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Abstract 

Characterizing the risks posed by nanomaterials is extraordinarily complex because these 

materials can have a wide range of sizes, shapes, chemical compositions and surface 

modifications, all of which may affect toxicity. There is an urgent need for a testing 

strategy that can rapidly and efficiently provide a screening approach for evaluating the 

potential hazard of nanomaterials and inform the prioritization of additional toxicological 

testing where necessary. Predictive toxicity models could form an integral component of 

such an approach by predicting which nanomaterials, as a result of their physico-

chemical characteristics, have potentially hazardous properties.  Strategies for directing 

research towards predictive models and the ancillary benefits of such research are 

presented here.  
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One of the greatest challenges for assessing the potential risks of manufactured 

nanomaterials (MNMs) is the lack of a rational evidence-based system for inferring the 

hazard of nanomaterials. This is particularly problematic in light of the increasing 

number of MNMs in commerce. The unique properties of MNMs, largely a function of 

their small size and associated high surface-area to volume ratio, can result in increased 

transport across membranes, binding to biological macromolecules, transport of 

molecules, biocidal properties, or may even result in biological properties that have not 

yet been predicted or recognized for nanomaterials. These properties, depending on the 

situation or purpose, may be beneficial, such as when optimized for drug delivery, but 

also may pose health and/or environmental risks as a result of unintentional exposures or 

environmental release.  

 

Within a single class of MNMs (e.g., carbon-based nanomaterials, metal oxide 

nanoparticles), there can be a wide range of sizes and shapes, with different chemical 

composition and surface modifications, all of which may affect behavior and toxicity. 

When considering the variety of nanomaterials that are currently or will in the future be 

produced and used, it is clearly infeasible to evaluate hazard by testing all of these 

MNMs on a case-by-case basis, particularly with mammalian tests. Yet, for lack of a 

system for evaluating MNM hazard, there is little opportunity to compare the results of 

different studies or isolate factors that may translate into increased hazard and risks. The 

difficulties in assessing the risks of MNMs are well-recognized. Several articles have 

been published in recent years that outline options and challenges for applying traditional 

and alternative risk assessment strategies to MNM, both in terms of human and 

environmental risk (Grieger et al., 2010; Johnston et al., 2010; Linkov et al., 2007; 

Linkov et al., 2009; Morgan, 2005; Shatkin et al., 2010; Tervonen et al., 2009). 

Prominent among the alternative methods are the use of multi-criteria decision analysis 

(MCDA) and expert elictation, which incorporate expert judgment to a greater extent 

than traditional risk assessment methods. The over-arching theme of all these articles is 

the need for more data to conduct risk assessments that inform risk-based decision-

making for nanomaterials. 
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A more intensive effort towards the development of predictive toxicity models is urgently 

needed. Predictive models have been used for decades to rapidly evaluate the potential 

hazard of chemicals for which there are inadequate or no data on potential hazard, as is 

the case for new chemicals evaluated under the US Toxic Substances Control Act. In 

addition, the use of these methods has been adopted under the High Production Volume 

Chemical Programs and the European REACH legislation (EPA, 1999; Hartung and 

Hoffmann, 2009; OECD, 2004). In parallel, the US EPA has recently released a report 

outlining the needs, in terms of environmental fate and transport of MNMs, for 

developing predictive models (Johnston et al., 2010). Efforts to address the human 

toxicity of nanomaterials should be directed towards developing models that predict 

associations between changes to MNM physico-chemical characteristics and hazardous 

properties. For example, small changes to size or surface functional groups may affect 

whether a MNM can cross physiological barriers, how it can interact with cellular 

structures, and ultimately, the types of responses it can initiate. If these relationships were 

understood, it would assist in developing safer MNMs, screening MNMs for regulatory 

purposes, and prioritizing MNMs for more comprehensive toxicological testing. 

 

Several approaches to building predictive models in toxicology exist, ranging from 

relatively simple read-across methods to more complex computational models (e.g., 

QSARs). Regardless of model type and associated terminology, predictive models are 

developed by categorizing toxicological data by a concept of relational characteristics, 

with representative substances in a category used to infer toxicological information about 

other substances that can be assigned to the same category (OECD, 2007). The 

development of predictive models, particularly computational models, requires large 

amounts of high quality data. Data that are not sufficiently informative in the 

development of predictive models include data that are collected using diverse methods, 

that do not include a detailed description of the tested materials, measure different 

endpoints (or use different methods for quantifying endpoints), or are focused on one or a 

few MNMs. Several factors can hinder the development and predictive ability of models, 

thus presenting significant challenges to the development of predictive models for all 
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endpoints or classes of materials. These factors include limitations in the availability of 

the data needed to build models, in the understanding mechanism of action, and in the 

definition of the chemical space for which the model can be used (Cronin et al., 2003; 

Hartung and Hoffmann, 2009; Zvinavashe et al., 2008).  However, the state-of-the-

science for modeling of chemical-biological interactions is advancing, in part due to the 

continued development of high throughput testing and associated data analysis as well as 

advances in the understanding of the biological basis (e.g., modes of action) for chemical-

induced health impacts (Rusyn and Daston, 2010). 

