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Abstract: Differential X-ray phase-contrast tomography (DPCT) refers
to a class of promising methods for reconstructing the X-ray refractive
index distribution of materials that present weak X-ray absorption contrast.
The tomographic projection data in DPCT, from which an estimate of
the refractive index distribution is reconstructed, correspond to one-
dimensional (1D) derivatives of the two-dimensional (2D) Radon transform
of the refractive index distribution. There is an important need for the
development of iterative image reconstruction methods for DPCT that can
yield useful images from few-view projection data, thereby mitigating the
long data-acquisition times and large radiation doses associated with use of
analytic reconstruction methods. In this work, we analyze the numerical and
statistical properties of two classes of discrete imaging models that form the
basis for iterative image reconstruction in DPCT. We also investigate the
use of one of the models with a modern image reconstruction algorithm for
performing few-view image reconstruction of a tissue specimen.
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1. Introduction

Differential phase-contrast tomography (DPCT) employing hard X-rays [1–5] refers to a class
of imaging methods for reconstructing the X-ray refractive index distribution of objects from
knowledge of differential projection data. At hard X-ray energies, variations in the real com-
ponent of the refractive index distribution of a light- or medium-density material are generally
several orders of magnitude larger than are the variations in the imaginary component (i.e., the
X-ray absorption). Consequently, DPCT may permit the visualization and quantitation of ob-
jects that present very low or no X-ray absorption contrast. In recent years, there have also been
advancements [6, 7] in implementing the method on the bench top by use of tube-based X-ray
sources. This is particular important in order for DPCT to find widespread use in biomedical
and nondestructive imaging applications.

The tomographic projection data in DPCT, from which an estimate of the refractive index
distribution is reconstructed, correspond to one-dimensional (1D) derivatives with respect to
the detector row coordinate of the two-dimensional (2D) Radon transform of the refractive
index distribution. These data can be interpreted as the angles in a plane that is perpendicular to
the axis of tomographic scanning by which the probing X-ray beams are deflected by the object
due to refraction. Several methods are available for implementing DPCT by use of synchrotron-
or tube-based X-ray sources. Such methods include those based on diffractive optics [8, 9]
or interferometry [10]. When DPCT is implemented with optical wavefields, which has been
referred to as beam-deflection tomography [11], techniques such as moire deflectometry [12]
have been employed for measuring the beam-deflection data.

It has been demonstrated that image reconstruction in DPCT can be achieved by use of mod-
ified filtered backprojection (FBP) algorithms [11, 13, 14]. An important observation by Faris
and Byer [11] was that the 1D differentiation of the projection data is prescribed by the classic
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FBP algorithm. Accordingly, instead of integrating the differential projection data explicitly and
thenapplying the classic FBP algorithm for reconstruction, they proposed a deflection filtered
backprojection DFBP algorithm that acts directly on the differential projection data. In order
to avoid image artifacts when employing this algorithm and other analytic reconstruction algo-
rithms, tomographic measurements must be typically acquired at a large number of view an-
gles. This is highly undesirable because it can result in long data-acquisition times, especially in
bench top applications where the X-ray tube power is limited, and also may damage the sample
due to the large radiation exposure. Iterative image reconstruction algorithms have been widely
employed in mature tomographic imaging modalities for mitigating data-incompleteness and
noise. However, there is a scarcity of studies of iterative image reconstruction in DPCT [6,15]
and there remains an important need to develop robust iterative reconstruction methods for this
modality.

In this work, we analyze the numerical and statistical properties of two classes of discrete
imaging models that form the basis for iterative image reconstruction in DPCT. The models dif-
fer in the choice of expansion functions that are employed to discretize the infinite-dimensional
refractive index distribution that one seeks to estimate. One model employs conventional pixel
expansion functions while the other employs Kaiser-Bessel window functions. The latter choice
is shown to have the attractive feature that the 1D derivative operator in the DPCT imaging
model can be computed analytically, thereby cirvumventing the need to numerically approxi-
mate it. This feature has also recently been identified by Köhler,et al. [15]. A modern iterative
reconstruction algorithm that seeks to minimize total variation (TV) -norm of the refractive
index estimate is employed with a discrete imaging model for few-view image reconstruction.
The effectiveness of the reconstruction method is demonstrated by use of experimental DPCT
projection data corresponding to a biological tissue specimen.

2. Background: Imaging model for differential X-ray phase-contrast tomography

We will utilize the parallel-beam tomographic scanning geometry depicted in Fig. 1. However,
the results that follow can readily be adapted to the case of spherical wave illumination in
the paraxial limit [7]. Thez-axis of the reference coordinate system(x,y,z) defines the axis
of rotation of the tomographic scanning. The rotated coordinate system (xr,yr,z) is related
to the reference system by byxr = xcosθ + ysinθ ,yr = ycosθ − xsinθ , whereθ ∈ [0,π)
is the tomographic view angle measured from the positivex-axis. A phase-amplitude object
positioned at the origin is irradiated by an X-ray plane-wave with wavelengthλ , or equivalently
wavenumberk = 2π

λ , which propagates in the direction of the positiveyr-axis.

2.1. Data function and imaging model in continuous form

Let δ (x,y,z) ≡ 1− n(x,y,z) denote the compactly supported and bounded object function we
seek to reconstruct, wheren(x,y,z) is the real-valued refractive index distribution. We will
employ the notationδ (r2;z) ≡ δ (x,y,z), wherer2 = (x,y), as a convenient description of a
transverse slice of the 3D object function.

