Palearctic. Using the SNP dataset pruned for LD produced above, we 

calculated the matrix of genetic dissimilarities with the tool bed2diff. The free Google Maps api 

v.3 application available at http://www.birdtheme.org/useful/v3tool.html was used to draw the 

polygon outlining the study area in the Western Palearctic. EEMS was run with 1000 demes in 

five independent chains of 5 million MCMC iterations with a burn-in of 1 million iterations. 

Results were visually checked for MCMC chain convergence (Sup. Fig. 12) and through the linear 

relation between the observed and fitted values for within‐ and between‐demes estimates using 

the associated R package rEEMSplots v.0.0.1161. With the same package, we produced a map of 

effective migration surface by merging the five MCMC chains. 

 

Isolation by distance in continental Europe 

To investigate how population structure correlated with spatial distances between European 

populations and to detail the role of the Alps as a barrier to gene flow, we performed Mantel tests 

as implemented in the ade4 package v.1.7-15252 for R. We compared the genetic distances 

(pairwise FST between populations, see section Population Structure and Genetic Diversity for 

details) with different measures of geographical distance between populations: the shortest 

distance over land via direct flight and the distance constrained by the presence of the Alps, 

forcing the connection of the Italian population to the other populations via the Greek peninsula 

(Sup. Fig. 13b). We also tested the linear regression between both variables in R. 

 

Results 

History of barn owls around the Mediterranean Sea 

Genetic diversity and population structure in the Western palearctic 

Despite an overall low differentiation (overall FST=0.047, comparable with the overall FST=0.045 

estimated by Burri et al.102), the dataset revealed a structuration of the genetic diversity among 

barn owls of the Western Palearctic. The first axis of the genomic PCA (explaining 3.32% of the 

total variance) contrasted individuals from the Levant populations (IS and CY) to all other 

individuals (Fig. 1d), consistent with K=2 being the best estimate in sNMF (Sup. Fig. 4, 5). For 

K=3 (Fig. 1b), the Canary population (WC) formed an independent genetic cluster, and this was 

confirmed by the second axis of the PCA (explaining 2.6% of the variance) opposing it to all other 

http://www.birdtheme.org/useful/v3tool.html
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individuals (Fig. 1d, Sup. Fig. 2). This isolation of WC was also observable in Table 1, with a lot of 

private and rare alleles in the island, its higher FIT and the highest population specific FST of all 

sampled populations. On the same PCA (Fig. 1d), individuals from European populations (FR, CH, 

DK, IT, SB, GR, AE) formed a third distinct cluster, matching their grouping in a single cluster at 

K=3 with sNMF (Fig. 1b). The Iberian individuals (PT) occupied a central position on the PCA 

(around 0 on both axes) and a mixed composition in sNMF (Fig. 1b). This central position of the 

Iberian population was also visible in the pairwise FST, where the highest value in the pairs 

involving PT is 0.055 (with both CY and WC) while all other pairwise comparisons involving 

populations from two of the distinct groups identified before (Levant, Canary and Europe) have 

values equal or higher (Fig. 1c). The Treemix analysis (Fig. 1f) was also consistent with these 

results, since it also identified these major linages, first isolating the Canary population in a 

specific lineage, then grouping the Levant populations (IS and CY) in a second lineage and finally 

all European populations in a third lineage. In Europe, the Iberian population was basal to all 

other populations.  

 

Table 1 - Population genetic diversity, inbreeding and divergence estimates for 11 populations of the western 
Palearctic barn owls. Standard deviations of the mean are provided between brackets for each parameter, see 
methods section for details. 

Pop N #Pl #PA #Rare FIT Fis Pop FST 

WC 9 2’217’235 
(37’007) 

123’016 
(2’465) 

407’403 
(10’568) 

0.067 

(0.054) 

-0.022 

(0.057) 

0.116 

(0.006) 

PT 9 2’639’343 
(22’857) 

102’252 
(2’305) 

539’157 
(10’106) 

-0.018 

(0.042) 

-0.008 

(0.042) 

0.003 

(0.003) 

FR 4 2’151’627 
(0) 

30’290 
(581) 

287’746 
(1’468) 

0.039 

(0.124) 

0.043 

(0.131) 

0.050 

(0.005) 

CH 10 2’494’462 
(10’723) 

47’532 
(730) 

386’654 
(3’117) 

0.025 

(0.019) 

-0.011 

(0.019) 

0.036 

(0.002) 

DK 10 2’410’615 
(15’558) 

40’650 
(1’378) 

349’800 
(5’434) 

0.026 

(0.020) 

-0.02 

(0.021) 

0.049 

(0.002) 

IT 9 2’404’069 
(7’267) 

66’297 
(1’638) 

401’842 
(4’483) 

0.035 

(0.012) 

-0.022 

(0.012) 

0.052 

(0.005) 

SB 5 2’336’060 
(0) 

32’096 
(1’515) 

326’906 
(2’519) 

0.025 

(0.011) 

-0.038 

(0.011) 

0.056 

(0.004) 

GR 9 2’454’653 
(7’365) 

44’996 
(1’146) 

378’422 
(4’152) 

0.018 

(0.028) 

-0.016 

(0.027) 

0.039 

(0.002) 

AE 10 2’460’422 
(20’650) 

56’260 
(3’439) 

403’259 
(10’465) 

0.018 

(0.060) 

-0.001 

(0.062) 

0.030 

(0.002) 

CY 10 2’338’318 
(48’463) 

113’377 
(2’229) 

480’021 
(13’581) 

0.022 

(0.047) 

-0.034 

(0.049) 

0.059 

(0.004) 

IS 9 2’509’099 
(9’500) 

172’624 
(4’018) 

608’944 
(3’597) 

-0.019 

(0.015) 

-0.036 

(0.016) 

0.021 

(0.003) 
N: number of individuals in the population; #Pl: number of polymorphic sites per populations; #PA: number of private 
alleles per population; #Rare: Number of rare alleles (5 or less) per population; FIT: mean individual inbreeding 
coefficient relative to the meta-population; FIS: population level inbreeding coefficient; Pop FST: population specific FST 
as in 159. Populations: WC – Canary, PT – Portugal, FR – France, CH – Switzerland, DK – Denmark, IT – Italy, SB – 
Serbia, GR – Greece, AE – Aegean Islands, CY – Cyprus, IS – Israel.  
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Figure 1 - Genetic structure of barn owl populations in Western Palearctic. (a) Population structure for K=6. Pie charts 
denote the individual proportion of each of lineages as determined by sNMF and are located at the approximate 
centroid of the sampled population. (b) Population structure for K=3. Each bar denotes the individual proportion of 
each of the 3 lineages as determined by sNMF. (c) matrix of pairwise FST between barn owl populations in Western 
Palearctic. The heatmap provides a visual representation of the FST values given in each cell. (d) PCA based on full set 
of 94 individuals. Point shape denote populations and colour circles enclose sample clusters observed in sNMF (K=3). 
Values in parenthesis indicate the percentage of variance explained by each axis. (e) PCA based on of the 66 European 
individuals. (f) Population tree and the first migration event in Western Palearctic populations inferred by Treemix. 

 

 

Population structure in continental Europe 

Focusing only on European samples, southern populations (PT, IT, GR and AE) harboured a higher 

genetic diversity than northern populations (CH, FR, DK, SB; Table 1). The first axis of the 

genomic PCA based on samples from European-only populations opposed the Italian individuals 

to all others (Fig. 1e; Sup. Fig. 3). This isolation of Italian samples was also apparent in the 

pairwise FST within Europe, with all the largest values involving IT. These results were consistent 

with sNMF on all samples for K higher than 3, where IT individuals formed an independent 

genetic cluster (Fig.  1a; Sup. Fig. 5), as well as Treemix, where the Italian population was the first 

to split and had the longest branch within European lineage (Fig. 1f). Consistently with the 

distribution of the individuals in the European PCA (Fig. 1e; Sup. Fig. 3), the ancestry coefficients 
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in the sNMF analysis of K=4 and K=5 (Sup. Fig. 5) revealed the genetic differentiation of 

northern populations (FR, CH and DK) compared the Italian one, also opposed in the first axis. 

Individual from GR and AE individuals shared ancestry with both Western and Italian population, 

in line with their central position along this first axis of the European PCA. For K=5, a third 

European component was distinguished in the Aegean individuals. This component was the 

majoritarian in Greek samples with contributions of both Northern and Italian component; and 

Serbian samples appeared as a mix of the northern and the Aegean component. The eastern 

lineage (CY and IS), grouped at previous K, were split into two distinct ancestry pools at K=6 (Fig. 

1a). AE individuals harboured low amounts of CY ancestry, absent in all other European 

populations, and two CY individuals carried a large contribution of the Aegean component. 

Consistently, the first migration event detected by Treemix was from CY, a population from the 

Levant linage, to AE, a population from the European lineage (Fig. 1f; Sup. Fig. 6).  

 

Fine Structure and Haplotype sharing 

The clustering of individuals by FineStructure, based on shared haplotypes between individual 

was consistent with previous results (Sup. Fig. 7). Individuals from the different populations 

sampled were monophyletic, except for CH and FR individuals, mixed in the same population. 

Consistently with this grouping, haplotypes from any given population were more likely to be 

found in individuals from the same population, followed by its most related populations (Fig. 2). 

In the Levant lineage, IS haplotypes mostly painted IS Individuals but also CY individuals and vice 

versa. Iberian haplotypes mostly painted PT individuals, but also contributed greatly to the 

painting of all European individuals, decreasing with distance. Western European haplotypes 

(from FR and CH) mostly painted western European individuals, then northern individuals (from 

DK) and finally eastern individuals (from SB, GR and AE). The reverse pattern was observed for 

haplotypes from eastern Europe (GR, AE), with a gradient of contribution decreasing from east to 

west. Haplotypes from DK and SB mostly painted individuals from their own population, but also 

in their respective neighbours in both eastern and western European populations. Italian 

haplotypes were the most distinct haplotypes among European populations, mostly painting 

Italian individuals, followed by Greek individuals, and being painted by other populations at a 

lower rate than expected given its geographic position. Finally, AE haplotypes also painted more 

often CY individuals than IS individuals. This painting of levant individuals by AE haplotypes was 

higher than the contribution from any other European individual, and both CY and IS haplotypes 

painted more AE individuals than any other European individual. 
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Figure 2 – Individual haplotype sharing between barn 
owl populations. Part of the total length of 
ChromoPainter chunks inherited from other genomes. 
Each graph summarizes the information of all the 
genomes from a given population. Background colours 
match the lineages identified in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modelling of the history of European barn owls 

Species distribution modelling 

Habitat suitability projections showed that, from a climatic point of view, there were suitable 

regions for barn owls all around the Mediterranean Sea during the glaciation (20’000 years BP; 

Fig. 3c). Large areas were suitable in northern Africa and the Iberian Peninsula, but also in the 
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two eastern Mediterranean peninsulas (current Italy and Greece). At this point, the sea levels 

were lower than today’s and the two eastern peninsulas were more connected, allowing for a 

continuous region of suitable barn owl habitat. At the mid-Holocene (6’000 years BP), major 

changes in sea level revealed a coastline very similar to nowadays. Our projections revealed a 

reduction of habitat suitability in northern Africa at this time, while the suitability of western and 

northern Europe increased (Fig. 3c). Finally, today, nearly all continental Europe is suitable for the 

barn owls, with the notable exception of mountain areas (Fig. 3c). 

 

Demographic inference 

AIC and raw likelihood comparisons showed that the two refugia model 2R-1 explains best the 

SFS of our dataset (Sup. Table 2; Fig. 3b). In this model, an ancestral Italian lineage (IT) split from 

the Iberian lineage (PT) before the last glaciation, estimated at approximately 69’000 years BP 

(95% CI: 24’000-90’000 years BP; calculated with 3-year generation time; Sup. Table 4). After its 

initial expansion, the ancestral population is estimated to have been larger in the Italian 

peninsula that in Iberia (respectively 189K (11K-320k) and 11k (10K-73k) haploid individuals). 

During the glaciation (fixed between 24 and 18K years BP), both populations experienced a 

bottleneck, with a population size reduced to 6.8k (1.2k-141k) individuals in the Iberian lineage 

and 62 (36-116k) in the Italian. After the glaciation, the size of both populations increased to 

their current size, estimated at 44k (20K-380k) in the Iberian Peninsula and 1.3k (1k-326k) in 

the Italian Peninsula, both smaller but consistent with their estimated census size (55k-98k326 

and 6k-13k327, respectively). The Greek population split from the Italian branch around 5’700 

years BP while the Swiss (CH) population split slightly later from Iberia (5’000 years BP) and 

maintain a high level of gene flow (estimated to 90 (46-1.4k) from CH to PT and 8 (3-62) in the 

reverse direction). Current effective population sizes of the CH and GR populations are estimated 

to 3.4k (1k-205k) and 1.4k (1k-208k), respectively (Fig. 2b), in line with census results (1000-

2500328 and 3000-6000329, respectively). Migration between these populations is estimated to 

be highest from IT and GR to CH (respectively 27 (0.2-157) migrants from IT and 42 (0.1-156) 

from GR) and lowest in the opposite direction (respectively 1.3 (0.1-96) migrants from CH to GR 

and 0.02 (0.2-38) from CH to IT) (Sup. Table 4).  Point estimates with 95% confidence intervals 

for all parameters of the best model are given in (Sup. Table 4), as well as single point estimates 

for all models (Sup. Table 3). 
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Figure 3 – Modelling of the history of the barn owl in Europe. (a) Schematic representation of the five demographic 
scenarios tested for the colonization of the Europe by barn owls. Three models included one refugium in the Iberia 
during the LGM while the last two included two refugia, one in Iberia and the second in Italy. Grey bars with snowflakes 
represent the last glaciation. (b) Best supported demographic model for the history of European barn owl populations 
as determined by fastsimcoal2. Time is indicated in thousands of years, determined using a 3-year generation time, 
confidence intervals at 95% are given between brackets. Population sizes (haploid) are shown inside each population 
bar; arrows indicate forward-in-time migration rate and direction. (c) Species distribution model of barn owls based on 
climatic variables, projected into the past (last glacial maximum - 20 kya; mid-Holocene - 6 kya) and today’s conditions. 
Locations in dark grey were highly suitable in 90% of the models. Below that threshold cells were considered as 
unsuitable (lightest grey shade on the graph). 

