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This mini review spotlights the most promising treatments for
geographic atrophy, the advanced form of age-related macular
degeneration, often resulting in severe and irreversible vision
loss. The pathophysiology is complex, and various therapeutic
strategies, including anticomplement therapies, gene thera-
pies, cell-based interventions, and artificial intelligence–driven
diagnostics are discussed.
Anticomplement therapies (antifactors C3 and C5) showed
promise in reducing the inflammatory response and the pro-
gression of the atrophy. Gene therapies, targeting specific
genetic mutations, are under development to correct underly-
ing defects and potentially reverse disease progression. Cell-
based therapies are gaining momentum, with early studies
indicating encouraging results in the replacement of damaged
retinal pigment epithelium cells.
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Abbreviations
AAV, adeno-associated virus; AI, artificial intelligence; AMD, age-
related macular degeneration; ARMS2, age-related maculopathy sus-
ceptibility 2; anti factors C3 and C5, antifactors Complement 3 and
Complement 5; BCVA, best corrected visual acuity; CFI, Complement
Factor I; CFH, Complement Factor H; GA, Geographic Atrophy; EMA,
European Medicines Agency; EOM, every other month; hESC, human
embryonic stem cell; iPSC, induced pluripotent stem cell; MAC, mem-
brane attack complex; OCT, optical coherence tomography; ReST,
research and safety in therapeutics; RORA, retinoic acid receptor–
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related orphan receptor A; ROS, reactive oxygen species; RPE, retinal
pigment epithelium.
Introduction
Geographic atrophy (GA), an advanced form of age-
related macular degeneration (AMD), is a severe

threat to visual health, often resulting in irreversible
vision loss [1,2]. AMD is characterized by the accu-
mulation of drusen in the macular region and pro-
gresses to the degeneration of various retinal layers,
ultimately leading to subfoveal GA and central vision
loss [3].

As the population ages, the incidence of GA is increasing
[4]. Fortunately, advances in our understanding of GA’s
pathogenesis have led to the development of new
treatments [5]. Various therapeutic approaches,
including complement inhibition, cell-based and gene

therapies, and neuroprotection, have been explored. In
this review, we will discuss the latest therapeutic in-
novations and emerging strategies for managing and
potentially reversing GA.

Pathophysiology of geographic atrophy
To fully appreciate the significance of therapeutic in-
novations, it is essential to understand the underlying
mechanisms of GA. GA is an advanced manifestation of
AMD, which primarily affects the elderly and presents in
early stages with drusen and pigmentary changes [6]. GA
is characterized by the progressive degeneration of retinal
pigment epithelium (RPE) and photoreceptor cells [2],
leading to anatomical and functional changes, including
macular atrophy and irreversible central vision loss [2].

Several key pathophysiological factors contribute to GA’s
development and progression. A fundamental aspect of
GA’s pathogenesis is RPE dysfunction, which is
responsible for maintaining retinal health [7]. Impaired
phagocytosis of photoreceptor outer segments results in
toxic by-product accumulation, drusen formation, and
eventual loss of the photoreceptor and RPE layers [8].
AMD has been associated with immune cells (macro-
phage) infiltration in the photoreceptor cell layer and
around GA lesions [9]. Commonly, in healthy in-

dividuals, the central photoreceptor cell layer and the
subretinal space are devoid of macrophages [10e12].
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Chronic inflammation in GA is initiated by drusen
accumulation, involves complement activation, cytokine
release, and immune cell infiltration (macrophage),
intensifying tissue damage and promoting cell loss
[8,13]. For a comprehensive review on the role of infil-
trating mononuclear phagocytes and macular degenera-
tion, a review has been published [9].

Dysregulation of the complement system is central to
GA’s pathophysiology [2]. Genetic variations in com-
plement factors, such as complement factor H (CFH),
complement factor I (CFI), complement component 3
(C3), and C5 predispose individuals to impaired regu-
lation, contributing to chronic inflammation and RPE
damage [14,15].

Oxidative stress, resulting from an imbalance between
reactive oxygen species (ROS) production and cellular
antioxidant defense mechanisms, plays a crucial role

[16]. Mitochondrial dysfunction is a significant source
of ROS in AMD [17]. Increased oxidative stress
contributes to retinal cell damage. Moreover, oxidative
stress is also a consequence of aging and environ-
mental factors, further damaging RPE and photore-
ceptor cells [16].