In DPCT employing a grating interferometer [1, 8, 10, 16, 17] or X-ray crystal optics
[9,18–24], the wavefield transmitted through the object is perturbed by one or more optical ele-
ments. The intensity of the perturbed wavefield at view angleθ is measured in the(xr,z) plane
located atyr = d and will be denoted byI(xr,z,θ ;K). HereK represents an integer-valued index
that specifies the state of the imaging system. For example, in crystal analyzer-based systems,
distinct values ofK would correspond to different orientations of the analyzer crystal. Alterna-
tively, in grating interferometry when a phase-stepping procedure [1, 8] is employed, distinct
values ofK correspond to different translational positions of the grating that is being scanned.

From knowledge of{I(xr,z,θ ;k)}NK
K=1 with NK ≥ 1, methods are available [1, 25, 26] for
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Fig. 1. A schematic of differential phase-contrast imaging tomography. The black box rep-
resentsthe system of optical elements that is specific to the implementation.

computing a data functiong(xr,z,θ) that, for a fixed value ofz, is related to the sought-after
object functionδ (r2;z) as

g(xr,θ ;z) =
∂

∂xr

∫

∞
dyr δ (r2;z) ≡ ∂

∂xr
Rδ (r2;z). (1)

Here,R denotes the 2D Radon transform operator. Equation (1) represents an idealized imaging
model for DPCT in its continuous form that assumes a geometrical optics approximation. A
discussion of the validity of this approximation is provided in Chapter 2 of reference [27]. Note
that the right hand side of Eq. (1) corresponds to a stack, along thez-axis, of differentiated 2D
Radon transforms ofδ (r2;z). The coordinatez can be interpreted as a parameter that specifies
a transverse slice and therefore the 3D imaging model can be described by a collection of 2D
ones.

The image reconstruction task in DPCT is to determine an estimate ofδ (r2;z) from knowl-
edge ofg(xr,θ ;z). Wheng(xr,θ ;z) is measured at a large number of view anglesθ , this can be
accomplished by use of analytic image reconstruction algorithms [11,28]. However, in the case
of noisy and/or few-view measurement data, analytic reconstruction methods are known to be
suboptimal and the use of iterative methods is warranted. The construction and investigation
of discrete imaging models that form the basis for iterative image reconstruction in DPCT is
described in the remainder of the article.

2.2. General forms of discrete imaging models

A natural way to obtain a discrete imaging model is to discretize the continuous model in
Eq. (1). When a digital detector is employed, the measured intensity data and associated data
function correspond to an ordered collection of numbers rather than a function of a continuous
variable. We will denote the discrete data function as

g[s, t;h] ≡ g(xr,θ ;z)|xr=s∆d ,θ=t∆θ ,z=h∆d , (2)
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wheres andh areinteger-valued detector element indices andt is the tomographic view index.
Here,∆d = L

Q denotesthe detector element dimension in a square detector array of dimen-
sion L×L, andQ denotes the number of samples measured in each dimension. The quantity
∆θ denotes the angular sampling interval between the uniformly distributed view angles. The
reconstruction algorithms described below can be applied in the case of non-uniformly sam-
pled measurement data as well. The general forms of the reconstruction algorithms would
remain unchanged for the case of non-uniformly sampled measurement data; However, the ex-
plicit forms of the system matrices would be changed. Although not indicated in Eq. (2), the
measured discrete data will also be degraded by the averaging effects of the sampling aperture.
Additionally, the effects of finite temporal and spatial beam coherence will effectively blur the
data functiong[s, t;h]. These effects can limit the attainable spatial resolution in the recon-
structed DPCT images. Because the reconstruction problem is inherently 2D, we will consider
the problem of reconstructing a transverse slice of the object function located atz = h∆d . Let
the vectorg∈ R

M denote a lexicographically ordered representation ofg[s,h, t]. The dimension
M is defined by the product of the number of detector row elements and the number of view
angles.

Many iterative image reconstruction algorithms require a finite-dimensional approximate
representation of the object function. A linearN-dimensional approximation ofδ (r2;z = h∆d)
can be formed as

δa(r2;z = h∆d) =
N−1

∑
n=0

bh
nφn(r2), (3)

where the subscripta indicates thatδa(r2;z) is an approximation ofδ (r2;z), {φn(r2)} are a set
of expansion functions, and{bh

n} are the corresponding expansion coefficients that depend on
the slice indexh. Let the 2D functionδa(r2;z = h∆d) be contained within a disk of radiusr0.
The discrete data function satisfies

g[s, t;h] ≈ ∂
∂xr

Rδa(r2;z = h∆d)
∣

∣

∣

xr=s∆d ,θ=t∆θ
, (4)

assuming thatRδa(r2;z = h∆d) is differentiable∀xr ∈ (−r0,r0). For certain choices of the
expansion functions, such as the pixels described below, this differentiability requirement will
not be met. Moreover, when computing Eq. (4), as required by iterative image reconstruction
algorithms, the operator∂∂xr

will generally be replaced by a numerical approximation. For use
in these cases, a modified version of Eq. (4) is given by

g[s, t;h] ≈ ∂
∂xr

SRδa(r2;z = h∆d)
∣

∣

∣

xr=s∆d ,θ=t∆θ
, (5)

whereS is a smoothing operator that acts with respect to thexr coordinate and ensures that
SRδa(r2;z = h∆d) is differentiable. The composite operator∂

∂xr
S can be interpreted as a regu-

larized derivative operator.
In the special case whereRφn(r2) is differentiable∀xr ∈ (−r0,r0), as satisfied by the Kaiser-

Bessel expansion functions investigated below, Eq. (4) can be expressed as

g[s, t;h] ≈
N−1

∑
n=0

bh
n

∂
∂xr

(

Rφn(r2)
)

(xr,θ)|xr=s∆d ,θ=t∆θ . (6)

