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Abstract 

 

Entities such as individuals, teams, or organizations can vary systematically from one another. 

Researchers typically model such data using multilevel models, assuming that the random effects 

are uncorrelated with the regressors. Violating this testable assumption, which is often ignored, 

creates an endogeneity problem thus preventing causal interpretations. Focusing on two-level 

models, we explain how researchers can avoid this problem by including cluster means of the 

Level 1 explanatory variables as controls; we explain this point conceptually and with a large 

scale simulation. We further show why the common practice of centering the predictor variables 

is mostly unnecessary. Moreover, to examine the state of the science, we reviewed 204 randomly 

drawn articles from macro and micro organizational science and applied psychology journals, 

finding that only 106 articles—with a slightly higher proportion from macro-oriented fields—

properly deal with the random effects assumption. Alarmingly, most models also failed on the 

usual exogeneity requirement of the regressors, leaving only 25 mostly macro-level articles that 

potentially reported trustworthy multilevel estimates. We offer a set of practical recommendations 

for researchers to model multilevel data appropriately. 
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On ignoring the random effects assumption in multilevel models: 

Review, critique, and recommendations 

Researchers often apply data that varies on multiple levels. The two main traditions for working 

with such hierarchical data are (a) regression models for panel data as used in the economics 

(Wooldridge, 2002, Chapter 11; Wooldridge, 2013, Chapter 14) and sociology (Allison, 2009; 

Halaby, 2004) and (b) multilevel models as typically used in the education, management, and 

psychology literatures (e.g., Helson, Jones, & Kwan, 2002; Hofmann, 1997; Lee, 2000). Whereas 

there is no shortage on methodological research addressing these topics, the literature on 

hierarchical data is rather technical and strongly fragmented so that texts addressing econometrics 

techniques for panel data rarely present multilevel modeling as an alternative solution and vice 

versa (cf. McNeish & Kelley, 2018). The fragmented literature can make it difficult for 

researchers to develop a solid understanding of the main issues that must be addressed and the 

different ways of doing so.  

Focusing on two-level models—which are the most common as our review will 

indicate—we integrate the two main traditions to explain how they address the challenges in 

modeling multilevel data. We make two key contributions. First, we show ways to appropriately 

estimate models for hierarchical data, highlighting a major threat to estimate validity, 

endogeneity, a confounding that can stem from various sources (Antonakis, Bendahan, Jacquart, 

& Lalive, 2014). In the case of multilevel models, endogeneity can arise when the assumption 

that the Level 2 error term is uncorrelated with the Level 1 regressors is violated, which renders 

the coefficients of the Level 1 regressors causally uninterpretable. In the case of this article, we 

will show how endogeneity is introduced into the model from failure to correctly model the 

unobserved variation due to the hierarchical structure of the data and where the researcher is 

interested in estimating what is called the “within” effect (i.e., the effect of a Level 1 regressor on 
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a Level 1 outcome); it is this effect, which is commonly of interest and relevant for causal 

interpretation. We show the source of the endogeneity problem, how to deal with the issue  using 

straightforward procedures (i.e., including the cluster means of all Level 1 regressors), 

demonstrate the workings of various estimation methods with simulated data, and then using an 

extensive Monte Carlo simulation we help researchers understand the hazards at hand in an 

intuitive way. Appendix A provides links to video materials explaining these problems. 

Our second contribution will be to take stock of the literature by describing what 

researchers typically do when estimating such models. That is, we will scrutinize the literature 

from the management and applied psychology fields to examine the extent to which researchers 

estimate multilevel models appropriately and whether the results of research published using such 

models can be viewed as trustworthy. Our review indicates that the critical assumptions in 

multilevel analysis—that the unobserved random effects are uncorrelated with the Level 1 

regressors (i.e., Raudenbush & Bryk, 2002, p. 255)—are often ignored; in doing so, the results of 

such studies are unnecessarily exposed to conditions that are known to compromise estimate 

validity. Our article should thus serve as a warning siren for researchers estimating multilevel 

models. We will conclude by making easy-to-follow recommendations to authors, reviewers, and 

editors to help ensure the validity of published multilevel research. 

Unobserved heterogeneity in hierarchical datasets 

We begin by introducing the basic random-intercept model, which serves as a starting point for 

more complex multilevel models (Bliese & Ployhart, 2002; Holcomb, Combs, Sirmon, & Sexton, 

2010). The random intercept model is a special case of a basic multilevel model, shown in Eq. 1 

below, where a lower level unit i is nested in a higher-level unit j often referred to as a “cluster” 

(note, we will extend this model later to accommodate regressors at Level 2 as well). In micro-

level research, a common scenario is nesting of subordinate 𝑖 under leader 𝑗; in such a case 
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differences in team leaders’ skills may allow members of some teams to perform systematically 

better than members of other teams. In macro-level research the setting could be firm 𝑖 nested in 

industry 𝑗; here, firms in some industries may have systematically different profitability than do 

firms in other industries because of different asset requirements between the industries. Nesting 

also occurs with panel data for instance, wherein observations in year 𝑖 are nested in firm 𝑗. 

In the basic case, we are interested in how the subordinate (or firm) level characteristic affects the 

subordinate (or firm) level outcomes taking the nested structure of the data into consideration. 

Using the basic notation of Raudenbush and Bryk (2002), we have the following multilevel 

model: 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗 + 𝑒𝑖𝑗      } 𝐿𝑒𝑣𝑒𝑙 1 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗
𝛽1𝑗 = 𝛾10 + 𝑢1𝑗

                  } 𝐿𝑒𝑣𝑒𝑙 2 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

Eq. 1a 

Eq. 1b 
Eq. 1c 

The Level 1 equation states that the expected value of the dependent variable y depends 

linearly on the observed x value; the Level 2 equations state that the linear dependency shown in 

the Level 1 equation can vary between the Level 2 units so that each unit is allowed to have a 

unique intercept and slope in the Level 1 equation. That we allow each cluster (e.g. leader, 

industry) to have a separate intercept and slope is indicated by the subscript j for the regression 

coefficients 𝛽 in the Level 1 equation. The term 𝑒𝑖𝑗—variation of y not due to x—is assumed to 

be uncorrelated with x; this assumption is a standard one made in regression (e.g. Wooldridge, 

2013, assumption MLR.4). In the Level 2 equations, the 𝛾’s are the mean values of the slope and 

intercept over all clusters, and the 𝑢 terms define how the slopes and intercept vary between 

cluster. The regression coefficients 𝛽 and γ are fixed parameters having specific values, shared 

between all observations. The 𝑢 and 𝑒 terms are unobserved and modeled as random effects; 
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whereas we assume that each Level 1 or Level 2 unit has a specific value, these values are not 

estimated directly but their distribution is—assuming the effect is normally distributed, this 

reduces to estimating its variance. The 𝑢 and 𝑒 terms are assumed to be independent of each 

other. 

Eq. 1a can be re-expressed by substituting 𝛽0𝑗 and 𝛽1𝑗 in the 𝑦𝑖𝑗 equation:  

𝑦𝑖𝑗 = 𝛾00 + 𝛾10𝑥𝑖𝑗 ⏟        
𝑓𝑖𝑥𝑒𝑑 𝑝𝑎𝑟𝑡

  +     𝑥𝑖𝑗𝑢1𝑗 + 𝑢0𝑗 + 𝑒𝑖𝑗⏟          
𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡

 Eq. 2 

The above model representation is called a mixed effects model because it is composed of two 

parts: (a) The fixed part contains only fixed coefficients and gives the regression line, and (b) the 

random part contains only random effect terms indicating how observations vary around the line. 

Having introduced the general model, we will now focus on the special case of a random 

intercept model where we assume that slopes 𝛽1𝑗 do not vary between clusters (i.e., 𝑢1𝑗 = 0); we 

thus drop 𝑥𝑖𝑗𝑢1𝑗 from the equation and for further simplicity, we remove the superfluous 

subscript 0, obtaining a simpler equation that we label as “RE model”. We also present another 

model variant, labeled as “FE model”, where the cluster specific intercepts are modeled in the 

fixed part. We use the labels RE and FE exclusively to refer to these two models to avoid the 

general confusion around the statistical concepts of fixed and random effects; fixed effects are 

parameters for which specific values are estimated and random effects are parameters for which 

we estimate a distribution. In the HLM literature researchers typically refer to the slope being 

“fixed” when a slope does not have a random effect (e.g. 𝑢1𝑗 is omitted from Eq. 1c) and use the 

term “fixed effect” in this context. For instance, Hofmann (1997, p. 729) states: “Fixed effects are 

parameter estimates that do not vary across groups” (see also p. 77 in Raudenbush & Bryk, 

2002). However, in econometrics text the terms “fixed effect” and “random effect” are commonly 
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used in the context of explaining the difference between the RE model and FE model 

(Wooldridge, 2013, Chapter 13). This difference in presentation and emphasis can lead to 

confusion when talking across literatures (McNeish & Kelly, 2018; see also Clark & Linzer, 

2015). Suffice it to say that researchers should pay close attention to what the author means when 

using the term “fixed effect” (Wooldridge, 2002, p. 251-252). The two models are shown below:  

RE model: 𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗⏟      
𝑓𝑖𝑥𝑒𝑑 𝑝𝑎𝑟𝑡

         + 𝑢𝑗 + 𝑒𝑖𝑗⏟    
𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡

  Eq. 3a 

 

Eq. 3b 
FE model: 

𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗 + 𝑎𝑗⏟          
𝑓𝑖𝑥𝑒𝑑 𝑝𝑎𝑟𝑡

+ 𝑒𝑖𝑗⏟
𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡

 

In the RE model, the 𝑢𝑗  term that represents the unobserved between cluster variation 

(e.g. differences between leaders/industries that are not explicitly measured) is a random 

intercept, hence the term “random intercept model.” However, the between cluster variation need 

not be modeled in the random part of the model; it could equally well be assigned to the fixed 

part of the model, thus producing the FE model in Eq. 3b. Here we replace the random effect 𝑢𝑗  

with the fixed effect 𝑎𝑗. The difference between these approaches is that in the FE approach, 

cluster specific values are estimated for 𝑎𝑗 (e.g., by using dummy variables) whereas in the RE 

approach just the variance but not case values of 𝑢𝑗  are estimated. Outside any particular model, 

the phenomenon that some Level 2 units are higher on the dependent variable than others is 

referred to in econometrics as “unobserved heterogeneity” (Wooldridge, 2013, Chapter 13), and 

has been given various other labels in organizational research such as “stable variance” (Guo, 

2017). 

As is evident above, whereas both 𝑢𝑗  and 𝑎𝑗 represent the same feature in the data, they 

do so in a fundamentally different way; failure to understand this difference is the key to the 
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endogeneity problem in modeling multilevel data. A key assumption in both the RE model (Eq. 

3a) and the FE model (Eq. 3b) is that the random part of the model is uncorrelated with the 

regressors. The random part of the RE model has, in addition to the 𝑒𝑖𝑗 term, the 𝑢𝑗  term too. 

Thus, compared to the FE model, the RE model has an additional assumption that 𝑐𝑜𝑣(𝑥𝑖𝑗 , 𝑢𝑗) =

0, which is referred to as the random effects assumption in econometrics. Failure of this 

assumption compromises the accuracy of estimates. To be more precise, by accuracy we mean (a) 

estimate consistency (i.e., whether coefficient estimates approach the correct values when sample 

size increases), and (b) estimate bias (i.e., whether the mean estimates of repeated sampling will 

converge to the correct estimates). 

Examples can clarify the meaning of the random effects assumption. Suppose we wish to 

examine how leaders affect subordinate performance. It is likely that something in the leader 

(e.g., intelligence) correlates with subordinate-level characteristics; smarter leaders might assign 

tasks differently to conscientious individuals, give them more autonomy, monitor them less, and 

so forth; consequently, the subordinates are better performing. It is possible too that something in 

the leader (e.g., intelligence) directly drives subordinate performance; for instance, smarter 

leaders, by virtue of their expertise may provide greater clarity about how to better accomplish 

tasks. Thus, leader intelligence may have an effect on 𝑦𝑖𝑗 and also correlate with 𝑥𝑖𝑗. Failure to 

measure and explicitly model intelligence will thus engender endogeneity bias because leader 

intelligence is an omitted variable. In reality, intelligence is not the only Level 2 factor that may 

contribute to the systematic differences. The sex of the leader may matter; so too may age, 

experience, personality, looks, height, testosterone level, or what have you (Antonakis, 2011).  

As an example in macro-level work, firms nested in different countries may face different 

legal requirements. Thus, country legal origin may correlate with firm level characteristics; 
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however, legal origin could also drive firm outcomes (see La Porta, Lopez-De-Silanes, & 

Shleifer, 2008). So may climatic factors or location factors like being in a landlocked country 

(see Sachs, 2003). There are many country-level differences that may matter; but, which of them 

matter? It is very hard to know because we may miss some important, but unobservable factors. 