Genetic factors also significantly influence the devel-
opment and progression of AMD, including GA [14,18].
Variants in genes such as CFH, age-related maculopathy
susceptibility 2 (ARMS2), CFI, and C3 have been

strongly associated with increased susceptibility to
AMD and GA [19].

Understanding these complex pathological mechanisms
is crucial for developing targeted therapeutic strategies
to slow or halt GA progression. As the disease advances,
strategies focusing on modulating complement dysre-
gulation, mitigating oxidative stress, and preserving
retinal cell viability hold promise for potential treat-
ments to alleviate the burden of GA on affected in-
dividuals. In the pursuit of effective interventions for
GA, researchers are exploring a spectrum of promising

therapeutic approaches that are currently being evalu-
ated in clinical trials.

Promising therapeutic approaches
Currently, several therapeutic strategies are under
investigation with the goal of preventing, slowing down,
or halting the progression of GA and potentially
restoring vision. In the following, we will provide an

overview of the most promising therapeutic approaches.
Table 1 summarizes the principal clinical trials evalu-
ating treatments for GA. Some studies have been
discontinued or terminated because the primary end-
points were not met. In this minireview, we will only
present ongoing studies or with positive results aiming
to outline the most promising approaches for
GA treatment.
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Anticomplement therapies
The first drugs ever approved for GA treatment are
anticomplement therapies [20e22]. The complement
system’s dysregulation is a central driver of inflamma-
tion and cell death in GA. Recent clinical trials have
demonstrated the effectiveness of complement in-
hibitors, such as pegcetacoplan and avacincaptad pegol,
administered by intravitreal injections (for an extensive
review on complement system therapies for AMD, see
Ref. [23]). These treatments slow down the progression
of GA by reducing the inflammatory response. Their

mechanism is related to prevent the formation of the
membrane attack complex (MAC), a key contributor to
complement-induced cell damage [24]. These therapies
represent newfound hope for slowing the natural course
of the disease.

Complement factor C3 inhibition
Pegcetacoplan (APL-2, Syfovre� from Apellis Pharma-
ceuticals, USA) is a pegylated pentadecapeptide acting
as selective inhibitor of C3 on all three complement
pathways (classical, alternative, and lectin pathways)
[25]. The FILLY phase-2 trial demonstrated that
monthly intravitreal APL-2 injections could reduce GA

growth compared to a sham group by 29% [26].
Despithe that, pegcetacoplan increased the frequence
of exsudative AMD in around 20% of the study eyes
compared to sham (20.9% in the monthly group and
8.9% in the every-other-month [EOM] group, respec-
tively) [26], a condition that led to discontinuation of
study treatment in those patients. The OAKS and
DERBY phase-3 studies, involving 1258 GA patients,
further evaluated the safety and efficacy of pegcetaco-
plan [27]. Results from both trials revealed a statistically
significant reduction in lesion growth rate compared to

the sham group at 24 months [28]. In particular, the
OAKS study showed that, by month 24, pegcetacoplan
administration reduced GA lesion growth compared to
sham by 22% and 18% in monthly and EOM treatment
groups, respectively. In the DERBY trial, these per-
centages were slightly lower, at 19% and 16% for the
monthly and EOM groups, respectively [27,29,30].
There was no benefit on visual function for both groups.
During the trials, 3.8% and 2.1% of participants devel-
oped intraocular inflammation in the monthly and EOM
group, respectively, with no reported cases of retinal

vasculitis or occlusive retinal vasculopathy, and 10% and
7% of patients experienced vitreous floaters in the
monthly and EOM arms, respectively. Ischemic optic
neuropathy was reported in 1.7% and 0.2% of partici-
pants treated monthly and EOM groups, respectively
[30]. New-onset choroidal neovascularization was re-
ported in 11%, 8%, and 2% of patients in OAKS, and in
13%, 6%, and 4% of patients in DERBY, receiving
pegcetacoplan monthly, pegcetacoplan EOM, and sham,
respectively, at 24 months [30]. Recently, the American
Society of Retina Specialists (ASRS) Research and

Safety in Therapeutics (ReST) Committee and an
www.sciencedirect.com
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Table 1

Overview of complement and gene- and cell-based therapies. Clinical studies completed, ongoing, or terminated.

