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Abstract
Retinoblastoma is the most common pediatric eye cancer. It is currently treated with 
a limited number of drugs, adapted from other pediatric cancer treatments. Drug tox-
icity and relapse of the disease warrant new therapeutic strategies for these young 
patients. In this study, we developed a robust tumoroid-based platform to test chem-
otherapeutic agents in combination with focal therapy (thermotherapy) – a treatment 
option widely used in clinical practice – in accordance with clinically relevant trial 
protocols. The model consists of matrix-embedded tumoroids that retain retinoblas-
toma features and respond to repeated chemotherapeutic drug exposure similarly 
to advanced clinical cases. Moreover, the screening platform includes a diode laser 
(810 nm, 0.3 W) to selectively heat the tumoroids, combined with an on-line system to 
monitor the intratumoral and surrounding temperatures. This allows the reproduction 
of the clinical settings of thermotherapy and combined chemothermotherapy treat-
ments. When testing the two main drugs currently used in clinics to treat retinoblas-
toma in our model, we observed results similar to those clinically obtained, validating 
the utility of the model. This screening platform is the first system to accurately re-
produce clinically relevant treatment methods and should lead to the identification of 
more efficient drugs to treat retinoblastoma.
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1  |  INTRODUC TION

Retinoblastoma is the most common intraocular malignancy of child-
hood that is typically diagnosed in infants under the age of 5 years.1 
While the survival rate in high-income countries is higher than 95%, 
the relapse rate, incidence of secondary tumors, and side-effects 
associated with treatments remain a challenge.2,3 Retinoblastoma 
originates from cone-precursors.4 While growing, tumor cells can 
detach from the primary intraretinal mass and seed into various 
nonvascularized eye compartments such as the vitreous and the 
subretinal space or the aqueous humor.5,6 Chemotherapy, under dif-
ferent injection routes, is broadly used to treat retinoblastoma at 
each stage.7 Intravenous and intra-arterial chemotherapy are typ-
ically used as a first-line or salvage treatment for retinal and sub-
retinal disease, while intraocular injections are necessary to manage 
intravitreal and/or aqueous seeding.8–10 Thermotherapy can be used 
isolated for small retinal or subretinal tumor or tumor relapses or 
combined with systemic chemotherapy (chemothermotherapy).11–13

Systemic chemotherapeutic agents currently used to treat ret-
inoblastoma, such as carboplatin, etoposide, and vincristine, were 
not specifically developed for this disease or identified through a 
systematic screening approach, but rather chosen through pilot 
studies based on their performance in other pediatric cancers.14 
In contrast, melphalan was found to be the most tumoricidal drug 
among 12 other drugs in vitro and is used exclusively for targeted 
chemotherapy (intra-arterial or intraocular injections) due to its high 
systemic toxicity.15 To date, there are no common standardized pro-
tocols concerning the treatment regimen (drug type or drug com-
bination) among the centers. Treatment resistance and/or tumor 
progression despite therapy are managed with enucleation to avoid 
tumor spread. Finally, cases with extraocular spread at diagnosis 
or during conservative management, especially those with central 
nervous involvement, are associated with a poor survival outcome 
due to the insufficient efficacy of the current available chemo-
therapy drugs. Preclinical models that mimic the clinical methods 
should facilitate the discovery of new drugs to overcome the above-
mentioned limitations.

Preclinical retinoblastoma models include cellular models and 
animal models (both transgenic and xenograft).16–19 While in vivo 
transgenic animal models, that is, GEMMs, are able to depict some tu-
morigenic aspects of the disease, there are genomic and epigenomic 
differences between mice and humans.21 Particularly in the case of 
retinoblastoma, as the cell of origin is different in these two spe-
cies, mice are not an optimal organism to study this specific disease. 
Xenograft models, or PDX, resemble growth patterns of patient reti-
noblastoma, but species specificities of the microenvironment could 
result in genetic heterogeneity and induce major changes within 
the tumor cells.22 Regarding treatment development, the choice of 
in vivo model significantly impacts on the response of the tested 
drug. For instance, a comparative study of a systemic chemotherapy 
protocol in both GEMMs and PDX models revealed a complete and 
a poor response, respectively.23 In contrast, in vitro cellular mod-
els present certain advantages, such as ease of maintenance and 

growth, accessibility, and facile imaging. Nevertheless, most conven-
tional in vitro models lack organization and cell–cell and cell-matrix 
interactions, factors that impact strongly on drug performance.24

An alternative to preclinical models comprises 3D in vitro cul-
tures or tumoroids, which overcome cross-species alterations (as 
seen in the animal models) and lack of complexity (as seen in cel-
lular models). These 3D models provide important insights into the 
biology and tumorigenesis and are able to reflect parental tumor 
features,25–27 which make them an advanced in vitro filter for pro-
spective drug candidate screening. Although retinoblastoma tumor-
oids have been reported previously,27 they have not been adapted 
to the diversity of therapeutic approaches used to treat retinoblas-
toma, and hence there is currently an unmet need in adapted models 
to investigate new drug candidates or drug combinations in various 
and adjustable clinically relevant settings.

