
Theoretical Population Biology 142 (2021) 12–35

1

t
m
a
w
t

h
0
n

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Metacommunities, fitness and gradual evolution
Tadeas Priklopil ∗, Laurent Lehmann
Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 15 January 2021
Available online 14 September 2021

Keywords:
Invasion implies substitution
Fitness
Selection gradient
Structured populations
Relatedness
Stochastic fluctuations

a b s t r a c t

We analyze the evolution of a multidimensional quantitative trait in a class-structured focal species
interacting with other species in a wider metacommunity. The evolutionary dynamics in the focal
species as well as the ecological dynamics of the whole metacommunity is described as a continuous-
time process with birth, physiological development, dispersal, and death given as rates that can depend
on the state of the whole metacommunity. This can accommodate complex local community and global
metacommunity environmental feedbacks owing to inter- and intra-specific interactions, as well as
local environmental stochastic fluctuations. For the focal species, we derive a fitness measure for a
mutant allele affecting class-specific trait expression. Using classical results from geometric singular
perturbation theory, we provide a detailed proof that if the effect of the mutation on phenotypic
expression is small (‘‘weak selection’’), the large system of dynamical equations needed to describe
selection on the mutant allele in the metacommunity can be reduced to a single ordinary differential
equation on the arithmetic mean mutant allele frequency that is of constant sign. This invariance
on allele frequency entails the mutant either dies out or will out-compete the ancestral resident (or
wild) type. Moreover, the directional selection coefficient driving arithmetic mean allele frequency
can be expressed as an inclusive fitness effect calculated from the resident metacommunity alone,
and depends, as expected, on individual fitness differentials, relatedness, and reproductive values.
This formalizes the Darwinian process of gradual evolution driven by random mutation and natural
selection in spatially and physiologically class-structured metacommunities.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Invariance that had appeared in the criterion for altruism with
respect to gene frequency in the case of sibs had seemed a gift
from God, and I did not expect to see it repeated in the more
complex trial cases I had moved on to. So it was with joy and
almost with incredulity that I at last found emerging out of
acres of my tedious and usually wrong algebra for the case of
uncles, and then for the case of cousins, the same invariance
as I had found before.

[(Hamilton, 1988, p. 189)]

. Introduction

Darwinian evolution – the gradual, step-by-step transforma-
ion of traits due to random mutation and non-random cu-
ulative natural selection – is the central mechanism of
daptation (Dawkins, 1986, 1997). A proof of principle of Dar-
inian evolution is given by selective sweeps, in that mutations
hat increase in frequency also tend to fix in the population as a
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result of natural selection. Each fixation thus displays invariance
in the direction of selection with respect to gene frequency, and
repeated fixations under the constant influx of mutations enable
gradual phenotypic evolution and adaptation. Such invariance
with respect to gene frequency is, however, not expected to hold
under general biological processes. In particular, social as well
as ecological interactions can lead to survival and reproduction
being frequency dependent, and this may result in genetic poly-
morphisms preventing allelic fixation. Furthermore, in spatially
and physiologically structured populations, it is not obvious to
identify the conditions under which selective sweeps occur owing
to the complications arising from genetic correlations at local
spatial scales and across physiological classes.

In this paper we provide sufficient conditions for selective
sweeps when evolution occurs in an asexual focal species that
resides in a wider metacommunity (Wilson, 1992; Leibold et al.,
2004), and where socially interacting individuals are structured
into discrete classes that determine their physiological state, such
as age and size, as well as their local biotic and abiotic envi-
ronment. We provide these conditions in terms of an ‘‘invasion
implies substitution’’-principle, which is a formal characterization
of the invariance of selection with respect to a population-wide

frequency of a mutant allele that affects quantitative traits in the
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ontext of density- and frequency-dependent selection (Hamil-
on, 1964; Rousset, 2004; Meszéna et al., 2005; Dercole and Ri-
aldi, 2008; Lehmann and Rousset, 2014; Dercole, 2016; Cantrell
t al., 2017; Ito et al., 2020; Cai and Geritz, 2020; Priklopil and
ehmann, 2020). The principle consists of two propositions (Prik-
opil and Lehmann, 2020). The first says that if a mutation in
he focal species results in a phenotype with a closely similar
xpression to its ancestral resident (wild)-type, a successful in-
asion of the mutant allele will generically lead to its fixation.
n the present metacommunity model, moreover, the dynamical
rocess for some weighted population-wide mutant frequency in
he focal species p(t) ∈ [0, 1] is supposed to take the form of a
calar-valued ordinary differential equation
d
dt

p(t) = p(t)(1− p(t))δSη(z)+ O(δ2). (1)

ere, δ is a small parameter characterizing the distance between
he mutant phenotype z + δη and the resident phenotype z =
zA)A∈C , with zA denoting the phenotype produced by a carrier of
he resident allele in class A ∈ C where C is the set of relevant
lasses individuals can be in, and where η = (ηA)A∈C is the mutant
henotypic deviation. The expression δSη(z) in (1) is the so-called
irectional selection coefficient, and because it is frequency inde-
endent the allele frequency affects the evolutionary dynamics
nly via the term p(t)(1−p(t)). Since Sη(z) is independent of time
, a successful invasion of the mutant allele implies its substitu-
ion and thus a selective sweep is obtained in the focal species.
his in turn implies that in longer timescales recurrent mutation
nd invasion events will gradually transform the phenotype z of
nterest until the phenotype reaches the boundary of its feasible
alues or Sη(z) becomes zero, which allows to identify singular
oints where the selection on z changes from directional to either
tabilizing or disruptive (e.g. Geritz et al., 1998; Rousset, 2004).
The second proposition says that the rate of substitution of the

nvading mutant allele is model independent, and that it can be
xpressed in terms of an inclusive fitness effect as