In matrix form, each of Eqs. (4)-(6) can be expressed as

g = Hb, (7)
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whereg is a lexicographically ordered representation of the sampled data function,H is an
M×N system matrix, andb is aN×1 vector of expansion coefficients that has ann-th element
given bybh

n.
Equations (5) or (6) describe discrete imaging models for DPCT that can be employed with

iterative image reconstruction algorithms for estimation ofb from knowledge ofg andH. From
the estimatedb, the object function estimate - the sought after image - can be obtained by use of
Eq. (3). In the special case in which the expansion functions are classical pixels, the estimates of
b andδa(r2;z = h∆d) coincide. Explicit forms for the system matrixH are found by specifying
the expansion functionsφn(r2) and implementation of the operator∂∂xr

R or ∂
∂xr

SR.
Below, we investigate the use of two different choices of expansion functions: the pixel basis

function and Kaiser-Bessel window functions. Because the 3D reconstruction problem corre-
sponds to a stack of 2D ones, we will focus on the reconstruction of a transverse slice of con-
stantz = h∆d and the discrete indexh will be suppressed hereafter. For use with the pixel basis
functions, three different discrete implementations of the operator∂

∂xr
SR are implemented and

system matrices are established according to Eq. (5). For the case of the Kaiser-Bessel win-
dow expansion functions, the operator∂

∂xr
Rφn(r2) can be computed analytically and system

matrices are established according to Eq. (6).

3. Construction of system matrices for iterative image reconstruction in DPCT

3.1. System matrix construction employing pixel basis functions

The classic pixel is a commonly employed expansion function and is defined as

φ pixel
n (r2) = rect

(x− xn

ε
)

rect
(y− yn

ε
)

,

where rect(x) = 1 for |x| ≤ 1
2 andzero elsewhere,(xn,yn) specifies the coordinate of thenth

lattice point on a uniform Cartesian lattice, andε is the spacing between those lattice points.
A description of the system matrix construction for use with pixel expansion functions pro-
vided below. According to Eq. (5), this will require specifying methods for : (1) numerically
approximatingRδa(r2;z) and (2) computing a regularized discrete derivative operator∂

∂xr
S.

Numerous standard numerical methods are available to compute approximations of
Rδa(r2;z) [29–31]. Most of these numerical methods compute the projection data as

p[s, t] ≡ (Rδa(r2))[s, t] = (Rδa(r2))(xr,θ)|xr=s∆d ,θ=t∆θ ≈
N−1

∑
j=0

wst jb j, (8)

wherewst j is the weighting factor that corresponds to the contribution of thej-th expansion
function to the projection data recorded at detector location[s, t], andb j is the j-th component
of b. By definingp ∈ R

M to be a lexicographically ordered representation ofp[s, t], Eq. (8) can
be expressed in matrix form as

p = HRb, (9)

where
[HR]m=t×S+s, n = wstn, (10)

in which S is the total number of discrete projection data for each view and the notation[HR]m,n

denotes the element ofHR corresponding to them-th row andn-th column. In our numerical
studies, we adopted a ’ray-driven’ method to establishHR [30].
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We adopted a meshfree method known as smoothed particle hydrodynamics (SPH) [32, 33]
for implementing ∂

∂xr
S. Let p′ ∈ R

M denote a 1D discrete derivative ofp that approximates

samples of ∂
∂xr

SRδa(r2;z = h∆d). The SPH method determinesp′ as

p′k =
1
ρk

i=k+K/2

∑
i=k−K/2

(pi − pk)
∂W(di −dk,h)

∂xr
, (11)

where p′k is the k-th element ofp′, K is the total number of neighbouring particles,pi and
pk are thei-th andk-th elements ofp respectively, andW(xr,h) is a kernel function with a
smoothing length h. In our studies we employed three different kernel functions of the form:
linear, quadratic spline, and cubic spline [32,33]. Explicit forms of the kernels are provided in
the appendix. The density factorρk is defined as

ρk =
i=k+K/2

∑
i=k−K/2

W(di −dk,h). (12)

In matrix form, Eq. (11) is expressed as

p′ = HDp, (13)

where explicit forms ofHD are provided in the appendix that correspond to different choices of
W(xr,h).

By use of Eqs. (9) and (13), the discrete imaging models for the case of pixel expansion
functions are obtained as

g≈ p′ = Hpixelb, (14)

where
Hpixel ≡ HDHR. (15)

The system matrixHpixel is generally sparse, since only a few expansion functions contribute
to one specific projection valuepi.

3.2. System matrix construction employing generalized Kaiser-Bessel window functions

For Kaiser-Bessel window expansion functions, referred to hereafter as “blobs” [34, 35],
∂

∂xr
Rφn(r2) is continuous and can be computed analytically. In this case, Eq. (6) can be em-

ployed to establish the system matrix in which the derivative and Radon transform operators
can be computed accurately.

The blob expansion functions are defined as

φ blob
n (r2;m,a,α) =

{
[√

1−(rb/a)2
]m

Im[α
√

1−(rb/a)2]

Im(α) , rb ≤ a

0, otherwise,
(16)

whereIm(·) is them-th order modified Bessel function,rb ≡ |r2−rn| with rn = (xn,yn) denoting
the blob center, anda andα determine the blob’s radius and specific shape.

Let ξ ≡ xr − xn cosθ − yn sinθ . As demonstrated by Lewitt [34], the 2D Radon transform of
one window function is given by

Rφ blob
n (r2;m,a,α) =

a
Im(α)

(2π
α

)1/2[
√

1− (ξ/a)2
]m+1/2

Im+1/2

(

α
√

1− (ξ/a)2

)

, (17)
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for |ξ | ≤ a and zero otherwise. As derived in Appendix B, the 1D derivative of this quantity is
given by

∂ (Rφ blob
n (r2;m,a,α))

∂xr
= − (2πα)1/2

Im(α)

ξ
a

(

√

1− (ξ/a)2

)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2

)

.