In this study, we present a robust 3D tumoroid system used to 
validate clinically relevant chemotherapy and chemothermother-
apy protocols, mimicking treatments currently used for the solid 
and liquid forms of retinoblastoma tumors. The system allows drug 
screening alone or in combination with thermotherapy, facilitating 
the discovery of treatment candidates for retinoblastoma.

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture

Human retinoblastoma cell lines Y79 and WERI-Rb1 were cultured 
according to the manufacturer instructions (identifier and source of 
all materials used in this study are summarized in Table S1).

2.2  |  Free-floating spheroids

To define optimal conditions for 3D culture, cells were grown under 
12 different conditions described in the manuscript. The different 
base media used consist of DMEM:F-12, RPMI-1640, or neurobasal 
medium. Media were supplemented with either 20% FBS or 20 ng/
mL recombinant human EGF, 20 ng/mL recombinant human basic 
FGF, 20 ng/mL recombinant human LIF, 1× B27 supplement minus 
vitamin A, 100 IU/mL penicillin–streptomycin, and 5 μg/mL heparin. 
Additionally, cells were cultured either in the presence or absence 
of 100 g/mL HA at the same concentration endogenously found in 
human vitreous.28,29

2.3  |  Basement membrane matrix-
embedded tumoroids

Tumoroids were generated as described previously with protocol 
modifications.27 In brief, single cell suspension was embedded in 
growth factor reduced Matrigel (Corning), Geltrex (ThermoFisher), 
or Cultrex Type 2 (Bio-Techne) to the final protein concentration of 
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6 mg/mL, 10 mg/mL, and 6 mg/mL, respectively. Cell density was 
adjusted to 5.0 × 104 cells/mL to avoid over-confluency by the end-
point of tumoroid generation (3 weeks). Drops (20 μL) were polymer-
ized at 37°C and overlaid with prewarmed culture medium (complete 
RPMI-1640 medium supplemented with either 20% FBS for Y79 tu-
moroids, or 10% FBS for WERI-Rb1 tumoroids) and maintained in a 
humidified incubator under 5% CO2 at 37°C, with medium changed 
twice a week. Tumoroids were grown for 3 weeks and then assessed 
for further experiments.

2.4  |  Immunohistochemistry

Tumoroids were extracted from the matrix with Cell Recovery 
Solution (Corning), fixed in 4% MeOH-free formaldehyde, then em-
bedded in HistoGel (Epredia) and later in paraffin.

Immunohistochemistry and immunofluorescence were carried 
out on a series of either 6 μm-thick cryosections or on 4 μm FFPE 
sections. Antigen retrieval in citrate buffer at pH 6 was done prior 
to blocking for FFPE sections. Slides were blocked for 1 h with 10% 
normal goat serum, incubated overnight with the primary Ab diluted 
in blocking buffer, and washed three times with PBS. Slides were in-
cubated with appropriate secondary Ab for 1 h, washed three times 
with PBS, and counterstained with DAPI and/or rhodamine phalloi-
din. Antibodies used in this study are summarized in Table S1.

2.5  |  Quantitative RT-PCR

Tumoroids were extracted from the matrix with Cell Recovery 
Solution (Corning), and total RNA was isolated with an RNeasy 
Mini Kit (Qiagen). A NanoDrop 2000C spectrophotometer (Thermo 
Scientific) was used to quantify the isolated RNA. Subsequently, a 
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) 
was used to reverse transcribe the total RNA into cDNA. Quantitative 
RT-PCR was undertaken using FastStart Essential DNA Green 
Master (Roche). Primers for human genes were designed with the 
Primer-BLAST tool (NCBI NLM NIH) and synthesized by Merck. The 
primer sequencings are summarized in Table S2. ATP5B and GPI were 
used as housekeeping genes.

