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Using omics data, a common goal is to identify a concise set of variables that predict a clinical endpoint from
an extensive pool. In a recent paper published in Nature Biotechnology, Hédou et al.1 introduced Stabl, a
computational method crafted to identify sparse yet robust signatures linked to endpoints.
In the past decade, the field of biomedical

research has undergone a swift multi-

modal transformation, presenting a dy-

namic landscape of challenges and

opportunities. In particular, advances in

single-cell sequencing and imaging

techniques have enabled the unbiased

quantification of genes, proteins, and

other components within blood samples

or throughout tissues. These break-

throughs have granted health researchers

and clinicians the ability to scrutinize pa-

tient samples with unprecedented depth

and resolution across spatial and tempo-

ral dimensions. The resulting wealth

of data holds immense potential for

enhancing diagnoses, treatments, and,

ultimately, patient health outcomes. How-

ever, the analysis of high-dimensional

molecular and clinical data poses

substantial challenges, especially in the

domains of biomarker identification and

prediction.2

A primary statistical objective often re-

volves aroundpredicting clinical outcomes

based on a potentially extensive set of fea-

tures,which comprise variables frommulti-

ple molecular assays (including high-

dimensional ones) and possibly baseline

demographic and clinical characteristics

of participants (Figure 1). The clinical out-

comes can be either categorical (e.g.,

treatment arm, survival) or continuous

(e.g., assay readouts measured at a given

time point or time to event). The goal is to

identify a signature that canaccurately pre-

dict the outcome.

Following Occam’s razor principle, it is

often preferred to explore parsimonious

models built by combining a limited set

of variables. This principle helps prevent

overfitting—rather common in omics
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studies where the number of variables is

large and the number of samples is

small—but also leads to more interpret-

able models.3,4 The latter is particularly

important when the goal is to identify

mechanistic biomarkers that can be

experimentally validated and/or to use

low-cost and validated assays for clinical

predictions. Unfortunately, it can be diffi-

cult to strike a good balance between

low-dimensional models and prediction

accuracy when using omics data due to

the large number of variables and the

potentially low signal-to-noise ratio of

the measured variables.

In a work recently published in Nature

Biotechnology, Hédou et al.1 introduced

Stabl, a general machine-learning method

that identifies a sparse, reliable set of bio-

markers by integrating noise injection and

a data-driven signal-to-noise threshold

into multivariable predictive modeling.

Stabl builds on statistically soundmethod-

ology including penalized regression,

Model-X (MX) knockoffs,5 and stability se-

lection (SS).6 As with these methods, Stabl

uses permutation and feature-generating

procedures to select ‘‘stable’’ variables,

ensuring good control of the false discov-

ery rates (defined as the proportion of false

positive features selected among all re-

ported selected features). It also draws

parallels to Bayesian variable selection

procedures that focus on selecting ‘‘sta-

ble’’ variables through frequency of occur-

rence over all possible models.7,8

One advantage of Stabl over existingap-

proaches is its ability to establish assay-

specific reliability thresholds (Figure 1), al-

lowing for the induction of varying levels

of sparsity when integratingmultiple omics

data into a single model. This feature is
Cell Repo
ticle under the CC BY-NC-ND license (http://cr
particularly crucial given the diverse

signal-to-noise ratios and dimensionalities

across different assays, such as flow

cytometry (dozens of features) and RNA

sequencing (thousands of features).

Without such assay-specific thresholding,

variables from large-dimensional assays

might dominate the model.

In their evaluation of Stabl, Hédou et al.1

utilized synthetic datasets and conducted

analyses on five independent clinical

studies. Stabl selected sparser models

containing a greater proportion of

truly informative features than commonly

used methods. The authors illustrated

that Stabl could reduce datasets contain-

ing 1,400–35,000 features to a concise set

of 4–34 candidate biomarkers, making

them suitable for subsequent validation

and clinical translation. Across all pre-

sented applications, Stabl consistently

produced sparse and stable models that

exhibited accuracy on par with, or even

surpassing, more complex models

selected by competing approaches.

Inaddition toconfirmingestablishedbio-

logical signals in both single- and multi-

omics studies, the authors utilized Stabl

for unbiased biomarker discovery in a

new multi-omics study—to build a predic-

tive model for the identification of patients

at risk for post-operative surgical site infec-

tion (SSI) from pre-operative blood sam-

ples. The study cohort of 93 patients, with

(n = 16) and without (n = 77) SSIs, contrib-

uted a combination of two types of

omics data—single-cell mass cytometry

and plasma proteomics. Stabl demon-

strated superior sparsity while maintaining

similar predictivity compared to each cor-

responding sparsity-promoting regulariza-

tion method (SRM) base learner (i.e.,
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Figure 1. Application of Stabl on a large multimodal clinical study leveraging banked samples
Stabl holds potential for application in large-scale clinical studies utilizing multimomics data derived from stored formalin-fixed paraffin-embedded (FFPE) tissue
samples on clinical cohorts. It offers the capability to conduct assay-specific variable selection, facilitating their integration into a sparse and easily interpretable
multivariate predictive model. Figure created using BioRender (https://biorender.com).
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Lasso, Elastic Net, and Adaptive Lasso).

Different reliability thresholds (q = 33%

and q = 20%) were derived and different

numbers of features (4 and 21) were

selected for single-cell mass cytometry

and plasma proteome assays, respec-

tively. Thefinalpredictivemodel ofStabl in-

corporates the 25 selected features (e.g.,

pSTAT3, IL-6, IL-1b,CCL3,etc.). This iden-

tified feature set consists of cell-type-spe-

cific proteins, which agree with earlier

studies, have the potential to coordinate

the innate immune cell responses prior to

the surgical procedure andare thuspredic-

tive of SSIs. These insights underscore the

significance of Stabl in clinical translation.
2 Cell Reports Methods 4, February 26, 2024
Compact predictive models offer greater

interpretability and are more readily trans-

formed into diagnostic biomarkers suitable

for clinical use.