(18)
By use of Eqs. (18) and (6) the discrete imaging model is given by

g[s, t] ≈− (2πα)1/2

Im(α)

×
N−1

∑
n=0

bn
ξ
a

(

√

1− (ξ/a)2

)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2

)

∣

∣

∣

ξ=s∆d−xncos(t∆θ )−ynsin(t∆θ )
, (19)

or, in matrix form,
g≈ Hblobb, (20)

where

[Hblob]m′,n = [Hblob]m′=t×S+s, n = − (2πα)1/2

Im(α)

× ξ
a

(

√

1− (ξ/a)2

)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2

)

∣

∣

∣

ξ=s∆d−xncos(t∆θ )−ynsin(t∆θ )
, (21)

and S is the total number of discrete projection data for each view. Similar to the pixel case, the
system matrixHblob is sparse because only a relatively few blobs contribute to each component
of g.

Note that thek-th order spatial derivative ofφ blob
n (r2;m,a,α) is continuous whenm > k [34].

In the studies below,m = 2 was chosen. This ensured that the first-order derivatives of the blobs
were continuous.

4. Comparison of numerical and statistical properties of system matrices

4.1. SVD analysis of the system matrices

In order to investigate how the different expansion functions influence the numerical proper-
ties of the imaging models described in Sections 3.1 and 3.2, the singular value decomposition
(SVD) was employed. Specifically, the rates of decay of the singular values associated with
the different system matrices were examined to gain insights into the stability of the associ-
ated reconstruction problems. It is well-known that the stability of a reconstruction problem is
adversely affected by a rapid decay of singular values [36]. For the pixel basis function, three
system matricesHpixel were constructed as described in Sec. 3.1 for the cases where linear,
quadratic spline, and cubic spline kernel functionsW(xr,h) were employed [32, 33, 37]. Ex-
plicit forms of three kernels are provided in the appendix. The scanning configuration assumed
180 equally spaced tomographic views and 256 samples along the detector array. The detector
pixel pitch was 25µm. The window size of h was chosen to be two times detector pixel pitch,
three times detector pixel pitch, and four times detector pixel pitch for linear interpolation,
quadratic spline and cubic spline kernel, respectively. The object was assumed to be contained
within an area of dimension 6.4 mm× 6.4 mm. For the pixel-based studies, a 128×128 ar-
ray of 50 µm square pixels was employed to discretize the object. Accordingly, the system
matricesHpixel were of dimension 46080 (256×180) by 16384 (128×128). For the case of
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blob expansion functions, the same scanning configuration was considered. Six system matri-
cesHblob were constructed as described in Sec. 3.2 for the cases where the blob parameters
were chosen asm = 2, radiusa = 75 µm (1.5 times sampling interval) or 100µm (2 times
sampling interval), andα = 2,6, or 10.4. Hereafter, we will refer to the blob radius relative to
the image grid spacing. For example, we use a = 1.5 to represent a physical radius of 75µm
and a = 2 to represent a physical radius of 100µm. The value ofα = 10.4 was chosen because
it results in a quasi-bandlimited blob function that has been demonstrated to suppress artifacts
in other tomographic image reconstruction applications [35,38]. Similar values were employed
in references [39, 40]. The distance between the centers of two neighboring blobs was fixed at
50 µm. The dimension ofHblob is the same as that ofHpixel . The spectrum of singular values
was computed for all system matrices using the Matlab programming environment [41].

Figures 2 - 4 display the computed normalized singular value spectra. Figure 2 shows the nor-
malized singular spectra for the different system matricesHpixel for the three different weight-
ing kernels. The matrix constructed by use of the cubic spline kernel is the most ill-conditioned,
while the system matrix constructed by use of the linear kernel is the least ill-conditioned. This
behavior is expected since the cubic spline kernel imposes the most smoothness on the data,
followed by the quadratic spline and linear kernels.
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Fig. 2. Singular value spectra associated with the system matricesHpixel with pixel size
50µm.

The spectra for the blob system matrices are shown in Figs. 3 and 4. Figure 3 displays the
spectra when the blobs had a relative radiusa = 1.5 and varying shape parameterα. These
results indicate that the parameterα will generally affect the stability of the system matrix. In
this case,α = 2.0 corresponds to the most poorly conditioned system matrix whileα = 10.4
corresponds to the best conditioned system matrix. The spectra for the case when the blob rela-
tive radiusa was increased to 2 (physical size 100µm) are displayed in Fig. 4. The parameter
α is again observed to have a significant effect on the stability of the system matrices. The sys-
tem matrix corresponding toα = 2 is the most ill-conditioned, while the one corresponding to
α = 10.4 is the least ill-conditioned. In order to gain insight into this behavior, one can exam-
ine the normalized differential projection profile of one blob as shown in Fig. 5. One observes
that the profile is more localized whenα increases from 2 to 10.4, which results in a better
conditioned system matrix.

In order to facilitate the comparison of the pixel- and blob-based results, the three highest
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Fig. 3. Singular value spectra associated with the system matricesHblob with m = 2, relative
radius a = 1.5 (physical size 75µm).
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Fig. 4. Singular value spectra associated with the system matricesHblob with m = 2, relative
radius a = 2 (physical size 100µm).

singular value spectra from Figs. 3-5 were re-plotted together in Fig. 6. Two of these spectra
correspond to differentHblob with α = 10.4. and relative radiusa = 1.5 anda = 2 and the third
to Hpixel employing the linear weighting kernel. The two blob-based spectra possess a slower
rate of decay than the pixel-based spectra, indicating that the blob-based system matrices will
yield more stable reconstruction problems than will pixel-based ones.