2.6  |  Drug screening

2.6.1  |  PrestoBlue cell viability assay

Drug stock solutions were prepared freshly in DMSO. Cells were 
plated in 96-well flat-bottom plates at a final concentration of 
4 × 105 cells/mL and then treated. We used DMSO and gambogic acid 
as negative and positive controls, respectively. Cultures were incu-
bated for 72 h in a humidified incubator under 5% CO2 at 37°C (or, 
alternatively, for 1 h at 42°C and then transferred to 37°C for 71 h). 
PrestoBlue (Invitrogen) cell viability reagent was added to cultures 

at 1:10 ratio, and samples were incubated for 1 h. Fluorescence 
at 560/590 nm was detected with a SpectraMax M5e microplate 
reader (Molecular Devices).

2.6.2  |  Calcein AM–ethidium homodimer-1 cell 
viability assay

Fresh drug solutions were prepared before usage. Three-weeks 
postseeding BME-embedded tumoroids were used for the experi-
ment. Samples were treated for 72 h, rinsed with PBS, and labeled 
with calcein AM and ethidium homodimer-1 according to the manu-
facturer's protocol (ThermoFisher). Fluorescence imaging and bright 
field imaging were undertaken with the IN Cell Analyzer 2200 sys-
tem (GE Healthcare). Automated acquisition was carried out in an 
environmental chamber (at 37°C with 5% CO2) using a 4×/0.2 NA 
objective.

2.7  |  Thermotherapy assessment

The laser illumination system was composed of a laser, imaging op-
tics, and a bending mirror. The laser is a continuous wave, 810 nm 
semiconductor device. The output power can be controlled manually 
from 0.1 to 1.0 W. The laser was coupled to a 200 μm optical fiber, 
which delivers the light to the imaging optics. The imaging optics 
uses a single aspheric lens to image the end of the optical fiber on 
the biological sample. The image size on the sample is measured to 
be 350 μm. Because of the limited space between the microscope 
condenser unit and the sample stage, a bending mirror was used to 
deliver the light from the imaging optics to the sample.

Temperature measurements were carried out using a ONE Pro 
(FLIR), mid infrared camera. The light from the sample to the camera 
was delivered by a protected silver bending mirror.

To characterize ICG, attenuated transmitted reflectance Fourier 
transform infrared spectrum was acquired on a Perkin Elmer 
Spectrum-Two instrument equipped with diamond-anvil configura-
tion; UV/visible/near infrared spectrum was recorded on a Perkin 
Elmer Lambda 950S spectrometer using quartz cuvettes.

2.8  |  Data analysis

Image analysis was carried out using CellProfiler 4.2.1 comple-
mented with the module for the deep learning-based segmentation 
algorithm Cellpose30 and Fiji ImageJ 1.53q software.

2.9  |  Statistical analysis

Statistical analyses were undertaken using GraphPad Prism 9.4.0. 
software. Two-tailed nonparametric tests were used, unless other-
wise specified. Significance levels of *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, 
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****p ≤ 0.0001, and not significant (p ≥ 0.05) were used. Data repre-
sent mean ± SD, unless otherwise specified.

3  |  RESULTS

3.1  |  Optimization of retinoblastoma tumoroid 
culture conditions

To determine the experimental settings that allow the growth of 
retinoblastoma free-floating spheroids, we first defined the optimal 
culture conditions, based on previously described patient-derived 
3D structures.26,31,32 To better mimic the tumor environment and 
the contact with the vitreous, that is, to ensure relevant viscosity, HA 
was added to the media. Dense bulky structures forming spheroids 
in 3–4 days of culture were obtained from the Y79 cell line under 
serum-free advanced DMEM/F-12 base medium supplemented with 
a cocktail of growth factors (EGF, FGF, and LIF), heparin, B-27, and 
HA (Figure S1). These spheroids were used to evaluate the cytotoxic 
effect of current retinoblastoma chemotherapeutics, that is, carbo-
platin, melphalan, etoposide, and topotecan, in dose–response man-
ner. The IC50 values did not reveal a significant difference compared 
to standard 2D suspension culture (Table S3), presumably because 
the Y79 cell line spontaneously grows as aggregates in suspension 
(although these aggregates are easily disrupted and not very dense, 
unlike spheroids). With continuous culture under these conditions, 
the spheroids tended to show a decreased proliferation rate and vi-
ability after approximately 3 weeks.