η(z) =
∑
A,B∈C

vA

[
∂hAB

∂zB
ηB +

∑
C∈C

∂hAB

∂zC
rBCηC

]
uB, (2)

here all quantities are calculated from the resident population.
ere, hBA is an element of a resident growth-rate matrix H giving
he rate at which a single individual in class A ∈ C that expresses
henotype zA produces individuals in class B ∈ C. The first partial

derivative inside the brackets is taken with respect to the pheno-
type of the focal individual whose growth-rate we are considering
and measures the (direct fitness) effect of the mutation on its
own growth-rate, where the mutational effect is of magnitude
ηB. The second partial derivative is taken with respect to the
phenotype of an individual of class C inhabiting the same group
as the ‘focal’ individual, and measures the (indirect fitness) effect
that mutant individuals in class C have on the growth-rate of the
focal individual. This derivative is weighted with the relatedness
coefficient rBC giving the probability that an individual in class C ∈
C and the focal individual in class B ∈ C have a common ancestor,
that is, their lineages coalesce backward in time. The vector r =
(rBC)B,C∈C collecting all these relatedness coefficients thus gives
the conditional probability of group members inheriting the same
allele, and captures the effect of limited genetic mixing on the
evolutionary dynamics (r = 0 in spatially well-mixed species).
Finally, the vectors u = (uA)A∈C and v = (vA)A∈C are the
right and left dominant eigenvectors of H and are normalized
to give class frequencies and reproductive values, respectively.
Expressions taking broadly the form (2) and special cases thereof
are routinely applied in evolutionary biology to ascertain the
directions of selection and evaluate singular points, be it in the
13
kin selection, quantitative genetics, life-history, demography, and
adaptive dynamics literatures (e.g., Charlesworth, 1994; Frank,
1998; Caswell, 2000; Rousset, 2004; Dercole and Rinaldi, 2008;
Lynch and Walsh, 2018 for textbook treatments).

In this paper, we extend our earlier result on the ‘‘invasion im-
plies substitution’’-principle (1)–(2) derived for well-mixed eco-
logical communities (Priklopil and Lehmann, 2020) to spatially
structured metacommunities where local communities are of fi-
nite size and follow an island model of dispersal. For such spatial
structure, the ‘‘invasion implies substitution’’-principle has been
previously considered in Roze and Rousset (2003, 2004), Rousset
and Ronce (2004), Rousset (2004), Van Cleve et al. (2010) [see
also closely related results in Rousset, 2006; Lion and Gandon,
2009 for lattice spatial structure and Cantrell et al., 2017 where
dispersal follows a diffusion model], and our approach and results
here extend and complement this earlier work in various aspects.
First, we formulate our model in continuous time and for sev-
eral interacting and stochastically reproducing species that can
be physiologically class structured. Second, we provide a step-
by-step proof of (1)–(2) by singularly perturbing the limiting
metacommunity model where δ = 0 (Fenichel, 1979; Hek, 2010;
Kuehn, 2015; Priklopil and Lehmann, 2020). Third, we pay partic-
ular attention to tie up all underlying concepts needed to prove
gradual evolution in metacommunities, from the individual based
demographic processes to the dynamics of moments of allelic
states and the fast–slow analysis of all the relevant dynamical
variables. We find that the approximation (1)–(2) holds for small
but non-zero δ where the perturbation of steady states caused
by the invasion is taken into account, a result given without
proof previously. More importantly, we sharpen earlier represen-
tations of (1) in terms of the reproductive value weighted average
frequency (Roze and Rousset, 2004; Rousset and Ronce, 2004;
Rousset, 2004; Van Cleve et al., 2010; Priklopil and Lehmann,
2020) by allowing p(t) to be defined as any population-wide aver-
age mutant frequency, with special cases being the reproductive
value weighted mutant frequency as well as the arithmetic mean
mutant frequency. In terms of the arithmetic mean, Eq. (1) be-
comes functionally equivalent to the standard and widely applied
textbook representation of natural selection under additive gene
action in spatially and physiologically homogeneous populations
without social interactions nor ecological feedback (e.g., Crow and
Kimura, 1970; Gillespie, 2004; Hartl et al., 1997).

The rest of the paper is organized as follows. In Section 2 we
introduce the main modeling assumptions and in Section 3 we
detail the specifics of the purely resident (ecological) metacom-
munity model. All the species dynamical variables and growth-
rates that are present in the directional selection coefficient δSη(z)
as characterized in (2) are derived in this section. The remainder
of the paper is then dedicated in proving the ‘‘invasion implies
substitution’’-principle (1)–(2) for the metacommunity model. To
do this, we first present in Section 4 a mutant-resident metacom-
munity model for arbitrary mutant and resident phenotypes and
thus arbitrary strength of selection. Then, in Sections 5–6, we will
derive several results for the limiting metacommunity processes
where δ = 0, and the formal proof of the ‘‘invasion implies
substitution’’-principle where δ is small but non-zero is given in
Section 7. In Section 8 we will conclude the paper by discussing
the results and a particular focus is given in relating our results
to the theory of adaptation and gradual evolution.

2. Outline of the model

We consider a metacommunity consisting of an infinite num-
ber of local communities connected to each other by random
uniform dispersal. Each local community, which we will generally
refer to as a local group, consists of a finite number of interacting
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sexual species and we assume each local community to be
ounded in size. We focus on the ecological and evolutionary
ynamics occurring in some focal species of interest and assume
continuous-time demographic process.
At each moment in time, each individual in the focal species is

ssumed to be in one of a finite number kP of individual-level (i-
evel) physiological states, such as of certain age and size, and we
enote the set of physiological states of the focal species with P .
ll the other non-focal species can be similarly structured, and in
ddition each group is characterized by a set of abiotic factors such
s the temperature or quality of the habitat. An abiotic factor is
efined as any factor outside of the focal and non-focal species, be
t a factor that is affected by the species or not, in which case we
all it an external factor. Each group of individuals will therefore
e in one of a finite number kS of group-level states, defined as a
nion of physiological states of each and every individual of every
pecies inhabiting the group, including any abiotic factors. The set
f all group states (g-state) is denoted with S. As each element of

S prescribes exactly the size distributions of all species, including
the focal, we will use Nas to denote the number of individuals
a ∈ P in the focal species inhabiting a group in g-state s ∈ S.

Each group in the metacommunity changes its state in S
due to individual processes (i-processes) of the focal and non-
focal species, as well as due to processes of abiotic factors such
as changes in the temperature or quality of the habitat. The i-
processes of the focal species are birth, where offspring of any
physiological state is being produced, and dispersal, where each
offspring either disperses randomly to other groups or stays in
its natal group. Individuals may also undergo physiological de-
velopment defined as a transition from one physiological state to
another, as well as death. Whenever a group s ∈ S transitions to
u ∈ S due to an event where an individual a ∈ P is produced
into or removed from the group, we have the identities Nau =

Nas + 1 or Nau = Nas − 1, respectively, and otherwise Nau = Nas.
Individuals of the other non-focal species may undergo similar
i-process. All the processes are assumed stochastic occurring on
a Poissonian basis (e.g., Kingman, 1992), and can depend in an
arbitrary way on the physiological state of the individual, the g-
state of the group it inhabits as well as the state of all the other
non-focal groups.