4.2. Investigation of image variance and spatial resolution

Computer-simulation studies were conducted to investigate the trade-offs between image vari-
ance and spatial resolution for images reconstructed by use of the different system matrices.
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Fig. 5. Profiles of the differential projection value of one blob withm = 2, relative radius a
= 2.
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Fig. 6. The three highest singular value spectra are replotted for comparison. Two of the
spectracorrespond toHblob with α = 10.4, relative radius a = 1.5 and a = 2. The third
spectra corresponds toHpixel based on the linear weighting kernel.

4.2.1. Simulation data and image reconstruction algorithm

The 2D numerical phantom displayed in Fig. 7 was employed to represent our object function
δ (r2;z). The physical size of the phantom was 25.6 mm× 25.6 mm. The phantom was com-
posed of nine uniform disks possessing different values and physical sizes, which were blurred
with a Gaussian kernel of width 0.15 mm. From knowledge of the phantom, the elements of
the differential projection datag were computed analytically. The scanning geometry employed
assumed 180 tomographic views that were uniformly spaced over aπ angular range. At each
view, the detector was assumed to possess 1024 elements of pitch 25µm.

There are several sources of noise in X-ray DPCT [42] that include phase stepping jitter,
quantum noise, and noise from the detection electronics. One hundred noisy data vectors were
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Fig. 7. The numerical phantom employed in our simulation studies with a ROI indicated.

computedas realizations of an uncorrelated zero-mean Gaussian random vector [43]. The
standard deviationσn of each element of the random vector was constant and was set according
to the ruleσn = 0.2|g|mean, where|g|mean = 1

M ∑M
m=1 |gm| with gm denoting them-th component

of the noiseless data vectorg.
From the 100 noisy differential projection data vectors, the penalized least-squares (PLS)

algorithm described in reference [44] was employed to reconstruct 100 noisy coefficient esti-
matesb̂. The analytic solution of the PLS algorithm withL2 regularization can be written as a
pseudo-inverse operatorH+ acting ong. The pseudo-inverse operatorH+ can be decomposed
as a linear combination of certain outer-product operators, whose coefficients are the recip-
rocals of the singular values of the operatorH [36, 45] that were analyzed in Sec. 4.1. The
estimateŝb represent approximate solutions of the optimization program

b̂ = argmin
b

||g−Hb||+ γL(b), (22)

whereγ is a regularization parameter,

L(b) =
N−1

∑
n=0

∑
k∈Nn

(

[b]n − [b]k
)2

, (23)

with the setNn containing the index values of the four neighbour points of thenth value ofb.
From knowledge of̂b, estimates of the object functionδa(r2;z) were obtained by use of Eq. (3).
For the cases where blob expansion functions were employed, the estimates ofδa(r2;z) were
sampled by use of a 2D Dirac delta sampling function onto a Cartesian grid and the resulting
values stored as a matrix for analysis and display.

Sets of images were reconstructed by use of different system matricesHpixel or Hblob. For the
pixel-based studies, the object was represented by a 512×512 pixel array with a 50µm pitch.
Three different pixel-based matricesHpixel were constructed corresponding to the weighting
kernel functions described in Sec. 3.1. For the blob-based studies, six different system matrices
were employed that corresponded to blob parameters relative radius a = 1.5 (physical size 75
µm), relative radius a = 2 (physical size 100µm), andα = 2,6, or 10.4. In all cases, 512×512
blobs were employed to represent the object function and the distance (sampling interval) be-
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tween the blobs was 50µm. For each system matrix, five sets of 100 noisy images were recon-
structed for distinct values of the regularization parameter specified byγ = 10,200,1000,2000,
or 5000.
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Fig. 8. Examples of images reconstructed by use of PLS algorithms based on the pixel
system matrixHpixel and blob system matrixHblob. The regularization parameter was set
at γ = 10 for both cases. (a) A reconstructed image produced by use of the pixel system
matrix with linear interpolation. (b) A reconstructed image produced by use of blobs with
relative radius a = 2 (physical size 100µm), m = 2 andα = 10.4.

Computer-simulation studies were conducted to validate our reconstruction algorithm imple-
mentations that utilized the system matricesHpixel andHblob. Example images reconstructed
from noisy data sets by use ofHpixel andHblob are shown in Figs. 8(a) and 8(b). The system ma-
trix Hpixel utilized linear interpolation andHblob utilized blob parameters relative radiusa = 2,
m = 2, andα = 10.4. The regularization parameter was set atγ = 10 for both cases. Horizon-
tal profiles through the centers of the images in Figs. 8(a) and 8(b) are shown in Fig. 9. The
solid blue line (pixel-based result) appears to overshoot some of the boundaries and has more
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Fig. 9. (Color online) Profiles through the center row of the reconstructed images in Fig.
8. The solid blue line corresponds to Fig.8(a). The dashed red and dashdotted black lines
correspond to Fig.8(b) and the true phantom.

oscillations than the dashed red line (blob-based result). Note that the grey levels of the true
object were recovered with good fidelity due to the fact that the object was contained within the
field-of-view of the simulated imaging system and therefore there was no truncation of the data
function with respect to the detector coordinate.

4.2.2. Empirical determination of image statistics and resolution measures

For each combination of system matrix and regularization parameter, the mean image and im-
age variance were estimated [46] from the associated set of 100 noisy images within the 70×70
pixel region-of-interest (ROI) indicated by the white box in Fig. 7. The average value of the
image variance map was computed to establish a scalar summary measure of the variance asso-
ciated with the ROI. To quantify the spatial resolution, we fitted the profile in the mean image
corresponding to the boundary indicated in Fig. 7. The profile was fit to a cumulative Gaussian
function [47]:

G(x) = I1 +
I2− I1

2

(

1+erf
(x−µ

σ
√

2

)

)

, (24)

wherex denotesthe coordinate along the image profile,I1 and I2 indicate the image values
on the two sides of the boundary withI1 < I2, µ is the true boundary location, and erf(x) is
the error function, andσ is the associated standard deviation. We adopted the full-width at
half-maximum (FWHM) value of the fitted error function as a summary measure of spatial
resolution [47] at that location in image space, with smaller values indicating higher spatial
resolution. Repeating these procedures for different choices of the regularization parameterγ
produced a collection of (variance, FWHM) pairs for each system matrix, which were plotted
to characterize the trade-offs between spatial resolution and noise levels in the reconstructed
images.