As the primary retinoblastoma tumor localizes within the neu-
ronal layers of the retina, we hypothesized that the tumor cells 
will better maintain their properties within a matrix, and conse-
quently implemented a scaffold-based approach into the tumoroid 
model (a schematic representation of the entire process is shown 
in Figure  1A). The formation of dense tumoroids was observed 
3–4 weeks postseeding from both Y79 and WERI-Rb1 cell lines 
(Figures  1B and S2A). Various commercially available matrixes 
were tested (Matrigel, Geltrex, and Cultrex) and all supported tu-
moroid formation and growth (Figures  1C and S2B). The number 
and size of the Y79 tumoroids varied in Cultrex matrix compared 
to the other matrixes (average number of 8 tumoroids in Cultrex 
vs. 72 and 39 in Matrigel and Geltrex, respectively, at 21 days post-
seeding; Figure  S3), and thus was excluded. Matrigel and Geltrex 
growth curves both fitted the same equation of exponential growth 
(p = 0.6505). For WERI-Rb1 tumoroids, all matrixes worked simi-
larly. For clarity, Y79 Geltrex-embedded and WERI-Rb1 Cultrex-
embedded tumoroids will be described from now on. Three weeks of 
growth, followed by automated segmentation and quantification of 
tumoroids in each well, and further two-way ANOVA statistical anal-
ysis did not reveal significant intraplate variability (Figures 1D,E and 
S2C). Nevertheless, variability between some independent experi-
ments (e.g., E9 and E18) was observed, which is probably due to cell 
variability (Table S4). An increase in tumoroid size, although not sig-
nificant, correlates with a decreased number of tumoroids per well 

(Pearson's correlation coefficient, −0.5030; p = 0.0720) (e.g., 89 ± 11 
tumoroids with a diameter of 156 ± 35 μm [E9] and 34 ± 3 tumoroids 
with a diameter of 207 ± 50 μm [E36]; Figure 1F). Despite this vari-
ability, comparison of dose–response curves from independent ex-
periments did not reveal variation of IC50 values (p = 0.7525), which 
makes the tumoroid model suitable and reliable for drug screening 
and comparison of experiments. Tumoroids in these conditions were 
alive and proliferative for up to 8 weeks postseeding, which, unlike 
most of the existing models, allows the implementation of various 
drug testing protocols (see below).

3.2  |  Molecular characterization of retinoblastoma 
tumoroid model

To validate that the integrity of the retinoblastoma cells was con-
served when cultured in 3D, structural features and expression of 
specific markers were investigated at the RNA and protein levels. 
In 2D and 3D cultures, the morphological features of the Y79 and 
WERI-Rb1 cells were similar with enlarged, irregular, angulated nu-
clei with a heterogenous chromatin and scant cytoplasm. In Y79 tu-
moroids, necrotic cells at the centers of the tumoroids surrounded 
by a rim of live cells could be identified, as observed clinically and 
histopathologically in vitreous spheres.5 Immunohistochemical anal-
ysis indicated that both retinoblastoma tumoroids retained the loss 
of retinoblastoma protein expression with a preserved expression 
of synaptophysin (Figures 2 and S4). As expected, the proliferative 
activity (Ki-67) was high, notably in the outer proliferative rim for 
Y79 tumoroids.33 Furthermore, the retinoblastoma tumoroids main-
tained both nuclear expression of early photoreceptor/cone marker 
orthodenticle homeobox 2 (OTX1-2) and cytoplasmic expression 
of late cone marker arrestin 3 (ARR3), which would define Y79 and 
WERI-Rb1 2D and 3D as subtype 2 retinoblastoma, following the 
classification of Liu et al.34

The Y79 tumoroids did not show significant differences in 
marker gene expression compared to 2D culture when analyzed at 
the RNA level (Figure S5). The only noticeable difference, although 
not significant, is a tendency to upregulate the pro-apoptotic factor 
BNIP3, linked to hypoxia, which might indicate the presence of a hy-
poxic region in the tumoroid model.