Because the i-processes of individuals may differ not only
due to their physiological state but also the g-state of the group
they inhabit, we will use the notion of a class of an individual.
This is defined such that whenever any two genetically identical
individuals (see below) are also identical in terms of their i-
processes, they belong to the same class (Taylor, 1990; Rousset,
2004; Grafen, 2015). In the present model, individuals are in the
same class whenever they are in the same physiological state and
inhabit a group that is in the same g-state. The class space is
denoted with C = P × S and it is of size kC = kP × kS .

Finally, individuals in the focal species express a genetically
evolving phenotype that may affect the i-processes of any in-
dividual in the metacommunity. We assume that phenotypic
expression is a class-specific function. For example, the pheno-
type may depend on the physiological state of the individual
as well as the abiotic factors of the group that it inhabits. An
individual in class as ∈ C expresses phenotype zas ∈ R such that
z = (zas)as∈C ∈ Z denotes the vector-valued phenotypic profile
across classes and where Z ⊂ RkC is the phenotype space. We
assume that offspring inherit faithfully the phenotype of their
parent and that two alleles that can result in different phenotypic
expression segregate in the focal species, a mutant allele M and a
resident allele R. We assume that the mutation rate is exceedingly
small so that no other alleles interfere with the mutant-resident
dynamics (this assumption can be mildly relaxed, see Section 8).
Characterizing the spread of the mutant allele is the focus of our
analysis.
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We note that many closely connected ecological or evolution-
ary models allowing for various heterogeneities within and/or be-
tween groups have been considered before for both continuous-
or discrete-time processes e.g. by Chesson (1981, 1985), Grey
et al. (1995), Frank (1998), Gandon and Michalakis (1999), Ronce
et al. (2000), Metz and Gyllenberg (2001), Arrigoni (2003), Cadet
et al. (2003), Barbour and Pugliese (2004), Rousset (2004), Rousset
and Ronce (2004), Martcheva and Thieme (2005), Lehmann et al.
(2006), Martcheva and Thieme (2006), Martcheva et al. (2006),
Alizon and Taylor (2008), Wild et al. (2009), Ronce and Promis-
low (2010), Wild (2011), Peña (2011), Rodrigues and Gardner
(2012), Parvinen (2013), Massol and Débarre (2015), Lehmann
et al. (2016), Rodrigues (2018), Parvinen et al. (2018), Kuijper
and Johnstone (2019) and Ohtsuki et al. (2020). No prior model
has however considered metacommunities with multiple inter-
acting species where individuals and groups are characterized by
arbitrary states and as such all these previous models, as well as
models with finite class-structure in panmictic populations, can
be conceptually subsumed to the present analysis.

3. Resident dynamics in the metacommunity

The aim here is to describe the population dynamics (ecology)
of the focal species in the metacommunity assuming that the
focal species is monomorphic for the resident allele. For this, we
need to characterize the dynamics of the entire resident meta-
community. We define the state of the resident monomorphic
metacommunity as a discrete probability (frequency) distribution
over the state space of groups S. The metacommunity state
space is therefore the space of frequency distributions ∆(S) on
S , which is the simplex in RkS . We will represent the frequency
distribution of the metacommunity at time t ∈ R with the vector
x = x(t), where x = (xs)s∈S ∈ ∆(S) and where xs is the frequency
of groups in state s ∈ S with

∑
s∈S xs = 1, and next we track

the dynamics of this vector. While the upcoming characterization
may at first appear lengthy, we fully work it out as (i) it plays a
central role in the analysis of selection and (ii) it is of interest in
the formulation of purely ecological metacommunity models.

3.1. Individual-level processes

To construct dynamical equations for the metacommunity dy-
namics, we start from i-processes of the focal species. To that
end, we introduce four elementary individual-level rates (i-rates).
First, the rate γa←bs at which an individual in physiological state
b ∈ P inhabiting a group s ∈ S , that is, an individual in class
bs ∈ C, transitions into physiological state a ̸= b ∈ P . By con-
struction,

∑
a̸=b∈P γa←bs then stands for the total rate at which

an individual in class bs ∈ C undergoes a transition and γa←bs is
undefined as a transition rate for a = b ∈ P . Second, the rate µbs
at which an individual in class bs ∈ C dies. Third, the rate β

p
a←bs

at which an individual in class bs ∈ C produces by reproduction
an offspring individual in physiological state a ∈ P that stays in
the focal group (hence superscript ‘p’ for philopatry), and finally,
the rate βd

a
w
←bs

at which an individual in class bs ∈ C produces by
reproduction an offspring individual a ∈ P into a non-focal group
w ∈ S , conditional on offspring landing in that group (hence
superscript ‘d’ for dispersal). We further assume that dispersed
offspring land into a group w ∈ S with probability xw , and this
assumption allows us to write βd

a←bs =
∑

w∈S xwβd
a

w
←bs

giving the
total rate at which bs ∈ C gives birth to a ∈ P into non-focal
groups. By convention we assume that whenever Nbs = 0 then
γ = 0, µ = 0, βp

= 0 and βd
= 0, and if group s ∈ S
a←bs bs a←bs a

w
←bs
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Fig. 1. Individual-level processes of the focal species (top panels) and the group dynamics of the metacommunity (bottom panels). Top panel: As given in Section 3.1,
the focal resident species undergoes philopatric individual-level processes of birth, physiological transition and death (top left panel), as well as birth and dispersal
(top right panel). The dashed ovals represent groups and circles represent individuals of the focal species. In all processes the parent individual is in physiological
state b ∈ P and inhabits a group in state s ∈ S, and the arrow indicates who was being produced or removed as a result of this process. Bottom panel: Group
ransitions (11)–(14) are caused by the individual-level processes of the focal and all non-focal species as well as fluctuations in external factors. Group transitions
etermine the change in the composition of groups and the metacommunity at large as given in (10).
s at its maximum size then β
p
a←bs = 0 and βd

a
s
←bw
= 0 for all

, b ∈ P, s, w ∈ S.
Formally, we can express the four basic rates of the focal

pecies as the mappings

a←bs, µbs, β
p
a←bs, βd

a
w
←bs
: ZC × Z × S × Z ×∆(S)→ R+

for all a, b ∈ P, s ∈ S, (3)