To the extent that an effect of the Level 2 variable that matters (i.e., constant at Level 2) is not 

included in the model introduces endogeneity bias because 𝑐𝑜𝑣(𝑥𝑖𝑗, 𝑢𝑗) ≠ 0. Thus, failing to 

include all pertinent variables at the leader (for the micro case) or country (for the macro case) 

level will introduce endogeneity into the model leading to biased and inconsistent estimates (refer 

to Appendix B for a formal explanation).  

Modeling approaches in organizational research 

After introducing the general problem and the two dominant modeling approaches for 

unobserved Level 2 differences, RE and FE models, we now turn to specific techniques that have 

been used in past organizational research. We do so for two reasons. First, as explained earlier, 

the literature on these techniques is fragmented (see also McNeish & Kelley, 2018) and thus a 

review that integrates the techniques between the multilevel modeling and econometrics 

literatures can help in making more informed choices of modeling techniques. Second, 

researchers seem to choose their techniques from one of these literatures without consulting the 

other. Therefore, providing specific examples of the analysis techniques that researchers use can 

be helpful when the researchers are trying to understand the bigger picture that we discuss in the 

article. Thus, we will explain the various techniques used for addressing unobserved 

heterogeneity and whether the techniques fall into the RE or FE models. We also shed light on the 

key equivalencies or differences between the techniques, which are summarized in Table 1. 

[Insert Table 1 here]. 
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FE modeling approaches 

We first discuss the FE approach. The two general modeling strategies are (a) to include a set of 

dummy variables in the model, which explicitly estimate a separate intercept for each Level 2 

unit in the data, and (b) transformations that eliminate the between-cluster differences from the 

data before estimation. The key idea in these techniques is to estimate a specific value of 𝑎𝑗 (a 

fixed effect) for each cluster and then eliminate the effect of these values from the data. Whereas 

both these approaches do so differently, they both accomplish the same result: They eliminate all 

higher level effects from the data allowing estimating the within effect 𝛾1 consistently.  

Dummy variable regression 

Using dummy variables for each Level 2 unit as controls in a model is perhaps the easiest way to 

understand the FE modeling approach. This approach is shown in the following equation:  

𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗 +∑𝛿𝑘𝐷𝑗

𝑛

𝑘=2

+ 𝑒𝑖𝑗  Eq. 4 

In the above, the 𝑎𝑗 term is replaced by a set of dummy variables D, indicating the n-1 

Level 2 units leaving out the first unit as the baseline. In practice, estimating a model with 

dummy variables is inconvenient because the size of the estimated model can make the model 

computationally difficult and produces extensive printout from statistical software. Because the 

specific group differences are rarely of direct interest, researchers generally apply another, 

simpler estimation approach that produces the same results. 

Cluster-mean centering and GLS fixed effects estimator 

Centering a variable involves subtracting the mean from the variable, and in the case of cluster-

mean centering, the mean is subtracted for each cluster separately. Centering is an intensely 

discussed topic in the literature on multilevel models (Enders & Tofighi, 2007; Hofmann & 
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Gavin, 1998; Kreft, De Leeuw, & Aiken, 1995; Raudenbush & Bryk, 2002) and cluster-mean 

centering has a prominent role in in the econometrics literature as well. In fact, if one uses 

cluster-mean centering, the fixed part of the basic two level example model can be estimated 

consistently with ordinary least squares (OLS) regression. This approach is referred to as 

generalized least squares (GLS) fixed effects estimator or GLS within estimator in econometrics 

(Greene, 2012, sec. 9.3; Wooldridge, 2013, p. 485). Thus, GLS fixed effects estimates the 

following model by OLS: 

(𝑦𝑖𝑗 − 𝑦̅𝑗) = 𝛾1(𝑥𝑖𝑗 − 𝑥̅𝑗) + 𝑒𝑖𝑗 Eq. 5 

A key feature in Equation 5 is that all independent variables and the dependent variable 

are cluster-mean centered: The centering of the predictors guarantees that the cluster-means of 

the fitted values are zero and thus all between-cluster differences due to the observed predictors 

are eliminated. Cluster-mean centering the dependent variable will then eliminate all unobserved 

differences, 𝑎𝑗, between the clusters and thus produces the same estimates as the dummy variable 

regression. However, this latter transformation requires adjustments to the standard errors 

(Wooldridge, 2002 pp. 269-272), which is sometimes overlooked in the multilevel modeling 

literature (e.g. Raudenbush & Bryk, 2002, pp. 135–137). 

Whereas the FE approaches are convenient to apply because they do not require the 

restrictive assumption that 𝑢𝑗  is uncorrelated with the observed regressors, these approaches have 

two limitations: (a) They are inefficient when the random effects assumption holds (i.e., estimates 

are less precise, though this issue is less relevant in large samples), and most notably (b) cannot 

be used when the interest is on the effects of Level 2 variables—which do not vary within 

cluster—on y because the Level 2 variables are perfectly collinear with the data that account for 

the FEs.  
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The latter restriction is commonly used as a justification to apply the RE approach, 

warranting an explanation of the collinearity problem. The problem is more apparent in the 

techniques that cluster-mean center: If a variable only varies between clusters, then cluster-mean 

centering removes all this variation leaving no variation in a variable. Estimating an effect of a 

variable that does not vary is impossible (Wooldridge, 2013, MLR.3 assumption). In the dummy 

variable regression case, the mechanism is less obvious but still present. Here, the problem is that 

the set of dummies, by design, explain all between cluster variation and thus their effect 

completely overlaps with any Level 2 variables. The situation is similar to trying to estimate the 

effects of CEO gender and marital status on some outcome but only having a sample consisting 

of married men and unmarried women; because of complete overlap between gender and marital 

status, it is impossible to estimate their unique effects. To see this collinearity problem more 

clearly, refer to Table 3 to see how the Level 2 regressor, 𝑧𝑗 is perfectly collinear to the dummy 

variables; in this case the Level 2 regressor is a binary variable, but the same problem would arise 

if it were continuous given that within cluster the Level 2 regressor is constant. 

RE modeling approaches 

The key idea of RE approaches is that instead of estimating specific values for each cluster, we 

estimate how much of the variance of the random part–assuming normal distribution of 𝑢𝑗  and 

𝑒𝑖𝑗–is due to the unobserved Level 2 effect. In practice, this approach means estimating the 

variance of the Level 2 effect, 𝑢𝑗 , or equivalently the intraclass correlation of the random part of 

the model 𝑢𝑗 + 𝑒𝑖𝑗. This procedure can be done either by calculating the variance of the Level 2 

effect first, and then (a) either transforming the data to eliminate the effect or (b) by adjusting the 

standard errors formula and possibly the estimation criterion to take the clustering effect into 

account, or (c) by estimating the full model simultaneously. 
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GLS and maximum likelihood (ML) estimation of RE model 

The two principal approaches for estimating this model are the GLS random effects estimator as 

discussed in economics (Wooldridge, 2013, Chapter 14.2) and maximum likelihood estimation of 

the RE model in Eq. 3a under the assumption that 𝑢 is normally distributed, discussed extensively 

in multilevel modeling literature (e.g., Raudenbush & Bryk, 2002; Hofmann, 1997). The 

economics approach applies OLS to transformed data as follows: 

(𝑦𝑖𝑗 − 𝜆𝑦̅𝑗) = 𝛾0(1 − 𝜆) + 𝛾1(𝑥𝑖𝑗 − 𝜆𝑥̅𝑗) + 𝑒𝑖𝑗 Eq. 6 

This approach applies quasi-mean centering, because cluster means are not subtracted directly, 

but are scaled by the 𝜆 parameter that depends on the estimated variance of the Level 2 effect. 

The GLS random effects estimates are thus a weighted average of OLS estimates and GLS fixed 

effects estimates and 𝜆 varies between 0 (GLS RE produces OLS estimates) and 1 (GLS RE 

produces GLS FE estimates). The basic idea of this estimation approach is that when the random 

effects assumption holds, the parameters can be consistently and unbiasedly estimated by using 

cluster means of all variables in what is usually called a “between regression”. The assumption 

that the between and within effects are the same is also mentioned in the multilevel modeling 

literature, where the terms individualistic (Yammarino & Dansereau, 2011), atomistic, and 

ecological fallacy are used (Luke, 2004, pp. 5–6; Rabe-Hesketh, 2012, sec. 3.7; Raudenbush & 

Bryk, 2002, pp. 135–139). Thus, the GLS RE estimation approach can improve the efficiency of 

estimation over GLS FE by also taking the information from the between regression into account.  

OLS or generalized estimating equations (GEE) and cluster robust standard errors 

The third approach to estimate the RE model is to simply apply normal OLS regression analysis. 

This approach relies on the fact that consistency and unbiasedness of OLS regression requires 

that the random part of the model is uncorrelated with the fixed part, but does not require that the 
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random part is independent between observations. However, if the random part is not 

independent between observations, OLS regression is inefficient and GEE provides a more 

efficient alternative (for details see Ballinger, 2004; McNeish, Stapleton, & Silverman, 2017). 

Regardless of which estimation approach is applied, the conventional standard errors are 

inconsistent and cluster robust variant that allows for arbitrary correlations within cluster must be 

applied (Angrist & Pischke, 2008, see Ch. 9); these standard errors are also useful when there is 

autocorrelation over time. Although this approach has an advantage in its simplicity and 

robustness, it can be less efficient than direct ML estimation of the RE model and does not 

provide an estimate of the unobserved between cluster variance. 

The RE approaches, regardless which implementation is chosen, have the added 

advantage that they avoid the collinearity problem that prevents estimating of Level 2 effects in 

the FE approaches. Thus, these approaches allow estimating models such as the following:  

𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗 + γ2𝑧𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗 Eq. 7 

Where 𝑧𝑗 is a Level 2 variable that does not vary within clusters. However, as mentioned before, 

it is critical to include all relevant Level 2 variables in the model else 𝑢𝑗  will correlate with the 

Level 1 regressors rendering the estimator inconsistent and biased. Note, the Eq. 7 is a more 

general version of the basic multilevel equation because it now includes both Level 1 and Level 2 

regressors (of course, such a model can accommodate multiple Level 1 and Level 2 regressors).  

Correlated random effects (CRE) modeling approaches 

The assumption that the random intercept is uncorrelated with the regressors, made in the RE 

modeling approach explained in the previous section, is restrictive, often violated, and as our 

review will indicate, often not properly considered by researchers. Fortunately, the assumption 

that 𝑢𝑗  is uncorrelated with the Level 1 regressors is testable, and can be relaxed by adding 
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cluster means to the model. This approach originates from the work by Mundlak (1978) and 

produces what some econometricians refer to the correlated random effects approach 

(Wooldridge, 2013, pp. 497–499). Whereas the terminology is similar, the CRE approach should 

not be confused with the common practice of allowing a correlation between random intercepts 

and slopes. Instead, to specify a CRE model, one simply includes the cluster mean of the 𝑥𝑖𝑗 

regressor in the model and estimates (Allison, 2009, pp. 23-27; Antonakis, Bendahan, Jacquart, & 

Lalive, 2010; Neuhaus & Kalbfleisch, 1998; Rabe-Hesketh & Skrondal, 2008, p. 119; Schunck, 

2013): 

CRE model: 𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗 + 𝛾2(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙)𝑥̅𝑗 + 𝑢𝑗  + 𝑒𝑖𝑗  Eq. 8a 

𝑦𝑖𝑗 = 𝛾0 + 𝛾1(𝑥𝑖𝑗 − 𝑥̅𝑗) + 𝛾2(𝑏𝑒𝑡𝑤𝑒𝑒𝑛)𝑥̅𝑗 + 𝑢𝑗  + 𝑒𝑖𝑗  Eq. 8b 

Equation 8a shows the original CRE approach and 8b shows a variant of the same model where 

the explanatory variable has been cluster-mean centered. Interestingly, regardless of which of the 

two specifications is applied, these modeling approaches have been shown to be equivalent to the 

FE approach for estimating 𝛾1 (Wooldridge, 2013, Chapter 14.2; Enders & Tofighi, 2007).  

Whereas 𝛾1 always provides the within effect, the value and interpretation of 𝛾2 depends 

on whether the Level 1 variable 𝑥𝑖𝑗 is cluster-mean centered or not, indicated by the added 

subscripts in 𝛾2, producing either the between effect or the contextual effect. To understand the 

contextual effect, it is useful to contrast it against the within and the between effects. Using a 

micro example, the within effect tells how characteristics or actions of an individual affect 

individual level outcomes, for example how individuals’ performance depends on individuals’ 

intelligence. The within effect has clear policy implications because it answers the question of 

what one can do to improve one’s performance. The contextual effect, however, tells how 
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characteristics or actions of other individuals in the same context affect individual level outcomes 

or, alternatively, how characteristics or actions of an individual affect the outcomes of others in 

the same context, or how mean of the characteristic in the context affects individual level 

outcomes. For example, how individuals’ performance depends on the average intelligence of the 

team controlling for one’s own intelligence level. The between effect is simply the sum of these 

two effects. For example, how the average performance of a team depends on the average 

intelligence of the team members. Which of these effects is the most relevant depends on the 

research question that one wants to answer. Table 2 shows examples of within and contextual 

effects. 