3.3  |  Retinoblastoma tumoroid model as a 
chemotherapy drug screening platform

Our tumoroid model was initially used to evaluate the chemothera-
peutic treatments melphalan and carboplatin, applied as single 
agents in the clinic to treat liquid or solid intravitreal retinoblastoma 
tumors. The first treatment protocol implemented (Protocol 1) con-
sisted of 3-week tumoroid generation, followed by 3-day drug ex-
posure ending with a live-dead viability assay using high-throughput 
imaging and automated high-content analyses (Figure 3A,B). Assay 
performance was validated as a model for screening with Z'-factor 
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F I G U R E  1  Generation of scaffold-based retinoblastoma tumoroids from Y79 cell line. (A) Schematic of tumoroids grown from a single 
cell in a drop of matrix. (B) Real-time brightfield microscopy images displaying the same single tumoroid grown in Geltrex at different time 
points. Scale bars, 200 μm. (C) Time course quantification of the size of tumoroids grown in various BME, averaged from three independent 
experiments. (D) Snapshot of a single well with tumoroids at 21 days postseeding; nine fields of view acquired and brought together allow 
the full area of the matrix drop in each well to be visualized and analyzed. Dashed circle shows the limit of the matrix drop; colored circles 
represent mask for further quantification as determined using CellProfiler software complemented with the module for the segmentation 
algorithm Cellpose. One representative experiment. Scale bars, 2 mm. (E) Diameter variability of tumoroids at 21 days postseeding among 
independent experiments. Two technical replicates representing one well each are shown per experiment; Kruskal-Wallis statistical test. 
Dashed line indicates the median, dotted lines indicate the lower and upper quartiles. (F) Correlation of diameter and number of tumoroids 
at 21 days postseeding among technical replicates (indicated as _R1 or _R2) and independent experiments (E# and color coded). ns, not 
significant (p ≥ 0.05).
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based on fluorescence intensity values of negative (DMSO) and pos-
itive (gambogic acid) controls – Z' values above 0.4 were accepted 
(Figure 3C).35 The responses of melphalan and carboplatin were in-
vestigated and compared to 2D suspension culture. The IC50 value 
of melphalan in Y79 tumoroids was 163 ± 31 μM versus 3.4 ± 0.9 μM 
in the 2D counterpart (Figure  3D). The IC50 values of carboplatin 
were 843 ± 75 μM and 62 ± 4 μM in tumoroid and 2D culture, re-
spectively (Figure  3D). In WERI-Rb1 tumoroids, IC50 values of 
melphalan were 390 ± 169 μM and 7.5 ± 6.0 μM in 2D; IC50 values 
of carboplatin were 345 ± 77 μM (tumoroid) and 22.6 ± 6.0 μM (2D) 

(Figure  S6, Table  S5). This difference is consistent with previous 
studies showing lower drug sensitivity of 3D structures compared 
to their 2D counterparts.36,37 To investigate whether matrix com-
ponents influence drug efficacy, we studied drug response in the 
presence of 2% matrix suspension. None of the matrixes tested 
hindered the efficacy of carboplatin or melphalan (Figure  S7). In 
comparison to the clinically applied doses, reported melphalan dose 
for intravitreal chemotherapy single injection is 20–40 μg, which 
corresponds to an intravitreal concentration of 16.5–33 μM.38 
Systemically administered carboplatin at a dose of 560 mg/m2 was 

F I G U R E  2  Morphology and molecular features of Y79 retinoblastoma tumoroid model. (A–H) H&E staining, retinoblastoma protein 
(RB), synaptophysin (SYP), and proliferation marker Ki-67 immunohistochemistry of retinoblastoma tumoroids compared to 2D suspension 
culture. Scale bars, 200 μm. Staining was carried out on successive sections of the same tumoroid, hence the difference in size of the stained 
material. (I–R) Immunostaining of phalloidin, arrestin 3 (ARR3), and orthodenticle homeobox 2 (OTX1-2), counterstained with DAPI. Scale 
bars: panels, 100 μm; insets, 30 μm.
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reported to correspond to an intravitreal concentration of 4.05 μg/
mL (or 10.91 μM) in enucleated eyes.39

To achieve cancer remission, the majority of patients with vit-
reous liquid seeds need to be exposed to one or several cycles of 
2–4-weekly intravitreal injections of melphalan. Hence, to better 
mimic clinical protocols, tumoroids were exposed to melphalan for 
four cycles of treatment, each consisting of 3 days of drug expo-
sure followed by medium renewal for 4 days (Protocol 2; Figure 3A). 
Note that medium renewal was used to adapt the protocol from 
intravitreal injection to in vitro use, mimicking constant renewal of 
the vitreous humor and a subsequent decrease of drug amount in 
the vitreous.40 Tumoroid viability and size progressively decreased 
over 4 weeks of treatment (Figures 3E and S8), reflective of clinical 
observations.3,38

3.4  |  Chemothermotherapy screening – combining 
tumoroid model with focal therapy