uch that, for instance, the first argument in γa←bs(zbs, z, s, z, x)
ndicates the class-specific phenotype zbs ∈ ZC expressed by the
ocal individual who undergoes the i-process, and the remaining
rguments describe the group of the focal individual and the
est of the metacommunity that affect these i-processes. That is,
he second argument z ∈ Z indicates the phenotypic profile of
esident individuals of the focal species that inhabit the group of
he focal individual and the third argument s ∈ S gives the state
f the entire focal group, namely, the distribution of the focal and
on-focal species as well as abiotic factors (Section 2). Likewise,
he fourth argument z ∈ Z indicates the phenotypic profile
f resident individuals in the focal species outside of the group
f the focal individual and the final argument gives the g-state
istribution of the entire metacommunity x ∈ ∆(S). Moreover,
n calculations involving the i-rates (3), it will be useful to use
he short-hand notation

a←bs(x) = γa←bs(zbs, z, s, z, x) for all a, b ∈ P, s ∈ S, (4)

ndicating the dependence on the state of the metacommu-
ity. The arguments and the short-hand notation of functions
bs, β

p
a←bs and βd

a
w
←bs

, as well as other individual-level func-
ions introduced henceforth, are interpreted identically. Note that
15
the mapping for the total birth rate via dispersal βd
a←bs can be

obtained by using βd
a

w
←bs

.
For ease of presentation and calculation, we will further use

a single symbol for all the i-rates (3), and in addition indicate
the g-state of the group after the focal individual has undergone
the i-process (Fig. 1). To this end, and for all au, bs ∈ C, the
class-specific physiological transition rate satisfies

λT
au,bs(x) =

⎧⎨⎩
γa←bs(x) for a ̸= b and Nau = Nas + 1

and Nbu = Nbs − 1
0 otherwise,

(5)

the class-specific death rate satisfies

λD
au,bs(x) =

{
µbs(x) for a = b and Nbu = Nbs − 1
0 otherwise,

(6)

and the class-specific philopatric birth rate satisfies

λ
pB
au,bs(x) =

{
β

p
a←bs(x) for Nau = Nas + 1

0 otherwise.
(7)

The class-specific conditional birth rate via dispersal satisfies

λdB
au,w,bs(x) =

{
βd
a

w
←bs

(x) for Nau = Naw + 1

0 otherwise,
(8)

and so the total birth rate via dispersal is

λd
au,bs(x) =

∑
w∈S

xwλdB
au,w,bs(x). (9)
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.2. Group state dynamics

The dynamics of the frequency of g-states in the metacom-
unity x ∈ ∆(S) can now be expressed as a system of ODE’s

˙ = Q(x)x, (10)

here the dot represents the time derivative and Q(x) =
qu,s(x))u,s∈S ∈ RkS×kS is a group transition-rate matrix where
u,s(x) is the rate at which a group in state s ∈ S transitions to
tate u ∈ S. Consistency requires that

∑
u∈S qu,s(x) = 0 for all

∈ S and hence qs,s(x) = −
∑

w ̸=s∈S qw,s(x) gives the rate at
which a group transitions from s ∈ S to any other g-state (Fig. 1).
Due to the independence of the i-processes (Section 3.1), we can
write

qu,s(x) = qpu,s(x)+ qdu,s(x)+ qmc
u,s(x), (11)

where the group transitions due to philopatric i-processes of the
focal species as

qpu,s(x) =
∑
a,b∈P

λ
p
au,bs(x)Nbs, (12)

with

λ
p
au,bs(x) = λ

pB
au,bs(x)+ λT

au,bs(x)+ λD
au,bs(x), (13)

and that due to dispersal as

qdu,s(x) =
∑
a,c∈P

∑
w∈S

λdB
au,s,cw(x)Ncwxw. (14)

This sums both over all physiological states of the parents and
their possible progeny as well, and recall that Nas is a constant
specifying the number of individuals a ∈ P in group s ∈ S
(Section 2). Finally, all other non-focal species processes affecting
the metacommunity state dynamics are captured by the rate
qmc
u,s(x).
We note that there are two biologically relevant perspectives

on the process generated by (10). First, one can interpret x as
the frequency distribution of an infinite collection of groups and
which is taken as the state of the metacommunity (as discussed
above). In this view the ODE in (10) describes a deterministic
processes on how the state of an infinite collection of groups
changes in time. We will call it the deterministic perspective.
Second, one can look at a single group and interpret the vector
x = x(t) as a probability distribution over the state space S , each
element giving the probability of the state the group is in at time
t . The rates (11) are then interpreted as the rates at which the
group transitions from one state in S to another state in S. Taking
this perspective, all groups in the metacommunity are assumed
to undergo a non-homogeneous continuous-time Markov chain
Iosifescu (2007, chap. 7) with transition matrix Q(x) that is a
function of the state x of the metacommunity (hence the non-
homogeneity). We call this the probabilistic perspective. In the
main text, we follow for ease of presentation the deterministic
perspective and for the final results in Section 7 we discuss the
probabilistic perspective.

3.3. Resident population and reproductive value dynamics

We now describe the population dynamics of the focal species,
which needs to be done in the backdrop of the full metacom-
munity state dynamics (10). Let n = (nas)as∈C ∈ RkC

+ denote the
density vector of individuals of the focal species in a monomor-
phic metacommunity, where nas = Nasxs defines the density of
individuals in class as ∈ C. Because groups are assumed to be
well-mixed in the meta-community, the density of individuals
16
refers to the number of individuals per unit space on the scale
of groups. The vector n ∈ RkC

+ satisfies the system of ODEs

ṅ = H(x)n, (15)

where H(x) = (hau,bs(x))au,bs∈C ∈ RkC×kC is the resident individual
growth-rate matrix. The elements of this matrix are

hau,bs(x) = λd
au,bs(x)+ λ

pB
au,bs(x)+ λT

au,bs(x)

+ δa,b

[
qu,s(x)−

∑
c∈P

λT
cu,bs(x)− λD

bu,bs(x)

]
,

(16)

or all au, bs ∈ C, which is the rate at which a focal ‘parent’
ndividual in class bs ∈ C produces or removes an ‘offspring’
ndividual of class au ∈ C (see for a derivation Appendix A.1).