 

 

Barriers and corridors 

Migration Surface Estimate in the Western Palearctic 

Estimated Effective Migration Surface identified large water bodies, especially in the eastern 

Mediterranean and around Cyprus, as regions resisting to migration (Sup. Fig. 12). On the 

mainland, barriers to gene flow matched the main formations of the Alpide belt in the region, an 

orogenic formation spanning from western Europe to eastern Asia. From west to east, a light 

barrier overlapped with the Pyrenees, a strong barrier spanned the Alps to the Balkans and a 

third obstacle matched the Taurus mountains in Anatolia. A region with high gene flow was 

identified in continental Europe above the Alps, spanning from western Europe to the Balkans 

peninsula. 
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Isolation by distance in Europe  

In continental Europe, the shortest path overland did not correlate significantly with genetic 

distance (Sup. Fig. 13) (mantel test, p-value = 0.193, R = 0.20 / linear model, p-value = 0.26, R2 

= 0.012). On the contrary, when the geographic distance between populations included the 

barrier formed by the Alps (i.e. the Italian population was connected to other populations via the 

Greek peninsula, itself connected to western Europe via northern Europe), both tests were 

significant (mantel test, p-value = 0.002, R = 0.68 / linear model, p-value = 1.3x10-5, R2 = 

0.507).  

 

Figure 4 – Schematic 
representation of the 
history of barn owls in the 
Western Palearctic and the 
main barriers in the region. 
Orange arrows depict the 
colonization of the region 
by the three main lineages 
(Levantine, Canarias, 
European). Yellow arrows 
represent the modelled 
postglacial recolonization 
scheme of Europe, with two 
distinct refugia (yellow 
dots). Blue lines represent 
the main barriers identified 
in this work, namely the 
Alps in Europe (dashed 
line) and the Taurus and 
Zagros mountains in 
Anatolia (solid line). 

 

 

 

Discussion 

The history of natural populations is shaped by the combination of landscape barriers and 

climatic variations that isolate and mix lineages through their combined actions. Consistently with 

previous work102, we show that barn owls colonized the Western Palearctic in a ring-like fashion 

around the Mediterranean Sea, with one arm around the Levant and the second throughout 

Europe. However, using whole genome sequences we found this colonization actually predates 

the last glaciation and pinpoint a narrow secondary contact zone between the two lineages in 

Anatolia rather than in the Balkans. In addition, we provide evidence that barn owls recolonized 

Europe after the LGM from two distinct glacial refugia – a western one in Iberia and an eastern in 

Italy – rather than a single one as it was previously thought. As temperatures started rising, 

western and northern Europe were colonized by owls from the Iberian Peninsula while, in the 
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meantime, the eastern refugium population of Italy had spread to the Balkans (Fig. 4). The 

western and eastern glacial populations finally met in eastern Europe. This complex history of 

populations questions the taxonomy of the multiple Tyto alba subspecies, highlights the key roles 

of mountain ranges and large water bodies as barriers to gene flow for a widespread bird and 

illustrates the power of population genomics in unravelling intricate patterns. 

 

Colonization of the Western Palearctic and gene flow in Anatolia 

Our results show that two distinct barn owl genetic lineages surround the Mediterranean Basin: 

one in the Levant, and a second in Europe (Fig. 1b-d, f), likely connected via northern Africa. 

Supported by the higher and specific diversity of the basal population of each arm (namely, IS 

and PT (Table 1), these observations are consistent with the ring colonization scenario 

hypothesized by Burri et al.102. However, we show that a barn owl population survived the last 

glaciation in Italy (see next section for details) and that its genetic makeup resembles the 

European lineage (Fig. 1b, d, f). Therefore, the ring colonization of Europe around the 

Mediterranean appears to have been pre-glacial, whereas the post-glacial history is more 

convoluted (see next section).    

In previous studies, the ancestry of Greek and Aegean populations was unclear, with a 

hypothesized mixed origin between European and Levant lineage 20. This uncertainty was mostly 

likely due to the low resolution of genetic markers (mtDNA and microsatellites), as the genomic 

data reported here clearly show that Greek and Aegean owls are genetically much closer to 

European than to Levant ones (Fig. 1b.d, f). This observation indicates that the European lineage 

reached further east than previously assumed, allowing us to pinpoint the secondary contact 

zone between the European and Levant lineages to Anatolia, instead of the Balkans as it had 

been proposed. In Anatolia, the Taurus and Zargos mountain ranges form an imposing barrier 

that appears to have stopped the expansion of the Levant lineage both during the ring 

colonization and nowadays.  

Despite the barrier, and although we do not see a complete admixture of the two lineages, there 

is evidence for some gene flow. Indeed, the first migration in Treemix (Fig. 1f) pointed to a 

secondary contact between CY and AE, consistent with the signals of admixture between those 

populations (Fig. 1a, b, 2). The admixture pattern however is restricted geographically to this 

narrow region and does not permeate further into either of the lineages, as surrounding 

populations (IS in the levant and GR and SB in Europe) do not show signals of admixture (Fig. 1, 

2). Thus, the migration between populations on both sides seems limited and possibly only 

occurs along a narrow corridor along the Turkish coast where only a few barn owls have been 

recorded330. Further analyses with samples from Anatolia should allow to characterize in high 

resolution how and when admixture occurred in this region.  
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Glacial refugia and recolonization of Europe 

Previous studies showed that barn owls survived the last glaciation by taking refuge in the Iberian 

Peninsula and maybe even in emerged land in the Bay of Biscay93,100. The observed distribution 

of diversity in Europe, and especially the specific makeup of the Italian populations, is best 

explained by a demographic model with two glacial refugia – one in Iberia and a second in Italy, 

derived from the Iberian population before the glaciation (Fig. 3a, b; Sup. Table 2). Environmental 

projections not only support this model, as Italy was highly suitable for the species at the time, 

but also show that, due to the low levels of the Adriatic Sea, the suitable surface extended to the 

west coast of the Balkans (LGM - Fig. 3c). Crucially, three of the barn owl’s key prey also had 

glacial refugia in the Italian and Balkan peninsulas, namely the common vole (Microtus sp.)331, 

the wood mouse (Apodemus sp.)129 and shrews (Crocidura sp.)332. The inferred size of the pre-

glacial population of barn owl inhabiting current Italy was larger than any other (189k [11K-

320K]), prior to a strong bottleneck during the glaciation (population reduced to 62 individuals 

[36-116k]). These values are likely inflated by necessary simplification of the model (e.g. instant 

bottlenecks) or by gene flow from unmodeled/unsampled populations, for example from the 

Levant lineage to eastern European populations (GR), or from northern Africa to Italy via Sicily. 

The latter would have been facilitated by the increased connectivity between Italy and North 

Africa during the glaciation (Fig. 3c)333–335.   

With the warming following the LGM, Europe became gradually more suitable and, by the mid-

Holocene (6000 years ago), most of western and northern Europe were appropriate for barn owls 

(Fig. 2b) as well as the common vole (Microtus arvalis)336. The genetic similarity between Iberian 

(PT) and north western populations (CH, FR, DK; Fig. 1a, e) indicates that barn owls colonized 

these newly available regions from the Iberian refugium as previously thought100. The 

contribution from the Italian refugium to northern populations appears to have been hindered by 

the Alps (see next sections), as suggested by the higher genetic distance between them (Fig. 1a, 

c, d and 2). Instead, at this time the Adriatic Sea had neared today’s levels, isolating genetically 

and geographically the Italian refugium from its component in the Balkan Peninsula (Fig. 3b – IT-

GR split ~6k, Fig. 3b, c). Only more recently did the rise of temperatures allow for areas in the 

east of Europe to become suitable, finally connecting the south-eastern populations near the 

Aegean Sea (GR and AE) with populations in the north-eastern part of Europe (Fig. 3c). In 

particular, the high heterozygosity and admixed ancestry of Serbian individuals (Table 1; Fig. 1a) 

suggest that the suture between the Iberian and the Italo-Greek glacial lineages took place in 

eastern Europe. This newly identified postglacial recolonization scheme of continental Europe by 

the barn owl matches the general pattern described for the brown bear (Ursus arctos) and a barn 

owl prey, the shrew (Sorex sp.)123. 
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The isolation by distance pattern observed between European populations (Sup. Fig. 13) 

highlights a diffusion of alleles in the European populations rather than a narrow hybrid zone. 

Further, the inferred migration rates support high current gene flow in the region (Fig. 3b, CH and 

GR in Sup. Table 4), and we found signals of each ancestry in populations far from the suture 

zone (dark blue in GR and light blue in CH and DK, Fig. 1a). Finally, the measure of haplotype 

sharing decreases consistently with distance between populations around the northern side of 

the Alps with no mark of neat differentiation between populations from Iberia to Greece, 

excluding IT (Fig. 2). Surrounded by the sea and the Alps, Italy is the exception and appears to 

have avoided incoming gene flow (Sup. Fig. 12; isolation in Fig. 2), thus being a better-preserved 

relic of the refugium population (own cluster in sNMF K>4; Sup. Fig. 5). In contrast, the Balkan 

component admixes smoothly with the other European populations. Such seamless mixing of the 

two glacial lineages from southern refugia where barn owls are mostly white101,102, brings further 

into question the subspecies Tyto alba guttata. 

 

The case of Tyto alba guttata  

Traditionally, in Europe the eastern barn owl (Tyto alba guttata, Brehm, CL, 1831) is defined by 

its dark rufous ventral plumage in contrast to the white western barn owl (Tyto alba alba, Scopoli, 

1769)337. With a wide distribution, it is recorded from The Netherlands to Greece, including most 

of northern and eastern Europe205. However, this repartition does not match the history of any 

specific glacial lineage identified above, nor any genetically differentiated population (Fig. 4). The 

dark populations of northern Europe (DK) are genetically as similar to lighter western populations 

(FR, CH) than to the dark ones in the east (SB; Fig. 1). This colour variance within European 

populations has been shown to be maintained through local adaptation101, and while the 

genomic basis and history of this trait remain worthy of future investigations, we suggest that all 

European barn owls form a single subspecies (Tyto alba alba), reflecting the entire European 

population, regardless of their colour.  

 

Barriers and corridors shape the connectivity of the Western Palearctic meta-population  

The partition of genetic diversity among barn owls in the Western Palearctic allowed us to identify 

barriers and corridors to gene flow. Populations isolated by large water bodies have accumulated 

substantial genetic differences as, for example, the higher FST in the Canary and Cyprus Islands 

(Fig. 1c; Table 1), and reflect the importance of water as a barrier to dispersion in this species 

21. On the mainland, and as described for the American barn owl171, major mountain ranges act 

as significant obstacles to migration for European barn owls and can generate genetic structure. 

First, the high mountain ranges of Taurus and Zagros coincide with the contact zone between the 
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Levant and the European lineages both nowadays and potentially at the time of the pre-glacial 

ring colonization of Europe (see above). Second, the Alps and the Balkan Mountains slowed the 

northward expansion of the glacial populations of Italy and Greece after the LGM and still 

constrain migration between populations on both sides of their ranges. If these results remain to 

be confirmed with observational data (i.e. ringing data not available for all countries), they 

emphasize that, despite its worldwide repartition and its presence on many islands, the 

connectivity of barn owl populations is heavily driven by biogeographical barriers.  

 

Conclusion 

The combination of whole genome sequencing and sophisticated modelling methods revealed 

the complex history of the barn owl in the Western Palearctic with a precision previously 

unachievable. It allowed the localization of a secondary contact zone as well as the discovery of a 

cryptic glacial refugium. However, several questions remain unanswered, awaiting for relevant 

samples to be collected and analysed:  What role did northern African populations played in 

connecting the Levant and European lineages? Did they contribute to the diversity observed in 

Italy? How narrow is the contact zone between the Levant and European lineages in Anatolia? 

Lastly, the origin of barn owls from the Western Palearctic as a whole also deserves further 

investigation, as they are believed to have colonized the Western Palearctic from the east, given 

their supposed origin in south-eastern Asia approximately 4 million years ago. But this is at odds 

with the higher genetic diversity of the Iberian population compared to the Levant one. Such 

inconsistency points to the need for samples from around the world, to understand how this 

charismatic group of nocturnal predators conquered the entire planet. 

Research on postglacial recolonization and the subsequent phylogeographic patterns peaked at 

the turn of the century, with many studies providing an overview of the history of a wide variety of 

organisms (reviewed by Hewitt123). The rise in availability of genomic data for non-model species, 

combined with the type of approaches used here, will rewrite the history of many of them. 

Furthermore, it will allow to detail the genomic consequences of such history both from a neutral 

and selective perspective. Applied to several species, these approaches will allow to redefine 

with greater clarity the broad phylogeographical patterns in the Western Palearctic and 

elsewhere, to re-think taxonomic classifications and to better understand how organisms might 

adapt to a changing environment in a complex, fragmented and rapidly changing landscape.  
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Chapter 4 – Supporting Information 

 

Samples and data preparation 

Supplementary Table 1 – Description of samples used in this study. Individuals retained for the inference 
with fastsimcoal2 are indicated with †.  

