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ABSTRACT

We consider the mathematical modeling, the numerical
simulation and an efficient solution strategy of the peri-
odontal ligament. For the modeling, we employ a bipha-
sic approach which takes the fibrous tissue in the PDL into
account as well as the fluid between the fibres. After dis-
cretization in space and time, a coupled system with sad-
dle point structure has to be solved at each time step. We
present and discuss a preconditioning strategy for the Schur
complement of this problem. And we apply it for predict-
ing the behavior of realistic problems from dental biome-
chanics.
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1 Introduction

The Periodontal Ligament (PDL) is a thin layer of dense
soft connective tissue located between tooth root and alve-
olar (jaw) bone, see Figure 1. Its bio-mechanical functions
are diverse [2]. Firstly, it supports the teeth and keeps them
in position. Secondly, it allows for attenuating the high and
fast loading of the teeth during chewing. Thirdly, the PDL
transmits the long-term loading to the alveolar bone thus
enabling bone-remodeling processes.

Understanding the behavior and the mechanical prop-
erties of the PDL is of paramount interest not only from a
medical point of view, e.g. for investigating diseases of the
PDL as periodontitis, but also in the context of biomechan-
ical applications as, e.g., estimating the maximal loading
applicable with dental braces. Since in-vivo biomechani-
cal experiments with humans are possible only within strict
limits, mathematical modeling and numerical simulation
are important tools for creating a deeper understanding of
the mechanical nature of the PDL.

As a matter of fact, the specific material behavior of
the PDL are based on its biphasic structure. Internally the
PDL consists of a solid part, which is formed by a fibrous
tissue, and a fluid phase. While the fibrous network pro-
vides structural support, the fluid phase adds hydrodynamic
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(a) Labial side
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Figure 1. Mesh of the tooth-PDL system of a pig.

damping, thus allowing for different reactions of the PDL
to short-term and long-term loading.

This combination turns the mathematical modeling
and the numerical simulation of the PDL into a demanding
task, since not only the material properties of the fibruous
tissue have to be covered but also its interaction with the
fluid phase. In terms of unknowns of the resulting system
of partial differential equations, i.e. the displacements of
the fibrous tissue and the pressure of the mixture, this in-
teraction gives rise to a non-linear coupling term, since the
permeability depends non-linearly on the displacements.

From a numerical point of view, the most convenient
way to deal with this non-linearity is to treat it explicitely
within the time integration scheme. Unfortunately this pro-
cedure is not always stable and suitable linearization strate-
gies has to be employed [7]. Then, discretizing the lin-
earized equation with finite elements at each time step,
a saddle point problem arises. For realistic applications,
however, due to the high number of degrees of freedom,
direct solution strategies are inapplicable and one has to
resort to iterative solution schemes which exploit the struc-
ture of the system. Several preconditioning strategies for
saddle point problems can be found in the literature e.g.
[1]. In the context of multigrid methods, transforming



smoothers or point block-smoothers can be found as well
as approaches based on Uzawa’s method with multigrid as
“inner” solver [4].

Our approach follows the latter ideas and is based on
solving the Schur complement of the biphasic system. In
order to take into account the pressure of the mixture, in
contrast to standard approaches we do not only use mass
matrix as a preconditioner for the Schur complement, but
the sum of a scaledmass matrix and the discretized diffu-
sion operator related to the pressure. As can be seen from
our numerical experiments, our new preconditioning strat-
egy behaves optimally with respect to the mesh size.

In this contribution, we start from the derivation of a
suitable biphasic model for the PDL. For two model prob-
lems we show that our preconditioning approach gives rise
to mesh independent convergence rates. We conclude with
a “real world” application of the derives techniques within
the context of dental biomechanics.

Here we want to point out that the presented precon-
ditioner can be employed not only for the biphasic system
but also for other physical problems with the same saddle
point structure, e.g. the Brezzi-Pitkirenta stabilization of
the Stokes problem [5].

2 Modeling of the PDL

In this section we will briefly introduce the model describ-
ing the tooth-PDL system. For a detailed description of
porous elasticity see [3], for the employed model [6] and
reference therein while for the dental applications see our
work [7]. Therein we performed some simulations with
realistic elastic parameters obtained by measurements on
porcine tooth and PDL. These simulations allowed us also
to detect some feasible values for the unknown permeabil-
ity parameters.

2.1 Kinematics

According to theory of porous media that we employ to
model the periodontal ligament (PDL), the fibrous network
and the fluid phase within the PDL are modeled by assum-
ing that the solid and the fluid phase coexist in a homoge-
nized way throughout the PDL. We assume that every point
p of the reference configuration )z of the PDL is occupied
by a “material point” of both phases a, where a can be ei-
ther .S, the solid phase, or I, the fluid phase, respectively.
Each point p is therefore moved according to two different
motions f,(p,t), a € S, F, see Figure 2. Every spatial
point z at time ¢ of the current deformed configuration Q%
is therefore occupied by two different fields with

fs(Qp.t) = fp(Qp,t) forallt > 0.