Eq. (16) gives a representation of the class-specific individual
rowth-rate, or individual fitness, whose arguments are identi-
ally interpreted to those of the i-rates (3)–(4) and it consists
f four terms. The first three terms describe the rate at which
parent individual bs ∈ C produces offspring individuals au ∈
via dispersal, philopatric birth and physiological transition as
etailed in Section 3.1, and in the case of physiological transition
he parent and offspring individuals are interpreted as one and
he same individual. The final term in (16) describes the ‘survival’
f the parent individual bs ∈ C in a changing local environment,
here δa,b is the Kronecker delta taking value 1 when a = b ∈ P

and otherwise 0. More specifically, for s ̸= u ∈ S , the final term
in (16) gives the rate at which the parent a = b ∈ P survives
the group transition from s ∈ S to u ∈ S , and because qu,s(x)
contains the i-processes of all individuals including the focal
parent, the physiological transition and death of the parent are
being subtracted in (16). For s = u ∈ S , the survival term reduces
to qss(x) = −

∑
w ̸=s qw,s(x) and gives the rate at which the parent

au = bs ∈ C is removed from class au = bs ∈ C due to any
vent that causes the group to transition from s = u ∈ S to any

other state in S , including events caused by the focal individual
(and note that in contrast to other processes dispersal may also
contribute to fitness for s = u ∈ S). The first term in (16) thus
contributes to the rate of offspring production through dispersal
while the second, third and fourth terms together give the net
philopatric fitness. We note that in order to study the dynamics
of n, the ODE (15) needs to be coupled with the dynamics for the
metacommunity state x in (10).

The dispersal and net philopatric fitness contributions of in-
dividual fitness (16) correspond to those of previous discrete
time models, which are not expressed in terms of individual
and group transition rates but directly in terms of the two net
fitness contributions (Lehmann et al., 2016, eq. 6, Ohtsuki et al.,
2020, eq. 38, and see Appendix A.1.1). By using (16), we can also
represent the individual fitness for models that have been pre-
viously considered in the literature. For instance, supposing that
the metacommunity is composed only of the focal species that
is physiologically unstructured and where groups are identical
in terms of abiotic factors, the individual fitness (16) reduces to
hN ′,N (x) = λd

N ′,N
(x)+ λ

pB
N ′,N

(x)+
(
q
N ′,N

(x)− λD
N,N (x)

)
with q

N ′,N
(x) =

λ
pB
N ′,N

(x)+ λD
N ′,N

(x)
)
N +

∑
K∈S λdB

N ′,N,K
(x)KxK , for all N,N

′

∈ S ,
here the set of g-states S = {0, 1, 2, . . . ,Nmax} specifies the
umber of individuals inhabiting a group and where Nmax is the

maximum group size (Appendix A.1.1). Thus, the only processes
occurring in each group are death, philopatric birth and birth via
dispersal of individuals in the focal species, which is conceptually
similar to a number of previous models (Metz and Gyllenberg,
2001; Cadet et al., 2003; Rousset and Ronce, 2004; Lehmann
et al., 2006; Alizon and Taylor, 2008; Parvinen, 2013). Further,
for well-mixed populations where each ‘group’ is either empty or
is inhabited by a single physiologically structured individual of
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he focal population, the individual fitness reduces to ha,b(n) =
d
a,b(n) + λT

a,b(n) − δa,b
(∑

c∈P λT
c,b(n)+ λD

b,b(n)
)
, for all a, b ∈

C, where we have S = {0} ∪ P and where the population
demographic state can be characterized directly in terms of the
vector n = (na)a∈P of class-densities (Appendix A.1.1). Now, the
only processes are physiological transition, death and birth via
dispersal because each ‘group’ can contain only a single individ-
ual, and which is similar to that of the spatially well-mixed model
of Lion (2018a,b, eq. 1) and Priklopil and Lehmann (2020, eq. 3)
and conceptually equivalent to standard discrete models of only
physiologically class-structured populations (e.g., Caswell, 2000).
This model reduces to an age-structured model with T discrete
age groups (classes) by setting P = {1, 2, . . . , T } and where
ewborns are individuals of age group 1 ∈ P produced at rate
b by an individual of age group b ∈ P so that λd

a,b(n) = βb when
= 1 and zero otherwise, and where λT

a,b(n) = γb is the constant
rate at which an individual in age group b ∈ P progresses to age
roup a ∈ P and where the (average) unit of time an individual
pends in an age group b ∈ P is 1/γb (e.g., Li and Brauer, 2008).
etting γb = γ for all b ∈ P where age progresses at a steady rate
s conceptually similar to the classic discrete-time age-structured
odels (e.g. Charlesworth, 1994; Caswell, 2000).
Because we are eventually interested in the asymptotic resi-

ent species population dynamics, we will utilize the concept of
reproductive value (Fisher, 1930; Taylor, 1990; Rousset, 2004;
rafen, 2006; Lion, 2018b) and use the following population
ynamical definition of reproductive values vn = (vn

as)as∈C ∈ RkC
+ :

−v̇n = vnH(x), (17)

ormalized such that vn·n = 1 for all t . Because (17) is the adjoint
equation (backward in time counterpart) to (15), the superscript
in vn indicates that the reproductive value is an adjoint variable
to n. Adjoint variables are useful in the analysis of dynamical
systems because, by definition, the product of a variable with its
adjoint variable is constant in time (e.g. Greiner et al., 1994; Inaba,
2017 in the context of age-structured populations) and one can
readily check by applying (15) that vn · n indeed stays constant
in time. Similarly to (15), in order to study the dynamics of vn,
he ODE (17) needs to be coupled with the dynamics for the
etacommunity state x in (10). We note that the above definition

of reproductive values departs slightly from the standard defini-
tion (Taylor, 1990; Lion, 2018b) given as an adjoint to the class
frequencies, see further discussion in Section 7.2.

The biological interpretation of vn is obtained from (17) and
s tied to a final value problem where (17) is coupled with a
inal condition vn(tf) where tf ∈ [t,∞] is some final time:
he reproductive value vn

as(t) is the probability that a randomly
sampled individual at tf descends from a single individual of class
s ∈ C at time t . Or alternatively, considering an individual
f class as ∈ C at time t , vn

as(t) is the frequency of individuals
t the final time tf who are its descendants. In most previous
se of reproductive value in evolutionary analysis, as well as in
he present paper later on, the final time is usually the distant
uture (tf → ∞) so that vn

as(t) is interpreted as an asymptotic
contribution to fitness.