# Pop ID Country Location Year Tissue Sex Ref 

1 AE AE01 Greece Rhodes island 2014 soft tissue Female 1 
2 AE AE02 Greece Rhodes Island 2014 soft tissue Female 1 
3 AE AE03 Greece Chios island 2015 blood Male 1 
4 AE AE04 Greece Chios island 2012 blood Female 1 
5 AE AE05 Greece Leros island 2012 blood Male 1 
6 AE AE06 Greece Lesvos Island 2012 blood Male 1 
7 AE AE07 Greece Lesvos Island 2013 soft tissue Female 1 
8 AE AE08 Greece Rhodes island 2013 blood Male 1 
9 AE AE09 Greece Leros island 2014 blood Male 1 
10 AE AE10 Greece Rhodes Island 2015 blood Female 1 
11 CH CH01† Switzerland Estavayer-le-Lac 2004 blood Female 2 
12 CH CH10† Switzerland Avenches 2008 blood Male 2 
13 CH CH15† Switzerland Avenches 2010 blood Male 2 
14 CH CH18† Switzerland GrangesMarnand 2001 blood Male 2 
15 CH CH20 Switzerland Payerne 2001 blood Male 2 
16 CH CH21† Switzerland Chavornay 2011 blood Male 2 
17 CH CH22 Switzerland Estavayer-le-Lac 2001 blood Male 2 
18 CH CH23† Switzerland Avenches 2004 blood Male 2 
19 CH CH25† Switzerland Payerne 2003 blood Male 2 
20 CH CH26† Switzerland Chavornay 2010 blood Male 2 
21 CY CY01 Cyprus NA NA muscle Female 1 
22 CY CY02 Cyprus Limasol 2016 muscle Female 1 
23 CY CY03 Cyprus Limasol 2016 muscle Male 1 
24 CY CY04 Cyprus Larnaca NA muscle Female 1 
25 CY CY05 Cyprus NA NA muscle Male 1 
26 CY CY06 Cyprus NA NA muscle Female 1 
27 CY CY07 Cyprus Larnaca 2017 muscle Female 1 
28 CY CY08 Cyprus Limasol 2015 muscle Female 1 
29 CY CY09 Cyprus Limasol 2017 muscle Female 1 
30 CY CY10 Cyprus Limasol 2018 muscle Female 1 
31 DK DK01 Germany Gettorf 2007 feather Female 2 
32 DK DK02 Germany Lindau 2007 feather Male 2 
33 DK DK03 Germany Rickling 2007 feather Female 2 
34 DK DK04 Germany Elskop 2007 feather Female 2 
35 DK DK05 Germany Itzehoe 2007 feather Male 2 
36 DK DK06 Germany Schwedeneck 2007 feather Male 2 
37 DK DK07 Germany Vaale 2007 feather Female 2 
38 DK DK08 Denmark Varnæs 2007 feather Male 2 
39 DK DK09 Denmark Bredebro 2007 feather Male 2 
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40 DK DK10 Denmark Logumkloster 2007 feather Female 2 
41 FR FR01 France Rouen 2011 muscle Male 2 
42 FR FR02 France Rouen 2010 muscle Male 2 
43 FR FR03 France Rouen 2010 muscle Male 2 
44 FR FR05 France Rouen 2010 muscle Male 2 
45 GR GR01† Greece Agrinio 2014 blood Male 1 
46 GR GR02† Greece Athens 2014 blood Male 1 
47 GR GR03† Greece Chalandri 2012 blood Male 1 
48 GR GR04 Greece Corinth 2015 blood Female 1 
49 GR GR06† Greece Lamia 2014 soft tissue Female 1 
50 GR GR07† Greece Mesolonghi 2014 soft tissue Male 1 
51 GR GR08† Greece Morfovouni 2015 blood Female 1 
52 GR GR09† Greece Panetolio 2014 blood Female 1 
53 GR GR10† Greece Spata 2015 blood Male 1 
54 IS IS01 Israel Lachish 2005 blood Female 1 
55 IS IS02 Israel Beit Shean 2005 blood Male 1 
56 IS IS03 Israel Hula 2005 blood Female 1 
57 IS IS04 Israel Beit Shean 2005 blood Female 1 
58 IS IS05 Israel Beit Shean 2005 blood Male 1 
59 IS IS06 Israel Beit Shean 2005 blood Female 1 
60 IS IS07 Israel Beit Shean 2005 blood Female 1 
61 IS IS08 Israel Hula 2005 blood Female 1 
62 IS IS09 Israel Hula 2005 blood Female 1 
63 IT IT01† Italy Roma 2011 blood Female 1 
64 IT IT02† Italy Roma 2015 blood Female 1 
65 IT IT03 Italy Roma 2016 blood Male 1 
66 IT IT04 Italy Roma 2016 blood Male 1 
67 IT IT05† Italy Roma 2009 blood Female 1 
68 IT IT06† Italy Grosseto 2014 blood Female 1 
69 IT IT07† Italy Livorno 2001 blood Female 1 
70 IT IT08† Italy Firenze 2011 blood Female 1 
71 IT IT09† Italy Firenze 2016 blood Male 1 
72 PT PT01† Portugal Pombal 2013 feather Female 2 
73 PT PT02† Portugal Coruche 2013 feather Male 2 
74 PT PT03 Portugal Évora 2013 feather Male 2 
75 PT PT04† Portugal Coruche 2012 feather Female 2 
76 PT PT05† Portugal Nazaré 2013 feather Female 2 
77 PT PT06† Portugal Porto de Moós 2013 feather Female 2 
78 PT PT07† Portugal Setúbal 2012 feather Female 2 
79 PT PT08† Portugal Fátima 2013 feather Female 2 
80 PT PT09† Portugal Santarém 2013 feather Male 2 
81 SB SB01 Serbia Kac 2012 blood Male 1 
82 SB SB02 Serbia Gudurica 2016 blood Male 1 
83 SB SB03 Serbia Gorobilje 2016 blood Female 1 
84 SB SB04 Serbia Lapovo 2015 soft tissue Female 1 
85 SB SB05 Serbia Striza 2006 soft tissue Male 1 
86 WC WC01 Spain Tenerife 1905 muscle Male 1 
87 WC WC02 Spain Tenerife 2003 muscle Female 1 
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88 WC WC03 Spain Tenerife 2003 muscle Female 1 
89 WC WC04 Spain Tenerife 2003 muscle Male 1 
90 WC WC05 Spain Tenerife 2005 muscle Male 1 
91 WC WC06 Spain Tenerife 2005 muscle Female 1 
92 WC WC07 Spain Tenerife 2006 muscle Male 1 
93 WC WC08 Spain Tenerife 2006 muscle Male 1 
94 WC WC09 Spain Tenerife 2006 muscle Male 1 
95 Outgroup SGP SGP Singapore 2013 muscle Male 2 
96 Outgroup USA USA San Diego, California 2015 muscle Female 2 

 

[1] This study – GenBank BioProject PRJNA727977 204 

[2] Machado et al. 2021 – GenBank BioProject PRJNA700797 93 

 

 

 

 

 
Supplementary Figure 1 – Individual phasing switch error rate (in %) grouped per population.  
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History of barn owls around the Mediterranean Sea 

Population Structure and Genetic Diversity 

 
Supplementary Figure 2 – Screeplot of the 10 fist axes of the PCA with all the individuals (left). Position 
of the individuals on the 10 first axes of the PCA (right). 

 

Supplementary Figure 3 - Screeplot of the 10 fist axes of the PCA with 66 European individuals (left). 
Position of the individuals on the 10 first axes of the PCA (right). 

 

 

 
Supplementary Figure 4 – Values of the cross-entropy criterion for 25 sNMF runs per K. The number of 
clusters ranged from 1 to 10. 
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Supplementary Figure 5 – Individual ancestry estimated by sNMF for K ranging from 2 to 10. Each 
vertical bar represents one individual, and the colours represent the relative contributions of each genetic 
lineage K. 
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Supplementary Figure 7 – Results from Treemix for 0 to 9 migration events. Highest likelihood runs are 
depicted, with the corresponding matrix of standard errors.  
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Haplotype sharing 

 
Supplementary Figure 8 – Dendrogram of the individuals from FineStrcture. Sampled populations were 
monophyletic, except for Swiss (CH) and French (FR) individuals. Grouping is based on similarity and the 
tree is not based on any model of population differentiation324. 
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Modelling the History of European barn owl 

Maximum-likelihood demographic inference 

 
Supplementary Figure 9 – Schematic representation of the recolonization of Europe for the five 
scenarios modelled in fastsimcoal2.  

 

 

Supplementary Table 2 – Likelihood and AIC of the demographic models tested with fastsimcoal2. Five 
main model topologies were tested with one (1R) or two (2R) glacial refugia. Models are sorted from best 
to worst according to the estimated likelihoods. 

Model Name Est. Lhood Δ Lhood AIC Δ AIC 

2R-1 -6519338 3052.89 30022708.26 0 

1R-1 -6522237 5951.772 30036060.1 13351.84496 

1R-3 -6525492 9207.312 30051046.42 28338.16071 

1R-2 -6529137 12852.437 30067830.84 45122.58168 

2R-2 -6556984 40699.49 30196081.26 173372.9999 

Est. Lhood – Maximum-likelihood estimated for the simulated SFS per demographic model; Δ Lhood – difference 
between the likelihood of the simulated and observed SFS; Δ AIC – delta AIC 
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Supplementary Table 3 – Parameter ranges and point estimate inferred for the demographic model 
tested with fastsimcoal2. Model “2R-1” – identified as the best fitting model – is given in Sup. Table 7. All 
range distributions were uniform except for bottlenecks (*) which were log-uniform. When a parameter was 
absent in a model, the case was left blank. 

  One Refugium Two Refugia 

Parameter Ranges 1R -1 1R-2 1-R3 2R-2 

Current Population Sizes (haploid)     
PT 10000 - 4e5 11713 11637 10218 386028 
CH 1000 - 3.5e5 1009 194765 239033 261548 
GR 1000 - 3.5e5 1031 1019 1037 4267 
IT 1000 - 3.5e5 1022 5272 4692 296226 

Ancestral Population Sizes (haploid)     

PT before glac 10000 - 4e5 - - - 244935 
IT before glac 1000 - 3.5e5 - - - 115633 
PT during glac 0.01 - 0.5 * - - - 654486 
IT during glac 0.01 - 0.5 * - - - 83910 

Times of Divergence (generations)     

Pre-glacial split PT-IT 8000 - 15000 - - - 8137 
T1  5954 5946 5873 5830 
T2  5937 5665 5853 0 
T3  3956 1453 1331 - 

Current Migration (flow is backwards in time)    

CH → PT 0 - 0.05 0.0074 0.0019 0.0001 0.0259 
PT → CH 0 - 0.05 0.0029 0.0027 0.0037 0.0177 
GR → CH 0 - 0.05 0.0212 0.0360 0.0172 0.0135 
CH → GR 0 - 0.05 0.0038 0.0412 0.0182 0.0182 
IT → GR 0 - 0.05 0.0164 0.0019 0.0016 0.0342 
GR → IT 0 - 0.05 0.0005 0.0031 0.0057 0.0130 
IT → CH 0 - 0.05 0.0013 0.0001 0.0001 0.0341 
CH → IT 0 - 0.05 0.0002 0.0013 0.0001 0.0198 

Older Migration     

CH → PT 0 - 0.05 0.0007 - 0.0017 0.00001 
PT → CH 0 - 0.05 0.0209 - 0.0249 0.0001 
GR → CH 0 - 0.05 0.0047 - - - 
CH → GR 0 - 0.05 0.0709 - - - 

Instbot- instant founding population *    

Pre-glacial split PT-IT 0.01 - 0.5 - - - 69907 
T1 0.01 - 0.5 84 189 99 12011 
T2 0.01 - 0.5 19 6750 3957 58 
T3 0.01 - 0.5 77 151 65 - 
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Supplementary Table 4 – Parameter point estimates and 95% confidence interval for the best 
demographic model: 2R -1. Parameter names correspond to Sup. Fig. 1. Times of divergence are in years 
calculated with a generation time of 3 years. Migration rates and number of individuals are given forward 
in time. 

Parameter Lower Limit CI Point Estimate Upper Limit CI 

Current Population Sizes (haploid) 
PT 20405 44055 380159 
CH 1006 3462 205409 
GR 1007 1381 208303 
IT 1039 1319 326428 

Ancestral Population Sizes (haploid) 
PT before glac 10103 10859 73118 
IT before glac 10775 189631 320792 
PT during glac 700 6857 141005 
IT during glac 36 62 116247 

Times of Divergence 
Pre-glacial split PT-IT 24206 68907 90015 
T1 1719 5095 16007 
T2 1622 5717 17523 

Current Migration (forward 2Nm) 
CH → PT 46.28 90.59 1413.66 
PT → CH 2.65 8.05 62.01 
GR → CH 0.13 41.66 156.06 
CH → GR 0.11 1.26 95.91 
IT → GR 0.21 2.88 135.06 
GR → IT 0.16 3.89 60.28 
IT → CH 0.17 26.94 157.00 
CH → IT 0.20 0.02 37.80 

Instbot- instant founding population * 
Pre-glacial split PT-IT 66 80 73468 
T1 18 119 16216 
T2 23 29 19330 
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Niche modelling  

 
Supplementary Figure 10 – The map in grey depicts the area considered for producing the Species 
Distribution Model (SDM) for the barn owl. Shading is relative to the altitude. The current distribution of 
barn owls is plotted atop the map in purple (data from IUCN: BirdLife International 2019). Random 
presence points were extracted within this distribution for the SDM. 

 

 
Supplementary Figure 11 – Pairwise correlation between climatic variables retained to produce the SDM. 
Only variables correlated at less than 0.8 were kept in the models, namely: Mean Diurnal Range (Bio2), 
Min Temperature of Coldest Month (Bio6), Temperature Annual Range (Bio7), Mean Temperature of 
Wettest Quarter (Bio8), Precipitation Seasonality (Bio15), Precipitation of Driest Quarter (Bio17) and 
Precipitation of Coldest Quarter (Bio19). 
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Supplementary Table 5 - Comparison of SDM model fit. AICc is reported for the multiple combinations of 
feature (linear, quadratic, hinge) and Beta multiplier (1 to 5). 

 1 2 3 4 5 

Linear 23953.4 23994.8 24037.1 24086.8 24125.8 

Quadratic 23950.8 24002.6 24042.7 24095.2 24148.5 

Hinge 24099.1 24185.4 24241.2 24304.4 24340.2 

 

 

 

 

Barriers and corridors 

Migration Surface Estimate 

 

 
Supplementary Figure 12 - Convergence of MCMC chains for EEMS run in the Western Palearctic. 5 
independently seeded MCMC chains reach approximate convergence. 
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Supplementary Figure 13 – Effective migration surface (EEMS) of barn owls in the Western Palearctic. 
The map depicts relative barn owl migration in western Palearctic. Blue indicates a greater migration rate 
over the average; and orange a lower migration than average. Map shows the mean of 5 independent 
EEMS posterior migration rate estimates between 1000 demes.  

 

 

Isolation by distance 

 
Supplementary Figure 14 – Isolation by distance in European barn owl. (a) Correlation of the pairwise 
genetic distance and two geographic distances between barn owl populations. Flight (∆) refers to the 
straight-line flight distance over land between populations, while Alps (x) refers to distance between 
populations by considering the presence of the Alps. Lines depict the linear regression of both 
comparisons. R2 and p-values of each model are reported in the legend. (b) Alternative distance models. 
The example illustrates the shortest overland distance (blue), and distance around the Alps (green) 
between the populations from Italy (IT) and the Iberian Peninsula (PT). 
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Abstract

Aim: Geological barriers within a species range play a key role in shaping patterns of

genetic variation by restricting gene flow. Mountain ranges are particularly imposing

barriers responsible for creating genetic differentiation across multiple taxa, from small

amphibians to large mammals and birds. Here, we examined the population structure

of North American barn owls (Tyto alba) and investigated whether the Rocky Moun-

tains influence gene flow and dispersal at the continental scale.