TRIAL Compound/molecule Sponsor Mechanism Trial ID Phase and status Comments Referencess

FILLY Pegcetacoplan
(APL-2, Syfovre®)

Apellis
Pharmaceuticals,
USA

Pegylated
pentadecapeptide,
selective inhibitor of
C3

NCT02503332 Phase
II—completed

FDA approved in
February 2023

[26]

OAKS Pegcetacoplan
(APL-2, Syfovre®)

Apellis
Pharmaceuticals,
USA

Pegylated
pentadecapeptide,
selective inhibitor of
C3

NCT03525613 Phase
III—completed

FDA approved in
February 2023

[27–29,69]

DERBY Pegcetacoplan
(APL-2, Syfovre®)

Apellis
Pharmaceuticals,
USA

Pegylated
pentadecapeptide,
selective inhibitor of
C3

NCT03525600 Phase
III—completed

FDA approved in
2023 (Ref 20)

[27–29,69]

GATHER1 avacincaptad pegol
(Izervay®, Zimura®)

Iveric Bio, USA Pegylated RNA
aptamer, inhibits C5
cleavage

NCT02686658 Phase II/
III—completed

FDA approved in
August 2023

[35,37]

GATHER 2 avacincaptad pegol
(Izervay®, Zimura®)

Iveric Bio, USA Pegylated RNA
aptamer, inhibits C5
cleavage

NCT04435366 Phase
III—completed

FDA approved in
August 2023

[35,37]

Danicopan Danicopan
(ALXN2040)

Alexion
Pharmaceuticals
Inc., USA

Inhibition of
complement factor D

NCT05019521 Phase II—active Study completion
was estimated for
mid-2023

ClinicalTrials.gov

CATALINA NGM621 NGM
Biopharmaceuticals

Humanized
immunoglobulin G1
(IgG1) monocolonal
antibody, binds to C3
and inhibits
complement
activation

NCTO4465955 Phase
II—completed

Primary endpoint not
met

[70]

CHROMA Lampalizumab Hoffmann-La Roche Antigen-binding
fragment that inhibits
complement factor D

NCT02247479 Phase
III— terminated

Unlikely to meet
primary endpoint

[71–73]

SPECTRI Lampalizumab Hoffmann-La Roche Antigen-binding
fragment that inhibits
complement factor D

NCT02247531 Phase
III— terminated

Unlikely to meet
primary endpoint

[71–73]

OMASPECT Lampalizumab Hoffmann-La Roche Antigen-binding
fragment that inhibits
complement factor D

NCT02745119 Phase
III— terminated

Unlikely to meet
primary endpoint

ClinicalTrials.gov

ARCHER ANX007 Annexon
Biosciences, USA

C1q inhibitor NCT04656561 Phase II—active Great
neuroprotective
efficacy, but primary
endpoint not met

[74]

GOLDEN IONIS-FB-LRx Akcea Therapeutics,
USA

Complement Factor
B inhibitor

NCT03815825 Phase II—active results are expected
by end of 2024

[75]

AAVCAGsCD59 AAVCAGsCD59
(JNJ-1887)

Janssen R&D NCT03144999 Phase I—completed Safety primary
endpoint met.

jnj.com &
ClinicalTrials.gov

(continued on next page)
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Table 1. (continued )

TRIAL Compound/molecule Sponsor Mechanism Trial ID Phase and status Comments Referencess

Gene therapy.
Stimulation of CD59
production

PARASOL AAVCAGsCD59
(JNJ-1887)

Janssen R&D Gene therapy.
Stimulation of CD59
production

NCT05811351 Phase IIb—currently
enrolling

results expected by
the end of 2025

ClinicalTrials.gov

STARLIGHT vMCO-010 (virally-
carried Multi-
Characteristic Opsin)

Nanoscope
Therapeutics Inc.,
USA

Gene therapy, re-
expression of the
MCO gene

NCT05417126 Phase
II—completed

Study completed end
of 2023. Results
expected soon-

[50]ClinicalTrials.gov

ArMaDa OCU410 (AAV5-
hRORA)

Ocugen Inc., USA Gene therapy,
RORA gene
reexpression

NCT06018558 Phase I/
II—recruiting

Completion date
estimated for
September 2025

ClinicalTrials.gov
and ocugen.com

EXPLORE GT005 Gyroscope
Therapeutics,
Novartis

Gene therapy.
Downregulation of
C3b by
overexpressing the
complement factor I
gene