[Insert Table 2 here] 

The contextual effect also provides a third way to understand the random effects 

assumption; in addition to the (a) uncorrelated unobserved cluster effect and (b) the equivalence 

of the within and between effects, the random effects assumption also means that (c) all 

contextual effects are zero. 

The CRE model essentially unifies the RE and FE models. As an advantage over both 

models, this modeling approach provides the estimates for both within and between or contextual 

effects simultaneously (Antonakis, et al., 2010; Certo, Withers, & Semadeni, 2017; Curran & 

Bauer, 2011; Enders & Tofighi, 2007; McNeish & Kelley, 2018). As an advantage over FE 

modeling, the CRE model allows for modeling effects of variables that are constant within cluster 

(i.e., between or contextual effects); that is, one can add 𝑧𝑗 variables to the models in Equations 8. 

As an advantage over the RE approach, it does not make the often-unrealistic assumption that the 

unobserved Level 2 term is uncorrelated with all regressors. As a final advantage, the CRE 

models makes it easier to transition between FE and RE and can test if unobserved Level 2 
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effects are correlated with the explanatory variables and if so, which ones. Moreover, whether or 

not there is endogeneity due to 𝑢𝑗 , the within effect is consistently estimated as long as the 

assumption of the exogeneity of the regressors holds. However, given that the Level 1 estimates 

from the CRE approach are identical to the FE estimates (Wooldridge, 2013, Chapter 14.2; 

Enders & Tofighi, 2007), the CRE approach is less efficient than the RE approach if the random 

effects assumption holds (in large samples this issue is less relevant). 

To better understand the data structure for estimating multilevel models, we show in Table 

3 how some hypothetical data are set-up in the “long” format, where each repeated Level 1 

observation is stored vertically in a new row of data (in contrast to the “wide” format where each 

repeated observation would be a new column variable), for the various approaches we discussed. 

This dataset includes a Level 1 predictor x, a Level 2 predictor, z, dummy variables to identify the 

Level 2 clusters, cluster means of x, as well as the key centering approaches.  

[insert Table 3 here] 

Empirical tests for the random effects assumption 

Although the choice of a modeling approach can be justified from theory, empirical tests also 

exist to guide researchers and should be used as the final arbiters; however, these tests are not 

well known in the management and applied psychology literatures. Worse, some canonical 

sources have even suggested—incorrectly—that the decision on whether to apply cluster-mean 

centering “cannot be based on statistical evidence” (Enders & Tofighi, 2007, p. 135) or that the 

choice “can only be made on a theoretical basis” (Kreft, et al., 1995). The centering choice taken 

will determine if the within effect is consistently estimated. It is thus critical that researchers 

understand how to use the relevant tests, which are summarized in Table 4 and explained next. 

[Insert Table 4 here] 
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Hausman test 

The best-known test to examine the random effects assumption is the Hausman (1978) test, which 

can be used to compare an estimator that is assumed to be consistent (FE) against an efficient 

estimator (RE). The basic version of the Hausman test is: 

𝐻 =
(𝛾̂𝐶𝑂𝑁𝑆𝐼𝑆𝑇𝐸𝑁𝑇 − 𝛾𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝑇)

2

𝑆𝐸(𝛾̂𝐶𝑂𝑁𝑆𝐼𝑆𝑇𝐸𝑁𝑇)
2 − 𝑆𝐸(𝛾𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝑇)

2
 

Eq. 9 

The logic of the test is that if both estimators are consistent, then in large samples the two 

estimates should be very close to one another. The test statistic thus compares the two estimates, 

and if their difference is greater than what can be expected due to sampling error (quantified by 

the standard errors [SE] in the denominator), then the null hypothesis that both estimators are 

consistent is rejected. In practice, a statistically significant result suggests that the constraint that 

𝑢𝑗  is unrelated to 𝑥𝑖𝑗 and  𝑦𝑖𝑗 does not hold and the efficient RE estimator must be rejected.  

The Hausman test has a few disadvantages: (1) the justification of the test relies on large 

sample results, (2) the test can lead to computational difficulties due to non-positive definite 

denominator, and (3) the test is only valid if using conventional standard errors; if robust standard 

errors are used, the general Wald test explained later can be applied instead (Wooldridge, 2002, 

pp. 290-291). Moreover, the Hausman test does not directly test the random effects assumption, 

but is a general test that can be applied to compare any estimators, where one estimator is 

assumed to be consistent and the other is possibly inconsistent. There are two tests, however, that 

directly examine the random effects assumption and both involve the use of the CRE model. 

Likelihood ratio test 

The likelihood ratio test can be used for comparing nested models. Two models are nested if they 

are fitted to the same data and one can be expressed as a constrained version of another. This test 
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applies to maximum likelihood estimates and therefore cannot be used when GLS estimation is 

used, and hence cannot be used to compare the FE model against the RE model. However, it can 

be used for comparing the maximum likelihood estimates of a RE model against the CRE model. 

A statistically significant 𝜒2 value indicates that the model with cluster means (the less 

constrained CRE model) fits the data statistically significantly better than does the RE model and 

thus implies rejection of the random effects assumption. 

F test or Wald test 

When nested model comparisons are not possible, the F (or Wald 𝜒2) tests can be used for testing 

multiple parameter constraints after estimation, whether using OLS, GLS, or ML estimation. This 

technique involves estimating a CRE model and then performing a post estimation F test of the 

null hypothesis that all contextual effects (i.e., γ2 in Eq. 8a) are zero. The Wald test is essentially 

a generalization of the z test to multiple parameters and is very versatile because it can be 

performed regardless how the variance was estimated (i.e., robust or cluster-robust standard 

errors), and is thus often recommended as an alternative to the Hausman test when its 

assumptions fail (e.g., Wooldridge, 2002, pp. 290-291). Equivalently, instead of testing the effects 

of added cluster means, cluster-mean centered versions of variables can be added along with the 

original variables (Arellano, 1993). 

Demonstration using generated data 

Suppose we have a sample of 500 leaders, each supervising a team of 10 individuals, or to use a 

macro example, 500 firms, each observed over 10 year. Our sample is fairly large so that the 

consistency of the estimators “kicks in” and sampling error would influence the results only 

minimally. We generated the data using the following model: 

𝑦𝑖𝑗 = .50𝑥𝑖𝑗 − .50𝑧𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗  Eq. 10 
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where 𝑢𝑗  is correlated with the outcome as well as with the Level 1 (i.e., 𝑥𝑖𝑗) and Level 2 (i.e., 𝑧j) 

regressor. Whereas the endogeneity of the Level 1 variable with respect to the unobserved cluster 

effect can be handled with the techniques discussed in this article, endogeneity due to other 

reasons in the Level 1 or Level 2 estimates can only be eliminated by using instrumental 

variables (a discussion on instrumental variables is beyond the scope of the paper; readers should 

refer to more specialized literature to see how this estimation procedure can be used: Angrist & 

Pischke, 2014; Antonakis, et al., 2010; Bascle, 2008; Bollen, 2012; Gennetian, Magnuson, & 

Morris, 2008; Larcker & Rusticus, 2010). 

Then we compare how the different modeling procedures affect parameter estimates. The 

data generating code in Stata and R can be found in the Appendix C; the R code uses plm 

(Croissant & Millo, 2008), lme4 (Bates, Mächler, Bolker, & Walker, 2015), and clubSandwich 

packages (Pustejovsky & Tipton, 2018). We estimate the models using Stata 15 (StataCorp, 2017) 

using cluster robust standard errors when required. 

[insert Table 5 here] 

The demonstration begins uneventfully, as shown in Table 5. As expected, the pooled 

OLS model that ignores the unobserved cluster effect produces very erroneous estimates (model 

1); the coefficient of x = 2.97 and z = -.39 corresponding to rather large estimation errors. The 

OLS estimator with dummy variables for all leaders (model 2) provides a much better estimate 

for the coefficient of x =.51 and the GLS FE (model 3) provides the same estimate as does OLS 

using cluster means as controls (model 4). Using OLS and controlling the cluster means, 

including z makes no difference to the estimate for the within effect (model 5); the effect of z =  

-.47 is only slightly erroneous.  
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The rest of the results are more intriguing. First, using GLS RE where we include the 

cluster means (model 6), we get the same estimate as those of the previous model; though this 

approach has the advantage of estimating the variance components (i.e., the variances of 𝑒𝑖𝑗 and 

𝑢𝑗  from Eq. 11). Because we use the cluster robust standard errors, the Hausman test cannot be 

applied and we use the Wald test for 𝑥̅𝑗 = 0 instead. The test is significant giving 𝜒2(1) = 

3,514.10, p < .001 (this value is the square of t-statistic for 𝑥̅𝑗, i.e., 59.28
2
 approximately), 

indicating that the random effects assumption does not hold and 𝑥̅𝑗 must be included in the 

model. We get very similar estimates for the CRE model using maximum likelihood estimation 

(model 7); the likelihood ratio test comparing the model with and without the cluster means is 

significant, 𝜒2(1)  = 1130.08, p < .001 again suggesting that the random effects assumption must 

be rejected. Note that models 4 to 7 estimate the contextual effect (i.e., see Eq. 8a) as captured by 

the coefficient of 𝑥𝑗̅. The next model (model 8) estimates the between effect (i.e., see Eq. 8b) as 

captured by the coefficient of 𝑥𝑗̅ = 5.09. 

Things go haywire from here on! The GLS RE estimator that omits the cluster means 

(model 9) gives a very bad estimate and the coefficient of x is 1.23. The coefficient of z is -.33. 

After estimating a RE model, we test the RE assumption, this time using the xtoverid command 

(Schaffer & Stillman, 2006) that provides a convenient way of doing the Wald test, which again 

strongly rejects the constraint that the RE approach uses (𝜒2 = 3,514.10, p < .001). Cluster-mean 

centering x (model 10) provides the correct estimate for the within effect (i.e., the coefficient of 

𝑥 − 𝑥̅𝑗  = .51); however, the estimate for z is now rather off (i.e., -.28 instead of -.50). The ML RE 

estimator that uses the grand-mean centered data (model 11) does not provide any advantage with 

respect to using the original x (model 9), giving very poor estimates (and the constraint that the 

cluster means are zero is, of course, rejected). 
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As is evident from the above demonstration, the only estimator that ensures the between 

cluster variation is appropriately modeled and allows for the inclusion of higher level predictors 

is the CRE model where the cluster mean for the Level 1 variable is included; it may also surprise 

readers to see how well OLS, with cluster means, estimates such models too as long as a cluster-

robust standard errors are used (thus researchers without multilevel modeling software can still 

estimate such multilevel models with basic software). Note too that in this demonstration, the 

unobserved effect, in terms of the ICC1 (Bliese, 1998), was very strong; however, results are 

substantively similar, though the bias is less pronounced, for smaller values of the ICC1 (see 

Appendix D). 

Monte Carlo simulation 

To demonstrate the effects of ignoring violations of the random effects assumption, we conduct a 

Monte Carlo simulation using two Level 1 predictors along with two Level 2 predictors. To focus 

on comparing the main modeling approaches currently in use based on our review with those that 

we think are best for model recovery, we chose ten modeling/estimation approaches for 

comparison: (1) the FE approach, estimated with GLS. (2-5), four RE approaches with either 

cluster (center CM) or grand-mean centering (center GM) both estimated with ML and GLS, and 

(6-10) five CRE approaches: The basic CRE model (Equation 7a) estimated with OLS, and the 

same model with and without cluster-mean centering (Equation 7a, 7b), both estimated with ML 

and GLS.  

Simulation setup 

Given our focus on endogeneity involving 𝑢𝑗 , we generate data where 𝑢𝑗  correlates with Level 1 

and Level 2 regressors using the following model: 

𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥1𝑖𝑗 + 𝛾2𝑥2𝑖𝑗 + 𝛾3𝑧1𝑗 + 𝛾4𝑧2𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗 Eq. 11 
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𝛾1 and 𝛾3 were varied as experimental conditions receiving values between -2 to 2 at increments 

of 1 and 𝛾2 and 𝛾4 were 2 in the base scenario. Both 𝑢𝑗  and 𝑒𝑖𝑗 are normally distributed with 

mean = 0 and SD = 10 and 8 respectively. 𝑥1𝑖𝑗  and 𝑥2𝑖𝑗 were set to be correlated at .3 and the 𝑧1𝑗  

and 𝑧2𝑗  variables were uncorrelated; for simplicity there were also no correlations between the 

levels.  