As retinoblastoma primary tumors start from a solid intraretinal 
growth, chemotherapy is often clinically used in combination with 
focal thermotherapy. Clinical chemothermotherapy protocols con-
sist of systemic carboplatin treatment followed by laser irradiation 
for a duration of several minutes, typically 1–16 min.12,41 In contrast, 
studies investigating drug candidates for their synergy with heat 
reproduce hyperthermia conditions in vitro by incubating treated 
cells at stable elevated temperatures for typically 1–2 h.42,43 To bet-
ter mimic clinical conditions, an 810 nm diode laser beam (the same 
laser type as that used in the clinic) was focused on the tumoroid 
sample through imaging optics and bending mirrors (Figure 4A). The 

F I G U R E  3  Phenotypic drug screening. (A) Timeline of two screening protocols: standard assessment of cytotoxicity (Protocol 1) and a 
clinically relevant repeated-treatment protocol (Protocol 2). (B) Tiled fluorescence microscopy images of a dose–response experiment on a 
24-well plate. Tumoroids were fluorescently labeled with calcein-AM (live, green) and ethidium homodimer-1 (dead, red). As representative 
examples, the positive control gambogic acid (Pos Ctrl) and the negative control DMSO (Neg Ctrl) were chosen to demonstrate the imaging 
pipeline. The last column shows the corresponding outlines of objects segmented during image analysis for the selected microscopy 
images. Scale bars: well plate, 2 mm; well inset, 500 μm; single tumoroids, 200 μm. (C) Violin plots showing the comparison of the relative 
fluorescence intensity average values (ratio of dead and live channels) and their variability between both positive and negative controls. 
Dashed line indicates the median, dotted lines indicate the lower and upper quartiles. (D) Dose–response curves of melphalan (left panel) 
and carboplatin (right panel) on tumoroid model and suspension culture. (E) Repeated treatment protocol with melphalan over 4 weeks of 
treatment (w 1–w 4); ordinary one-way ANOVA statistical test. *p ≤ 0.05, ****p ≤ 0.0001, ns, not significant (p ≥ 0.05).
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F I G U R E  4  Development and optimization of the system for evaluating chemothermotherapy in tumoroids. (A) Schematic and photograph 
of the illumination system. Red arrows indicate the laser beam path; black arrows indicate the light path to the thermal camera. (B) Real-time 
brightfield image of the laser beam focused on tumoroid culture. Scale bar, 200 μm. (C) Combined multispectral dynamic image of the laser 
beam focused in the well. (D) Heatmaps of the laser spot (Tspot) and base well (Tbase) temperatures. (E) Cytotoxicity of chemo-, thermo-, or 
combined therapy depending on the concentration of indocyanine green (ICG) and power of the laser. Kruskal–Wallis statistical test. (F) 
IC50 values of carboplatin and melphalan alone or in combination with thermotherapy. Left panel, suspension culture; right panel, tumoroid 
(comparison of different thermotherapy settings). Ordinary two-way ANOVA statistical test. *p ≤ 0.05, **p ≤ 0.01, ns, not significant (p ≥ 0.05). 
IR, infrared.
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system was combined with an inverted microscope to enable precise 
focusing in real-time (Figure 4B). As all the components must fit be-
tween the sample stage and the microscope condenser, tumoroids 
were plated in 24-well plates (the deepness of wells in 48- or 96-
wells did not allow the laser beam to be directed on the tumoroid 
sample due to the limited space between the optics and the plate). A 
thermal camera was used to monitor and control the temperature of 
the sample during the procedure (Figure 4C).

Retinoblastoma cells are characteristically not pigmented, which 
results in low heat uptake.44 In the clinic, the use of thermotherapy is 
conditioned by the presence of pigmented epithelium retinal cells be-
hind the tumor to ensure heat uptake, or otherwise, a pretreatment 
with intravenous ICG is used to increase thermosensitivity as ICG 
has an absorption peak at approximately 800 nm (Figure S9).41 As the 
tumoroid model does not incorporate pigmented cells, ICG was used 
here as a thermosensitizer. To define the optimum conditions for the 
in vitro chemothermotherapy assay, various concentrations of ICG 
(reported safe dosage of up to 50 μg/mL45) and laser power (clinically 
relevant range between 0.1 and 1.2 W3) were tested under irradiation 
for 5 min. To provide sufficient hyperthermia, the temperature in the 
well (Tbase) should be higher than 39°C, with the maximum tempera-
ture (i.e., temperature of a laser beam spot, Tspot) not exceeding 60°C, 
corresponding to subcoagulation temperatures (heatmaps of these 
two temperatures are shown in Figures 4D and S10).46 Little or neg-
ligible heat uptake was observed at the lowest tested ICG concentra-
tion of 5 μg/mL independent of the power applied. Escalation of the 
ICG concentration and laser power lead to an increase in both Tspot 
and Tbase. Conditions that meet the abovementioned requirements 
necessitate a compromise involving either higher concentrations 
of ICG at lower laser powers (e.g. 35–50 μg/mL ICG and 0.3–0.4 W, 
Tspot reaches 59°C and Tbase reaches 41°C after 5 min of irradiation) 
or lower concentrations of ICG at higher laser powers (e.g. 10 μg/mL 
ICG and 0.9–1.0 W, Tspot reaches 48°C and Tbase reaches 39°C after 
5 min of irradiation, Figure S10). Interestingly, drug viability assess-
ments revealed that the tumoroids are more sensitive at high ICG 
concentrations rather than at high laser powers (Figure  4E). Thus, 
the optimal conditions for our thermotherapy in vitro protocol were 
defined as 50 μg/mL ICG and 0.3 W of irradiation power.