3.4. Relatedness dynamics

The remaining variable that appears in (2) and whose dy-
namics we aim to characterize in the resident population is
relatedness. We define relatedness between two different indi-
viduals a, b ∈ P inhabiting the same group s ∈ S at time t
as the probability rabs = rabs(t) that the two individuals have a
common ancestor. In other words, it is the probability that the
ancestral lineages of the two individuals coalesce in a common
17
ancestor, and because we assume an infinite number of groups
the probability that two individuals sampled from two different
groups share a common ancestor is 0. Relatedness can be calcu-
lated by studying the purely resident i-processes backwards in
time (see Michod and Hamilton, 1980 for the original definition
and Rousset, 2004 for an analysis of relatedness under a large
class of different discrete time scenarios in the island model),
but we will here derive it from the forward perspective of the
demographic process so as to treat all variables in a similar
fashion.

Two individuals that inhabit the same group are related if they
either share a parent, who is their common ancestor, or if any of
their ancestors shared a parent. Note that in a continuous-time
Poisson-based model with one birth per unit of time, one of the
two individuals that share a parent must be the parent through
survival. To find a dynamical equation for relatedness we thus
only need to keep track of the ancestors of local parents and to
that end we focus on densities of local pairs. We denote a pair of
individuals in physiological states a, b ∈ P that inhabit the same
group that is in state s ∈ S with (as, bs) = (abs) ∈ B, where
= P2

× S is the space of local pairs and whose size is denoted
ith kB . Then,

r
abs = rabsnabs (18)

s the density of pairs of individuals who are related and where

abs = Nabsxs (19)

s the total density of pairs abs ∈ B in that group. Here,

abs =

{
NasNbs for b ̸= a
Nas(Nas−1)

2 for b = a
(20)

s the number of pairs abs ∈ B.
We start by deriving ODEs’ for nabs and nr

abs, which in turn
will allow us to determine rabs. Because we are interested in the
ancestry of each pair we will pay special attention to the state
and location of ‘parent’ individuals associated to each ‘offspring’.
By differentiating (19) we obtain an ODE for the pair dynamics

ṅabu = Nabuẋu = Nabu

∑
s∈S

qu,s(x)xs

= Nabu

∑
s̸=u∈S

qu,s(x)xs − nabu

∑
w ̸=u∈S

qw,u(x), for all abu ∈ B,

(21)

here we used (10), (19) and the fact that
∑

u∈S qu,s(x) = 0
(Section 3.2). By substituting (11)–(14) into (21) and using the
relationship nas = Nasxs, we get

ṅabu =
∑

s̸=u∈S

[∑
d∈P

αCA
abu,ds(x)nds +

∑
d∈P

αIM
abu,ds(x)nds

+

∑
c,d∈P

αDP
abu,cds(x)ncds

]
−

− nabu

∑
w ̸=u∈S

qw,u(x), for all abu ∈ B,

(22)

hich depends on three rates. First,

αCA
abu,ds(x) =

⎧⎪⎨⎪⎩
λ
pB
au,bs(x) for d = b,

λ
pB
bu,as(x) for d = a,

0 otherwise,

(23)
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hich is the rate at which a single parent individual ds ∈ C
roduces offspring pairs abu ∈ B by philopatric birth and its own

survival and is thus said to be the common ancestor to these pairs
(hence the superscript). Second,

αIM
abu,ds(x) =

⎧⎨⎩
∑

w∈S
∑

e∈P λd
au,s,ew(x)Newxw for d = b,∑

w∈S
∑

e∈P λd
bu,s,ew(x)Newxw for d = a,

0 otherwise,

(24)

which is the rate at which a single local parent individual ds ∈
C is being paired up with an immigrant offspring (hence the
superscript) to produce an offspring pair abu ∈ B. Recall from
Section 3.1 that the probability for an immigrant offspring to land
in the group of the individual ds ∈ C depends on the state of the
entire group s ∈ S . Finally,

αDP
abu,cds(x) = α

pB,T
abu,cds(x)+ δab,cdα

S
abu,abs(x), (25a)

which is the rate at which a local parent pair cds ∈ B (two
different parents, hence the superscript) produces an offspring
pair abu ∈ B and this depends on two processes. First,

α
pB,T
abu,cds(x)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ
pB
au,bs(x)+ λT

au,bs(x) for d = b and c ̸= b,

2(λpB
au,bs(x)+ λT

au,bs(x)) for d = b and c = b,

λ
pB
bu,as(x)+ λT

bu,as(x) for c = a and d ̸= a,

2(λpB
bu,as(x)+ λT

bu,as(x)) for c = a and d = a,
0 otherwise,

(25b)

which is the rate at which the local parent pair cds ∈ B produces
an offspring pair abu ∈ B by birth and physiological transition.
Because these rates are given for parent pairs, a factor 2 ap-
pears whenever both parents can undergo the i-processes that
contribute to the birth of the considered offspring pair. Second,

αS
abu,abs(x) = qu,s(x)− [λD

au,as(x)+ λD
bu,bs(x)]

−

∑
c∈P

[λT
cu,as(x)+ λT

cu,bs(x)],
(25c)

which is the rate at which each existing pair abs ∈ B survives
upon any i-process occurring in the group (note the similarity
of this expression with the ‘survival’ term in (16)). The minus
term appears here because parents a, b ∈ P that die or transition
contribute negatively to the formation of offspring pairs abu ∈
B. Note that all these rates for production of offspring pairs
depend on the rates (5)–(9) at which single individuals undergo
demographic i-processes.

The dynamics of nr
abs is obtained from (22) by subtracting the

immigration term, because immigrants are not related, and by
only considering the fraction of local pairs that are related and
we get

ṅr
abu =

∑
s̸=u∈S

∑
d∈P

αCA
abu,ds(x)nds +

∑
s̸=u∈S

∑
c,d∈P

αDP
abu,cds(x)n

r
cds

− nr
abu

∑
w ̸=u∈S

qw,u(x),
(26)

for all pairs abu ∈ B. We see from the first two terms in (26)
that the density of related pairs abu ∈ B increases due to a single
local parent producing pairs anew, or, due to two related local
parents producing offspring-pairs. From the last term in (26) we
see that the density of related pairs abu ∈ B decreases due to
any event that changes the state of the focal group u ∈ S. The
ODE for the vector of relatedness r = (r ) ∈ [0, 1]kB can be
abs abs∈B

18
given in terms of its elements rabs = nr
abs/nabs and is obtained by

differentiation

ṙabu =
1

nabu

[ ∑
s̸=u∈S

∑
d∈P

αCA
abu,ds(x)nds

+

∑
s̸=u∈S

∑
c,d∈P

αDP
abu,cds(x)ncdsrcds − rabuNabu

∑
s̸=u∈S

qu,s(x)xs

]
(27)

or all abu ∈ B, and where we have used (21), (26) and nr
cds =

cdsncds. Notice that the rates that appear in (21) and (26) at which
airs abu ∈ B are removed due to the group u ∈ S changing its
tate, cancel in (27). Hence, the rate at which relatedness changes
s the relative rate of producing pairs abu ∈ B by a common
arent or by parents that share an ancestor, relative to an average
ate of producing pairs abu ∈ B. We note that similarly to (15)
nd (17), in order to study the dynamics in (27) it needs to be
oupled with the dynamics for the metacommunity state x in
10).