 

Due to the differences between MNMs and the substances that are more traditionally the 

subjects of predictive modeling (i.e., molecules), the descriptors for building models for 

MNMs will necessarily be different and pose a significant challenge for toxicology 

(SCENIHR 2007). Puzyn, et al. (2009) discuss in detail the potential and challenges for 

developing nano-QSARs and provide examples of some initial QSARs developed for 

MNMs. The authors are optimistic that this methodology can successfully be applied to 

MNMs. Fourches, et al. (2010) have successfully developed two QNARs (quantitative 

nanostructure-activity relationships) using two large datasets from in vitro assays. Both 

models were statistically validated and externally predictive.  

 

There are several aspects to a research strategy for developing predictive models for 

MNMs. First, there must be greater standardization at all stages of the toxicity studies, 

from starting materials to endpoint(s). Although standardization risks inhibiting 

flexibility and innovation in study design, for the purposes of developing models, data 

collected in the same manner are needed. Several organizations are currently evaluating 

testing protocols and developing guidelines and reference materials, including OECD, the 

International Organization for Standardization (ISO), and various other international 

projects. Material characterization continues to present a significant hurdle in terms of 

resources (e.g., costs and expertise) to many toxicologists: the continued development of 

well-characterized standardized reference materials for toxicity testing should assist in 

this area. Second, studies should be designed in ways that specifically and systematically 

evaluate the role of physico-chemical properties in MNM behavior. For example, a study 



 7 

that tests the effect of a range of surface modifications on oxidative stress will be far 

more informative than one that measures oxidative stress following exposure to a single 

MNM. In general, systematic testing of variations on a MNM property (e.g., charge, size, 

surface properties, etc.) are needed to identify how physico-chemical properties influence 

biological activity. Finally, an open system for storing and sharing information is needed. 

Referring to the peer-reviewed literature for data is not useful because details are often 

missing, this system of sharing information is subject to publication bias (i.e., non-

publishing of negative results) and many industry studies are not published. Successful 

data sharing systems must function in a way that users can enter data for sharing and 

access other data, all while maintaining confidentially of sensitive information to 

encourage broader participation. The DEREK system for predicting toxicity and the 

National Cancer Institute’s caNanoLab provide examples of systems that could be 

adapted to a larger scale for sharing data (Gaheen et al., 2009; Marchant et al., 2008). 

 

There are also secondary benefits from investing in the effort needed to develop 

predictive models, independent of models themselves. As noted above, only limited data 

are currently available for conducting hazard evaluations, and there is little agreement on 

the base set of toxicity assays and associated information needed to inform hazard 

assessment. A commitment to develop predictive models for nanomaterials will focus 

needed attention on improved nano-specific assays and developing open, curated 

databases of such knowledge. Alternative approaches for prioritizing risks in data poor 

areas, such as MCDA and expert elicitation, could also benefit from (and inform) the 

development of such information (Linkov et al., 2009; Tervonen et al., 2009). 

Additionally, the development of predictive models requires information that is focused 

primarily on interactions at the molecular and cellular level. It is generally recognized 

that high throughput/in vitro testing methods are needed to characterize the hazards of the 

large number of MNMs in production and use (Hartung, 2010). Such a research goal is 

well-aligned with recent European Union regulations seeking to minimize research in 

animals and efforts in the United States to better develop in vitro and in silico toxicology 

(NRC, 2007; Schoeters, 2010). As part of this effort, it is also critical to develop a basis 

for inferring relationships between in vitro and in vivo data for predicting human health 
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hazards (Warheit, 2010). Finally, as the field of nanotoxicology is relatively young, it is 

an ideal time to implement new and innovative strategies for testing. The successes and 

failures of these efforts can be used to inform toxicity l testing and associated risk 

assessment and risk management policy for other chemical classes or novel  

technological areas that have not been the target of increased research interest or 

coincided with efforts towards more advanced or alternative toxicity testing methods 

(Hartung, 2010). 

 

The novel and advanced properties of MNMs calls for a novel and advanced approach to 

their testing. Several scientists have mentioned or urged the development of QSARs or 

other predictive models for MNMs (ICON, 2008; Meng et al., 2009). However, the 

concerted action to develop such an approach, both through funding mechanisms and the 

standardization of research methods (with predictive models in mind) is lacking. Now 

that there are initial efforts showing promise in the area of predictive models for MNMs, 

efforts must be made to increase the momentum in this area. As nanotechnology is 

redefining how we manufacture and use materials, it is only appropriate that health 

scientists meet this innovation with some innovation of their own.  
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