Location: Continental North America.

Methods: We collected 292 museum samples covering the species range, geno-

typed them at 20 microsatellite markers and sequenced 410 bp of the mitochondrial

gene ND6. Population and landscape genetics tools were used to study range-wide

patterns of structure and identify gene flow barriers. Ring recapture data were also

analysed to investigate individual movement patterns and frequency of exchanges

between both sides of the Rocky Mountains.

Results: We found faint overall genetic structure, which is consistent with barn

owl’s high mobility across its continuous range. Nonetheless, we identified two dis-

tinct genetic groups on the western and eastern regions of the Rocky Mountains

with a likely contact point through the narrow southern pass between them and the

Sierra Madre Occidental in Mexico. Accordingly, most recaptured barn owls remain

on the same side of the mountains. The Rockies appear to significantly isolate the

populations in the west, which, as a consequence, display lower genetic diversity

than their counterparts to the east.

Main conclusions: The Rocky Mountains appear to constrain barn owl dispersal and

gene flow. Our study supports the hypothesis that regional landscape barriers can

shape gene flow and population structure even in highly mobile organisms.

K E YWORD S

barn owl, barrier, dispersal, gene flow, landscape, microsatellites, mitochondrial DNA,

population genetics, Rocky Mountains

1 | INTRODUCTION

Spatial patterns of genetic structure and differentiation have long

been of interest to evolutionary biologists as they can ultimately
†Co-senior authors.
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provide hints on the origin of speciation. Such patterns are shaped by

the demographic history of populations and geography through the

combined impacts of genetic drift and gene flow and selection. An

organism’s dispersal capacity is responsible for maintaining gene flow

and subsequently determines the degree of genetic differentiation

between populations. Low levels of dispersal facilitate the emergence

of isolation by distance in homogenous or gradually differentiating

environments. Intuitively, organisms with low-dispersal capacity differ-

entiate at smaller geographic scales compared to those with higher

dispersal capacity (Kisel & Barraclough, 2010). However, the presence

of physical barriers can impede gene flow and quickly promote genetic

and phenotypic differentiation. In the early days of modern speciation

theory, Mayr (1942) posited that physical separation between popula-

tions (allopatry) was in fact crucial to initiate speciation.

Barriers to dispersal are often discrete geological or ecological

features that create gaps between suitable patches of habitat. These

can be of numerous types and act at different scales, from continen-

tal separation (Antonelli, 2017) to mountains (e.g. Boutilier, Taylor,

Morris-Pocock, Lavoie, & Friesen, 2014), rivers (e.g. Hayes & Sewlal,

2016), forests (e.g. Keyghobadi, Roland, & Strobeck, 1999) and

urban development (e.g. Frantz et al., 2012; Munshi-South, 2012).

The balance between an organism’s capacity to disperse and the

magnitude of a given barrier determines the degree of differentia-

tion it will generate. Thus, a barrier to dispersal for one species may

have no effect on another species if the latter has the capacity to

disperse across this barrier (e.g. Frantz et al., 2012). Mountain

ranges have been identified as the third most important factor in

biogeographical differentiation after tectonics and climate, mainly

due to their role as a barrier to dispersal (Antonelli, 2017) that

affects a large variety of taxa (e.g. DeChaine & Martin, 2005a;

Huang et al., 2017; Smissen, Melville, Sumner, & Jessop, 2013; von

Oheimb et al., 2013).

Here, we explore patterns of genetic structure and the potential

impact of a landscape barrier on a nocturnal raptor, the barn owl

(Tyto alba). This non-migratory cosmopolitan species is one of very

few to have colonized all continents but Antarctica as well as many

islands (del Hoyo, Elliott, Sargatal, & Christie, 1999; Taylor, 1994). It

hunts across an extensive range of different environments, except

regions with deep snow cover over large periods of the year. In

addition, it has successfully adapted to anthropogenic environments

as it often breeds in old buildings and is associated with traditional

small-scale mixed farming (Taylor, 1994). Despite having colonized

distant islands, both juvenile and adult barn owls disperse relatively

short distances (Marti, 1999; van den Brink, Dreiss, & Roulin, 2012).

Thus, it is capable of maintaining moderate levels of gene flow

across suitable habitats within its range but is also susceptible to the

presence of barriers. In Europe, there is a noteworthy pattern of iso-

lation by distance (Antoniazza, Burri, Fumagalli, Goudet, & Roulin,

2010; Antoniazza et al., 2014) and populations isolated by large

water barriers have accumulated substantial genetic differences as,

for example, in the Canary Islands and Crete (Burri et al., 2016).

However, European mountain ranges like the Pyrenees do not

appear to affect population differentiation to the same degree (Burri

et al., 2016) illustrating how barriers with different magnitudes can

have varying impacts on the same organism.

In North America, the Rocky Mountains are a major high-elevation

mountain range (up to 4,400 m) that extends over 4,800 km from

north–west Canada to New Mexico (USA). The complexity of the

landscape along the west coast is enhanced by smaller contiguous

perpendicular ranges such as the Klamath Mountains, creating a

patchwork of relatively isolated lowland. Examples of the Rockies’

role as a landscape barrier to gene flow are numerous in plants (e.g.

DeChaine & Martin, 2005b), terrestrial mammals (e.g. Geffen, Ander-

son, & Wayne, 2004; Schwartz et al., 2009), insects (e.g. DeChaine

& Martin, 2005a) and passerines (e.g. Milot, Gibbs, & Hobson, 2000;

Spellman, Riddle, & Klicka, 2007). There is even evidence of it

impacting widespread and highly mobile birds such as red-tailed

hawks (Buteo jamaicensis; Hull, Hull, Sacks, Smith, & Ernest, 2008).

Unexpectedly, in a first genetic analysis of American barn owls,

Huang et al. (2016) did not find any significant pattern of genetic

differentiation across continental North America.

Using an established set of 20 microsatellite markers and a

410 bp sequence of the mitochondrial gene ND6, we examined neu-

tral genetic variation across the range of the barn owl in North Amer-

ica. We employed approximately twice as many genetic markers and

individuals as Huang et al. (2016) to increase resolution, and we com-

pared our respective findings in detail. In our approach, we combine

population genetics tools with analyses of recapture of ringed barn

owls to characterize movement and gene flow at a range-wide scale.

Furthermore, we specifically tested whether the Rocky Mountains

are a physical barrier to gene flow and dispersal among populations.

2 | MATERIALS & METHODS

2.1 | Sampling and molecular analyses

We obtained barn owl samples across most of North America from

natural history museums in USA and Canada. Samples were collected

from either internal organs stored in 80% ethanol or muscle tissue

from frozen carcasses dating from 1986 to 2011 (Table S1 in Sup-

porting Information). Individuals were grouped into 10 populations

by geographic proximity (Table 1; Figure 1; Table S1).

Genomic DNA was extracted using the BioSprint 96 DNA blood

kit or the DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany) fol-

lowing manufacturer’s instructions. All 292 individuals were geno-

typed at 20 microsatellite markers (Burri et al., 2008; Klein et al.,

2009). Polymerase chain reactions (PCR) were carried out in a total

volume of 8 ll, containing 2.5 ll of Qiagen Multiplex PCR Master

Mix, 3 ll of DNA and varying concentrations of primers organized

into four multiplexes (see Antoniazza et al., 2014; except Ta-206

and Oeo53). PCR thermal cycling was performed as follows: an initial

denaturation step at 95°C for 15 min, 34 cycles at 94°C, 90 s at

57°C and 1 min at 72°C, with a final elongation step at 60°C for

30 min. The PCR products were analysed by capillary electrophoresis

in a ABI 3100 sequencer (Applied Biosystems) with internal size

standard GeneScan-500 LIZ. Fragment length analyses and scoring
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were performed in GENEMAPPER 4.0 (Applied Biosystems). Despite

our samples being relatively recent, we tested for a relation between

heterozygosity with year of sampling to control for the possibility of

allelic dropout in older samples. Microsatellite data were tested for

the presence of null alleles with MICRO-CHECKER 2.2.3 (Van

Oosterhout, Hutchinson, Wills, & Shipley, 2004) as well as for devia-

tion from Hardy–Weinberg equilibrium and linkage disequilibrium

between markers with ARLEQUIN 3.5.2.2 (Excoffier & Lischer, 2010).

Additionally, a 410 bp fragment of the mitochondrial gene

NADH dehydrogenase 6 (ND6) was sequenced for all individuals

TABLE 1 Diversity estimates per population for microsatellites and ND6 in North American barn owls

Population Abbrev. N

Microsatellites ND6

NA AR PA Ho He FIS S HN p (SD) HD (SD) Ѳ

Florida FLO 24 4.9 3.853 1 0.516 0.525 0.026 6 7 0.0021 (0.0005) 0.598 (0.107) 0.0039

New Jersey NJ 11 4.2 4.006 3 0.513 0.540 0.036 5 5 0.0026 (0.0009) 0.618 (0.164) 0.0042

Louisiana LOUI 19 4.9 3.954 4 0.500 0.509 0.023 6 7 0.0020 (0.0005) 0.608 (0.127) 0.0042

Ontario ON 9 3.7 3.650 0 0.506 0.514 0.040 4 5 0.0026 (0.0008) 0.722 (0.159) 0.0036

New Mexico NM 28 5.1 3.993 2 0.499 0.523 0.037 6 7 0.0018 (0.0005) 0.492 (0.114) 0.0038

California

Los Angeles

CALA 41 5.2 3.814 2 0.504 0.509 0.001 5 6 0.0013 (0.0003) 0.485 (0.089) 0.0029

California

San Francisco

CASF 41 5.4 3.862 1 0.481 0.507 0.036 3 4 0.0008 (0.0002) 0.304 (0.087) 0.0017

Oregon OR 40 5.0 3.733 2 0.490 0.523 0.044 1 2 0.0004 (0.0002) 0.180 (0.075) 0.0006

Idaho ID 38 5.0 3.711 1 0.474 0.505 0.050 2 3 0.0005 (0.0002) 0.203 (0.084) 0.0012

Washington WA 41 5.0 3.709 3 0.502 0.522 0.027 2 3 0.0002 (0.0002) 0.096 (0.062) 0.0011

TOTAL 292 0.498 0.518 0.037 14 14 0.0011 (0.0001) 0.367 (0.036) 0.0055

N, number of individuals; NA, mean number of alleles; AR, allelic richness corrected for uneven sample sizes; PA, private alleles; Ho, observed heterozy-

gosity; He, expected heterozygosity; FIS, inbreeding coefficient; S, number of polymorphic sites; HN, number of haplotypes; p, nucleotide diversity; HD,

Haplotype diversity; Ѳ, Watterson’s theta.
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using previously developed primers (Burri et al., 2016). PCR reac-

tions were carried out in a total volume of 25 ll, containing 19 Buf-

fer Gold, 2 mM MgCl2, 19 Q-Solution (Qiagen), 0.2 mM dNTP,

0.5 lM each primer, 1 U Taq Gold (Applied Biosystems) and 20 ng

of genomic DNA. PCR thermal cycling was composed of an initial

denaturation step for 7 min at 95°C, 35 cycles of 30 s at 95°C, 45 s

at 62°C and 45 s at 72°C, and final elongation for 7 min at 72°C.

Amplified DNA was sent for sequencing at Microsynth AG (Balgach,

Switzerland). Mitochondrial DNA (mtDNA) sequences were aligned

with MEGA 7 (Kumar, Stecher, & Tamura, 2016).

2.2 | Population genetic diversity and structure

To describe neutral variation, we calculated allelic richness (AR; rar-

efied based on nine individuals), observed and expected heterozy-

gosity (Ho and He) and FIS per population as well as overall and

pairwise FST values (Weir & Cockerham, 1984) between populations

based on the 20 microsatellite data with the “hierfstat” package

4-22 (Goudet, 2005) in R 3.3.2 (R Development Core Team, 2016).

Polymorphism data for mtDNA were obtained with DNASP 5.10

(Librado & Rozas, 2009) and global and population pairwise FST were

calculated with ARLEQUIN. A median-joining haplotype network (Ban-

delt, Forster, & R€ohl, 1999) was constructed in PopArt (Leigh & Bry-

ant, 2015).

We examined patterns of isolation by distance as the correlation

between pairwise genetic (FST) and Euclidean geographic distance

matrices using a Mantel test for both microsatellites and ND6. The

test was implemented in the R package “ecodist” 2.0.1 (Goslee &

Urban, 2007) with 107 permutations to assess significance and 104

bootstrap iterations to determine the 95% confidence limits. Then,

we contrasted the isolation by distance patterns in North America

and in Europe (microsatellite data from Burri et al., 2016).

To infer the main axes of differentiation between populations,

we performed principal coordinate analyses (PCoA) for microsatellite

and ND6 data as implemented in “hierfstat.” At the individual level,

we performed a principal component analysis (PCA) in “hierfstat” and

used STRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) to esti-

mate the number of genetic clusters among our samples and individ-

ual admixture proportions based on microsatellite data. Analyses

were run 10 times for each estimated K from 1 to 10, with 105

burn-in and 106 Markov chain Monte Carlo (MCMC) steps under an

admixture model with correlated allele frequencies. To infer the most

likely number of K, we followed the DK Evanno method (Evanno,

Regnaut, & Goudet, 2005) as implemented in Structure Harvester

(Earl & von Holdt, 2012).

2.3 | Barriers to gene flow

To determine the potential influence of the Rocky Mountains on

gene flow and genetic differentiation among barn owls, we per-

formed a series of analyses divided into two main steps. First, we

aimed to determine whether the mountains have a measurable

impact on gene flow employing (1) a partial Mantel test, (2)

covariance analyses and (3) Monmonier’s algorithm. Second, we

compared (1) genetic diversity between populations on either side of

the Rockies and (2) tested different routes of contact between them.

To investigate whether the Rocky Mountains act as a barrier to

gene flow, we employed a partial Mantel test with the R package

“ecodist” using the same parameters as for the Mantel test (see

“Population genetic diversity and structure” above). The partial Man-

tel test allows us to test the correlation of a barrier with genetic dif-

ferentiation (FST) while controlling for Euclidean geographic distance

between populations. The barrier effect was encoded into a matrix

as 0 or 1 if the populations were on the same or opposite sides of

the Rockies.