By ignoring physiological structure in the focal species, the
ynamics in (27) reduces to the expression given in Wild et al.
2009, Supplementary Information, Eq. S4 and Table S1). More-
ver, assuming no class-structure so that all groups consists only
f the focal species of constant size N and where the vector
plays no role, the continuous-time dynamical equation for

elatedness (27) is simplified further to

ṙ =
2

N(N − 1)

[
αCAN + αDPN(N − 1)

2
r − rq

N(N − 1)
2

]
, (28)

where q is the total rate at which events happen in a group. When
each birth event is coupled with a death event (i.e., the Moran
process, Ewens, 2012), the rates in (28) can be written as

αCA
= (1−m)

1
N

(
N − 1
N

)
q

αDP
=

[
2(1−m)

1
N

(
N − 1
N

)
+

(
1−

2
N

)]
q,

(29)

here m is the probability that upon a birth event the offspring
disperses. Here, αCA is interpreted as the rate at which events
happen in the group q times the probability that the parent
ndividual reproduces locally (1 − m) 1

N and does not die N−1
N .

he rate αDP is interpreted as the rate at which events happen
n the group q times the probability that either individual in the
air reproduces locally and does not die 2(1 − m) 1

N
N−1
N , or, the

probability that neither individual in the pair dies 1− 2
N .

3.4.1. The jump process for relatedness
Next we represent the continuous-time dynamics of related-

ness (27) as a discrete-time jump-process, with jumps occurring
whenever an event changes the state of the group. This repre-
sentation is useful when only the steady state is considered and
also in connecting our result to previous models that have mostly
been formulated in discrete time. We thus consider a jump chain
(or embedded Markov chain, e.g., Iosifescu, 2007, chapter 8.3)
associated to the continuous-time Markov chain given in (10) (see
further details in Appendix B.1). An embedded Markov chain is
a discrete-time Markov chain that records state transitions upon
jump times T1, T2, . . . , where each jump time Tk is a random
variable at which the focal group undergoes an event either due
to local or non-local (via immigration) i-processes. The jump
process for relatedness is given in vector form as

r′ = c(x)+ D(x)r, (30)
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here r = (rabs)abs∈B ∈ [0, 1]kB and where r′ = r(Tk+1) and
r = r(Tk). Here, c(x) = (cabs(x))abs∈B ∈ [0, 1]kB is a vector where
entry cabs(x) is the probability that a randomly sampled offspring-
pair abs ∈ B has a common parent in the same group, and hence
a common ancestor. This is the coalescence probability and is
computed as cabu(x) =

∑
ds∈C Cabu,ds(x) with

Cabu,ds(x) =
αCA
abu,ds(x)Nds

Nabu

xs
qu

, (31)

or s ̸= u ∈ C and 0 otherwise, and where qu =
∑

w ̸=u∈S qu,w(x)xw

s the rate at which groups transition to state u ∈ S. Eq. (31)
as obtained using the rates (23), and qu is obtained from the

first expression on the right hand side of (21). Eq. (31) gives the
probability, conditional on the occurrence of a group transition
to u ∈ S , that the group was in state s ∈ S before the transition
nd a randomly sampled offspring-pair abu ∈ B was produced
new by a local parent individual in class ds ∈ C. The matrix
(x) = (Dabu,cds(x))abu,cds∈B ∈ RkB×kB has entries

abu,cds(x) =
αDP
abu,cds(x)Ncds

Nabu

xs
qu

, (32)

or all s ̸= u ∈ C and 0 otherwise, and gives the probability that,
onditional on the occurrence of a group transition to u ∈ S , that
the group was in state s ∈ S before the transition and a randomly
sampled offspring-pair abu ∈ B was produced by a local parent-
air cds ∈ B (and where we used (25)). Note that the probabilities
31)–(32) are both defined to be 0 whenever Nabu = 0.

The recursion (30) along with (31)–(32) reduces to recursion
(A.5) of Alizon and Taylor (2008) who considered group size as
the only class structure and hence C = S. The recursion (30) is
also conceptually analogous to the recursion for relatedness in
the presence of class structure in the discrete-time island model
(e.g., Ronce et al., 2000, A.9 for C = P × S , Ohtsuki et al., 2020,
eq. 33 for C = S). Yet owing to the continuous-time nature of our
model, expressions (31)–(32) do not exactly match those of the
discrete-time process since only one individual-level event can
occur per unit of time in a continuous-time process, while two or
more events can occur in discrete-time models. Finally, note that
in a model with no class-structure and thus no dependence on x,
he recursion (30) simplifies to
′
= c + Dr, (33)

here

c =
2αCAN

N(N − 1)
1
q
=

2
N2

D =
αDP

q
= 2(1−m)

1
N

(
N − 1
N

)
+

(
1−

2
N

)
,

(34)

nd where the expressions and the interpretation for αCA, αDP and
are given in (28)–(29).

.5. Steady states

In the evolutionary analysis that follows we assume that a
on-trivial steady state of the metacommunity state dynamics
10) satisfying 0 = Q(x̂)x̂ exists, and that it is hyperbolically
stable. A steady state is said to be hyperbolically stable if the real
part of the dominant eigenvalue of the linearized version of the
dynamical system, evaluated at the steady state, is negative and
bounded away from zero (Hirsch et al., 1974). This implies that
there exists a neighborhood of x̂ such that for any initial condition
(t0) in this neighborhood where t0 is some initial time, the vector

x(t)→ x̂ as t →∞.
Because in (15) the population densities of the focal species

satisfy n = N x for all as ∈ C where N is a constant, then
as as s as

19
n(t)→ n̂ whenever x(t)→ x̂ as t →∞. Since n̂ must also satisfy
= H(x̂)n̂, the vector n̂ is the dominant right eigenvector of
(x̂). Moreover, because (17) is linear in vn, we have vn(t)→ v̂n
henever x(t)→ x̂ as t →∞ and the steady state for vn can be

ound by solving 0 = v̂nH(x̂). Due to the constraint v̂n · n̂ = 1,
the vector v̂n is the (unique) dominant left eigenvector of H(x̂).
inally, the steady-state for relatedness r can be found by either
olving the system of ODEs (27) or the jump-process in (30). By
direct calculation we get

ˆ = (I− D(x̂))−1c(x̂), (35)

here I is the identity matrix and (I−D(x̂))−1 is the inverse matrix
f I − D(x̂) evaluated at x̂ thus allowing to compute relatedness
xplicitly in terms of resident i-processes (Section 3.1). Because
ts growth-rate is at most linear in r and the vector c(x) and D(x)
depend only on x, we have that r(t) → r̂ whenever x(t) → x̂
as t → ∞. In summary, we have that whenever x(t) converges
to the hyperbolically stable steady state of interest x̂ as t →∞,
the vectors (n(t), vn(t), r(t)) converge to their unique steady state
(n̂, v̂n, r̂) as t →∞.