As a consequence, at every spatial point two different ve-
locity fields coexist which will be denoted by v, in spatial
coordinates.

Q5 £5(Q, 0) = £r(Qp, t)

Figure 2. At each material point the two phases coexist and
result in two different deformations fg and f .

The local structure of the fluid-solid mixture is as-
sumed to be governed by the volume fractions n, =
nq (2, t) that describe the ratio of the fluid and solid phase
at each spatial point. To ensure that there is no empty space
between the phases we employ the usual saturation condi-
tion

ng+np =1 (1
that has to be fulfilled. The evolution of the solid vol-
ume fraction ng can be computed starting from the fraction
n%(p,t) in the reference configuration as

ng =nYdet(Vfg) .

Exploiting twice the saturation condition, the evolution of
the fluid fraction can be computed as

np = ng +ngdet(Vfs) ",

where n{’ denotes the initial volume fractions of the fluid
phase. Thus, the density at each point & is given by

p=nsps +nrpp

where pf denotes the density of each phase a, which is
constant in the incompressible case. As is standard in
continuum mechanics and fluid mechanics, respectively,
the motion of the solid part is described in terms of the
displacements us = fg(p,t) — p while the veloc-
ity of the fluid is given in term of the seepage velocity
Wrp =V —Vs.

2.2 Balance Equations

The balance equations have to be solved for both of the
phases S and F'. Starting from the conservation of mass

p/a (x,t) + div(pa(z, t)va(,t)) =0
and exploiting the incompressibility condition we arrive at
nL (x,t) + div(na(z, t)va(z,t)) = 0. ()

Summing up the respective equations (2) for both of the
two phases, we obtain

(ng + TLF)/ + div(nsvs + TLF'UF) =0.



Now, employing the saturation condition (1) and the defi-
nition of wr, we get

div(vg(z,t) + np(x, t)wr(z,t)) =0.

For each constituent, neglecting inertia and volume forces,
the balance of momentum is written as

—divTy + I, = 0,

where I1,, denotes the momentum production term which
fulfills IIg 4+ ITp = 0 and T, is the Cauchy stress tensor.
Due to the assumption of incompressibility, the pressure is
introduced and the Cauchy tensor can be written as

Tf — napl

where T'Z is the elastic stress tensor that can be neglected
for the fluid phase.

2.3 Coupled Model for Tooth and Periodontal Liga-
ment

In order to describe the complete PDL-tooth system, the
biphasic model has to be completed by elastic model for
the tooth. We denote by Qr C R? the reference domain
of the elastic material and associate all related quantities
with the same subscript. Because of the small strain and
small displacement occurring, a geometrically linear elastic
model can be employed

-V-TL=0.

The vector ug denotes the displacement of the elastic do-
main g and the following compatibility conditions on the
interface '/ = QTooth 0 OPDL petween the tooth and the
PDL have to be fulfilled:

ug = ug on T
(Ts+Tp) vy = —T%-VE on T

Here, vg and v g denote the outward normals to Q5 and to
Q g, respectively.

2.4 Constitutive Equations

In order to describe the elastic behavior of the tooth and the
solid phase of the PDL, a geometric linear elastic model is
used, i.e. the strain is measured by means of the linearized
strain tensor

(VUB + (VUB)T) .

N =

€p = €(ug) =

with 8 € {S, E}. This simplification, which is reasonable
within the limits of our model, allows us to write the elastic
part of the Cauchy tensor as

Tg = 2ugeg + Agtr(eg)I

As a next step, we need a closure relation that allows us to
connect the seepage velocity to the pressure in the mixture.
To this end the well-known Darcy law is obtained by the
balance of momentum of the fluid phase and can be written

npwp = —((nys) gradp

The parameter ¢ describes the permeability of the solid
phase. To model this term different suggestions can be
found in the literature. The model we are using is the one
proposed in [8] and reads

kp(np)
i

C(nr) =

The numerator describes the evolution of permeability with
zero displacement k% with a power law

ke(nr) =k (48)

ng

while the denominator is the effective pressure of the fluid.

Summarizing, we now can state the system of partial
differential equations describing the linear biphasic model
without considering the volume forces as follows:

—div (,u_ges + Astr(ES)I — pI) =0 3)
div(vs — ((np)gradp) =

Please note that although in (3) we are in the geometric
and material linear case, the above system is non-linear
since the permeability parameter is non-linear function of
the solid displacement ug.