NCT04437368 Phase
II— terminated

Terminated because
of futility—very
unlikely to meet
efficacy outcome

ClinicalTrials.gov

HORIZON GT005 Gyroscope
Therapeutics,
Novartis

Gene therapy.
Downregulation of
C3b by
overexpressing the
complement factor I
gene

NCT04566445 Phase
II— terminated

terminated because
of futility—very
unlikely to meet
efficacy outcome

ClinicalTrials.gov

ASP7317 ASP7317 and
tacrolimus

Astellas Pharma Inc. Transplantation of
hESC-derived RPE
cells and
immunosuppressive
drug to avoid
rejection

NCT03178149 Phase I—recruiting study completion
estimated for end
2024

ClinicalTrials.gov

California Project
to Cure Blindness

CPCB-RPE1 Regenerative Patch
Technologies

of hESC-RPE cells
grown on a synthetic
parylene substrate,
mimicking Bruch’s
membrane

NCT02590692 Phase I/II Phase 2b trial will be
launched soon

[35,36]
ClinicalTrials.gov,
cirm.ca.gov

OpRegen OpRegen Lineage cell
Therapeutics,
Hoffman-LaRoche

RPE cells derived
from hESC

NCT02286089
NCT05626114

Phase I/II—ongoing
Phase
IIa—recruiting

Phase 2a study
completion date by
mid-2029

ClinicalTrials.gov

RPESC-RPE-4W RPESC-RPE-4W Luxa Biotechnology allogeneic RPESC-
derived RPE cells

NCT04627428 Phase I/
IIa—recruiting

Study completion
expected in May
2025

ClinicalTrials.gov

Blue = complement therapies; light blue = complement therapies not cited in the main review text; orange = gene therapies; dark orange = gene therapies not cited in the main review text; green = cell-based
therapies. AAV = adeno-assocaited virus; FDA = Food and Drug Administration; hESC = human endotelial-derived stem cell; MCO = multicharacteristic opsin; RORA = retinoic acid receptor–related orphan
receptor A; USA = United States of America; CPCB-RPE1 = California Project to Cure Blindness—Retinal Pigment Epithelium 1; RPESC = retinal pigment epithelium stem cell.
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independent expert panel reported the results of a
postmarketing survey on 14 eyes of 13 patients with
retinal vasculitis occurring after intravitreal pegcetaco-
plan injection [31].

Following the completion of the phase-3 OAKS and
DERBY trials, the Food and Drug Administration (FDA)
approved pegcetacoplan (15 mg; 0.1 ml of 150 mg/ml;

Syfovre�) for the treatment of GA associated with AMD
in early 2023 [30,32,33], based on anatomic endpoints.
On the other side, recently European Medicines Agency
(EMA) expressed negative opinion of the same drug
because the clinical trials failed to show any functional
improvement after two years [31,34].

Complement factor C5 inhibition
Various studies focus on targeting the C5 component of
the complement pathway. A phase-2 randomized
controlled trial (GATHER1) investigated the effects of
intravitreal injections of avacincaptad pegol (Izervay�,
also called Zimura�, Iveric Bio, an Astellas Company,
Parsippany, NJ, USA) [35]. This compound, a pegylated

RNA aptamer, inhibits C5 cleavage and blocks the for-
mation of terminal fragments, ultimately reducing
inflammasome activation and MAC formation [35]. The
GATHER1 study (a phase-2 trial) met the specified
primary endpoint of reducing the growth rate of GA over
12 months, with a 27% reduction in the 2-mg group and
a 28% reduction in the 4-mg group [36]. The 18-month
safety analysis found no adverse events or cases of
inflammation [36]. The trial proceeded to phase 3 with
the GATHER 2 study (ClinicalTrials.gov identifier:
NCT04435366), involving 448 nonsubfoveal GA pa-

tients who received either sham or 2 mg monthly
avacincaptad pegol [37]. The results indicate that
monthly injections of avacincaptad pegol 2 mg were
well-tolerated, and in 14% of treated eyes, GA growth
rate slowed over 12 months compared to sham treat-
ment [37]. Also, in this case, the clinical trials failed to
show any functional benefit after one year of treatment.
Seven percent of treated patients compared to 4% of
sham developed macular neovascularization at the end
of year one [37]. Avacincaptad pegol (2 mg; 0.1 ml of
20 mg/ml; Izervay�) was recently approved by the FDA

in August 2023 for the treatment of GA secondary to
AMD, ([21]) only based on anatomic endpoints.