Despite being commonly used in population genetics to detect

ecological barriers to gene flow, partial Mantel test has been widely

criticized (e.g. Legendre, Fortin, & Borcard, 2015). Indeed, this test

performs poorly if the relationship between the distance variables is

not strictly linear (Legendre & Fortin, 2010) and tends to produce

high type I error rates when the variables are spatially autocorrelated

(Bradburd, Ralph, & Coop, 2013; Guillot & Rousset, 2013). Addition-

ally, Bradburd et al. (2013) noted that it does not allow us to quantify

the relative effects of the ecological (barrier or gradient) and geo-

graphic distances. Thus, we employed a new method with the R

package “Sunder” 0.0.4 (Botta, Eriksen, Fontaine, & Guillot, 2015), an

extension of the original package “BEDASSLE” for biallelic markers

developed by Bradburd et al. (2013). The rationale behind Bradburd’s

method lies on the expectation that allele frequencies in local popula-

tions covary in their deviation from the global mean allele frequency.

The covariance among pairs of populations, which is summarized

from raw allele counts into a matrix, is modelled as a decreasing func-

tion of geographic and ecological distance between the populations

(Bradburd et al., 2013). Importantly, the package estimates model

parameters such as the magnitude of the effects of the geographic

and ecological variables in a Bayesian framework using a MCMC

algorithm. “Sunder” further expands on this by (1) allowing the analy-

sis of microsatellites through a multinomial approach (versus the pre-

vious binomial) and (2) incorporating a cross-validation step to select

the most suitable model of genetic differentiation (“G”: geographic,

“E”: ecological or “G+E”: both), among others (Botta et al., 2015).

Thus, we used “Sunder” to assess the contribution of the Rocky

Mountains as an ecological barrier to genetic differentiation between

barn owl populations using our microsatellite data. We launched 10

independent MCMC runs for 107 iterations, sampling every 1,000

steps, with equal testing of the three models—G, E and G+E. We set

uniform priors with large upper bounds as recommended by the

authors and updated all parameters in the MCMC iterations: a e [0, 1],

indirect estimate of variance of allele frequencies; βG e [0, 40,000] &

βE e [0, 20], magnitudes of effect of geography and ecology, respec-

tively; c e [0, 1], smoothness of spatial variation in allele frequencies;

and d e [0, 1], degree of departure in allele frequency between neigh-

bouring populations (named the nugget coefficient). We used 10% of

the dataset (loci 9 locations) as validation set in cross-validation for

model selection. Matrices of geography and barrier were the same as

for the partial Mantel test above.
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Finally, we employed Monmonier’s maximum difference algo-

rithm (Monmonier, 1973), as implemented in the R package “ade-

genet” 2.0.1 (Jombart, 2008), to detect the presence of barriers. This

method developed by Manni, Guerard, and Heyer (2004) is based on

Delaunay triangulation (Brassel & Reif, 1979) from the sampling

coordinates and uses Monmonier’s algorithm to find the path that

displays the largest cumulative distances between connected ver-

tices. We used the first axis of microsatellite PCoA as a measure of

genetic distance between populations, using the third quartile of all

distances between neighbours (default) as threshold.

On the second part of our analyses, we tested if populations on

either side of the mountains have similar levels of genetic diversity

—microsatellite allelic richness and observed heterozygosity and

ND6 nucleotide diversity and Watterson (1975)’s Ɵ estimator—using

Student’s t tests. Populations were divided into an east (Ontario,

New Jersey, Louisiana, Florida and New Mexico) and a west (Wash-

ington, Oregon, Idaho and California) group.

Finally, we contrasted different routes of contact between popu-

lations on either side of the Rockies (see Figure S1 in Supporting

Information) by analysing how different pairwise paths between pop-

ulations explained genetic differentiation. We compared direct “flight

distance” (Euclidean) independently of the presence of the moun-

tains (orange line in Figure S1), with two distances accounting for

the mountains as a barrier for dispersal, one through a northern pass

(blue line in Figure S1) and the other around its southern tip (green

line in Figure S1). The alternative routes were calculated by consid-

ering lower elevation points in the northern and southern parts of

the Rocky Mountains within the natural distribution of barn owls as

mandatory waypoints for individuals to move between opposite

sides of the main range of the Rocky Mountains. These were

approximated as (1) the cities of Yakima (Washington) and Helena

(Montana) in the north and (2) Los Angeles (California) and Albu-

querque (New Mexico) in the south. By simulating the three differ-

ent routes, the relative distance between populations changes. For

example, populations Ontario and Washington are fairly close in

both the direct flight and northern routes, but very far in the south-

ern route. Using these three sets of pairwise distances, we used

Mantel tests to measure their relation to pairwise genetic differenti-

ation between populations. Then, we used linear models, evaluated

using the Akaike Information Criterion (AIC; Akaike, 1974), to deter-

mine which of these routes best explains the observed population

genetic structure described by the first axis of the PCoA. This axis

portrayed most of genetic variation among our populations thus

eliminating population-specific noise, and the use of a single axis

allows the testing of linear relations.

2.4 | Dispersal analyses

We analysed ring recapture data of North American and European

barn owls to investigate (1) whether the Rocky Mountains shape the

population structure by physically conditioning the movement of

individuals across it and (2) the differences in dispersal distances

between the two continents. North American data were obtained

from USGS Bird Banding Laboratory (2017) and European from EUR-

ING (Du Feu, Clark, Schaub, Fiedler, & Baillie, 2016; Speek, Clark,

Rohde, Wassenaar, & Noordwijk, 2001).

For all analyses, we filtered the raw data on date and coordinate

accuracy as similarly as possible between the North American and

European datasets based on their respective ringing system codes.

Thus, we kept points with dates accurate up to the same month level

in North America and to the 2-week range level in Europe. Addition-

ally, we kept coordinates accurate up to a 10-min latitude 9 longi-

tude block for North America and up to a 10-km radius for Europe.

To assess how often barn owls cross the Rocky Mountains, we

kept all recapture points available following the date and coordinate

precision filters, which yielded a dataset with a total of 3979 move-

ments by 3734 individuals, between 1923 and 2017. We defined a

crossing when an individual was captured on one side of the moun-

tains and recaptured on the opposite side. The main ridge of the

mountains was identified as the large dark grey patch labelled

“Rocky Mountains” in Figure 1. Then, we compared movement dis-

tances and direction of barn owls ringed on either side of the Rock-

ies. The Rocky Mountains are expected to be a barrier in a

continent-wide context; thus, we anticipate that they will not neces-

sarily restrict short-range movements but rather medium to long

range. Thus, we compared distances larger than 60 km (4th quartile

of the distribution of all recorded movements, n = 967) between

both sides of the mountains with a nonparametric Mann–Whitney U

test. Furthermore, we calculated the angle of these movements on a

flat Earth (i.e. WGS84 projection) with the R package “adehabitatLT”

0.3.21 (Calenge, 2011) to investigate whether it may also be influ-

enced by the barrier.

For comparisons between North America and Europe, we consid-

ered natal dispersal, the dispersal of juveniles from their birthplace

to their first breeding site, as it is typically larger than between

breeding years (Van Den Brink et al., 2012). Given recapture data do

not provide information on breeding success, we based our analysis

on sexually mature individuals in their first breeding season which

approximates to 1-year-old barn owls. Thus, we calculated natal dis-

persal as the distance between the ringing location of an owl as

nestling not capable of flight (up to 55 days old), and the location of

its recapture the following breeding season. We set an age bracket

for recapture between 6 and 18 months after ringing to account for

variation in hatching date and ringing age. When individuals were

recaptured multiple on occasions within this time range, we kept

only one point as representative of the breeding date and location,

selected as following: if the bird was found nesting, we kept the ear-

liest date; if the bird was not found nesting, we kept the point clos-

est to the peak of the breeding season (approximated to the 1 July).

These filtering steps yielded datasets of 784 recaptured individuals

in North America from 1925 to 2017 and 19641 individuals in Eur-

ope from 1910 to 2015. We used a Mann–Whitney U test to com-

pare natal dispersal distances between both continents.

Recapture data are directly dependent on whether the general

public reports ringed individuals, explaining in part the variation in

the number of data for each region, which could bias our
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comparison. Ringing and recapture locations in North America are

heavily distributed along the coasts but considerably sparser in the

interior of the continent (Figure 4). On the contrary, most locations

in Europe are concentrated in the north-west and the United King-

dom with few data points along the eastern and southern periph-

eries. Therefore, medium distances could be underrepresented in

North America and long distances in Europe simply due to different

likelihoods of the public reporting ringed barn owls between regions.

To account for this, we made a second set of Mann–Whitney U tests

only on short-range distances which have a more comparable chance

of being detected in both continents. We compared short-range

natal dispersal between the two continents using distances below (1)

150 km, (2) 100 km and (3) 50 km. The thresholds were chosen so

as to encompass the 3rd quartile of the distributions (52.18 km in

Europe and 92.53 km in North America). Bonferroni correction for

multiple testing was applied with four tests, setting the significance

threshold at 1.25 9 10�2.

2.5 | Comparison to previous results

In their study, Huang et al. (2016) used eight microsatellite markers

and one mitochondrial gene (ND2) on 126 individuals, of which only

13 were not from the west coast. Our results pointed to the pres-

ence of neutral structure and isolation by distance, whereas Huang

et al. (2016) found no such signal. To determine the cause of these

dissimilarities, we ran specific clustering tests by varying (1) the num-

ber of markers used and (2) the geographical sampling.

First, we randomly chose 20 different sets of eight markers

amongst our 20 markers in a bootstrap-like fashion to estimate

how often we obtained similar genetic clustering results to those

with the full dataset. Second, we replicated the geographical sam-

pling of Huang et al. (2016) by removing from our dataset the pop-

ulations of Florida, Louisiana and New Mexico (total 221

individuals). In this case, our populations of New Jersey and

Ontario (20 individuals) stood for Huang et al. (2016)’s Pennsylva-

nia (13 individuals) as north-east representatives. To avoid biasing

the results because of the much heavier sampling in the west

coast, we also randomly reduced the number of individuals in these

populations (total 117 individuals) to match the proportions in

Huang et al. (2016). We ran STRUCTURE for each test as

described above under an admixture model, for K 1 to 5. For the

bootstraps of eight loci, we included a location prior to account for

the low number of markers (Hubisz, Falush, Stephens, & Pritchard,

2009) as done by Huang et al. (2016).

3 | RESULTS

3.1 | Genotyping

Genotyping was highly successful resulting in a final dataset with

only 2.6% missing data. We found no relation between sample age

and heterozygosity (t = 0.891, p = 0.375, R2 = 0.008) indicating

allele drop-out in older samples was unlikely.

Two loci showed signs of deviation from Hardy–Weinberg equi-

librium as well as significant linkage disequilibrium for the Washing-

ton population. It is unlikely that these loci are physically linked on

the same chromosome as they have been extensively used in the

past with no evidence of linkage (e.g. Burri et al., 2008, 2016). Clo-

ser inspection revealed particularly low polymorphism for these

markers in this specific population, and running STRUCTURE with

and without them yielded similar results. We therefore kept all loci

for subsequent analyses.

3.2 | Population genetic diversity and structure

Average allelic richness ranged from 3.65 to 4.01 among populations,

and ND6 haplotype diversity ranged from 0.10 to 0.72 (Table 1). We

identified 14 ND6 haplotypes with no more than four diverging sites

between them. One haplotype was particularly frequent and present

in all populations, resulting in a short star-like haplotype network

centred around it (Figure 2a).

Overall Weir and Cockerham’s (1984) FST was 0.018 (95% confi-

dence interval 0.011–0.025) based on microsatellites and 0.021 (95%

confidence interval 0.015–0.035) based on ND6. We found a signifi-

cant pattern of isolation by distance (Mantel r = 0.712, p = 0.001) in

North America, which was considerably weaker than that of Europe

(t = �10.889, p < 0.0001; Figure 3). The highest pairwise FST

detected with microsatellite data were between Washington and

Idaho in the north-west and the populations of New Jersey and Flor-

ida on the east coast (Table 2). Similarly, the highest pairwise FST for
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mitochondrial data were between the north-western populations

(Washington, Idaho and Oregon) and eastern populations (Ontario,

New Jersey and Florida; Table 2).

The first PCoA axis described most of the variation in our

genetic data (82.5%; Figure 2b) and clearly differentiated the popula-

tions from the east and west coasts. The same pattern was detected

in the individual-based PCA (see Figure S2). Accordingly, admixture

analyses in STRUCTURE found the highest support for two genetic

clusters among our samples (DK(2) = 53.46; Figure S3), separating

populations from the east and the west (Figure 1). FST between the

eastern and western groups was 0.022 for microsatellites and 0.060

for mtDNA. Interestingly, Californian populations (CA Los Angeles

and CA San Francisco) showed high levels of admixture between the

two lineages, consistent with their intermediate position along the

first PCoA axis (Figures 1 and 2).

3.3 | Barriers to gene flow

The partial Mantel test detected a significant effect of barrier by the

Rockies on genetic differentiation with microsatellite (Mantel

r = 0.522, p = 0.008) and ND6 data (Mantel r = 0.415, p = 0.017).

Likewise, covariance analyses with “Sunder” identified the “geogra-

phy + barrier” model as the most probable to influence genetic dif-

ferentiation in all 10 runs (Table S3). Analyses with Monmonier’s

algorithm indicated the presence of two barriers (Figure 1). The first

separated populations almost longitudinally, specifically along the

axes between New Mexico and all populations to the west. This

analysis identified a second barrier between California and the

north-western populations (Washington, Oregon and Idaho).

Populations west of the Rocky Mountains had significantly lower

nucleotide diversity (t = 6.126, p < 0.001) and Watterson’s estimator

Ѳ (t = 6.084, p = 0.002) of mitochondrial DNA than the populations

east of the range (Table 1). Likewise, microsatellite observed

heterozygosity was lower in the west (t = 2.639, p = 0.034). Despite

showing the same tendency, the difference in allelic richness was

not significant (t = 1.725, p = 0.140). Ontario showed particularly

low levels of allelic richness, which skewed the eastern group’s

mean. Accordingly, if we excluded this population, the result was

similar for allelic richness (t = 3.951, p = 0.006) as for the other

diversity estimates.

The performed Mantel tests detected significant correlations of

genetic differentiation with nearly all distances tested (Table 3; Fig-

ure S4). However, the distance around South of the Rocky Moun-

tains had the best fit to both microsatellites (Mantel r = 0.857) and

mtDNA (Mantel r = 0.685) compared to the other distances

(Table 3; Figure S4). Similarly, AIC scores from linear models

(Table S4) showed that the distance around the southern part of the

Rocky Mountains best explained the first PCoA axis for microsatel-

lite (t = 10.003, p < 0.0001, R2 = 0.926; Table 3; Figure 2c) and

mtDNA (t = 6.038, p < 0.001, R2 = 0.820; Table 3; Figure S4f).