The parameters employed for the simulation of the
tooth-PDL model are reported in table 1. The mechan-
ical parameters have been obtained by measurements on
porcine tooth while the parameters describing the perme-
ability model are the ones in the ranges presented in [7]
that was giving results in good agreement with the physical
experiments.

Parameter \ value \ units
Us 0.08 x 10° [ Nm2
s 0.11 x 105 | Nm—2
Us 8.00x 10° | Nm2
g 11.00 x 10° | Nm™2
PR 1000 kgm~3
k9, 107°+107% | ms™!
K 30 =40 #
ng 0.6 #
ng 0.4 #

Table 1. Physical parameters used in the numerical experi-
ments



3 Discretization in Space and Time

Here, we provide a brief description of the discretization in
space and time used for our numerical experiments. For the
sake of clarity, in this presentation we will consider A = 0
and p constant but the strategy can be easily extended to
more general cases. A simple implicit first order discretiza-
tion in time by means of the backward Euler method gives
rise at each time step j to the following non-linear system
of partial differential equations:

—div (2,ue(ug) fij) =0
div(u{g - AtC(ni}) gradp’) = div u{;l

As has been observed in [7] a purely explicit treatment of
the non-linearity in the permeability ¢ leads to a non-stable
solution. In order to overcome this difficulty, we therefore
employ a predictor-corrector scheme, see again [9]. As a
matter of fact, numerical evidence shows that even for sim-
ulations on complicated geometries with realistic material
parameters one predictor and one corrector step are suffi-
cient for ensuring stability.

For the discretization in space, we employ low order
finite elements for the displacements as well as for the pres-
sure. To this end, the computational domain is approxi-
mated by an unstructured mesh with tetrahedral elements.
On Q) p, where we solve the biphasic model, at each mesh
node we have three degrees of freedom for the displace-
ments and one for the pressure. This discretization of the
biphasic model gives rise to the following system with sad-
dle point structure:

uA =BT z\ (f
(5 auer)G)-(G) @

At every time step j, the value of 3 is j — 1 for the pre-
dictor step and j — 1/2 for the corrector step. For details
on the linear system resulting from the discretization of the
biphasic-elastic coupled model see [7].

4 Preconditioning Strategy

Due to the huge number of degrees of freedom for real-
istic PDL-tooth geometries, iterative solvers in combina-
tion with efficient preconditioning strategies have to be em-
ployed. Multigrid methods, for example, are well known to
be preconditioners and solvers providing optimal complex-
ity for elliptic problems. For indefinite systems, however,
the direct application of multigrid solvers is still a challenge
since the choice of appropriate smoothers is far from triv-
ial, since classical iterative solvers as, e.g. Jacobi, Gauss-
Seidel, SOR, are designed for positive definite matrices.

In order to provide an efficient preconditioning strat-
egy, we employ the Schur complement of (4)

1
S=-BA'B" + Atk}.C.
u

Assuming a constant shear modulus in space, we can char-
acterize the material dependencies in the problem by means
of the single dimensionless permeability parameter k =
Atk% . The matrix S is symmetric and positive definite by
construction. Thus, if a good preconditioner for the elas-
ticity stiffness matrix A is available, the preconditioned
conjugate gradient method will provide an efficient solu-
tion method. The spectral behavior of BA BT is well
known in case of constant coefficients and it can be seen
to be equivalent to that of the corresponding mass matrix.
For the biphasic model considered here, also the additional
matrix C has to be taken into account. Since C is an ad-
ditional diffusion matrix, we choose as preconditioner the
sum of the pressure mass matrix M (scaled by 1/u) and C
(scaled by k%.At). The resulting matrix is symmetric posi-
tive definite again and multigrid method can be applied.

In the next section we will perform several numeri-
cal test and we will investigate the performance of our ap-
proach with respect to the discretization size h for the sim-
ulation of the biphasic model. We will also perform some
numerical test with non-constant . In this case p cannot
be eliminated in the Schur complement. We circumvent
this difficulty by employing as “mass” preconditioner the
discretization of weighted scalar product

1
/ —uvdz.
Qp M

Let us finally remark that using a symmetric positive
definite matrix for preconditioning as described above to-
gether with a multigrid method as solution method can ren-
der the solution of the biphasic model optimal.

5 Numerical Results

In this paragraph, we investigate our preconditioning strat-
egy along a model problem with realistic parameters. We
moreover apply the derived model to a real-world problem.

Figure 3. L-shape domain.