The variance-resolution curves for the pixel- and blob-based system matrices are shown in
Figs. 10 and 11, respectively. The left-most point on each curve corresponds toγ = 10, while
the right-most point on each curve corresponds toγ = 5000. As expected, when the value ofγ
increases, the image variance decreases at the cost of spatial resolution.
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Fig. 10. Variance versus resolution curves corresponding to use of the system matrices
Hpixel .

For the pixel-based case, Fig. 10 reveals that the curve corresponding to the use of a lin-
ear weighting kernel is the lowest, followed by those corresponding to the quadratic and cubic
spline kernels. Stated otherwise, the use of the linear interpolation-based system matrixHpixel

produced images with smaller variances at any of the attained spatial resolution values than did
the other two system matrices. These observations are consistent with the singular value spectra
displayed in Fig. 2, where the linear and cubic spline-based system matrices were demonstrated
to yield the best and worst, respectively, conditioned system matrices for the pixel-based stud-
ies.

For the blob-based cases shown in Fig. 11, the variance-resolution curves corresponding to
the shape parameterα = 10.4 were lower than those corresponding to the otherα values for
both relative radiusa = 1.5 [Fig. 11(a)] and relative radiusa = 2 [Fig. 11(b)]. The curves
corresponding to the shape parameterα = 2.0 were higher than the others for both values of
a. These observation are consistent with the singular value spectra displayed in Figs. 3 and 4,
where the system matricesHblob corresponding toα = 10.4 andα = 2.0 were demonstrated to
yield the best and worst, respectively, conditioned system matrices for the blob-based studies.

In order to facilitate the comparison of the pixel- and blob-based results, the three best
variance-resolution curves from Figs. 10 and 11 were superimposed and replotted in Fig. 12.
Two of these curves correspond to differentHblob with α = 10.4 and relative radiusa = 1.5
and relative radiusa = 2 and the third toHpixel employing the linear weighting kernel. The two
blob-based curves are everywhere lower than the pixel-based curve, indicating images produced
by use ofHblob can possess improved variance-resolution trade offs than those produced by use
of Hpixel . Below we demonstrate and investigate the use ofHblob for reconstructing images of
biological tissue from few-view experimental differential projection data.

5. Application to few-view image reconstruction

5.1. Experimental data and image reconstruction algorithm

In our studies of few-view image reconstruction, we utilized experimental DPCT data that were
acquired previously [4] using a grating-based phase-contrast imaging system at the Swiss Light
Source. A tissue sample corresponding to a rat brain was the imaged object. The tomographic
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Fig. 11. Variance versus resolution curves corresponding to use of the system matrices
Hblob. (a) Curves are produced by blobs with relative radiusa = 1.5 (physical size 75µm),
m = 2 and varyingα . (b) Curves are produced by blobs with relative radiusa = 2 (physical
size 100µm), m = 2 and varyingα .

scanning consisted of 720 tomographic view angles that were uniformly distributed over a 180
degree angular range. The differential projection data contained 1621 samples at each view
angle corresponding to a detector pitch of 7µm. In the studies described below, certain subsets
of these data were employed for few-view image reconstruction. A phase-stepping procedure
was employed, which utilized four steps, to compute the differential projection data at each
tomographic view angle. We refer the reader to reference [4] for additional details regarding
the data-acquisition and sample preparation.

To obtain an estimate of the object function based on Eq. (20), the constrained, total variation
minimization (TV) program [48–50] was employed:

b̂ = argmin
b

‖b‖TV s.t. |g−Hblobb| ≤ ε, (25)
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Fig. 12. The three best variance-resolution curves picked from the pixel and blob cases.

in which‖b‖TV represents the TV norm of the vectorb andε is the specified data tolerance. It
has been demonstrated that this image reconstruction strategy can be highly effective at mitigat-
ing data-incompleteness for certain classes of objects [50–52]. The adaptive steepest-descent-
projection onto convex sets (ASD-POCS) algorithm proposed by Sidky and Pan [51] was em-
ployed to determine approximate solutions of Eq. (25). Details regarding this algorithm and its
implementation can be found in reference [51]. The system matrixHblob with m = 2, relative
radius a = 2 (physical size 14µm, which is twice the sampling interval 7µm) andα = 10.4 was
constructed as described in Sec. 3.2. The values of the data toleranceε employed were 43.8
and 58.2 for the reconstruction problems involving 90 and 180 view angles, respectively. From
knowledge ofb̂, estimates ofδa(r2;z) were obtained by use of Eq. (3) and were subsequently
sampled by use of a 2D Dirac delta sampling function with a period of 7µm onto a Cartesian
grid for display. Because it is commonly employed in current applications of DPCT, we also
reconstructed images by use of a modified FBP algorithm that acts directly on the differential
projection data [11].