The sample size was set based on the results of our systematic literature review reported 

later in the article. The Level 2 sample sizes were 20, 30, 50, 100, 500, and 1000 and the Level 1 

sample sizes were 2, 5, 10, 20, and 30 producing a minimum of 40 and a maximum of 30,000 

Level 1 observations. To model varying degree of endogeneity with the unobserved cluster effect, 

the correlation between 𝑢𝑗  and the Level 1 variables was either .10, .30, or .50, corresponding to 

Cohen’s (1992) classification of small, medium, and large correlations. The correlation between 

𝑢𝑗  and the Level 2 variables was 0, .20, or .40. These values were obtained by subtracting .1 from 

the previous correlations to generate a fully exogenous correlation; if consistent, all estimators 

should therefore recover the correct Level 2 estimates under the condition of strict exogeneity 

(having some endogeneity too in the Level 2 covariates is important to validate that all estimators 

will be biased and inconsistent in those conditions). To increase the generalizability of our results 

to conditions where the clustering effect is weak, we added an additional experimental factor 

where we increased the variance of the Level 1 variables (𝑥1𝑖𝑗, 𝑥2𝑖𝑗, and 𝑒𝑖𝑗) by either 1, 2, and 

4. After this manipulation, across the models of strict exogeneity, the ICC1’s of the dependent 

variable ranged from 0.085 to 0.885 in the population. These ranges amply cover, and also go 

beyond, what Bliese (2000, p. 361) considers in his experience to be normal ICC1’s in field data. 

The experiment was a 5×5×6×5×3×3×3 full factorial with a total of 20,250 conditions. 

Each cell contained 1,000 replications. The simulation was done using R and the plm (Croissant 
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& Millo, 2008) and lme4 (Bates, et al., 2015) packages on a computer cluster. The R code is 

provided in Appendix E. 

Results 

We start the results section with the results for the Level 1 coefficients. Because the results for 𝛾1 

and 𝛾2 were qualitatively the same, we only present the result for 𝛾1 (i.e. effect of 𝑥1𝑖𝑗) that was 

varied as an experimental condition. Figure 1 shows the marginal effect of both Level 1 and 

Level 2 of sample size for the ten chosen analysis approaches over all endogeneity conditions. 

The mean estimation errors for the FE approach, all CRE approaches, and the RE approaches 

with cluster-mean centering are flat lines at zero indicating that these estimation approaches are 

unbiased regardless of Level 2 endogeneity and the unbiasedness does not depend on the sample 

size. The estimates using grand-mean centering are severely biased. These results thus 

demonstrate that RE model with grand-mean centering should never be used when the random 

effects assumption does not hold. 

 [insert Figures 1 & 2 here] 

Figure 2 shows the mean squared estimation error (MSE), which for unbiased estimators 

is also the variance of the estimates. The results are again very similar as before; RE models with 

grand-mean centering stand out as the worst and the performance of the other four estimators is 

identical. The lines that converge toward zero when either of the sample sizes increases 

demonstrates the consistency property of these estimators. That the performance of the CRE and 

FE estimators are identical is not surprising given that GLS FE and the CRE have been proven to 

produce the same within estimate in linear models. Interestingly, out of the poorly performing RE 

approaches, the GLS RE estimator performs much more poorly than the ML estimator. However, 
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this is just a methodological curiosity, given that neither of these approaches should be applied 

when the random effects assumption fails. 

The analysis of the effects of Level 2 variables reveal clear differences between the 

estimators. Again, because the results for 𝛾3 and 𝛾4 were qualitatively the same, we only present 

the result for 𝛾3 that was varied as an experimental condition (i.e. effect of 𝑧1𝑗). Because the FE 

approach cannot estimate the effects of Level 2 variables, we only focus on the RE and CRE 

approaches. We start again by inspecting the marginal effect of sample size on both levels over all 

endogeneity conditions on the bias of the estimators. As shown in Figure 3, all modeling 

approaches are severely biased. Clearly, none of the estimators are valid approaches for 

estimating the effects of endogenous Level 2 variables; to address these scenarios instrumental 

variables would be required as we mentioned earlier. This result underscores the importance of 

ensuring that modeled regressors must be exogenous.  

 [insert Figure 3 here] 

Because the estimators were essentially useless when the Level 2 variables were 

endogenous with respect to the unobserved cluster effect 𝑢𝑗 , we will now focus on the scenarios 

where the Level 2 variables are strictly exogenous, (i.e., uncorrelated with 𝑢𝑗  and 𝑒𝑖𝑗). We still 

retain the three other simulation factors, including the Level 1 endogeneity conditions and the 

sample sizes on both levels. Figure 4 shows that under these conditions, all nine estimators are 

essentially unbiased when the number of clusters of 50 or more, but the RE approaches have 

more difficulties when the number of clusters is smaller. However, even then the bias is fairly 

small. 

Clear differences emerge in Figure 5 showing the efficiency of the estimators by their 

mean squared estimation errors. All CRE approaches outperform the RE approaches with cluster-



24 
 

mean centering on the 𝑥1𝑖𝑗 and 𝑥2𝑖𝑗 variables by a clear margin. All estimators improve with the 

increasing number of clusters; however, the CRE estimators are more efficient in small samples. 

Moreover, increasing cluster size produces a clear improvement of the CRE approaches; the RE 

approaches are immune to this improvement and only react to increasing the number of clusters 

and not the cluster size (at least not at the Level 1 samples sizes we set), which could be quite 

impractical in some research contexts.  

[insert Figures 4 and 5 here] 

The efficiency differences can be explained by considering how the estimators use 

between cluster information of the Level 1 variables. In the CRE models, the cluster means 

contribute to explaining the variance of the dependent variable and increase in the explained 

variance leads to smaller variance of the estimator compared to the RE estimators that do not use 

cluster means. The small efficiency differences between the cluster and grand-mean centering 

approaches can be explained by the fact that cluster-mean centering further discards between 

cluster variation that would have been useful for explaining the dependent variable. 

The simulation results provide two key takeaways: 

1. To consistently estimate Level 1 effects, one should use one of the following 

estimators: (a) the FE estimator, the CRE approach implemented with either (b) OLS, 

(c) the RE (either GLS or ML) estimator with cluster means, or (d) the RE estimator 

with cluster-mean centering. The RE approach with grand-mean centering is clearly 

biased and inconsistent.  

2. For models including Level 2 effects, to consistently estimate these, one should use 

either: (a) The OLS estimator with cluster means, or (b) the GLS or ML RE with 

cluster means (i.e. CRE). The RE approach with cluster-mean centering or grand-
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mean centering have more absolute bias, particularly at smaller samples, and have 

higher variance in estimates regardless of whether the GLS or ML estimator is 

applied.  

The above results have important implications, given our findings from the systematic literature 

review we conducted, which we present next. Of note too is the performance of OLS, which may 

come to a surprise to applied researchers and even methodologists, who have claimed, for 

instance that OLS regression should not be used to analyze panel data sets (Certo & Semadeni, 

2006; Hofmann, 1997; Hofmann & Gavin, 1998). OLS can be used even if the random effects 

assumption holds, provided cluster means for the Level 1 variables are modeled and that the 

variance is estimated using a cluster-robust (sandwich) estimate.  

Systematic review of the literature 

At this point we have identified a potential problem with respect to how to estimate models 

having unobserved cluster effects, suggested how to fix the problem, and shown how this fix—as 

tested from rather extensive Monte Carlo simulations—works. The questions we now ask are: 

How do researchers estimate multilevel models? Do they consider the random effects 

assumption? Ultimately, how big is the endogeneity problem in the empirical literature? To 

address these questions, we conducted a systematic review of the empirical literature in top 

academic journals. 

Review protocol 

We first searched for journals listed in the categories “Psychology, Applied” and “Management” 

in Web of Science and ranked the top 10, based on their 5-year impact factor (as per April 2018). 

We selected journals publishing empirical studies that clearly relate to the management and 

applied psychology fields. Based on this screening procedure, we retained seven journals 

publishing macro-oriented research, micro-oriented research, or a mix of the two: Academy of 
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Management Journal, Journal of Applied Psychology, Journal of Management, Journal of 

Organizational Behavior, Journal of Operations Management, The Leadership Quarterly, and 

Personnel Psychology. To focus on the current practice, we considered every article published in 

2016 and 2017, and included studies if they (a) modeled unobserved heterogeneity in some way 

(though we excluded categorical unobserved components or cross-lagged models which do not 

have an observation specific intercept); (b) included more than ten Level-2 clusters; and (3) had 

Level-1 varying predictors. Our initial pool contained 270 articles. To keep the coding workload 

reasonable we coded a sample of 150 articles. To do so, we randomly selected a proportional 

number of articles per journal except for journals that published fewer than 15 multilevel articles 

in which case we included all their articles (i.e., from Journal of Operations Management, The 

Leadership Quarterly, and Personnel Psychology). Because our initial sample contained a 

majority of micro-oriented articles (N=102), following a reviewer recommendation, we included 

two more macro journals: Strategic Management Journal and Organization Science. We 

randomly selected 54 articles from these two Journals to have a perfectly balanced sample of 

micro- and macro-oriented articles (final N=204). 

We coded articles on descriptive aspects, such as the type of data, sample size at different 

levels, and the statistical program used; we also coded for certain qualitative aspects, such as the 

exogeneity of predictors, whether the random effects assumption was made (and if so, respected) 

and if the authors made causal claims. The latter point is important to note because our critique of 

current practice concerns researchers making causal claims (having policy implications) and not 

merely reporting on statistical associations.  

The coding was done by the second author, and refined as required through constant 

discussion with the other authors as issues arose that were not foreseen in the coding manual 

(which was concomitantly refined and reapplied). To ensure the reliability of the coding, we 
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selected a random sample of 10 articles to be coded by a senior doctoral student with an excellent 

knowledge of econometrics. The 10 manuscripts generated 240 coding events. Expected 

agreement due to chance would have been 16.77%; however the coders agreed on 83.33% (i.e., 

200 out of 240 coding events) and the agreement statistics κ = .81, SE = .03, z = 30.57, p < .001 

indicate an agreement rate significantly better than chance and generally qualified as 

“substantial” (Landis & Koch, 1977).  A summary of the coding manual is included in Appendix 

F. The coded data is available on the journal’s website and linked to our article. 

Results of systematic review 

We start with descriptive statistics, and we refer interested readers to Appendixes G and H for 

more detailed summaries. Our sample of coded articles contains slightly more longitudinal data 

(49.51%) than hierarchical data (39.22%), with some articles having both types of data (11.27%). 

Sample sizes tend to fluctuate widely across studies, journals or type of dataset. The majority of 

articles used the RE approach with the ML estimator. We observed too that a large number of 

studies (43.14%) did not report the statistical program used for estimation. This issue is 

problematic because different software and pre-programmed commands use different defaults, 

potentially masking important information for readers and reviewers unaware of the specific 

settings used. For example, the Multilevel SEM technique in Mplus includes a latent variable for 

the cluster mean by default if (and only if) authors only include Level 1 regressors and do not 

specify any Level 2 variables. 

By far, the most important issue pertains to the consistency of estimation. Thus, we 

reported which estimator was used and investigated how authors using an RE model ensured that 

its assumptions held. As we mentioned before researchers can (a) ensure the random effects 

assumption holds via a relevant statistical test, (b) model cluster means (CRE) or cluster-mean 

center their level-1 variables, or (c) use a FE estimator. Figure 6 displays the relative proportion 
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of articles per journal that followed each respective modeling strategy (note, we pooled 

estimators using cluster means (CRE), cluster centering and the different FE estimators into the 

category “FE and CRE” because these approaches do not make the random effects assumption). 

Overall, only 106 articles (60 macro and 46 micro) out of the total sample of 204 (i.e., 51.96%) 

either ensured that the random effects assumption held or applied the FE or CRE approach that 

do not require this assumption. In other words, almost half of the articles applied the RE 

approach without justifying its assumptions. 

[insert Figure 6 here] 

Additionally, we used our judgments to determine whether modeled predictors respected 

the “full exogeneity” criterion, that is, whether Level 1 and Level 2 predictors likely correlated 

with their respective error terms 𝑒𝑖𝑗 and  𝑢𝑗 . Modeled predictors must be exogenous (i.e., the 

variable is manipulated, fixed, cyclical, or varies randomly in nature; see Antonakis et al., 2010 

for examples). Unfortunately, the majority of articles used, what appeared to us to be endogenous 

Level 1 (79.90% of articles) and Level 2 (77.08%, i.e., 74 from 96 relevant articles that modeled 

Level 2 variables) regressors.  

Table 6 shows an alarming result: Combining the exogeneity and the random effects 

assumption criteria showed that only 25 articles (12.25%) reported consistent estimates; most of 

the articles (n = 18) were from macro-oriented research. Such a large amount of potentially 

unreliable results indicates that the empirical literature still lags behind the recent methodological 

literature (Antonakis, et al., 2010; Halaby, 2004; Petersen, 2009). Yet, most articles (n = 137) 

made clear causal claims; however, only n = 22 of those articles did so on sound causal 

foundations. Thus, apart from making appropriate policy recommendations, researchers should 

pay attention to our suggestions also because articles with endogeneity threats are less well cited 
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than are those having a more causally defensible design (Antonakis, Bastardoz, Liu, & 

Schriesheim, 2014).  