The first example to be considered is a model problem
in 2D. As computational domain we choose an L-shaped
domain (see Figure 3). We use the biphasic material model
derived in Section 2. The material parameter & varies in the
range from 107! to 10~°. This range is designed to cover



Figure 4. Pressure on the deformed domain.

h precon. | mass precon.
0.2 3 41
0.1 3 81
0.05 3 169
0.025 3 346
0.0125 3 732
0.00625 3 1,000*

Table 2. L-Shaped domain: Number of iteration with & =
0.1

realistic material parameters occurring in dental biome-
chanics. For this L-shaped domain we use an unstructured
and regular triangular mesh with mesh size h > 0. An
example of the computed displacements and pressure is re-
ported in Figure 4. The second example is given by a unit
square in 2D. This domain is split up into two parts of
equal size on which different shear moduli are prescribed.
In this case we use regular mesh with mesh size h.

Along this examples, we investigate our precondition-
ing strategy by measuring the number of iterations for dif-
ferent solution strategies. More precisely, we compare a
conjugate gradient (cg) method on the Schur-complement
with a preconditioned cg-method where we have used M
and M + kC as a preconditioner, respectively. In all cases
we stop the iteration process if the relative error in the
residual of the linear system is below 1076, As we will
see, the number of iterations can be reduced significantly
by the application of our preconditioning strategy which
then will allow for the application of the biphasic model to
a real world problem.

In Tables 2, 3 and 4 the number of iterations for de-
creasing mesh size h and three different permeability pa-
rameters for the L-Shaped domain are given. Uniform re-
finement is applied.

In Tables 5 and 6 the number of iterations for decreas-
ing mesh size h and two different permeability parameters
for the example with jumping coefficients are given. Again,
uniform refinement is applied. As can be seen, the number
of iterations are remains constant by the application of our

h precon. | mass precon. | unprecon.

0.2 8 10 16
0.1 8 18 22
0.05 7 40 40
0.025 7 85 80
0.0125 7 180 157
0.00625 7 375 322

Table 3. L-Shaped domain: Number of iteration with k =
0.001

] h \ precon. \ mass precon. \ unprecon. ‘
0.2 34 53 62
0.1 23 40 51
0.05 14 22 34
0.025 10 11 20
0.0125 9 18 20
0.00625 9 39 38

Table 4. L-Shaped domain: Number of iteration with & =
0.00001

Figure 5. Jumping material parameters: traction of a square
with two different shear moduli.

strategy. It can furthermore be seen that the number of iter-
ations is independent of the mesh size, but depends on the
dimensionless permeability parameter k.

In Figure 6 a simulation on a complete PDL-tooth sys-
tem is given. In the tooth domain the von Mises stress are
plotted: the area with higher stress on the frontal (labial)
surface is the contact area with the loading device simu-
lated as a boundary Dirichlet boundary condition while in
the PDL domain the pressure in the PDL is given. For
a detailed validation of a coupled biphasic-elastic model
see [7].

The aim of our real-world numerical examples is the
reproduction of in-vitro measurements [7]. In these exper-
iments, time-dependent displacements are applied to the
tooth and concurrently the force response on the tooth is
measured at the position of the bolt.



h (=10 | £ =100 | z = 1000

0.2 27 33 33
0.1 20 19 18
0.05 13 13 12
0.025 11 11 11
0.0125 11 11 11
0.00625 11 11 11

Table 5. Number of iterations, for two different shear mod-
uli y21 and 5. The value of kis 10™% and p = puo/pt1.

[ h [p=1]p=2]p=10] p=100 |

0.2 18 27 27 33
0.1 19 20 20 19
0.05 12 12 13 13
0.025 10 11 11 11
0.0125 10 11 11 11
0.00625 11 11 11 11

Table 6. Number of iterations, for two different shear mod-
uli 121 and 2. The value of k is 1072 and p = o/ p1.

Pressure (kPa)  Stress (kPa)
270 5451.5

175 500000

- 200 -40000.0
E ~30000.0
225
3 £-20000.0
250 ~-10000.0

270 1.8

Figure 6. The evolution of von Mises stress in the tooth and
the pressure in the PDL in the simulation of a relaxation test
on a single-rooted tooth.

In these numerical simulations, the contact surface
between the indenter and the tooth is modeled by a
time-dependent Dirichlet boundary condition reaching a
maximum displacement of 0.10 mm.

The contact between the PDL and the surrounding
jaw bone is modeled by means of homogeneous Dirichlet
boundary conditions. In this study, we furthermore neglect
the flow of the interstitial fluid through the surface between
the PDL and the bone.

Conclusions

In this work we have considered the mathematical model-
ing of the periodontal ligament and its numerical simula-
tion. We have investigated a preconditioning strategy for

the Schur complement of the saddle point problem aris-
ing after discretization in space and time. Our strategy
showed to be optimal in different numerical test, thus al-
lowing for the simulation of “real world” problems from
dental medicine. Future extensions of our work will in-
clude the improvement of the material model and the de-
velopment of corresponding fast solution methods.
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