3.4 | Dispersal analyses

Of the 3734 ringed barn owls recaptured across North America, only

five individuals (0.13%) crossed the Rocky Mountains (Figure 4;

Table S5). When contrasting all movements between both sides of

the Rockies, there was no difference in the distance travelled

(U = 1970900, p = 0.412). However, when considering only
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F IGURE 3 Comparison of microsatellite isolation by distance
slopes of European and North American barn owls. Geographic
distances represented are from the most likely demographic scenario
of each continent: Ring distance in Europe (Burri et al., 2016), and
around South of the Rockies in North America

TABLE 2 Populations pairwise FST for microsatellite (below diagonal) and ND6 (above diagonal) of North American barn owls

Population FLO NJ LOUI ON NM CALA CASF OR ID WA

FLO �0.049 �0.030 �0.027 �0.008 0.015 0.056 0.122 0.103 0.171

NJ 0.002 �0.050 �0.069 �0.031 �0.021 0.023 0.108 0.101 0.202

LOUI 0.010 0.008 �0.049 �0.029 �0.011 0.026 0.092 0.094 0.165

ON 0.003 �0.001 0.001 �0.006 0.000 0.077 0.182 0.178 0.303

NM 0.019 0.010 0.005 �0.002 �0.009 0.003 0.044 0.038 0.092

CALA 0.024 0.022 0.020 0.012 0.010 0.003 0.048 0.059 0.101

CASF 0.026 0.026 0.016 0.009 0.008 �0.002 �0.010 0.024 0.037

OR 0.032 0.038 0.032 0.026 0.025 0.012 0.005 0.018 0.006

ID 0.049 0.041 0.032 0.038 0.029 0.013 0.009 0.008 0.011

WA 0.045 0.045 0.041 0.035 0.031 0.011 0.009 0.002 0.008

Abbreviations follow Table 1.
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distances above 60 km (4th quartile), eastern barn owls travelled fur-

ther than those confined to the western side of the mountains (me-

dian east 193.95 km and west 114.60 km; U = 150920,

p < 1.0 9 10�16; Figure S5). As for the direction of movements,

these were mostly NW or SE in the western side of mountains (Fig-

ure 5). In the east, however, large-range movements displayed a

clear trend south, whereas medium-range movements occurred in all

directions (Figure 5).

Comparisons of natal dispersal distance between continents

yielded consistent qualitative results across all tests (Table S6). When

considering the complete dataset, North American barn owls travelled

a median distance of 23.73 km from their birth place whereas the

European only 16.61 km (U = 8810300, p = 1.05 9 10�12). Similarly,

analyses of short-range distances (up to 50, 100 or 150 km) indicated

individuals in North America disperse significantly larger distances

than Europeans (Table S6).

3.5 | Comparison to previous results

Tests with eight microsatellite loci (as in Huang et al., 2017) yielded

the same two-cluster signal as the 20 loci dataset in 100% of runs

(Table S7). Indeed, the clustering was even more pronounced in

some cases, likely due to the use of location as prior. This indicates

that eight microsatellite markers should be sufficient to detect popu-

lation structure across continental North America in the barn owl. As

for the tests replicating the geographical sampling of Huang et al.

(2017), STRUCTURE failed to capture any clustering signal with both

all west coast samples (LnK(1) = �9380.39) and with the reduced

subset (LnK(1) = �5015.22).

4 | DISCUSSION

We found clear genetic differentiation between barn owl populations

along the east–west axis of their North American range, and we high-

lighted the potential role of the Rocky Mountains in reducing longitu-

dinal gene flow and dispersal across it. Population structure and

genetic diversity analyses revealed that north-western populations are

TABLE 3 Mantel tests and PCo 1 linear model results comparing
the three routes: Direct Flight (Euclidean), around North of the
Rocky Mountains and around South of the Rocky Mountains

Route Marker

Mantel test PCo 1

r P R2 P

Direct Flight

(Euclidean)

Microsatellites 0.712 0.001 0.814 <0.001

ND6 0.424 0.020 0.525 0.018

North of

Mountain

Microsatellites 0.628 0.004 0.684 0.003

ND6 0.279 0.055 0.370 0.062

South of

Mountain

Microsatellites 0.857 <0.0001 0.926 <0.0001

ND6 0.685 0.001 0.820 <0.001
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F IGURE 4 Barn owl movements across
North America, based on ring recapture
data courtesy of USGS Bird Banding
Laboratory (2017). Lines simply connect
two capture points and do not represent
the actual path travelled by the individuals.
Movements classified as crosses over the
Rocky Mountains are highlighted in blue
and numbered to match Table S5. Albers
Equal Conic map projection
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particularly isolated from the remaining ones, a segregation that coin-

cides with the main crest of the Klamath Mountains, contiguous to the

Rockies. Our extensive sampling encompassing the distribution of the

species in North America allowed us to uncover these results, which

are not in line with previous work (Huang et al., 2016). In our study,

we emphasize how large-sized landscape features can shape gene flow

even in highly mobile and widespread organisms.

4.1 | Population structure

Overall, we found less differentiation and longer natal dispersal dis-

tances among barn owl populations in North America than in Europe.

There was considerably lower neutral genetic structure (FST = 0.018

versus 0.045 for microsatellites and 0.021 versus 0.134 for ND6),

weaker isolation by distance (Figure 3) and more pronounced natal

dispersal in North America than in Europe (Table S6), reinforcing the

image of more movement and exchange between populations. It is

worth noting that North American barn owls are roughly 50% larger in

body size than Europeans (Taylor, 1994), but it is unclear whether this

might be related with dispersal capacity. Our results could also reflect

better large-scale connectivity between suitable habitat, such as grass-

land, prairies and agricultural old-field in North America.

We revealed a clear differentiation along the east–west axis of

continental North America (Figure 1), a pattern that has been

observed in other avian taxa (Hull, Strobel et al., 2008; Klicka, Spell-

man, Winker, Chua, & Smith, 2011; Proudfoot, Gehlbach, &

Honeycutt, 2007). Specifically, Bayesian analysis found two different

genetic lineages, separating the west coast populations from those in

the centre and the east coast. However, differentiation between the

two lineages in space is not simply linear, as south-western popula-

tions from California displayed high levels of admixture between the

two (Figures 1, S2, and S3a). Moreover, the highest differentiation

(as measured by pairwise FST) was found between the north-western

populations and essentially all east coast populations (Table 2). This

suggests barn owl genetic structure is more complex than isolation

by distance.

4.2 | Role of landscape: Rocky Mountains

The differentiation observed between the populations of North

American barn owls appears to coincide with the Rocky Mountains

(Figure 1), as supported by both genetic and ring recapture data

analyses. This imposing assembly of mountains and plateaus is argu-

ably the most notorious barrier in North America. It not only creates

genetic differentiation at the intraspecific level (DeChaine & Martin,

2005b; Geffen et al., 2004; Hull, Hull et al., 2008; Milot et al., 2000;

Schwartz et al., 2009; Spellman et al., 2007) but is also associated

with species distribution breaks, illustrating its important phylogeo-

graphic role (Antonelli, 2017; DeChaine & Martin, 2005a).

The landscape between the major ridge of the mountains and

the west coast is rugged and heterogeneous, in stark contrast to the

extensive plains to the east (Figure 1). Western barn owls are thus
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F IGURE 5 Direction and distance of barn owl movements on each side of the Rocky Mountains. Each circular plot is composed of 18 bins
of 20 compass degrees; length of a bin indicates the amount of movements in that angle; colours indicate the proportion of each distance
class in a bin according to the inset legend. Recapture data courtesy of USGS Bird Banding Laboratory (2017). Background colour represents
elevation as in Figure 1. WGS84 map projection
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confined to pockets of somewhat isolated populations in low-eleva-

tion patches, namely the north–west, south–west and large valleys

within the mountains (Figure 4). Restricted by the ocean to the one

side and the mountains to the other, their long-range movements

follow strict NW and SE directions (Figure 5). However, the

exchange of individuals between suitable patches is reduced (Fig-

ure 4) which leaves a trace at the genetic level. There was a measur-

able degree of genetic differentiation between the populations of

California and those in the north–west (Figures 1 and 2b), implying

the presence of a latitudinal barrier to gene flow. Accordingly, Mon-

monier’s algorithm identified a second barrier coinciding with the

Klamath Mountains (Figure 1), a pattern that has been described in

other taxa (e.g. Soltis, Gitzendanner, Strenge, & Soltis, 1997), includ-

ing some owl species (Barrowclough, Groth, Mertz, & Guti�errez,

2005; Haig, Mullins, & Forsman, 2004; Hull et al., 2010).

Populations in the north–west are therefore isolated by barriers

in all compass directions with a gradient of magnitude: from the

Pacific Ocean to the west, the species’ ecological range limit to

the north, the Rockies to the east and the Klamath Mountains to the

south (Figure 1). Consequently, it is not surprising that they dis-

played the lowest genetic diversity (Table 1). Given this was a region

of permafrost during the last glaciation (Hewitt, 2000), the northern-

most populations are likely the result of post-glacial recolonization

and therefore younger than the rest of the continent. On the other

hand, their considerable amount of microsatellite private alleles

(Table 1) suggests that isolation has also allowed for the accumula-

tion of genetic differences in fast-mutating loci, contributing to the

observed differentiation.

On the other side of the Rockies, the landscape is mostly com-

posed of flat prairie plains. Unimpeded by any significant geological

barrier, eastern barn owls cover longer distances (Figure S5) and tra-

vel mostly south in a wide angle (Figure 5). Hence, populations

appear better connected with less genetic differentiation (Figure 1)

and significantly higher genetic diversity than in the west (Table 1).

Despite their 2,400 km of extent, the Appalachian Mountains in the

north–east do not seem to restrict gene flow nor the movement of

individuals among eastern barn owl populations (Figure 4). Although

we recognize that our sampling in this region lacks fine-spatial reso-

lution to detect genetic differentiation between populations on both

sides, we found no such signal (Figure 1; Table 2), and recapture

data show numerous individuals that cross the Appalachian Moun-

tains (Figure 4). Indeed, the Appalachians are likely more suitable for

barn owls as they occupy a considerably smaller area than the Rock-

ies and rise to lower elevations (maximum 2,037 m, less than half of

the Rockies), reducing their potential as a physical barrier to individ-

uals’ movements. Importantly, the snow cover on these mountains is

not as deep and occurs over a shorter period.

Having established that the Rocky Mountains act as a barrier for

gene flow and dispersal of barn owls, we attempted to identify the

contact point between the populations on either side. We tested dif-

ferent routes and our analyses consistently pointed to the southern

route as the most consistent with the observed genetic patterns

(Table 3; Figure S4). The narrow pass between the Rocky Mountains

and the Sierra Madre Occidental is a known biogeographical point at

which multiple organisms cross the Western Continental Divide

(Pyron & Burbrink, 2010). From the species’ ecological point of view,

the southern route would appear to be the most logical scenario as

well, being the one at lowest elevation and with the least snow

cover.

This is the first time a mountain range has been shown to signifi-

cantly affect gene flow between barn owl populations. In Europe,

the Pyrenees’ short extent of 450 km does not seem to restrain

exchanges between the Iberian Peninsula and France despite rising

to 3,404 m (Burri et al., 2016). The potential role of the Alps

(1,200 km in extent, up to 4,809 m elevation) has not yet been

tested due to the lack of Italian barn owl samples available to previ-

ous studies. Additionally, investigating other major mountain ranges

within the global distribution of barn owls, such as the Andes in

South America or the Great Dividing Range in Australia, could reveal

new mountainous barriers to gene flow and dispersal in this species.

4.3 | Comparison to previous results

Our findings do not concur with the previous report on barn owl’s

population structure in continental North America (Huang et al.,

2016). We attempted to discern the causes at the origin of these

differences, and our results concluded that it was our more exten-

sive sampling in space that allowed the detection of the patterns

presented above. Tests with the same number of markers as used

by Huang et al. (2016) yielded similar results to ours (Table S7), sug-

gesting the low number of markers was not responsible for the

observed lack of structure in their study. However, our sampling

covered most of continental North America (Figure 1), whereas

Huang et al. (2016)’s only included one reduced population east of

the Rocky Mountains (Pennsylvania, 13 individuals). Thus, when we

replicated their geographical sampling, even with our 20 markers,

Bayesian methods did not find significant genetic structure. Given

the low level of overall genetic differentiation, it appears our exten-

sive geographical sampling was crucial to detect it.

5 | CONCLUSION

Our study shows that large-sized landscape features can act as barri-

ers to gene flow and dispersal for highly mobile and widespread

organisms. We identified the Rocky Mountains as the main physical

barrier to gene flow between barn owl populations along the east–

west axis, followed by the Klamath Mountains that promote north–

south differentiation along the west Coast. Thus, barn owl population

structure seems to be strongly influenced by high-elevation, snow-

covered barriers of large extent. Compared with previous work, our

findings also highlight the importance of suitable geographical sam-

pling when investigating patterns of genetic structure in space. Fur-

ther work, including Central Plains and Mexican populations, would

help elucidate the demographic history of North American barn owls

and how it shaped current genetic structure and diversity patterns.
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Chapter 5 – Supporting Information 

 

Supporting Tables 

Table S1 – Description of individuals used for the genetic analyses in this study. 

Pop Males 
Female

s 
U Time range States 

FLO 8 16 - 1993 - 2008 Florida 

NJ 3 8 - 1986 - 2004 
New Jersey, New York, North 

Carolina, Pennsylvania 

LOUI 10 9 - 1991 - 2007 
Louisiana, Alabama, Florida, 

Mississippi 

ON 4 5 - 1988 - 2011 
Ontario (Canada), Minnesota, 

Illinois, Ohio 

NM 10 17 1 1996 - 2009 New Mexico, Arizona, Kansas, Texas 

CALA 22 17 2 1989 - 2007 California 

CASF 19 20 2 1994 - 2005 California 

ID 13 24 - 1993 - 2008 Idaho, Oregon, Washington 

OR 20 19 2 1990 - 2005 Oregon, Washington 

WA 16 25 - 1988 - 2008 
Washington, British Columbia 

(Canada) 

Total 125 160 7 1986 - 2011  

Pop – populations abbreviated following Table 1; U – sex unknown; States – sampling states in the USA or in Canada 
when indicated. 
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Table S2 – Microsatellite summary statistics per locus. 