[insert Table 6 here] 

Discussion 

Our critical analysis of the various multilevel modeling methods highlights a key finding: 

There are proven ways to accurately estimate multilevel models without jeopardizing estimating 

consistency. We focused on relatively simple models having Level 1 and Level 2 effects, but the 

issues we highlight are general and concern more complex models too. Thus, our findings and 

recommendations have far-reaching conclusions that apply to both micro and macro-oriented 

researchers. Interestingly, macro-oriented researchers are doing a bit better than micro-oriented 

researchers; the former are closer to economics both in method and substance, which probably 

explains the differences we see. Of course, precision in measurement is also important, which is 

more the providence of micro research. Both these issues, endogeneity and measurement, are 

important, but seemingly not sufficiently covered in doctoral training (Aiken, West, & Millsap, 

2008; Antonakis, et al., 2010). 

Violations of the random effects assumption 

Regrettably, the results of our systematic review show that most researchers are unaware of the 

assumptions required for estimating multilevel models. This observation is particularly 

troublesome given the fact that the random effects assumption is testable and can be relaxed by 

applying the CRE model. More needs to be done to make researchers aware of the key issues; it 

is critical that researchers are appropriately trained to understand the conditions required to 

consistently and unbiasedly estimate multilevel models. However, it seems from our anecdotal 

observations that oftentimes doctoral courses focus on the “how to” of using specialized 

programs (e.g., HLM) instead of giving students the needed mathematical undergirding to 
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understand what endogeneity is and how it must be dealt with appropriately in multilevel models 

and beyond. In the reviewed articles, researchers often note that they used a multilevel procedure 

so as to not violate the independence assumption of observations. This assumption is easily 

handled by using a cluster-robust standard errors, yet researchers appear to be unware of even 

such remedial matters (McNeish, et al., 2017); of course, a far greater problem is first obtaining 

consistent and unbiased estimates by correctly modeling the structure of the data.   

Finally, there is an argument that the use of an RE approach over FE (or CRE) is 

sometimes preferable when the Hausman test fails (Clark & Linzer, 2015). This argument is 

based on the observation that if the random effects assumption is violated only trivially, the bias 

of the RE approach will also be trivial and RE should be favored over FE given the efficiency 

gains of the former. The reasoning here is that when the sample size is large, the Hausman test 

(and any test for that matter) detects trivially small effects. However, in such large sample, the 

difference between the RE and FE estimates is trivial too given that both are consistent. 

Moreover, in large samples efficiency is less of a concern because all consistent estimators are 

precise enough. Thus, as a standard practice, we recommend to never use an RE approach when a 

test indicates that its assumption fails. 

Confusion on centering 

Our review showed that centering decisions are not correctly taken by researchers. We fear that a 

key reason may be because methodological writings on the topic have presented misleading 

guidelines. For instance, recommendations about centering have typically revolved around 

stylistic issues regarding the interpretation of a parameter as a function of the measurement 

properties of the regressor. Surprisingly too, the literature has suggested that there is no statistical 

test to guide the type of centering approach—and thus implicitly which modeling procedure —to 

use. Consider for instance the following: 
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1. For Raudenbush and Bryk (2002), “if an 𝑋𝑖𝑗 value of zero is not meaningful, then the 

researcher may want to transform  𝑋𝑖𝑗, or choose a location for  𝑋𝑖𝑗 that will render [its 

coefficient] more meaningful” (p. 32). 

2. According to Kreft et al. (1995), both centering options [grand or cluster] are “statistically 

sound ways to improve parameter estimation [and] the choice between the two options for 

centering can only be made on a theoretical basis” (p. 1); that centering “may facilitate 

interpretation” (p. 2); and that grand-mean centering provides “computational 

advantages” by reducing “multicollinearity” (p. 10).   

3. Per Hofmann (1997) centering renders “intercepts more interpretable” and that 

researchers must “consider their overarching theoretical paradigm and from that discern 

what centering option best represents their paradigm” (p. 738). 

4. Hofmann and Gavin (1998) noted that because scales usually do not have natural zero 

points, centering should be done to “render the intercept term more interpretable or 

meaningful” (p. 626); moreover, all “centering options are statistically appropriate [and 

that] the choice of centering options must be a function of the conceptual paradigm and 

research question under investigation” (p. 638); and finally, grand-mean centering reduces 

“potential problems associated with multicollinearity” (p. 638).  

5. Enders and Tofighi (2007) stated “both [types of centering] are appropriate in certain 

circumstances and are inappropriate in others” (p. 127); more importantly, cluster-mean 

centering “may be the most appropriate form of centering in situations in which the 

primary substantive interest involves a Level 1 . . . predictor,” and that grand-mean 

centering “is the method of choice for assessing the impact of cluster-level variables, 

controlling for Level 1 covariate” (p. 128) 
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Whereas the above suggestions have been nuanced (e.g., Raudenbush & Bryk, 2002, see 

pp. 139 & 183), these recommendations with respect to centering decisions appear to have 

mislead researchers to think that centering depends on how the regressors are scaled. These 

recommendations are incorrect for two reasons. First, grand-mean centering (in linear models) 

will only change the estimated intercept; thus, applying this type of centering, as many did 

(10.78% of article, most of which were micro articles) is futile. Not only is grand-mean centering 

useless (the intercept itself is rarely of interest), it can also be harmful when researchers 

interested in calculating and plotting marginal predictions for different combinations of the 

explanatory variables. If these predictions are calculated using the predictors on their original 

metric from a model estimated with grand-mean centering, the predictions will be systematically 

incorrect (Dawson, 2014). 

Second, the use of cluster-mean centering, which is more popular (19.61% of the articles 

used it), has some merit, but this technique has nothing to do with the scale of the predictors. 

Cluster-mean centering produces a within effect that is free of the endogeneity problem discussed 

in this article. Indeed, cluster-mean centering is the first step in the GSL FE estimator that is 

typically recommended as the default option in econometrics (McNeish & Kelley, 2018). 

However, given that the CRE approach can accomplish the same as cluster-mean centering and 

provides more flexibility in modeling as well as providing the contextual effect, we see the CRE 

approach as a much more attractive alternative to cluster-mean centering. Nevertheless, there is 

one scenario where cluster-mean centering is required: If a researcher is interested in estimating 

the between effect instead of the contextual effect, centering must be applied to the Level 1 

variables along with including the cluster means of Level 1 variables. However, our review 

showed that researchers rarely included or reported on having used cluster means as control 

variables (i.e., over 90% of articles). 
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Extending the CRE approach to random slope models and three level models 

Whereas our review of the literature and demonstration focuses on the unobserved cluster-

specific intercept, the CRE approach we advocate and the tests for random effects assumption 

extends readily to other random effect models as well (Bell & Jones, 2015). Consider the CRE 

approach in the context of Eq. 1 presented in the multilevel format: 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗 + 𝑒𝑖𝑗      } 𝐿𝑒𝑣𝑒𝑙 1 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝛽0𝑗 = 𝛾00 + 𝛾01𝑥̅𝑗 + 𝑢0𝑗
𝛽1𝑗 = 𝛾10 + 𝛾11𝑥̅𝑗 + 𝑢1𝑗

    } 𝐿𝑒𝑣𝑒𝑙 2 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

Eq. 12a 

Eq. 12b 
Eq. 12c 

The CRE approach is implemented by including cluster means of the Level 1 variables to all 

Level 2 equations. In the mixed format the same can be expressed as: 

𝑦𝑖𝑗 = 𝛾00 + 𝛾10𝑥𝑖𝑗 + 𝛾01𝑥̅𝑗 + 𝛾11𝑥̅𝑗𝑥𝑖𝑗 ⏟                    
𝑓𝑖𝑥𝑒𝑑 𝑝𝑎𝑟𝑡

  +     𝑥𝑖𝑗𝑢1𝑗 + 𝑢0𝑗 + 𝑒𝑖𝑗⏟          
𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡

 Eq. 13 

The equation shows that when the random effect of interests affects a regression slope 

instead of an intercept, the CRE approach can be implemented by adding an interaction between 

the original variable and its cluster mean as a control. It is important to note that even though it is 

a common practice to center variables before calculating interactions, this procedure should not 

be done in this particular case. More generally, centering when forming interactions is largely 

misunderstood and a inutile practice (Dalal & Zickar, 2012; Kromrey & Foster-Johnson, 1998).  

Finally, beyond more complex Level 2 models, the CRE approach can be readily extended 

to three level models and beyond. In the case of a three-level model, the equations for a random 

intercept model would be: 

𝑦𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝛽1𝑥𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘      } 𝐿𝑒𝑣𝑒𝑙 1 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝛾01𝑘𝑥̅𝑗𝑘 + 𝑢0𝑗𝑘  } 𝐿𝑒𝑣𝑒𝑙 2 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

Eq. 14a 

Eq. 14b 
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𝛽00𝑘 = 𝛾000 + 𝛾001𝑥̅𝑘 + 𝑢00𝑘   } 𝐿𝑒𝑣𝑒𝑙 3 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 Eq. 14c 

where k indicates the third level of clustering. In the mixed effects format, this translates to a 

model with two cluster means of x, calculated for both Level 2 and Level 3 clusters. However, 

considering that the sample sizes on Level 3 and higher tend to be small, estimating the 

contextual effects on these levels would be imprecise and also often of not direct interest and 

therefore using an FE approach by including dummies to indicate the Level 3 units presents a 

compelling alternative (cf. McNeish & Wentzel, 2017). 

Recommendations and Conclusions 

Following our critical analysis, simulation demonstrations, and review, we summarize key points 

that applied researchers should adopt to correctly estimate multilevel models. The 

recommendations are summarized in Figure 7 as a decision chart. More specifically:  

1. Use the CRE approach as the default estimator particularly if effects of higher-level variables 

(e.g., Level 2 or higher) are of interest; the estimator used, OLS (with cluster robust 

estimation of standard errors), ML, or GLS is immaterial. Although the FE estimate is 

consistent for the within effect, and even though the CRE approach produces the same within-

estimates, ideally use CRE as the default given the extra information it provides in estimating 

the contextual effect. 

2. Centering Level 1 data is unnecessary in most cases and complicates calculating marginal 

predictions and marginal effects. It should thus be avoided unless there is a good reason to 

center. More particularly: 

 Grand-mean centering is completely useless; as such, it should always be avoided. 

 Cluster-mean centering is required along with the use of cluster means if the interest is 

in estimating the between effect instead of the contextual effect along with the within 

effect. 
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 Never cluster-mean center the dependent variable outside the GLS procedure because 

this will bias the standard errors (Wooldridge, 2002 pp. 269-272). 

3. Use the RE approach only if the random effects assumption is empirically assessed and thus 

justified. Researchers can test the random effects assumption with either a Hausman, 

likelihood ratio, F or Wald test (or any other test that is valid for this purpose).  

Of course that endogeneity with respect to the cluster effect has been addressed with CRE does 

not mean that all endogeneity issues have been eliminated. Researchers must consider what 

model they are estimating, and ensure that the modeled independent variables are exogenous. 

Moreover, one final point to bear in mind, which we did not cover, is that when estimating panel 

models, researchers should examine whether clustered-robust standard errors change inference, 

because these are also robust for autocorrelation (Angrist & Pischke, 2008, see Ch. 9); if 

substantially different these standard errors should be reported instead of the  conventional ones 

(Cameron, Gelbach, & Miller, 2011; Cameron & Miller, 2015). 

 [insert Figure 7 here] 

To conclude, although our findings are not particularly encouraging, researchers and 

educational institutions must undertake concerted efforts to redress the situation. We are 

optimistic that with time, research practice will improve and better inform policy. Other 

disciplines have gone through similar growing pains, like economics did when it faced its 

endogeneity demons. The casual identification revolution shook it to the core, but economics 

emerged stronger as a discipline, with a unified methodological paradigm, and better research 

practice (e.g., see Angrist & Pischke, 2010). We can too.  
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Table 1 Summary of modeling approaches and estimation techniques 

Approach 

to 

contextual 

effects 

Approach to 

unobserved 

heterogeneity 

Specific techniques 

Critical features 

Estimator RE 

assumpt. 

Effi-

cient 

L2 

var. 