Other complement therapies
Danicopan (ALXN2040, Alexion Pharmaceuticals), is an
investigational drug in development, primarily designed
as an add-on to two C5 inhibitor therapies for patients
with paroxysmal nocturnal hemoglobinuria (Ultomiris
and Soliris) [38] that is now under investigation as
monotherapy for GA in a phase-2 clinical trial
(NCT05019521). This drug belongs to the first-in-class
inhibitor of complement factor D, an essential enzyme
for the activation of the alternative pathway [39,40]. A
www.sciencedirect.com
recent preclinical study, demonstrated that the orally
administered drug in preclinical animal models is
capable of crossing the blooderetina barrier, distributing
in the neural retina, and binding to melanin [39]. This
drug holds a great potential from several aspects.
Danicopan could represent a better therapeutic strategy
for GA patients who would not need intravitreal in-
jections, thereby, potentially decreasing the risks related

to intravitreal injections and potentially increasing pa-
tient’s compliance. Moreover, this strategy allows for
simultaneous treatment of both eyes, which could be
beneficial, considering that in GA, bilateral eye
involvement is common [39]. The phase-2 clinical trial
is expected to be completed by August 2025.

Gene therapies
Genetic factors play a significant role in AMD and GA
[14,18,19]. AMD has a strong genetic component, with
the complement factor being the most implicated [41].
Two main genetic loci associated with AMD and GA
formation are 1q31 and 10q26 gene polymorphisms,
corresponding to the complement pathway and HtrA1/

ARMS2 (serine peptidase 1/age-related maculopathy
susceptibility 2) [42,43]. Gene therapies targeting
specific genetic mutations associated with GA are in
development. These therapies aim to correct underlying
genetic defects and potentially slow or even reverse
disease progression.

Adeno-associated virus (AAV)CAGsCD59 (JNJ-1887,
Janssen research and development) is a gene therapy
delivered via intravitreal injection [44]. CD59 inhibits the
formation ofMAC, and patients with AMDgenerally have

lower levels of CD59 [45]. This innovative therapy stim-
ulates cells to produce CD59, inhibiting MAC formation
and preventing cell damage. The drug was recently eval-
uated in a phase-I clinical trial, where patients received
three escalating doses of JNJ-1887 (3.56 � 1010 vg/eye;
1.07 � 1011 vg/eye; 3.56 � 1011 vg/eye) via a single intra-
vitreal injection [44]. The study met the primary safety
endpoint for all JNJ-1887 doses (N = 17), and efficacy
measures supported the compound’s effectiveness in
reducing GA lesion growth rates, demonstrating a
continuous decline in lesion growth over six-month in-

crements. A phase-2b clinical trial (PARASOL,
ClinicalTrial.gov identifier: NCT05811351) is currently
enrolling approximately 300 participants with the aim of
evaluating the change in GA lesion growth in eyes treated
with JNJ-1887 compared to a sham control. This therapy
holds promise, with results expected by the end of 2026.

GT005 (Gyroscope Therapeutics, Novartis) is an inves-
tigational gene therapy designed to downregulate C3b by
overexpressing the CFI gene [46]. EXPLORE
(NCT04437368) and HORIZON (NCT04566445) are

two phase-2 clinical trials that evaluated the effect of a
single subretinal injection of GT005 in people with GA
Current Opinion in Pharmacology 2024, 78:102484
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secondary to dry AMD (75 and 180 participants respec-
tively). Despite GT005 was reported to be safe and well
tolerated in mice and nonhuman primates [46], these
studies were terminated in September 2023 because of
achievement of futility criteria (from Novartis news of 11
Sept 2023).