Locus N % NA NA AR Ho He FST FIS 

Ta-210 291 0.34 2 1.078 0.01 0.01 0.01 -0.01 

Ta-216 291 0.34 17 6.047 0.77 0.77 0.02 0.00 

Ta-306 289 1.03 2 1.930 0.24 0.22 -0.01 -0.08 

Ta-218 290 0.68 5 3.314 0.41 0.43 0.02 0.04 

Ta-220 283 3.08 8 4.828 0.62 0.71 0.02 0.12 

Ta-204 291 0.34 3 2.957 0.61 0.60 0.01 0.00 

Ta-214 285 2.40 4 2.304 0.24 0.27 0.03 0.13 

Ta-305 292 0 6 3.418 0.61 0.64 0.05 0.04 

Ta-310 289 1.03 4 1.407 0.05 0.05 -0.01 -0.01 

Ta-413 291 0.34 18 8.169 0.80 0.87 0.02 0.08 

Ta-202 289 1.03 6 4.438 0.62 0.71 0.00 0.13 

Ta-212 290 0.68 7 3.574 0.67 0.64 0.01 -0.05 

Ta-215 290 0.68 10 4.247 0.60 0.62 0.05 0.04 

Ta-402 285 2.40 18 7.512 0.89 0.85 0.01 -0.05 

Ta-408 266 8.90 13 4.541 0.53 0.64 0.00 0.17 

Ta-FEP-42 275 5.82 2 1.991 0.32 0.34 0.03 0.06 

Ta-54f2 272 6.85 9 6.260 0.76 0.81 0.00 0.06 

Ta-Calex-05 266 8.90 3 1.338 0.05 0.04 0.04 -0.06 

Ta-TGU-06 292 0 8 3.966 0.59 0.55 0.00 -0.08 

Ta-RBG-18 270 7.53 6 3.251 0.59 0.57 0.02 -0.02 

N – number of individuals successfully genotyped; % NA – percentage of missing genotypes; NA –number of alleles. 
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Table S3 – Summary of ‘Sunder’ results. Likelihoods and effect size (β) estimates for each tested model 
across runs: G: geography; E: ecology (barrier); G+E: both. The highest likelihood (highlighted in bold) was 
consistently attributed to the G+E model. 

# Run 
G E G + E 

Likelihood βG Likelihood βE Likelihood βG βE 

1 -1392.07 2951 -1397.28 12.55 -1389.17 3473 11.19 

2 -1181.17 3086 -1182.82 15.00 -1178.63 3578 11.50 

3 -1339.94 3355 -1337.08 13.77 -1332.42 3490 15.12 

4 -924.87 2862 -926.21 10.79 -920.92 3483 11.39 

5 -1635.09 3007 -1640.24 10.23 -1634.47 3614 11.43 

6 -1132.05 2934 -1130.43 11.71 -1126.41 3449 8.50 

7 -1175.85 2887 -1178.62 13.15 -1174.69 3625 11.01 

8 -1159.15 3261 -1158.68 9.48 -1155.52 3433 12.83 

9 -1406.23 2749 -1409.58 12.86 -1404.61 3505 10.19 

10 -1112.97 3300 -1117.56 10.44 -1111.76 3681 10.38 

 

 

 

Table S4 – Complete results of linear models for the first PCoA axis comparing different contact routes, 
ordered by the most likely scenario according to AIC scores. Models for the same genetic markers were 
contrasted between the three possible routes: South of the Rocky Mountains, Direct Flight (Euclidean), or 
North of the Rocky Mountains.  

Marker Route t R2 P AIC Δ AIC 

Microsatellites 

South 10.000 0.926 < 
0.0001 -73.793 0 

Direct Flight 5.921 0.814 < 0.001 -64.593 9.200 

North 4.160 0.684 0.003 -59.277 14.516 

ND6 

South 6.038 0.820 < 0.001 -34.100 0 

Direct Flight 2.972 0.525 0.018 -24.385 9.714 

North 2.168 0.370 0.062 -21.569 12.531 
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Table S5 – Dispersal characteristics of the 5 individuals that crossed the Rocky Mountains, numbered to 
match the highlighted movements in Figure 4. 

N Ring no. 
Capture Recapture 

Time 
(days) 

Distance 
(km) Date Location Date Location 

1 98772088 18-05-84 Salt Lake City, 
Utah 27-11-85 Omaha, 

Nebraska 558 1311 

2 98791285 24-04-91 Salt Lake City, 
Utah 21-03-92 Pueblo, 

Colorado 332 768 

3 180795278 05-05-09 Nampa, 
Idaho 25-05-12 Santa Fe, 

New Mexico 1116 1300 

4 220647152 02-05-99 Merced, 
California 30-10-00 Chicago, 

Illinois 547 2836 

5 220606110 27-05-90 Bridgeton, 
New Jersey 12-03-99 Temecula, 

California 3211 3776 

 

 

 

Table S6 – Natal dispersal in North American and European barn owls. Mann-Whitney U tests results for 
the full dataset and subsets. All tests were significant following Bonferroni correction. 

Test  
North America  Europe  

U p 
N Distance N Distance 

Complete 
dataset 784 23.73 19641 16.61 8810300 1.05 x 10-12 

Up to 150 
km 651 18.65 17963 13.94 6293000 3.30 x 10-4 

Up to 100 
km 602 18.51 16742 12.56 5440900 2.98 x 10-4 

Up to 50 km 525 17.61 14586 10.20 4228900 1.14 x 10-5 

N – number of individuals; Distance – median dispersal distance in km.



Table S7 – Summary of STRUCTURE bootstrap results comparison to Huang et al. (2016). All runs indicated 
K=2 as the most likely population structure. 

# Run Loci Mean Ln(K) SD L'(K) ǀL''(K)ǀ Delta K 

1 Ta-210, Ta-306, Ta-218, Ta-204,  
Ta-310, Ta-202, Ta-402, Ta-408 -4224.30 3.61 49.39 97.06 26.89 

2 Ta-210, Ta-216, Ta-214, Ta-305,  
Ta-310, Ta-215, Ta-402, FEP-42 -4433.18 4.08 124.78 168.23 41.27 

3 Ta-210, Ta-216, Ta-214, Ta-305, 
Ta-413, Ta-402, Ta-408, FEP-42 -5777.86 5.4 106.11 163.83 30.33 

4 Ta-216, Ta-306, Ta-220, Ta-204, 
Ta-310, Ta-212, Ta-215, RBG-18 -4696.35 2.98 85.86 112.46 37.74 

5 Ta-210, Ta-204, Ta-305, Ta-413, 
Ta-202, Ta-212, Ta-215, Ta-408 -5624.21 4.15 123.48 167.54 40.4 

6 Ta-216, Ta-220, Ta-204, Ta-214, 
Ta-305, Ta-413, Ta-402, FEP-42 -6403.00 4.24 110.49 110.12 25.98 

7 Ta-306, Ta-220, Ta-204, Ta-305, 
Ta-310, Ta-202, Ta-402, TGU-06 -5132.36 6.34 63.39 90.33 14.25 

8 Ta-306, Ta-204, Ta-214, Ta-310, 
Ta-202, Ta-212, Ta-402, RBG-18 -4545.51 5.92 62.28 104.72 17.7 

9 Ta-216, Ta-306, Ta-218, Ta-204, 
Ta-413, Ta-202, Ta-215, Calex-05 -5276.06 4.756 107.24 154.28 32.44 

10 Ta-216, Ta-306, Ta-218, Ta-310, 
Ta-202, Ta-215, Ta-402, Ta-408 -5350.93 1.55 112.94 144.37 93.15 

11 Ta-216, Ta-218, Ta-220, Ta-214,  
Ta-305, Ta-408, Calex-05, TGU-06 -4820.90 5.21 75.81 105.73 20.29 

12 Ta-306, Ta-220, Ta-214, Ta-305,  
Ta-215, Ta-408, FEP-42, RBG-18 -4343.71 4.52 112.69 144.43 31.92 

13 Ta-210, Ta-216, Ta-204, Ta-305,  
Ta-310, Ta-413, Ta-212, FEP-42 -4816.5 2.2 73.47 115.75 52.55 

14 Ta-210, Ta-306, Ta-218, Ta-220, 
Ta-214, Ta-305, Ta-202, TGU-06 -4031.33 4.72 78.13 120.93 25.65 

15 Ta-210, Ta-216, Ta-220, Ta-212,  
Ta-408, 54f2, Calex-05, TGU-06 -5153.84 26.09 -45.75 24.65 0.945 

16 Ta-216, Ta-306, Ta-218, Ta-305,  
a-215, FEP-42, 54f2, TGU-06 -5136.16 1.49 99.08 240.18 161.43 

17 Ta-216, Ta-218, Ta-413, Ta-202, 
Ta-212, Ta-215, Ta-408, Calex-05 -5921.91 5.11 117.03 203.79 39.9 

18 Ta-210, Ta-306, Ta-220, Ta-204, 
Ta-310, Ta-413, Ta-408, RBG-18 -4421.02 5.22 42.98 78.68 15.07 

19 Ta-210, Ta-306, Ta-305, Ta-408,  
54f2, Calex-05, TGU-06, RBG-18 -3977.20 10.11 29.2 112.22 11.1 

20 Ta-210, Ta-306, Ta-218, Ta-413, 
Ta-212, Ta-215, Ta-408, RBG-18 -4824.81 4.65 100.3 165.68 35.59 

Loci – set of 8 microsatellites used in each bootstrap run; Mean Ln(K) - Lean likelihood; SD – standard deviation; L'(K) – 
Absolute change of the likelihood distribution (mean); ǀL''(K)ǀ - Rate of change of the likelihood distribution (mean). 
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General Discussion 

In this thesis, I used molecular tools to study barn owl populations with varying degrees of 

isolation. From mountain ranges that distort otherwise smooth patterns of isolation by distance 

(chapters 4 and 5), to islands that harbour populations diverging both genetic and phenotypically 

(chapters 1 to 3). In the former, I focused on the tallest chains of Europe and North America, the 

Alps and the Rocky Mountains. In the latter, we span three island systems ranging in age, surface 

area and distance to mainland. Notably, in addition to genomic data, throughout this work I had 

the opportunity to work with phenotypical measurements, capture-recapture and climate data, in 

a complimentary approach that was often crucial to present well-supported results. In the 

following sections of this discussion, I summarize how the combined results of the presented 

chapters contribute to our knowledge of the species in light of what was previously known, 

discuss future avenues of research and comment on the importance of using genomic data.  

 

Barn owls of the Western Palearctic 

Up until the start of this thesis, classical genetic markers had provided a description of the broad 

patterns of genetic diversity and structure among barn owl populations of the Western 

Palearctic100–102. Briefly, it was known that most of continental Europe was derived from an 

Iberian glacial refugium, while an eastern lineage was present in the Levant. The colour cline was 

observable in the European lineage, with rufous individuals predominantly found in the north and 

northeast and white ones in the south and southwest. Due to the odd genetic makeup of the 

Greek populations, it was conjectured that the east European rufous birds and the Levant white 

ones might meet in a secondary contact zone between the lineages in the southern Balkans. This 

hypothesis was supported by the sharper changes in plumage colouration observed in the 

Balkans compared to the west, instigating the hypothesis that some degree of reproductive 

isolation might have arisen between owls of different colour. Using whole genome sequences, we 

were able to address the postulated scenario and rewrite the history of insular and mainland barn 

owls of the Western Palearctic.  

 

Colonisation routes and glacial refugia 

Genomic data confirmed that the Mediterranean Sea is surrounded by two main barn owl genetic 

lineages, the European (or western) and the Levant (or eastern), assumed to be connected over 

northern Africa. While this is concordant with previous results, we pinpointed their meeting point 

to Anatolia rather than the Balkans. Since there are virtually no rufous owls in Anatolia, this 

finding dissociates the secondary contact zone between lineages from the region of transition in 

colour and therefore refutes the hypothesised scenario and reproductive isolation. In the west, off 
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the northern African coast, the Canary archipelago was colonised by barn owls with fluctuating 

levels of both European and Levant ancestry, consistent with north Africa carrying a genetic 

gradient between the two lineages. 

During the last glaciation, the known barn owl glacial refugium in the Iberian Peninsula probably 

extended into a contiguous narrow westwards corridor in now submerged land over the Bay of 

Biscay. Moreover, we showed the species survived in a second cryptic glacial refugium in 

continental Europe. Considering the lower sea levels during the last glaciation, the core of this 

refugium was most likely in southwest Italy and potentially spread over what is now the Adriatic 

Sea into the eastern Balkans.  

As temperatures rose and the ice caps started melting, barn owls in the Bay of Biscay were soon 

cut off from the mainland and founded what would become the British Isles. At this time, Cyprus 

already boasted a suitable climate for the species, however we were unable to reliably determine 

its colonization time. In mainland Europe, the southwest became suitable first and, from the 

Iberian refugium, barn owls started colonizing central and northern Europe before turning east 

above the Alps. Previous work on colouration and MC1R indicate this lineage became increasingly 

rufous in the populations further north. In the meantime, from the Italo-Balkan refugium, they 

could only spread along the coast south to the Aegean Sea and its patchwork of small islands. 

Only much more recently, barn owls from the Aegean eventually reached Crete. Finally, as 

conditions became more favourable in the continental inland, the Iberian and Italo-Balkan glacial 

lineages ultimately met in eastern Europe. The admixture between the two is prevalent and traces 

of it reaches populations far from the assumed meeting point, corroborating the absence of 

reproductive isolation. The discovery of a second refugium in Italy explained the peculiarity of 

Greek owls which, along with other inland Balkan populations, have high proportions of the 

genetic signatures of both glacial refugia.  

Among the traditional postglacial colonization patterns121, the routes described here resemble 

that of the brown bear pattern the most (though far from perfectly), with a greater contribution 

from an Iberian refugium. It is a quite distinct pattern from that of the tawny owl339 (Strix aluco) 

who used the central Balkan Peninsula as a glacial refugium. Despite the many similarities to 

barn owls – widespread, colour polymorphic, mid-sized nocturnal raptors – tawny owls are forest-

dwellers, which probably allowed them to exploit this refugium while barn owls could not. As far as 

we were able to determine, the glacial history of the Eurasian kestrel (Falco tinnunculus), the 

diurnal homologous to the barn owl that also prefers open habitats, has unfortunately never been 

studied and therefore we cannot make a comparison to it. In conclusion, taking into consideration 

the changing coastline and regions of climatic suitability for our species was crucial in 

determining the location of glacial refugia and retrace colonization routes. This approach, in 
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combination with the power of genomic data, is likely to rewrite the history of other species, as in 

the recent case of yellow warblers (Setophaga  petechia)340. 