FE approaches 

Eliminated 

Eliminated 

Dummy variables No No No 
OLS 

ML 

Cluster-means 

centering all variables 

(GLS FE) 

No No No GLS FE 

Modeled 

Cluster-mean 

centering IV but not 

DV and using random 

intercept 

No No No 
ML 

GLS RE 

Taken into 

account in 

estimation 

Cluster-mean 

centering IV but not 

DV and using cluster 

robust SEs 

No No No 

OLS or 

GEE with 

cluster 

robust SEs 

RE approaches 

Assumed to 

not exist 

Modeled 

Quasi-mean centering 

all variables (“GLS 

RE”) 

Yes Yes Yes GLS RE 

Random intercept 

model 
Yes Yes Yes ML RE 

Taken into 

account in 

estimation 

Clustered standard 

errors 
Yes No Yes 

OLS or 

GEE 

CRE approaches 

Modeled 

Modeled 

Cluster means as 

controls and quasi-

mean centering 

No No Yes GLS RE 

Cluster means as 

control and random 

intercept model 

No No Yes 
ML 

 

Taken into 

account in 

estimation 

Cluster means as 

controls and clustered 

standard errors 

No No Yes 

OLS or 

GEE with 

cluster 

robust SEs 

L2 var. = Level 2 variables; Estimation commands: OLS: regress (Stata); lm (R) ML: mixed 

(Stata); nlme; lmer (R) GLS RE: xtreg, re; xtreg, mle (Stata); plm(type =”random”) (R) GLS FE: 

xtreg, fe (Stata); plm(model=”within”) (R); GEE: xtgee (Stata), gee (R); Cluster robust SE: 

vce(cluster) (Stata), vcovCR (R). 
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Table 2: Examples of within and contextual effects 

 
Within effect Contextual effect 

Vaccinations on 

health 

Positive: Getting a vaccination 

decreases individuals risk of 

contracting a disease 

Positive: Increasing the vaccination rate in the 

community where one lives decreases ones risk of 

contracting a disease (herd immunity) 

 

Overfishing on 

profits 

Positive: If a professional 

angler exceeds her fishing 

quota, her profits will increase 

because of larger catch 

Negative: If there is overfishing on a lake, the 

profits of all anglers will decrease because of 

smaller catches 

 

Innovativeness on 

competitive 

advantage 

Positive: If a firm is 

innovative, it can develop 

valuable capabilities that lead 

to competitive advantage 

Negative: If everyone in an industry innovates a 

lot, innovations are no longer rare and are less 

likely to lead to competitive advantage, but a non-

innovating firm may have competitive 

disadvantage. 

 

Gender on 

performance 

Zero: One’s gender has no 

impact on one’s performance 

as a team member 

Inverted U-shape: Teams gender composition 

affects the team performance; a team with half 

men and half women works best 

 

 

Note: The between effect is the sum of these two effects and tells how the mean performance 

depends on the mean predictor across different contexts (e.g. teams, industries, etc.). 
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Table 3: Setting up the data for a correlated random effects (CRE) model and other 

approaches 

𝑁𝑗 𝑛𝑖𝑗 𝑦𝑖𝑗 𝑧𝑗 𝑥𝑖𝑗 𝑥_𝑐𝑙𝑗 𝑥 − 𝑥_𝑐𝑙𝑗  𝑥 − 𝑥̅ d1 d2 d3 d4 d5 

1 1 31.09 1 3.88 4.09 -.21 1.36 0 0 0 0 0 

1 2 34.16 1 4.31 4.09 .22 1.79 0 0 0 0 0 

2 1 33.59 0 6.21 5.09 1.12 3.69 1 0 0 0 0 

2 2 32.74 0 3.97 5.09 -1.12 1.45 1 0 0 0 0 

3 1 26.83 0 -1.90 -1.08 -.82 -4.42 0 1 0 0 0 

3 2 21.74 0 -.25 -1.08 .83 -2.77 0 1 0 0 0 

4 1 19.61 1 -3.10 -3.37 .27 -5.62 0 0 1 0 0 

4 2 16.07 1 -3.64 -3.37 -.27 -6.16 0 0 1 0 0 

5 1 37.84 0 7.72 7.00 .72 5.20 0 0 0 1 0 

5 2 35.28 0 6.29 7.00 -.71 3.77 0 0 0 1 0 

6 1 32.66 1 3.96 3.36 .60 1.44 0 0 0 0 1 

6 2 26.26 1 2.76 3.36 -.60 .24 0 0 0 0 1 

 

Note: For the first cluster (𝑁𝑗=1), the cluster mean for 𝑥𝑖𝑗 is (3.88 + 4.31)/2 = 4.09. The column 

𝑥 − 𝑥_𝑐𝑙𝑗we reports the group-mean centered data and the column 𝑥 − 𝑥̅ the grand-mean 

centered data (note, grand mean 𝑥̅ =  2.52, rounded). The variable 𝑧𝑗 is a Level 2 variable. The 

remaining columns are the k – 1 dummy variables, where k = number of clusters leaving first 

cluster as a reference. 
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Table 4 Summary of tests of random effects assumption 

Test of random 

effects  assumption 
Description Decision rule Critical features 

Hausman 

Compares an 

efficient (RE) to a 

consistent (FE or 

CRE) estimator 

If estimated coefficients 

differ significantly, authors 

need to use the consistent 

estimator (i.e., FE or CRE) 

needs to be used otherwise 

the efficient estimator (i.e., 

RE) should be used. 

Cannot be used 

with robust 

standard errors 

Likelihood ratio-test 

Compares two 

nested models: One 

model with cluster-

means and the other 

model without 

cluster-means 

If the likelihood ratio test is 

significant, cluster means 

have to be retained in the 

model. 

Requires the use of 

ML estimation (i.e., 

cannot be used to 

compare a GLS FE 

with a GLS RE) 

F- or Wald test 

Tests the 

significance of 

contextual effects of 

cluster means 

If the F- or Wald test is 

significant, cluster means 

have to be retained in the 

model. 

Can be used with 

robust standard 

errors 
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Table 5: Comparison of different estimators and centering with data having a high ICC1 

 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Variable OLS OLS GLS FE OLS OLS GLS RE ML RE ML RE GLS RE GLS RE ML RE 

                     

𝑥 2.97*** .51*** .51*** .51*** .51*** .51*** .51***  1.23***   

 

(29.37) (17.53) (18.48) (18.48) (18.48) (18.48) (17.19)  (23.24)   

z -.39***    -.47*** -.47*** -.47*** -.47*** -.33*** -.28** -.33*** 

 

(6.35)    (13.58) (13.58) (12.93) (-12.93) (3.39) (2.30) (3.39) 

𝑥̅𝑗     4.52*** 4.58*** 4.58*** 4.58*** 5.09***    

 
   (51.19) (59.28) (59.28) (60.76) (73.56)    

𝑥 − 𝑥̅𝑗         .51***  .51***  

 

       (17.19)  (18.48)  

𝑥 − 𝑥̅           1.23*** 

 

          (23.24) 

Dummies  Included          

            

Constant -2.85* -12.29*** -12.62*** -12.56*** -.89 -.89 -.89 -.89 -4.45* -5.58* -4.47* 

 

(1.85) (1053.31) (36061.00) (153.85) (1.04) (1.04) (.98) (.98) (1.85) (1.82) (1.85) 

     

  

 

 

  

 

Note: Cluster robust t-statistics in parentheses (except for ML estimator); n = 5,000 observations (clustered under N = 500 

leaders). OLS = Ordinary Least Squares estimator; GLS FE = GLS fixed effects estimator; GLS RE = GLS random effects estimator; 

ML RE = maximum likelihood estimator with RE model; the true coefficient for x is .50 and that of z is -.50 in the population. ***p 

< .01, **p < .05, *p < .10. Note, estimates that are substantially erroneous are emphasized (bolded-underlined).  
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Table 6: Coding of articles from journals with respect to consistency of estimated 

coefficients  

 

 AMJ 

(N=44) 

SMJ 

(N=38) 

JAP 

(N=27) 

JOM 

(N=22) 

JOB 

(N=19) 

OS 

(N=16) 

LQ  

(N=14) 

PP 

(N=13) 

JOpM 

(N=11) 
All  

(N=204) 

L1 variable(s) 

exogenous  

3 

(7%) 

5 

(13%) 

5 

(19%) 

0 

(0%) 

2 

(11%) 

4 

(25%) 

4 

(29%) 

0 

(0%) 

0 

(0%) 
23 

(11%) 

L1 variable(s) 

endogenous 

35 

(80%) 

25 

(66%) 

22 

(81%) 

18 

(82%) 

17 

(89%) 

12 

(75%) 

10 

(71%) 

13 

(100%) 

11 

(100%) 
163 

(80%) 

L1 variable(s) 

instrumented 

6 

(14%) 

8 

(21%) 

0  

(0%) 

4 

(18%) 

0  

(0%) 

0  

(0%) 

0  

(0%) 

0  

(0%) 

0  

(0%) 
18 

(9%) 

L2 variable(s) 

exogenous  

2 

(5%) 

1 

(3%) 

7 

(26%) 

2 

(9%) 

1 

(5%) 

2 

(13%) 

4 

(29%) 

2 

(15%) 

1 

(9.%) 
22 

(11%) 

L2 variable(s) 

endogenous 

23 

(52%) 

3  

(8%) 

10 

(37%) 

9 

(41%) 

8 

(42%) 

3 

(19%) 

10 

(71%) 

6 

(46%) 

2 

(18%) 
74 

(36%) 

No L2 variable 19 

(43%) 

34 

(89%) 

10 

(37%) 

11 

(50%) 

10 

(53%) 

11 

(69%) 

0  

(0%) 

5 

(38%) 

8 

(73%) 
108 

(53%) 

RE assumption not 

made  

17 

(39%) 

24 

(63%) 

14 

(52%) 

10 

(45%) 

9 

(47%) 

8 

(50%) 

5 

(36%) 

4 

(31%) 

7 

(64%) 
98 

(48%) 

RE empirically 

demonstrated to hold 

3 

(7%) 

1  

(3%) 

0 

 (0%) 

1 

(5%) 

0  

(0%) 

3 

(19%) 

0  

(0%) 

0  

(0%) 

0 

 (0%) 
8 

(4%) 

RE assumption made 

and not respected 

23 

(52%) 

13 

(34%) 

13 

(48%) 

11 

(50%) 

10 

(53%) 

4  

(25%) 

9 

(64%) 

9 

(69%) 

4 

(36%) 
96 

(47%) 

Unable to determine 1 

(2%) 

0  

(0%) 

0  

(0%) 

0  

(0%) 

0  

(0%) 

1  

(6%) 

0  

(0%) 

0  

(0%) 

0  

(0%) 
2 

(1%) 

Consistent 

estimates 

4  

(9%) 

10 

(26%) 

4 

(15%) 

2 

(9%) 

1 

(5%) 

2 

(13%) 

2 

(14%) 

0 

(0%) 

0 

(0%) 

25 

(12%) 

 

Note: L1 = Level 1; L2 = Level 2; N=Number of articles included in our sample, broken down 

by journal. AMJ=Academy of Management Journal; SMJ=Strategic Management Journal; 

JAP=Journal of Applied Psychology; JOM=Journal of Management; JOB=Journal of 

Organizational Behavior; OS=Organization Science; LQ = Leadership Quarterly; PP=Personnel 

Psychology; JOpM=Journal of Operations Management; percentages are rounded. 

 



 45 

Figure 1: Marginal effect of both levels of sample size on estimates of effect of x1 over all 

endogeneity conditions 

 

Figure 2: Marginal effect of both levels of sample size on squared estimation error of effect 

of x1 over all endogeneity conditions 
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Figure 3: Marginal effect of both levels of sample size on estimates of effect of z1 over all 

endogeneity conditions 

 

Figure 4: Marginal effect of both levels of sample size on estimates of effect of z1 over all 

Level 1 endogeneity conditions when Level 2 endogeneity is zero 
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Figure 5: Marginal effect of both levels of sample size on squared estimation error of effect 

of z1 over all Level 1 endogeneity conditions when Level 2 endogeneity is zero 
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Figure 6: Proportion of articles satisfying the random effects assumption by journal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: FE and CRE = applied a fixed effects or correlated random effects approach that does not make the random effects assumption; 

RE justified = random effects approach used with appropriate justification; RE unjustified = random effects approach used without 

appropriate justification; Unclear = we could not ascertain what model was estimated. The above distributions did not differ 

significantly across journals, Fisher's exact test p = .23 (Pearson 2
(24) =  30.56, p = .17), suggesting no quality difference.
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Figure 7: Decision chart to identify which estimator to use for multilevel data 

 
Note: between or contextual effects can be also be considered each Level 1 variable separately (i.e., it is possible to include cluster 

means for only some of the Level 1 variables). Different ways of doing FE, RE, and CRE are explained in Table 1 and tests are 

explained in Table 3.  

What kind of 

effects are you 

modeling?

Does the 

random effects 

assumption 

hold?

Only within 

effects

Use an FE model

or ideally a CRE 

model

No or 

not sure

Provide evidence for 

the random effects 

assumption

Yes

Use an RE model

Within effects and between

or contextual effects

Are there 

between or 

contextual 

effects?

Add cluster means to 

the model and cluster 

mean center the 

original variables

Add cluster means to 

the model

Does the 

random effects 

assumption 

hold?