To validate the model, the efficacy of melphalan and carboplatin, 
used clinically in chemotherapy and chemothermotherapy, respec-
tively, was assessed (Figures 4F and S6). Melphalan, when used in 
combination with thermotherapy, did not demonstrate any cyto-
toxic enhancement in the tumoroid model using ICG and a directed 
laser (Y79 tumoroid model: IC50 values of 163 ± 31 μM at 37°C and 
167 ± 78 μM with irradiation for 5 min of 0.3 W and 50 μg/mL ICG; 
WERI-Rb1 model: 390 ± 169 μM without irradiation and 151 ± 173 μM 
with irradiation, Tspot was 56–59°C, Tbase was 41–44°C). There was no 
statistical difference between IC50 values in 2D suspension culture 
as well (Y79 2D: IC50 values of 4.4 ± 2.3 μM at 37°C and 4.3 ± 2.5 μM 
with incubation for 1 h at 42°C; WERI-Rb1 2D: 7.5 ± 6.0 μM at 37°C 
and 6.5 ± 0.2 μM with incubation for 1 h at 42°C).

Combining carboplatin with 5 min of irradiation of 0.3 W in 
the presence of 50 μg/mL ICG led to a significant decrease in the 

IC50 value in the Y79 tumoroid model, from 843 ± 75 μM at 37°C 
to 246 ± 89 μM when combined with focal therapy (Figure  4F). 
Although not significant, the IC50 value decreased with irradiation 
in WERI-Rb1 tumoroids as well, from 345 ± 77 μM to 210 ± 139 μM 
(Figure  S6). The same trend was observed in the 2D culture with 
the IC50 value significantly decreasing from 62.4 ± 3.5 μM at 37°C 
to 53.3 ± 1.7 μM at 42°C in Y79 cells and from 22.6 ± 6.0 μM to 
0.86 ± 0.03 μM in WERI-Rb1 cells. As a further control, the chemo-
thermotherapy protocol used in 2D culture was tested on the tumor-
oid model, that is, 1 h incubation at 42°C followed by 71 h at 37°C, 
which resulted in no cytotoxic enhancement with a TER value of 0.6 
and 1.1 for Y79 and WERI-Rb1 tumoroid models, respectively. This 
observation confirms that the laser-based thermotherapy system 
provides a chemotherapeutic response close to the clinical expe-
rience and enabling putative drugs to be evaluated in combination 
with thermotherapy.

To investigate whether the enhancement effect of chemother-
motherapy is conditioned by a specific structure of carboplatin or 
by the presence of metal atom, we tested other metal-based drugs 
– Pt-based cisplatin and Ru-based RAPTA-T on Y79 tumoroid model 
(Figure S11). We observed that carboplatin has the highest thermal 
enhancement ratio (3.4) among tested drugs (TER for cisplatin and 
RAPTA-T is 1.3 and 1.1, respectively). Notably, IC50 values of cispla-
tin were the lowest among all the conditions tested, and even for 
cisplatin alone, they are comparable with hyperthermia-enhanced 
carboplatin. Cisplatin was reported to have higher cytotoxicity to-
wards the Y79 cell line in vitro than carboplatin47 Despite its higher 
efficacy towards cancer cells, cisplatin is modestly used in pediatric 
cancers due to its nephro- and ototoxicity.48

RAPTA-T was chosen for this experiment due to its previously 
reported cytotoxicity towards adenocarcinoma and breast cancer 
cells.49,50 Compared to cisplatin and carboplatin, RAPTA-T showed 
the lowest cytotoxic effect, and the lowest TER.