 

Evolutionary change in insular populations 

Genetic drift is commonly recognised as the main driver of neutral genetic divergence in insular 

populations, whereas variation in morphological traits is usually assumed to have a selective 

basis58. In this thesis, I analysed these suppositions in two insular systems, the British Isles and 

the Canary Islands. In the former, there is a clear divergent phenotype with insular owls being 

white instead of rufous as on the nearest mainland. We showed that this pattern can actually be 

parsimoniously explained by neutral processes, as British and Irish owls simply inherited the light 

colouration of their founders in the Iberian Peninsula, and kept it via reduced gene flow with the 

mainland after becoming geographically isolated by the rise of the sea levels. We are unable to 

completely discard the possibility that a rufous morph would be more advantageous on the 

islands, if it is better adapted to latitude-related factors, for example. However, even if that was 

the case, the small population size and low gene flow facilitate the loss of incoming rufous alleles 

by drift, making the white colour a direct product of neutral evolution. 

In the Canary archipelago, barn owls of the eastern islands are shorter than those of the 

neighbouring islands and mainland. We found evidence of local adaptation in multiple genomic 

regions, including genes linked to body size and proportions, suggesting that its size might indeed 

be the result of selective pressure. Interestingly, we also found signals of adaptive forces acting 

on other, less obvious, traits like adaptations linked to blood-pressure in hot arid conditions in the 

eastern populations, red blood cells and haemoglobin in the high-elevation western population, 

as well as a supposed insular morphological adaptation with an unknown phenotype.  

To summarize, our case studies provide evidence of a first conspicuous phenotype being the 

result of genetic drift and a second one due to local adaptation. In addition, we also found 

adaptation acting on cryptic traits. Ultimately, disentangling the effects of each evolutionary 

mechanisms on the genomic makeup of any given insular population remains a challenging task. 

Given the uniqueness of each island system and colonization circumstances, it is doubtful that a 

broad rule will ever emerge, except that all mechanisms likely interact simultaneously and their 

importance can vary with time and fluctuating local conditions.  

 

The key role of landscape barriers 

In the absence of landscape barriers, barn owls keep constant levels of gene flow with neat 

patterns of isolation by distance over thousands of kilometres, a common feature among raptors 

(reviewed in341). However, the impact of mountains, fluctuating sea levels and distance to the 
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mainland is striking when retracing the glacial and postglacial history described above. Mountains 

ranges force owls to contour them as, for example, around the north of the Alps in Europe 

(chapter 4) and around the south of the Rocky Mountains in North America (chapter 5). 

As illustrated by Italy, the cumulative effect of barriers, like mountains and water, can isolate 

even more a population. Cornered in the north by the Alps and surrounded by the Mediterranean 

Sea in all other directions, the Italian population had little exchange with the rest of Europe and 

remained a well-preserved relic of the glacial refugium. A similar combination of large mountains 

and water bodies, resulted in the nearly complete discontinuation of gene flow in Anatolia, with 

only sporadic exchanges between the Levant and European lineages. In contrast, the meeting of 

the Iberian and Italo-Balkan glacial lineages in eastern Europe, in the absence of large barriers, is 

ubiquitous and diluted over long distances. On their own, large water bodies also significantly 

hinder exchanges of individuals with insular populations being consistently more similar 

genetically to their founding population than to other nearer populations, regardless of how old 

the colonisation is (chapters 1-3). This is outstandingly clear in the Canary archipelago, where 

islands 200 km apart are more distinct from each other than from the mainland that founded 

them over 1000km away. 

 

Unexplored regions 

Despite the vast advances reported here on our knowledge of the history of barn owls in the 

Western Palearctic, several questions remain unanswered and would require more extensive 

sampling. First, whether the populations of northern Africa form a continuum between the 

European and the Levant lineage, or the northern part of the Sahara Desert acts as yet another 

barrier between them. If the latter is true, the theory of a ring-like colonization around the 

Mediterranean Sea would be replaced by one of two lineages of unknown geographical origin with 

two current contact zones, one in Anatolia and the other in northern Africa, between Libya and 

Egypt. Similarly, the regions east of the Balkans and around the Black Sea, where the supposed 

T. a. guttata would have originated, merit investigation.  

In terms of island populations, three insular subspecies remain unexplored at present: T. a. 

ernesti in Sardinia and Corsica, T. a. schmitzi in Madeira and T. a. detorta in Cape Verde. While all 

three are worth characterizing, the Madeiran subspecies is perhaps the most intriguing and one 

we had hoped to sample during this work. Being far (over 500km) yet nearly equidistant from the 

mainland and the Canary Islands, its study might contribute to the history of the Canarias 

population and potentially yield curious colonization patterns. Lastly, the European barn owl 

lineage spans a large variety of climates, habitats and prey species. It could be an indication that 

local adaptation occurs, in clinal form or not, on other traits besides colour.  
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Taxonomy of the Afro-European barn owl 

Although it is not the goal of this thesis to contribute to the debate of what constitutes a 

subspecies, our work was intrinsically linked to such classifications and, at times, conflicted with 

them. Currently, there are seven described subspecies of barn owl in the Western Palearctic205, 

four of which were part of this thesis. First, T. a. gracilirostris (Hartert, E, 1905) is found in the 

eastern islands of the Canary archipelago, namely Fuerteventura, Lanzarote and the small islets 

around them. This classification was based on its smaller size and supposedly darker plumage, 

although the latter is highly contested by ornithologists (F. Siverio, personal communication) and 

phenotypical measurements102. Our results concur with its subspecies status, in the extent to 

which it forms a long-term isolated genetic cluster, is monophyletic and displays genomic signs of 

being locally adapted to its environment. Moreover, it is by far the most differentiated insular 

population out of all the ones studied here. Second, T. a. erlangeri (Sclater, WL, 1921) is present 

in the Levant, Cyprus and Crete, and can easily be matched to the Levant (eastern) genetic 

lineage described above. Yet, we distinctly show that Crete does not belong to this lineage, but 

rather to the European one, and should therefore be excluded from the classification. Finally, T. a. 

alba (Scopoli 1769) and T. a. guttata (Brehm and CL 1831), are the, respectively, white and 

rufous subspecies of European barn owls (see General Introduction). The former is distributed in 

the south and west of Europe, and the latter in the north and east. However, as detailed above, 

our results do not support this split, as colouration does not reflect the neutral genetic patterns 

as it is the result of local adaptation acting within the same genetic lineage. Furthermore, though 

we identified a second glacial refugium, owls of southern Italy are white, thus refuting the 

hypothesis of differently coloured refugia (see General Introduction). 

 

Plumage colour determination and maintenance 

Traditional genetic markers had shown that the European barn owl colouration cline is due to 

local adaptation and not the result of neutral processes. Although we didn’t specifically test this, 

the genomic data presented here concurs with this conclusion. Indeed, the genetic makeup of 

European populations reflects their respective demographic histories instead of their plumage 

colour. When it comes to the genetic determination and the maintenance of this trait, however, 

multiple aspects are still unclear. 

The mutation detected at the MC1R gene of European barn owls only explains approximately 30% 

of colour variation102,116. The rufous derived allele appears to be decisive in generating rufous 

phenotypes, even in heterozygote state. Yet, among homozygous white owls there is a great deal 

of variation in shade, with some reaching intermediate phenotypes (see Figure 1 in General 

Introduction). This was particularly clear in our study of the British Isles, where barn owls are 

whiter than any mainland population, even in Iberia where being white is expected to be 
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advantageous. Besides both populations being unsurprisingly homozygous white at MC1R, we 

were unable to find other regions that could explain this difference through our candidate gene 

approach. Given its high heritability (h2=0.8195), and that 70% of variation is still unaccounted for, 

it seems plausible that this trait has a polygenic basis. To probe this question further, we have 

begun a study using a GWAS (genome-wide association study) approach on both mixed and pure 

coloured-populations across Europe. We hope to detect other genomic regions that may 

compound on the effect of MC1R and explain the remaining phenotypical variance. Preliminary 

results indicate that a region in chromosome Z accounts for some of the variation amid 

homozygous white owls in Switzerland (unpublished data). Since female owls only have one copy 

of the Z chromosome, we removed it in our study of the British Isles and therefore could not have 

picked up this signal. It will be extremely interesting to see if this same region can explain the 

difference between British and Iberian white owls. 

Finally, the selective forces maintaining the differential geographic distribution of plumage 

colouration still require additional research. The fact that it occurs on the three barn owl sister 

species, and are not linked to the same MC1R mutation (unpublished data), insinuates 

independent convergent evolution of the rufous phenotype in each taxon. Worldwide analyses of 

climatic data, found that darker barn owl morphs occur in colder and wetter regions96, suggesting 

more melanic plumage might be better adapted to living in such conditions. The specific 

advantages they might have however, like better insulation, impermeability or camouflage, 

remain undistinguishable until further examination. 

 

Population genomics in non-model species 

This thesis adds to the growing body of literature of empiric population genomics studies in non-

model species, and the added value of using whole genome sequences was clear at numerous 

points throughout it. First, the massive increase in number of loci resolved the convoluted 

structure patterns in and around the eastern Mediterranean, clarifying the origin of heavily 

diverged insular populations and pinpointing secondary contact zones. Second, it provided the 

necessary power to discover unexpected demographic scenarios, such as the colonisation of the 

British Isles, and even glacial refugia. Finally, accessing the genomic landscape allowed the 

identification of potential locally adaptative genomic regions in the Canary Islands. In parallel, the 

availability of a good reference genome assembly at near chromosome-level, allowed a better 

mapping of the reads and consequently contributed to increasing the number of SNPs, improving 

the resolution of the genomic landscape and facilitating the phasing of reads. 

Notwithstanding, as for many non-model species, a few limitations remained and impacted this 

work, with perhaps the most obvious being the difficulty in sampling, not only in terms of quantity 

but also quality of the samples. Even though we were able to cover quite a wide geographic 
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range, and the barn owl is less complicated to sample than some other species, we were not able 

to sample all the locations we set out to (see above). A trade-off of using genomic data, is the 

need for fresh and good quality source tissue, especially when producing PCR-free genomic 

libraries, and thus museum samples, the typical source material in previous studies, were not 

usable. In model species, the wealth of samples and high-coverage data, allows the imputation of 

genotypes (or genotype likelihoods342) on extremely low coverage data (less than 1x), a technique 

seen most of all in humans343 with some examples in other groups of interest as well, such as 

cattle344,345. This type of strategy was obviously out of our reach since most species do not have 

high quality reference panels available. The second, and also common, limitation was the lack of 

a complete annotation of the reference genome, particularly in chapter 3, where we investigated 

regions putatively under local adaptation in owls from the Canary Islands. The list of genes in 

these regions was probably incomplete due to the draft annotation available, thus reducing the 

power of detection in enrichment analyses. Thirdly, we only considerer bi-allelic loci in our studies, 

missing the signals that indels and structural variants could add. Finally, with our short-read 

sequencing data, we were restricted in the use of haplotype-based analyses. This was overcome 

in chapter 4 by harnessing the power of a large sample set (nearly 100 genomes) in a combined 

physical and statistical phasing approach, which is currently unfeasible for smaller sets. Still, the 

development of statistical tools is likely to overcome this limitation in the near future.  

 

Demographic inference methods 

Throughout this thesis, demographic inference was a frequent analysis step, and a particularly 

crucial one in verifying the hypotheses for the colonisation of the British Isles and the second 

glacial refugium in Italy. This type of analyses is gradually becoming more common in non-model 

organisms but still far from being widespread, especially from WGS data and with the complexity 

of the scenarios simulated here. We used fastsimcoal2, an SFS-based software that relies on 

coalescent simulations, and arguably the best available option to us at the start of this work in 

terms of simulating capacity, speed and time scale (see General Introduction).  

Nonetheless, our approach was still imperfect, yielding often very large parameter confidence 

intervals, and at times insufficient, for example, preventing a reliable estimation of the 

colonisation of Cyprus. This was due to multiple factors, such as the necessary simplification of 

what are certainly more intricate demographic histories, not having a reliable mutation rate for 

our species, the lack of known events to calibrate time estimates and using non-parametric 

instead of parametric bootstrapping which likely contributed to the wide intervals. Lastly, it was 

still a quite long and computationally intensive process.  

A recent study318 used δaδi for population pairwise inferences, which were then used to calibrate 

the large multi-population modelling in fastsimcoal2. Though it is hard to estimate if there is a 
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gain in terms of speed, this two-step approach seems promising as it probably yields more 

accurate parameter inferences by reducing the initial search range and facilitating parameter 

optimization in fastsimcoal2. Finally, newer methods continue to be developed, such as 

moments, a software that provides two new tools for demographic inference. The first tool346 

improves upon, and is faster than, δaδi by circumventing the solving of diffusion equations to 

estimate the SFS. It allows for the inference of selection on top of neutral demographic events, 

can now model up to five populations and is being increasingly used in non-model species347–350, 

including birds317,351. The second tool proposes a whole new method of neutral demographic 

inference based on patterns of LD between loci, that does not require phased data and can be 

applied to tens of populations352,353. Both approaches are promising for faster and scalable 

inference of demographic histories, and the next few years are likely to see other the emergence 

of other inference tools. 

 

Conclusion 

In the present thesis, we showed how a widespread bird is affected by landscape barriers, namely 

mountains and large bodies of water, and illustrate diverse outcomes of wild isolated populations. 

The use of the barn owl as study organism provided multiple study opportunities, from its 

extensive distribution and presence on many islands, to its conspicuous colour variation, the 

availability of a reference genome and the compiled knowledge from decades of study. We add to 

this knowledge using genomic data, with which we elucidated convoluted patterns that traditional 

markers could not, revealed unexpected histories and detected adaptive genomic signatures.  

Finally, it is worth noting that not all groups, institutions or countries have access to the kind of 

funds and resources required for the work presented here, not only for sequencing but also for 

computing. Consortiums that generate large amounts of data, like B10K, and the standardization 

of open-access policy are crucial in addressing, at least, the sequencing hurdle and should 

therefore be encouraged. By allowing more researchers to exploit the existing data, a broader 

range of issues can be tackled thereby improving the total knowledge on the studied organism or 

communities and contributing to the overall advancement of molecular population genomics, 

particularly in non-model species.  
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