Only

within 

effect

Between 

effect

No or not sure

Provide evidence for 

the random effects 

assumption

Yes

Use a CRE model

END

END

END

START

Contextual 

effect
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Appendix A: Video material 

We include educational video material to supplement the article. The main video provides an 

overview of the article and its most important concepts and is available here:  

https://youtu.be/mcwjto0U01I  

 

There are also a series of shorter videos focusing on specific concepts related to multilevel 

models and the random-effects assumption. The full suite of videos can be accessed at 

http://tiny.cc/randomeffect 

  

https://youtu.be/mcwjto0U01I
http://tiny.cc/randomeffect
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Appendix B: Understanding endogeneity through omitted variable bias 

To see how this bias originates, we will treat 𝑢𝑗  as capturing all the leader-level (or in a 

more macro case, all firm-level) effects that may correlate both with 𝑥𝑖𝑗 and 𝑦𝑖𝑗, but which will 

be omitted from the model; thus, we will look at the problem from a basic omitted variable bias 

point of view (cf. Antonakis, et al., 2010). The data generating model is thus: 

𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗 + 𝛾2𝑢𝑗 + 𝑒𝑖𝑗 Eq. A1 

As is evident above, 𝑢𝑗  has an effect on 𝑦𝑖𝑗 as indicated by the coefficient 𝛾2. Now 

suppose we do not explicitly measure 𝑢𝑗  because we had no idea about its effect on 𝑦𝑖𝑗 and that 

we estimated instead: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗+ 𝑣𝑖𝑗  Eq. A2 

The 𝑢𝑗  term is now absorbed in  𝑣𝑖𝑗. Will the estimate of 𝛽1 = 𝛾1, the latter being the 

correct estimate? It could, but only under some restrictive conditions, as we show below. If 𝑢𝑗  

correlates with 𝑥𝑖𝑗, irrespective of the direction of the relation, which is not relevant for the 

demonstration, we can model the following (and omit the intercept for expositional clarity and 

without a loss of generality):  

𝑢𝑗 = 𝜔1𝑥𝑖𝑗 + 𝑤𝑖𝑗 Eq. A3 

The endogeneity problem will become evident when substituting Eq. A3 into Eq. A1: 

𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗 + 𝛾2(𝜔1𝑥𝑖𝑗 + 𝑤𝑖𝑗) + 𝑒𝑖𝑗 Eq. A4 

After multiplying out we obtain the following (note what is isolated on the right hand side 

in parentheses): 
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𝑦𝑖𝑗 = 𝛾0 + 𝛾1𝑥𝑖𝑗 + (𝛾2𝜔1𝑥𝑖𝑗 + 𝛾2𝑤𝑖𝑗 + 𝑒𝑖𝑗) Eq. A5 

It is now obvious that the error from Eq. A2,  𝑣𝑖𝑗 = (γ2𝜔1𝑥𝑖𝑗 + γ2𝑤𝑖𝑗 + 𝑒𝑖𝑗), which is 

why we noted above that 𝑢𝑗  is absorbed in  𝑣𝑖𝑗. If we rearrange Eq. A5 as a function of x we get: 

𝑦𝑖𝑗 = 𝛾0 + (𝛾1 + 𝛾2𝜔1)𝑥𝑖𝑗 + 𝛾2𝑤𝑖𝑗 + 𝑒𝑖𝑗 Eq. A6 

From the above, the effect of 𝑥𝑖𝑗 on 𝑦𝑖𝑗 is γ1 + γ2𝜔1, which is the decomposed estimate 

of 𝛽1 from Eq. A2. Thus, the coefficient 𝛽1 is inconsistent because: 

𝛽1 =
𝐶𝑜𝑣(𝑦𝑖𝑗, 𝑥𝑖𝑗)

𝑉𝑎𝑟(𝑥𝑖𝑗)
= 𝛾1 + 𝛾2𝜔1 ≠ 𝛾1 

Eq. A7 

Thus, one of 𝛾2 (i.e., from Eq. A1) or 𝜔1 (i.e., from Eq. A3) must equal zero for β1 to be 

consistently estimated and to equal 𝛾1. 
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Appendix C: Stata and R code for empirical demonstration 

The code that follows show the data generation and models estimated that are presented in Table 

4, using Stata and R code.  

Stata code: 

*Data generation 

clear 

version 15 

set seed 123 

 

*500 leaders (note: “a” is the unobserved effect) 

set obs 500 

gen lead_n = _n 

gen a = rnormal() 

gen z = round(25 + 2*rnormal() + .2*a) 

 

*10 raters for each leader 

expand 10 

bys lead_n: gen rater = _n 

gen x = a + rnormal() 

gen y = .5*x - .5*z + 5*a + 2*rnormal() 

 

*Data estimation 

 

*1 OLS with Level 1 and Level 2 predictor 

reg y x z, vce(cluster lead_n) 

 

*2 OLS with cluster dummies and Level 1 predictor 

reg y x i.lead_n, vce(cluster lead_n) 

 

*3 GLS FE with Level 1 predictor 

xtset lead_n rater 

xtreg y x, fe vce(cluster lead_n) 

 

*4 OLS with Level 1 predictor and its cluster mean  

bys lead_n: egen x_cl = mean(x) 

reg y x x_cl, cluster(lead_n) 

 

*5 OLS with Level 1 predictor, its cluster mean, and Level 2 predictor 

reg y x x_cl z, cluster(lead_n) 

 

*6 GLS RE with Level 1 predictor, its cluster mean, and Level 2 predictor 

xtreg y x x_cl z, cluster(lead_n) robust 

test x_cl 

 

*7 MLE RE with Level 1 predictor, its cluster mean, and Level 2 predictor 

mixed y x x_cl z || lead: 

est store one 

 

*compare above estimate with below using likelihood ratio test 

mixed y x z || lead_n: 

est store two 
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lrtest one two 

 

*8 ML RE with cluster-mean centered Level 1 predictor and Level 2 predictor 

gen x_grp_cen = x - x_cl 

mixed y x_grp_cen z || lead_n:  

 

*9 GLS RE with cluster-mean centered Level 1 predictor and Level 2 predictor 

xtreg y x z, cluster(lead_n) robust 

 

*Wald test of the random effects assumption (equivalent to test x_cl of  

*model 6)  

xtoverid 

 

*10 GLS RE with grand-mean centered Level 1 predictor and Level 2 predictor 

egen x_grnd_mean = mean(x) 

gen x_grnd_cen  = x - x_grnd_mean  

 

xtreg y x_grnd_cen z, cluster(lead_n) 

 

*11 ML RE with grand-mean centered Level 1 predictor and Level 2 predictor 

mixed y x_grp_cen x_cl z || lead_n: 

 

R code: 

library(plm) 

library(lme4) 

library(clubSandwich) 

library(lmtest) 

 

# Data generation 

 

set.seed(12) 

 

# Number of leaders and raters 

N <- 500 

M <- 10 

 

lead_n <- as.factor(rep(1:N,M)) 

a <- rep(rnorm(N),M) 

z <- rep(round(25 + 2*rnorm(N) + .2*a)) 

rater <- rep(1:M, each = N) 

x <- a + rnorm(N*M) 

 

y <- .5*x + 5*a - .5*z + 2*rnorm(N*M) 

 

# Data estimation 

 

# 1 OLS with Level 1 and Level 2 predictor 

m1 <- lm(y ~ x + z) 

summary(m1) 

coeftest(m1, vcov=vcovCR, cluster = lead_n, type ="CR2") 

 

# 2 OLS with cluster dummies and Level 1 predictor 

m2 <- lm(y ~ x + lead_n) 

summary(m2) 

coeftest(m2, vcov=vcovCR, cluster = lead_n, type ="CR2") 
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# 3 GLS FE estimator with Level 1 predictor 

pdata <- pdata.frame(data.frame(y,x,z,lead_n), index = "lead_n") 

m3 <- plm(y ~ x, data = pdata, model ="within") 

summary(m3) 

coeftest(m3, vcov=vcovCR, cluster = lead_n, type ="CR2") 

 

# 4 OLS with Level 1 predictor and its cluster mean 

x_cl <- rep(aggregate(x, list(lead_n), mean)[,2],M) 

m4 <- lm(y ~ x + x_cl) 

summary(m4) 

coeftest(m4, vcov=vcovCR, cluster = lead_n, type ="CR2") 

 

# 5 OLS with Level 1 predictor, its cluster mean, and Level 2 predictor 

m5 <- lm(y ~ x + x_cl + z) 

summary(m5) 

coeftest(m5, vcov=vcovCR, cluster = lead_n, type ="CR2") 

 

# 6 GLS RE with Level 1 predictor, its cluster mean, and Level 2 predictor 

pdata <- pdata.frame(data.frame(y,x,z,x_cl,lead_n), index = "lead_n") 

 

m6 <- plm(y ~ x + x_cl + z, data = pdata, model = "random") 

summary(m6) 

coeftest(m6, vcov=vcovCR, cluster = lead_n, type ="CR2") 

 

Wald_test(m6,"x_cl", vcov="CR2", cluster = lead_n) 

 

# MLE RE with Level 1 predictor, its cluster mean, and Level 2 predictor  

m7 <- lmer(y ~ x + x_cl + z + (1|lead_n) ) 

summary(m7) 

 

# compare above estimate with below using likelihood ratio test 

anova(m7,lmer(y ~ x + z + (1|lead_n) )) 

 

# 8 ML RE with cluster-mean centered Level 1 predictor and Level 2 predictor 

x_grp_cen <- x - x_cl 

pdata <- pdata.frame(data.frame(y,x,z,x_cl,x_grp_cen,lead_n),  

                     index = "lead_n") 

 

m8 <- lmer(y ~ x_grp_cen + x_cl + z + (1|lead_n)) 

summary(m8) 

 

# GLS RE with cluster-mean centered Level 1 predictor and Level 2 predictor 

m9 <- plm(y ~ x + z, data = pdata, model ="random") 

summary(m9) 

coeftest(m9, vcov=vcovCR, cluster = lead_n, type ="CR2") 

 

# Wald test of the random effects assumption (equivalent to test x_cl of  

# model 6) 

Wald_test(update(m9, ~ . + x_cl), "x_cl", vcov="CR2", cluster = lead_n) 

 

# 10 GLS RE with grand-mean centered Level 1 predictor and Level 2 predictor 

x_grnd_cen<- x - mean(x) 

pdata <- pdata.frame(data.frame(y,x,z,x_cl,x_grp_cen,x_grnd_cen,lead_n), 

                     index = "lead_n") 

 

m10 <- plm(y ~ x_grp_cen + z, data = pdata, model ="random") 
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summary(m10) 

coeftest(m10, vcov=vcovCR, cluster = lead_n, type ="CR2") 

 

# 11 ML RE with grand-mean centered Level 1 predictor and Level 2 predictor  

m11 <- lmer(y ~ x_grnd_cen + z + (1|lead_n)) 

summary(m11) 

 

 

library(texreg) 

screenreg(list(m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11), omit.coef ="lead_n") 

 

Note: in the above, the unobserved cluster effect and the error are weighted 5 and 2 respectively 

(leading to a very high ICC1); for the case of the model with a lower ICC1 the unobserved 

cluster effect and the error are weighted 1 and 3 respectively. 
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Appendix D: Comparison of different estimators and centering with data having a low ICC1 

 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Variable OLS OLS GLS FE OLS OLS GLS RE ML RE ML RE GLS RE GLS RE ML RE 

             

𝑥 1.04*** .52*** .52*** .52*** .52*** .52*** .52***  1.04***   

 

(27.30) (11.83) (12.47) (12.47) (12.47) (12.47) (11.60)  (27.28)   

z -.45***    -.46*** -.46*** -.46*** -.46*** -.45*** -.41*** -.45*** 

 

(18.73)    (22.19) (22.19) (21.46) (21.46) (18.72) (10.06) (18.72) 

𝑥̅𝑗     .91*** .98*** .98*** .98*** 1.50***    

 

   (12.74) (16.14) (16.14) (15.98) (35.91)    

𝑥 − 𝑥̅𝑗         .52***  .52***  

 

       (11.60)  (12.47)  

𝑥 − 𝑥̅           1.04*** 

 

          (27.28) 

Dummies  Included          

            

Constant -1.34** -14.12*** -12.58*** -12.57*** -.92* -.92* -.92* -.92* -1.34** -2.30** -1.35** 

 

(2.22) (807.01) (23,975.49) (213.44) (1.75) (1.75) (1.69) (1.69) (2.22) (2.24) (2.24) 

     

  

 

 

  

 

 

Note: Cluster robust t-statistics in parentheses (except for ML estimator); n = 5,000 observations (clustered under N = 500 leaders). 