4  |  DISCUSSION

Three-dimensional cellular models continue to attract interest in drug 
discovery as they provide a physiologically relevant, self-organizing 
environment, which resemble tissue and are a better indicator of in 
vivo activity compared to 2D cultures.24,51–53 Retinoblastoma 3D 
models, from simpler spheroids to sophisticated stem cell-derived or-
ganoids,25,26,31,54 were reported to phenotypically and morphologi-
cally reproduce retinoblastoma tumors.31,55 However, to determine 
whether the tumoroid model reflects clinical observations closer than 
2D culture, it is essential to strictly reproduce the clinical treatment 
mode.56 Here, we report a robust and reliable tumoroid model, estab-
lished from two retinoblastoma cell lines, Y79 and WERI-Rb1. Both 
of these cell lines harbor RB1 loss, and MYCN amplification (Y79) or 
gain (WERI-Rb1) and are thus representative of most retinoblastoma 
cases.57 Nevertheless, the small subset of retinoblastoma tumors 
(1.4%) harboring MYCN amplification and WT RB1 is not represented 
by our models and would thus require further investigation.58,59
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The scaffold-based approach to generate retinoblastoma tumor-
oids described herein exhibits advantages compared to free-floating 
spheroids, for example, expanded culture timeline and reproducibil-
ity, and allows the implementation of clinically relevant protocols. 
Repeated intravitreal chemotherapy protocol that is widely imple-
mented for the management of vitreous seeding was adapted to in 
vitro use in this study. The tumoroid model response to this protocol 
correlates with clinical observations of vitreous seeding response to 
the intravitreal chemotherapy.9,38

Thermotherapy and chemothermotherapy are often com-
bined and widely implemented in the treatment of retinoblastoma 
to control small confined tumors, as well as in the treatment of 
other intraocular cancers, such as ocular melanomas and heman-
giomas.60,61 Although there is no agreement or standard among 
clinical groups/protocols on chemothermotherapy or randomized 
clinical trials that could clearly state the benefits of thermother-
apy in addition to chemotherapy,62 it was reported that addition of 
thermotherapy to chemotherapy resulted in better tumor control 
at 4-year follow-up (83% compared to 63% in case of chemother-
apy alone).63 Indocyanine green, a clinically used thermosensitizer, 
after irradiation with near infrared laser converts 85% of energy 
to heat by internal conversion.64,65 In this study, an 810 nm diode 
laser was configured to mimic thermotherapy on the tumor-
oid model. The chemothermotherapy system was validated with 
known clinically used agents, and can serve as an accurate indica-
tor of drug activity for chemothermotherapy. Although the use of 
carboplatin with thermotherapy is mostly empirical, and there is a 
lack of randomized clinical studies showing therapeutic benefits 
of such a combination,62,63 platinum-based drugs were reported 
to show greater effect in combination with thermotherapy.66 Heat 
enhances intracellular platinum accumulation and reduces intra-
cellular detoxification, leading to more platinum-induced DNA ad-
ducts and inhibiting their repair.67 It is not clear why melphalan 
does not show an enhancement when combined with focal ther-
motherapy, despite earlier works reporting the treatment benefits 
of melphalan combined with thermal plaque.68,69 In our system, 
we have observed that the combined effect of chemo- and ther-
motherapy depends on the drug (no universal effect for all metal-
based drugs) and on the cytotoxicity level of the chemotherapeutic 
agent. The high toxicity of melphalan could explain the lack of cy-
totoxicity enhancement with thermotherapy. This is an important 
factor to consider, as chemotherapy-associated side-effects are a 
major burden for young patients with retinoblastoma. Screening 
more drugs in our system to combine chemo- and thermotherapy 
would then allow to select molecules with few side-effects and 
a high efficiency on targeted cancer cell death. With control of 
temperature, laser power, and thermosensitizer concentration, 
this versatile system provides a more methodological approach to 
optimize clinical chemothermotherapy protocols than the current 
experience-based approach. This new protocol can facilitate the 
discovery of novel drug candidates to be used in well-established 
techniques not only for retinoblastoma, but potentially for other 
intraocular cancers.61

In summary, this new tumoroid model has potential to identify 
new drugs for chemotherapy and chemothermotherapy for the 
treatment of retinoblastoma. Further development implies model 
adaptation for other cancers, where metronomic and laser-based 
therapies (e.g., photodynamic therapy) are relevant.70–72 Finally, the 
model is beneficial in the development of heat-activated drug for-
mulations to be used for chemothermotherapy.73-75
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