Single-intravitreal injection of virally carried multi-

characteristic opsin (vMCO-010 optogenetic therapy,
Nanoscope Therapeutics) is currently being investi-
gated in the STARLIGHT phase-2 clinical trial
(NCT05417126). This study will evaluate the single
dose level of vMCO-010 in 6 subjects with Stargardt’s
disease. Stargardt disease is an autosomal recessive
retinal dystrophy caused by a mutation of ABCA4
(adenosine triphosphate-binding cassette, subfamily
A, member 4) gene that encodes an integral trans-
membrane protein expressed in retinal photoreceptors
[47]. Dysfunction of this gene ultimately results in

macular degeneration [48,49], a common feature of
GA [2]. Since Stargardt disease appears clinically
similar to GA [48], GA patients could potentially
benefit from this innovative genetic therapy that,
thanks to the re-expression of the MCO-010 opsin,
restores light sensitivity in retinal bipolar cells [47].
The trial was recently completed, and results are
awaited soon [50].

OCU410 (AAV5-h retinoic acid receptorerelated orphan
receptor A [RORA], OcugenTM) is another recent ge-

netic therapy that is currently being investigated in a
phase-I/-II clinical trial (ArMaDa trial, NCT06018558).
OCU410 is a modified gene therapy developed for dry
AMD that will target multiple pathways, thanks to the
re-expression of the RORA gene. The RORA protein
plays an important role in lipid metabolism and oxidative
stress and was demonstrated to have a potential role in
AMD pathophysiology [51]. The safety and efficacy of a
single-intravitreal injection of OCU410 will be evaluated
in the multicentre phase-I/-II study (From Ocugen, Inc.
news as of December 13th 2023).

Cell-based therapies
Cell-based therapies are categorized into stem-cell-

based and non-stem-cell-based approaches. Stem-cell-
based therapies aim to replace degenerated RPE cells,
whereas non-stem-cell-based therapies introduce cells
that release factors supporting photoreceptor survival
and function [52].

Stem-cell therapy and RPE transplantation are
emerging as potential treatments for GA [28,53]. These
approaches target the replacement of damaged RPE
cells to restore visual function, with early studies
showing promise [54,55]. However, long-term safety

and efficacy are still under investigation [55,56].
Current Opinion in Pharmacology 2024, 78:102484
Stem cell therapies
One promising approach involves induced pluripotent
stem cells, which can be differentiated into RPE cells
and transplanted into the retina [57]. While early
studies suggest potential for vision improvement, chal-
lenges such as immune rejection and tumorigenesis
must be addressed [58].

Human embryonic stem cell–derived RPE transplantation
A phase-1 clinical study is underway (ClinicalTrials.gov
ID: NCT03178149), involving the transplantation of
human embryonic stem cell (hESC)-derived RPE cells
(ASP7317, Astellas Pharma) into the macula of patients

with dry AMD. An immunosuppressive drug (tacroli-
mus) is administered to prevent cell rejection. The
study assesses the safety and efficacy of three dose
levels in two groups of patients with varying degrees of
vision loss, with a study completion date estimated for
the end of 2024 (Clinicaltrials.gov).

California Project to Cure Blindness—Retinal Pigment
Epithelium 1
In a phase-I/-II study (ClinicalTrial.gov ID:
NCT02590692), researchers are investigating a com-
posite subretinal implant known as California Project to
Cure BlindnessdRetinal Pigment Epithelium 1. This
implant comprises a polarized monolayer of hESC-RPE

cells grown on a synthetic parylene substrate, mimicking
Bruch’s membrane [59], which typically degenerates
during AMD [60]. Five patients were enrolled in the
phase-I clinical trial, and four of them successfully
received the implant [59]. Preliminary findings on safety
and tolerability are promising; none of the implanted
eyes presented vision loss, one eye has reported thera-
peutic effects on visual acuity (improvement of 17 let-
ters), and two eyes showed improved fixation [59,61].
These first preliminary results indicate efficacy of this
subretinal implant. However, larger studies are currently

being performed to confirm the efficacy and safety of
the implant for treating GA.

OpRegen therapy
A phase-I/-II trial is ongoing, using OpRegen, a cell-
based product composed of RPE cells derived from
hESC (Lineage Cell Therapeutics and Hoffman-
LaRoche; NCT02286089). OpRegen is administered
via intraocular injection into the subretinal space. The
trial assesses safety, tolerability, and initial efficacy, with
preliminary data showing evidence of improved outer
retina structure and visual function in GA patients even
after 4 years of follow-up (Clinicaltrials.gov). These re-

sults suggest OpRegen may support the remaining
retinal cells in the atrophic area by counteracting RPE
cell loss and dysfunction. The study also identifies op-
tical coherence tomography (OCT) imaging with seg-
mentation analysis as more advantageous than FAF for
www.sciencedirect.com
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assessing retinal integrity after OpRegen treatment
(from lineagecell.com/products-pipeline/opregen).