5.2. Reconstructed images

The images reconstructed by use of the FBP algorithm and the TV algorithm from 90 view
angles are displayed in Figs. 13(a) and 13(b). The corresponding images reconstructed from
180 view angles are displayed in Fig. 14. All of the images are displayed in the same grey scale
window. The images reconstructed by use of the FBP algorithm [Figs. 13(a) and 14(a)] have
streak artifacts due to the limited number of view angles employed, while those artifacts are
suppressed in the images reconstructed by use of the ASD-POCS algorithm [Figs. 13(b) and
14(b)]. Because the object was embedded in a container that did not fit entirely in the field-of-
view, there was effectively projection truncation. Therefore, we expect that our reconstruction
algorithm will reconstructδ (r) only up to a constant. Because the true values ofδ (r) were not
available, we did not investigate this. All the images presented were normalized into the same
scale.

In order to more easily visualize differences in the reconstructed images, two ROIs indicated
by black dashed boxes in Fig. 13(a) were displayed. Figures 15(a) and 15(b) display the smaller
ROIs corresponding to images in Figs. 13(a) and 13(b), respectively, for the 90 view angle case.
Subfigure (c) displays the smaller ROI extracted from an FBP image reconstructed from 720

#155606 - $15.00 USD Received 30 Sep 2011; revised 3 Jan 2012; accepted 9 Jan 2012; published 25 Apr 2012
(C) 2012 OSA 7 May 2012 / Vol. 20,  No. 10 / OPTICS EXPRESS  10741



(a)

(b)

Fig. 13. Images reconstructed from 90 projections by use of the (a) FBP (b) ASD-POCS
algorithm. The dashed boxes indicate two ROIs chosen for comparison. All images are
displayed in the same grey scale window [0 1].

view angles, which serves as a reference image. Figures 16(a) and 16(b) display the smaller
ROIs corresponding to Figs. 14(a) and 14(b), respectively, for the 180 view angle case. Figure
16(c) displays the smaller ROI from the FBP reference image. As shown in Fig. 15(a) the
visual appearance of the image reconstructed by use of the FBP algorithm from 90 projections
is significantly degraded by noise and other artifacts. Some of the blood vessels (dark hole-like
structures) may be difficult to detect due to the high artifact and noise levels in these image.
The images reconstructed by use of the ASD-POCS algorithm from 90 tomographic views,
shown in Figs. 15(b) has significantly reduced noise and artifact levels and possesses a visual
appearance similar to the reference image that was reconstructed from the complete data set
containing 720 views. Similar observations hold for the smaller ROI images corresponding to
the 180 view angle case displayed in Fig. 16.
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(a)

(b)

Fig. 14. Images reconstructed from 180 projections by use of the (a) FBP (b) ASD-POCS
algorithm Two dashed boxes indicate two ROIs chosen for comparison. All images are
displayed in the same grey scale window [0 1].

The larger ROIs are shown in Figs. 17 and 18. Figures 17(a) and 17(b) display the larger
ROIs corresponding to images in Figs. 13(a) and 13(b), respectively, for the 90 view angle
case. Subfigure (c) displays the larger ROI extracted from the FBP image reconstructed from
720 view angles, which again serves as a reference image. Figures 18(a) and 18(b) display the
larger ROIs corresponding to images in Figs. 14(a) and 14(b), respectively, for the 180 view
angle case. Subfigure (c) displays the larger ROI from the FBP reference image. Again, we
observe that the images reconstructed by use of the ASD-POCS algorithm from 90 tomographic
views, shown in Figs. 17(b) has significantly reduced noise and artifact levels and possesses a
visual appearance similar to the reference image that was reconstructed from the complete data
set containing 720 views. Similar observations hold for the larger ROI images corresponding to
the 180 view angle case displayed in Fig. 18.
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(a)

(b) (c)

Fig.15. Zoomed-in images of the smaller ROIs denoted in Figs. 13(a) and (b), reconstructed
from 90 view angles, are displayed in subfigures (a) and (b). Subfigure (c) displays the cor-
responding reference ROI corresponding to an image reconstructed from 720 projections
by use of a DPCT FBP algorithm. All images are displayed in the same grey scale window
[0 1] .

6. Summary

We have analyzed the numerical and statistical properties of two classes of discrete imaging
models that form the basis for iterative image reconstruction in DPCT. The models differ in
the choice of expansion functions that were utilized to discretize the sought-after object func-
tion. The models based on Kaiser-Bessel window functions (“blobs”) were demonstrated to
produced images that possess more favorable variance-resolution trade-offs than images recon-
structed by use of pixel-based imaging models. This observation was consistent with the results
of an SVD analysis of the system matrices, which demonstrated that the blob-based system
matrices can yield more stable reconstruction problems than do pixel-based ones.
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(a)

(b) (c)

Fig.16. Zoomed-in images of the smaller ROIs denoted in Figs. 14(a) and (b), reconstructed
from 180 view angles, are displayed in subfigures (a) and (b). Subfigure (c) displays the cor-
responding reference ROI corresponding to an image reconstructed from 720 projections
by use of a DPCT FBP algorithm. All images are displayed in the same grey scale window
[0 1] .

A reconstruction algorithm that seeks solutions of a constrained TV minimization optimiza-
tion program was employed with a blob-based imaging model for few-view image reconstruc-
tion. By use of few-view experimental data, it was demonstrated that this algorithm can produce
images with significantly weaker artifacts and lower noise levels than the FBP algorithm that
has been utilized the majority of previously published studies. To our knowledge, this was the
first published application of an iterative reconstruction method in X-ray DPCT for reconstruc-
tion of a biological specimen. We expect that the findings of our study will benefit the continued
development of DPCT imaging systems by permitting reduction of data-acquisition times and
radiation doses. Future research efforts will be required to identify blob parameters that are
optimal for specific imaging tasks.
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(a)

(b) (c)

Fig. 17. Zoomed-in images of the larger ROIs denoted in Figs. 13(a) and (b), reconstructed
from 90 view angles, are displayed in subfigures (a) and (b). Subfigure (c) displays the cor-
responding reference ROI corresponding to an image reconstructed from 720 projections
by use of a DPCT FBP algorithm. All images are displayed in the same grey scale window
[0 1] .