OLS = Ordinary Least Squares estimator; GLS FE = GLS fixed effects estimator; GLS RE = GLS random effects estimator; ML RE = 

maximum likelihood estimator with RE model; the true coefficient for x is .50 and that of age is -.50 in the population. ***p < .01, **p 

< .05, *p < .10. Note, estimates that are substantially erroneous are emphasized (bolded-underlined).
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Appendix E: R code for simulations 

parameters.R 

# Simulation design matrix (full factorial) 
designMatrix <- expand.grid(betax1 = -2:2, 
                            betaage = -2:2, 
                            l2nobs = c(20, 30, 50, 100, 500, 1000), 
                            l1nobs = c(2, 5, 10, 20, 30), 
                            l1endog = c(.1,.3,.5), 
                            l2endog = c(0,.2,.4), 
                            l1multiplier = c(1,2,4)) 
 

# Generate all possible estimators and then choose which ones are used 
 

estimatorsToRun <- expand.grid(estimator = c("OLS","ML RE","GLS RE","GLS FE"), 
                               centering =c("none","grand-mean","cluster-mean"), 
                               clusterMeans = c(TRUE,FALSE), 
                               stringsAsFactors = FALSE) 
 

estimatorsToRun <- estimatorsToRun[c(1,2,3,10,11,16,18,19,22,23),] 
REPLICATIONS <- 1000 

simulations.R 

library(MASS) 
library(lme4) 
library(plm) 
library(plyr) 
 

# Read the experimental conditions 
 

source("parameters.R") 
 

 

# This file is designed to be run on a computer cluster where each condition is  
# run as a separate job. Read the condition number from the command line if  
# given. Otherwise run all conditions and all replication sets. 
 

args <- commandArgs(trailingOnly = TRUE) 
 

if(length(args) == 0){ 
  designNumbers <- 1:nrow(designMatrix) 
#  designNumbers <- 20250 
} else { 
  designNumbers <- as.numeric(args[1]) 
} 
 

 

############################################################################# 
# 
# Main program 
# 
############################################################################# 
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# Loop over designs 
 

for(designNumber in designNumbers){ 
  print(paste("Running design", designNumber)) 
  print(designMatrix[designNumber,]) 
   
  attach(designMatrix[designNumber,]) 
   
  # Generate the population correlation matrix 
   
  C <- matrix(c(1,l2endog,l2endog,l1endog,l1endog, # uj 
                l2endog,1,0,0,0,  # age 
                l2endog,0,1,0,0,  # iq 
                l1endog,0,0,1,.3,  # x1 
                l1endog,0,0,.3,1), # x2 
              5,5) 
   
  rownames(C) <- colnames(C) <- c("uj", "age", "iq", "x1", "x2") 
  counter <- 0 
   
  set.seed(designNumber) 
   
  reps <- replicate(REPLICATIONS, { 
    counter <<- counter+1 
    print(counter) 
     
    ######################### Generate a sample ############################# 
     
    # Generate L2 variables.  
    data <- mvrnorm(l2nobs,rep(0,3),C[1:3,1:3]) 
    uj <- data[,1] 
    age <- data[,2] 
    iq <- data[,3] 
    rm(data) 
     
    lead_n <- 1:l2nobs 
     
    # Repeate the L2 variable values so the that the lenghts match the L1 
    # variable lenghts 
    uj <- rep(uj,l1nobs) 
    age <- rep(age,l1nobs) 
    iq <- rep(iq,l1nobs) 
    lead_n <- rep(lead_n,l1nobs) 
     
    # L1 variables.  
    # Regress x1 on uj, age, and iq using the population matrix and generate 
    # based on predicted values 
    b <- solve(C[1:3,1:3],C[1:3,4]) 
    r2 <- as.vector(b %*% C[1:3,1:3] %*% b) 
     
    x1 <- (uj * b[1] + 
      age * b[2] + 
      iq * b[3] + 
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      sqrt(1-r2) * rnorm(l1nobs * l2nobs)) * 
      2 * l1multiplier 
     
    # Regress x2 on uj, age, iq, and x2 using the population matrix and generate 
    # based on predicted values 
     
    b <- solve(C[1:4,1:4],C[1:4,5]) 
    r2 <- as.vector(b %*% C[1:4,1:4] %*% b) 
     
    x2 <- (uj * b[1] + 
      age * b[2] + 
      iq * b[3] + 
      x1 * b[4] + 
      sqrt(1-r2) * rnorm(l1nobs * l2nobs)) * 
      2 * l1multiplier 
     
    # Rescale all variables to have the desired means and SDs 
    age <- age*2 + 30 
    iq <- iq*3 + 115 
     
    # Generate the error term 
    e <- 4*rnorm(l1nobs * l2nobs) * l1multiplier 
     
    # Generate the dependent variable 
    y <- betax1*x1 + 1*x2 + betaage*age + 1*iq + 10*uj + e 
     
    ############# Run all estimators and collect the results ################ 
     
    # Generate cluster means and different centered versions 
    x1cm <- rep(aggregate(x1, list(lead_n), mean)[,2],l1nobs) 
    x2cm <- rep(aggregate(x2, list(lead_n), mean)[,2],l1nobs) 
     
    x1cc <- x1-x1cm 
    x2cc <- x2-x2cm 
     
    x1gc <- x1-mean(x1) 
    x2gc <- x2-mean(x2) 
     
    data <- data.frame(uj, age, iq, x1, x2, e, y, x1cm, x2cm, x1cc, x2cc, x1gc, x2gc,
 lead_n) 
    pdata <- pdata.frame(data, index = "lead_n") 
     
    results <- matrix(NA,0,0) 
     
    for(i in 1:nrow(estimatorsToRun)){ 
      f <- switch(estimatorsToRun[i,"centering"], 
                  none = y ~ x1 + x2 + age + iq, 
                  "grand mean" =  y ~ x1gc + x2gc + age + iq, 
                  "cluster mean" =  y ~ x1cc + x2cc + age + iq 
      ) 
       
      if(estimatorsToRun[i,"clusterMeans"]=="TRUE") f <-  
          update.formula(f,y ~ . + x1cm + x2cm) 
       
      est <- switch (estimatorsToRun[i,"estimator"], 
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                     OLS = lm(f), 
                     "ML RE" = lmer(update.formula(f,y~. + (1|lead_n)), 
                                    REML = FALSE), 
                     "GLS FE" = plm(f,data=pdata,model = "within"), 
                     "GLS RE" = plm(f,data=pdata,model = "random") 
      ) 
       
      # Extract the coefficients and variance estimates 
       
      co <- switch(estimatorsToRun[i,"estimator"], 
                   "ML RE"= fixef(est), 
                   coef(est)) 
       
      va <- diag(as.matrix(vcov(est))) 
       
      co <- rename(co,c(x1gc="x1", x1cc="x1", x2gc="x2", x2cc="x2"),  
                   warn_missing = FALSE) 
      va <- rename(va,c(x1gc="x1", x1cc="x1", x2gc="x2", x2cc="x2"), 
                   warn_missing = FALSE) 
      names(va) <- paste("var",names(va)) 
       
      a <- t(c(replication=counter,estimator=i,co,va)) 
      results <- rbind.fill.matrix(results,a) 
    } 
    results 
  }, simplify = FALSE) 
   
  results <- cbind(do.call(rbind,reps)) 
  save(results,file=paste("Design_",designNumber,".Rdata",sep="")) 
   
  # Detach the design 
  detach() 
} 
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Appendix F: Coding Manual 

1. Full article citation 

2. Year of publication 

3. Journal 

4. Is the article focused on micro or macro questions or variables? 

5. Type of panel data: Longitudinal, Hierarchical, or Both? 

6. Sample size at lowest level (Level 1)? 

7. Sample size at Level 2? 

8. Sample size at Level 3 (if applicable)? 

9. Data modeled wide or long (long format assumed if not reported)? 

10. Dummies included for unobserved heterogeneity at lowest level? 

11. All relevant cluster means included? 

12. Estimator used (e.g., GLS random effects, GLS fixed effects, ML random effects, ML, 

OLS, GEE, GMM, others)? 

13. Program used (e.g., HLM, Stata, Mplus, SPSS, R)? 

14. Command used if reported by authors? 

15. Are modeled Level 1 predictors endogenous, exogenous (i.e., manipulated, fixed, or vary 

randomly in nature), or instrumented? 

16. Are modeled Level 2 predictors endogenous, exogenous (i.e., manipulated, fixed, or vary 

randomly in nature), or instrumented? 

17. Are Level 1 data centered (i.e., grand-mean, cluster-mean, standardized)? 

18. Are Level 2 data centered (i.e., grand-mean, cluster-mean, standardized)? 

19. Are authors interested in Level 1 effects, Level 2 effects, both Level 1 & Level 2, or 

cross-level interactions? 

20. Is the random effects assumption (if applicable) tested for? 

21. If test of the RE assumption, which test is performed (e.g., Hausman, LR, F-test)? 

22. If test of the RE assumption, does the RE assumption empirically hold? 

23. Do authors make the RE assumption, and if yes, does it empirically hold?  

24. How are standard errors computed (e.g., default, heteroscedasticity robust, cluster robust) 

25. Do authors model time effects in longitudinal studies (if applicable)? 
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26. Do authors make causal claims, recognize correlation, acknowledge some causality issues 

in the limitations, or are unclear regarding causality
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Appendix G: Coding variables across journals 

 AMJ 

(N=44) 

SMJ 

(N=38) 

JAP 

(N=27) 

JOM 

(N=22) 

JOB 

(N=19) 

OS 

(N=16) 

LQ  

(N=14) 

PP 

(N=13) 

JOpM 

(N=11) 
All 

journals 

(N=204) 

Focus 

Micro 

Macro 

 

45.45% 

54.55% 

 

0% 

100% 

 

96.30% 

3.70% 

 

59.09% 

40.91% 

 

94.74% 

5.26% 

 

0% 

100% 

 

85.71% 

14.29% 

 

100% 

0% 

 

0% 

100% 

 

50% 

50% 

 

Panel Type 

Longitudinal 

Hierarchical 

Both longitudinal 

& hierarchical 

 

 

59.09% 

25.00% 

15.91% 

 

 

57.89% 

23.68% 

18.42% 

 

 

37.04% 

59.26% 

3.70% 

 

 

40.91% 

54.55% 

4.55% 

 

 

47.37% 

42.11% 

10.53% 

 

 

56.25% 

18.75% 

25.00% 

 

 

21.43% 

78.57% 

0% 

 

 

30.77% 

69.23% 

0% 

 

 

81.82% 

9.09% 

9.09% 

 

 

46.67% 

45.33% 

8.00% 

 

Median Level 1 

Sample size 

Longitudinal 

Hierarchical 

Both longitudinal 

& hierarchical 

 

 

 

2,012 

525 

17,658 

 

 

 

1,496 

2,115 

51,730 

 

 

 

 

885 

661 

2920 

 

 

 

1,610 

300 

483 

 

 

 

655 

361 

11,885 

 

 

 

8,847 

3,032 

7,006 

 

 

 

685 

291 

N/A 

 

 

 

592 

213 

N/A 

 

 

 

5,033 

187 

878 

 

 

 

1,184 

328 

7,488 

 

Median Level 2 

Sample size 

Longitudinal 

Hierarchical 

Both longitudinal 

& hierarchical 

 

 

 

240 

68 

2,332 

 

 

 

141 

122 

6,692 

 

 

 

93 

65 

584 

 

 

 

299 

45 

N/R 

 

 

 

86 

59 

2,916 

 

 

 

482 

557 

517 

 

 

 

137 

63 

N/A 

 

 

 

75 

54 

N/A 

 

 

 

304 

12 

307 

 

 

 

150 

58 

2,155 

Note: N/A: Not applicable; N/R: Not reported or unclear. AMJ=Academy of Management Journal; SMJ=Strategic Management 

Journal; JAP=Journal of Applied Psychology; JOM=Journal of Management; JOB=Journal of Organizational Behavior; 

OS=Organization Science; LQ = Leadership Quarterly; PP=Personnel Psychology; JOpM=Journal of Operations Management. Note, 

overall, 83.17% of the articles analyzed data at two levels, and the rest had three levels of data.  
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Appendix H: Coding categories for different variables under study 

Estimator used Program used Interest Standard error Treatment of time Test of random 

effects 

ML random effects 

(106) 

HLM (43) Level 1 effects (118) Nothing reported about 

standard errors, 

assuming default (113) 

Time dummies (85) No tests performed 

despite the use of 

RE (90) 

OLS, 2SLS, or 3SLS 

(32) 

Mplus (32) Level 2 effects (4) Cluster robust (57) Ignored (37) Not applicable 

because no RE 

model used (80) 

ML non random 

effects (29)  

Stata (30) Interest in Level 1 and 

Level 2 effects (22) 

Heteroscedastic robust 

SE (28) 

Not applicable (82) Hausman test (24) 

GLS random effects 

(12) 

SAS (5) Interest in Level 

1/Level 2 effects and in 

cross level interactions 

(60) 

Others (6)  Comparison with 

other estimation 

procedures, but no 

test (10) 

GLS fixed effects 

(10) 

R (4)    

 

 

GMM (7) SPSS (2)     

GEE (4) Others, unclear and 

not-reported (88) 

    

Others, unclear and 

not-reported (4) 

     

 

Note: Number in parentheses represents the number of articles which have taken the following approach. 