The preliminary findings from the phase-I/-II trial will
be confirmed in a phase-IIa clinical study (Clinicaltrials.
gov, NCT05626114) for the same intervention with
OpRegen, currently recruiting patients with an esti-
mated study completion date in mid-2029.

RPESC-RPE-4W cells
A recent Phase I/IIa trial (Clinicaltrials.gov,

NCT04627428) is assessing the safety, tolerability,
feasibility, and preliminary efficacy of RPESC-RPE-4W
cells (Luxa Biotechnology), consisting of allogeneic
RPE stem cell (RPESC)-derived RPE cells [62]. These
cells were isolated from the RPE layer of human
cadaveric eyes. The trial is also evaluating the feasibility
and preliminary efficacy of subretinal RPESC-RPE-4W
on dry AMD using a dose-escalation approach (from
Clinicaltrials.gov). Study completion is expected in May
2025 (Clinicaltrials.gov).

Artificial intelligence and imaging
Artificial intelligence (AI)-driven diagnostic tools and

advanced imaging techniques could transform the early
detection and monitoring of GA, leading to timely in-
terventions and improved patient outcomes [63]. These
tools are invaluable for identifying high-risk patients and
tracking disease progression. Machine-learning algo-
rithms can analyze retinal images, such as OCTscans, to
detect, classify, and quantify GA [64,65]. They will also
play a key role in evaluation of efficacy of new drugs,
setting new outcome parameters for future clin-
ical trials.

AI-driven image analysis offers precise tracking of GA
progression, aiding in the identification of high-risk pa-
tients and the assessment of treatment responses in
clinical trials [66]. These technologies allow AI algo-
rithms to analyze various types of multimodal imaging,
helping to correlate structure with function, which is
becoming increasingly important for GA management
[64,67]. For example, in a recent study (the phase 2
FILLY trial), researchers used deep-learning-based al-
gorithms to automatically quantify photoreceptor loss
based on OCT images [64]. This approach proved to be

reliable for monitoring disease activity. Additionally, a
fully automated analysis of retinal OCT is able to
perform segmentation of GA atrophy and its subtypes at
a level similar to manual assessment. This method,
proposed by Zhang et al. [64], holds promise for clinical
practice for the detection and quantification of GA, as
well as evaluation of efficacy of new drugs.
Challenges and future directions
While promising therapeutic innovations are on the
horizon, several challenges must be addressed to
www.sciencedirect.com
translate them into effective treatments for GA. These
include safety concerns, patient selection, and multi-
factorial pathogenesis of the disease. In fact, ensuring
the long-term safety of therapies, particularly in the
context of gene editing and cell transplantation, remains
a critical consideration. Moreover, identifying the most
suitable candidates for specific therapies based on ge-
netic, clinical, and imaging data is crucial for optimizing

treatment outcomes. Finally, given the multifaceted
nature of GA, combination therapies targeting multiple
pathways may be necessary for optimal results.
Conclusion
GA represents a significant challenge in ophthalmology,
with the potential to cause severe and irreversible vision
loss. However, the landscape of GA therapeutics is
rapidly evolving, offering newfound hope for patients.
Recently, two new drugs have become available for GA
treatment (Syfovre� and Izervay�) in the US, while
promising developments in anticomplement therapies,
cell-based interventions, gene therapies, and AI-driven
diagnostics are currently under investigation (see
Table 1). These approaches hold the potential to reshape
the future of GA management in the long term. Never-

theless, further studies are warranted to achieve positive
effect in terms of not only slowing down the growth rate
of GA lesions but also maintaining or improving visual
acuity. However, best corrected visual acuity does not
reflect disease progression in GA; therefore, other func-
tional endpoints needs to be studied to evaluate efficacy
of new treatments for GA [66,68]. At the same time, a
careful surveillance of side-effects is mandatory. The
assessment of safety and effectiveness of new treatments
is an important step that still needs to be comprehen-
sively investigated. Collaborations between researchers,
clinicians, and the pharmaceutical industry are essential

for advancing these innovations and addressing the
complex challenges associated with GA. As research
continues to unfold, the dream of effective GA therapies
transitioning from the realm of possibility to reality has
already begun.
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