Appendix A: Explicit construction of the pixel-based system matrices

Below we describe how the matricesHpixel employed in our numerical studies were constructed
by use of Eq. (15). Specifically, becauseHR is defined by Eq. (10) with the elements provided
in reference [30], we need to specify the explicit forms of discrete derivative operatorHD for
the three kernel functionsW(xr,d) employed.
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(a)

(b) (c)

Fig.18. Zoomed-in images of the larger ROIs denoted in Figs. 14-(a) and (b), reconstructed
from 180 view angles, are displayed in subfigures (a) and (b). Subfigure (c) displays the cor-
responding reference ROI corresponding to an image reconstructed from 720 projections
by use of a DPCT FBP algorithm. All images are displayed in the same grey scale window
[0 1].

A general form of the matrixHD can be expressed as follows

HD =























H11 0 0 · · · · · · 0
0 H22 0 · · · · · · 0

0 0
... · · · · · · 0

... · · · Htt
... 0

... · · · . . . 0
0 0 · · · 0 0 HT T























,
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whereHtt(t = 1,2,· · · ,T ) is a S× S matrix, T is the total number of projection views and S
is the number of sampled projection data at each view. Explicit forms ofHtt are determined
by different interpolation kernelsW(xr,h). Three types ofHtt corresponding to three different
kernelsW(xr,h) adopted in the paper are provided as follows:

Linear interpolation kernel

W1(d,h) = nd

{

1− s 0≤ s < 1,s = |d|
h ,

0 s ≥ 1,

wherend is a normalization constant which is determined by the dimensionality and the smooth-
ing lengthh. The value ofh was set to 2 times the projection sampling interval, andnd is equal
to 1

h . The explicit form ofHtt corresponding to use ofW1(xr,d) can be expressed as

Htt =



















· · · · · · boundary condition · · · · · ·
−1/2 0 1/2 0 0 · · ·

0 −1/2 0 1/2 0 · · ·
· · · . . .

. .. · · · . ..
...

· · · · · · 0 −1/2 0 1/2
· · · · · · boundary condition · · · · · ·



















S×S

,

where the the boundary condition elements are appropriately defined. In our studies, the
projection data were not truncated and the object was embedded in uniform background
medium. In this case, the boundary condition elements were set to zero.

Quadratic spline

W2(d,h) = nd











3
4 − s2 0≤ s < 1

2,s = |d|
h ,

9
8 − 3

2s+ s2

2
1
2 ≤ s < 3

2,
0 s ≥ 3

2,

whereh was set to 2 times the projection sampling interval, andnd is equal to1
h . The explicit

form of Htt corresponding to use ofW2(xr,d) can be expressed as

Htt =





















· · · · · · · · · boundary condition · · · · · · · · ·
−1/8 −1/4 0 1/4 1/8 0 · · · · · ·

0 −1/8 −1/4 0 1/4 1/8 0 · · ·
· · · . ..

. . .
. . .

.. .
. ..

... 0
... · · · 0 −1/8 −1/4 0 1/4 1/8
· · · · · · · · · boundary condition · · · · · · · · ·





















S×S

.

Cubic spline

W3(d,h) = nd











2
3 − s2 + s3

2 0≤ s < 1,s = |d|
h ,

4
3 −2s+ s2− s3

6 1≤ s < 2,
0 s ≥ 2,
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where h was set to 2 times the sampling interval with linear interpolation case, andnd is equal
to 1

h . The explicit form ofHtt corresponding to use ofW3(xr,d) can be expressed as

Htt =



















· · · · · · · · · · · · boundary condition · · · · · · · · · · · ·
−1/32 −1/8 −5/32 0 5/32 1/8 1/32 0 · · · · · ·

0 −1/32 −1/8 −5/32 0 5/32 1/8 1/32 0 · · ·
...

.. .
.. .

.. .
. . .

.. .
. . .

. . . · · ·
...

0 · · · 0 −1/32 −1/8 −5/32 0 5/32 1/8 1/32
· · · · · · · · · · · · boundary condition · · · · · · · · · · · ·



















S×S

.

Appendix B: The derivation of the Eq.(18) in Sec.3.2

Let ξ ≡ xr − xn cosθ − yn sinθ . As demonstrated by Lewitt [34], The 2D Radon transform of
one window function is given by

Rφ blob
n (r2;m,a,α) =

a
Im(α)

(2π
α

)1/2[
√

1− (ξ/a)2
]m+1/2

Im+1/2

(

α
√

1− (ξ/a)2

)

, (26)

for |ξ | ≤ a and zero otherwise. The gradient of the modified bessel function has the following
relationship as [53]

d
dz

{z±mIm(z)} = z±mIm∓1(z), (27)

wherez is the distance to the center of the blob andm is a real number. Letz = α
√

1− (ξ/a)2.
Note that Eqn. (26) can be re-expressed as

Rφ blob
n (r2;m,a,α) =

a
Im(α)

(2π
α

)1/2
(

1
α

)m+1/2zm+1/2Im+1/2(z). (28)

By use of Eq. (27) and Eq. (28), along with the chain rule, it can be verified readily that

∂ (Rφ blob
n (m,a,α,r))

∂xr
=

∂ (Rφ blob
n (m,a,α,r))

∂ z
∂ z
∂ξ

∂ξ
∂xr

=
a

Im[α]
(
2π
α

)1/2(
1
α

)m+1/2zm+1/2Im−1/2(z)× (
α
a

)2(−ξ
z
)

= − (2πα)1/2

Im(α)

ξ
a

(

√

1− (ξ/a)2

)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2

)

. (29)
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