Recent advancements in experimental

technologies, such as single-cell and

spatial transcriptomics derived from

formalin-fixed paraffin-embedded (FFPE)

tissues, have enabledmulticentric studies

focused on predicting clinical outcomes

from intricate omics data. The MOSAIC

project9 serves as a notable example,

uniting industry and leading oncology

hospitals in an effort to establish the

most extensive collection of spatial omics

data in cancer research. MOSAIC en-
deavors to combine comprehensive clin-

ical annotations with advanced profiling

methods to delineate cancer subtypes,

discern drug targets, and pinpoint bio-

markers across seven cancer indications,

spanning 7,000 patients. Various data

modalities will be incorporated, including

spatial and single-cell transcriptomics,

bulk molecular profiling, pathology im-

ages, and detailed clinical information.

The resulting multimodal database will

provide an ideal real-world environment,

enabling methods like Stabl to showcase

their ability to efficiently derive clinical

prediction models from vast and poten-

tially correlated multi-scale datasets.

https://biorender.com
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In conclusion, Stabl emerges as a high-

ly compelling tool for clinical prediction,

uniquely designed for multimodal omics

data. A notable advantage of Stabl is its

compatibility with various SRMs. This

flexibility allows for the comparison of

performance and stability among different

SRMs, as demonstrated in the work.1 This

also opens the door to ensemble learning

(e.g., using Super Learner10) to combine

diverse Stabl model outputs and look at

stability across SRMs.
ACKNOWLEDGMENTS

We acknowledge support from the Swiss National

Science Foundation (SNSF).
DECLARATION OF INTERESTS

R.G. has received consulting income from Takeda

and Sanofi and discloses ownership in Ozette

Technologies. Additionally, R.G. declares research

collaborations with Owkin and 10X Genomics.
REFERENCES

1. Hédou, J., Mari�c, I., Bellan, G., Einhaus, J.,

Gaudillière, D.K., Ladant, F.X., Verdonk, F.,

Stelzer, I.A., Feyaerts, D., Tsai, A.S., et al.

(2024). Discovery of sparse, reliable omic bio-

markers with Stabl. Nat. Biotechnol. https://

doi.org/10.1038/s41587-023-02033-x

2. McShane, L.M., and Polley, M.-Y.C. (2013).

Development of omics-based clinical tests

for prognosis and therapy selection: The chal-

lenge of achieving statistical robustness and

clinical utility. Clin. Trials 10, 653–665.

3. Young, W.C., Carpp, L.N., Chaudhury, S.,

Regules, J.A., Bergmann-Leitner, E.S., Ocken-

house, C., Wille-Reece, U., deCamp, A.C.,

Hughes, E., Mahoney, C., et al. (2021).

Comprehensive Data Integration Approach to

Assess Immune Responses and Correlates of

RTS,S/AS01-Mediated Protection From Ma-

laria Infection in Controlled Human Malaria

Infection Trials. Front. Big Data 4, 672460.

4. HIPC-CHI Signatures Project Team; HIPC-I

Consortium (2017). Multicohort analysis re-

veals baseline transcriptional predictors of

influenza vaccination responses. Sci. Immu-

nol. 2, eaal4656.
Ce
5. Candès, E., Fan, Y., Janson, L., and Lv, J.

(2018). Panning for Gold: ‘Model-X’ Knockoffs

for High Dimensional Controlled Variable Se-

lection. J. Roy. Stat. Soc. B Stat. Methodol.

80, 551–577.

6. Meinshausen, N., and B€uhlmann, P. (2010).

Stability selection. J. Roy. Stat. Soc. B 72,

417–473.

7. Lee, K.E., Sha, N., Dougherty, E.R., Vannucci,

M., and Mallick, B.K. (2003). Gene selection: a

Bayesian variable selection approach. Bioin-

formatics 19, 90–97.

8. Guan, Y., and Stephens, M. (2011). Bayesian

variable selection regression for genome-

wide association studies and other large-scale

problems. Ann. Appl. Stat. 5, 1780–1815.

9. Lehar, J., Madissoon, E., Chevallier, J., Schir-

atti, J.B., Kamburov, A., Barnes, R., Haignere,

C., Joy, A., Dodacki, A., Hoffmann, C., et al.

(2023). MOSAIC: Multi-Omic Spatial Atlas in

Cancer, effect on precision oncology. J. Clin.

Orthod. 41. e15076–e15076.

10. van der Laan, M.J., Polley, E.C., and Hubbard,

A.E. (2007). Super Learner. Stat. Appl. Genet.

Mol. Biol. 6, 25.
ll Reports Methods 4, February 26, 2024 3

https://doi.org/10.1038/s41587-023-02033-x
https://doi.org/10.1038/s41587-023-02033-x
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref2
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref2
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref2
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref2
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref2
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref3
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref4
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref4
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref4
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref4
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref4
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref5
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref5
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref5
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref5
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref5
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref6
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref6
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref6
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref6
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref7
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref7
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref7
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref7
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref8
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref8
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref8
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref8
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref9
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref9
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref9
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref9
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref9
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref9
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref10
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref10
http://refhub.elsevier.com/S2667-2375(24)00033-X/sref10

	An approach for integrating multimodal omics data into sparse and interpretable models
	Acknowledgments
	Declaration of interests
	References