As a check of the recurrence equations for relatedness, we note
that for the homogeneous island model we obtain r̂ = c/(1−D) =
1 − m)/(1 − m + Nm) from (34), which recovers, as it should,
he relatedness for the discrete-time Moran process in the island
odel (Lehmann et al., 2015, eq. 8-e). Note that at the steady state

he relation c = (1 − D)r̂ must hold, saying that the probability
that two randomly sampled offspring have a common parent
ust be equal to the probability 1−D that two randomly sampled

ndividuals have two different parents times the probability r̂ that
hey are related.

. Mutant-resident dynamics in the metacommunity

We now study the full mutant-resident system and to that
nd we need to consider that phenotypic expression depends,
n addition to class, on the genetic state of the individual. We
enote with zθ ∈ Z the phenotypic profile of a carrier of allele
∈ {M, R}. Whenever allele θ is in an individual in class as ∈ C

he expression of the phenotype is zθ,as ∈ ZC ⊂ R. We thus need
o expand the group state space of the metacommunity since
he different alleles can be distributed in any way across groups.
ollowing the construction of Section 2, it will be convenient to
efine the state space of groups for the mutant-resident system
s Ω = S × I. The set I = {Is}s∈S gives the set of size
istributions of mutants of the focal species over all g-states,
here each element Is ∈ I denotes the set of all possible size
istributions in a group s ∈ S. This is defined as Is = {Ias}a∈P
ith Ias = {ias}0≤ias≤Nas where ias is the number of mutants in
hysiological state a ∈ P that inhabit a group s ∈ S. We note
hat an element i ∈ Is is a vector giving the number of mutants
n each physiological state in a group s ∈ S (the set Is has
otentially many elements because a group s ∈ S can be in
ifferent genetic states). The number of residents in a group can
e obtained simply by subtracting the number of mutants from
he total number of individuals e.g. Nas − ias is the number of
esidents a ∈ P in a group s ∈ S. We note that while S gives
he demographic structure of the entire group including non-focal
pecies and abiotic factors, the set I refers only to the genetic
tructure of the focal species.
Similarly to Section 3, we need to track the dynamics of

utant-resident group state frequencies in order to characterize
he mutant-resident dynamics. We represent the mutant-resident
tate of the metacommunity with a vector y = (ysi)si∈Ω ∈ ∆(Ω)
f length kΩ , where ysi is the frequency of groups in mutant-
esident state (s, i) = si ∈ Ω and hence

∑
si∈Ω ysi = 1 and

=
∑

y for all s ∈ S where x = (x ) ∈ ∆(S). All the
s i∈Is si s s∈S
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pcoming rates describing the mutant-resident metacommunity
ynamics are identical to those given for the resident dynamics
Section 3), the only difference is that it takes into account the
enetic structure of the group and the metacommunity at large.

.1. Individual-level processes

The rates at which i-processes of the focal species in the
utant-resident metacommunity occur are defined, similarly to

he resident metacommunity in Section 3.1, as mappings
θ
a←bsi, µθ

bsi, β
θ ,p
a←bsi, β

θ ,d
a

w
←bsi
: ZC × Z2

×Ω × Z2
×∆(Ω)→ R+

for all au, bs ∈ C, i ∈ Is, (36)

where θ ∈ {M, R} specifies whether it is a mutant or a resident
who undergoes the process. We also use a shorthand notation
γ θ
a←bs(y) = γ θ

a←bs(zθ,bs, zM, zR, si, zM, zR, y) where the arguments
are interpreted similarly to Section 3.1, and the interpretation
and shorthand notation for the other rates in (36) is similar.
Moreover, we assume that dispersed offspring land into a group
wi ∈ Ω with a probability xw , that is, independent of its genetic
state, and hence we will write β

θ ,d
a←bsi(y) =

∑
w∈S xwβ

θ ,d
a

w
←bsi

(y). The
constraints for the i-rates (36) are also analogous to Section 3.1.
Finally, and for all au, bs ∈ C and j ∈ Iu, i ∈ Is, the class-specific
physiological transition rate satisfies

λ
M,T
auj,bsi(y) =

⎧⎨⎩
γM
a←bsi(y) for a ̸= b and jau = ias + 1

and jbu = ibs − 1
0 otherwise,

(37)

the class-specific death rate satisfies

λ
M,D
auj,bsi(y) =

{
µM

bs(y) for a = b and jbu = ibs − 1
0 otherwise,

(38)

nd the class-specific philopatric birth rate satisfies

M,pB
auj,bsi(y) =

{
β

M,p
a←bsi(y) for iau = ias + 1

0 otherwise.
(39)

he class-specific conditional birth rate via dispersal satisfies

M,dB
auj,w,bsi(y) =

{
β

M,d
a

w
←bs

(y) for iau = iaw + 1

0 otherwise,
(40)

nd so the total birth rate via dispersal is
M,d
auj,bsi(y) =

∑
w∈S

xwλ
M,dB
auj,w,bsi(y). (41)

he rates for resident individuals are defined similarly, one only
eeds to replace the number of mutants ias with the number of
esident Nas − ias for all as ∈ C.

.2. Group state dynamics

The mutant-resident metacommunity dynamics is expressed
nalogously to the resident metacommunity dynamics (10) as a
ystem of ODEs’

˙ = P(y)y, (42)

here P(y) = (πuj,si)uj,si∈Ω (y) ∈ RkΩ×kΩ is the group transition-
ate matrix with

uj,si(y) = π
p
uj,si(y)+ πd

uj,si(y)+ πmc
uj,si(y), (43)

iving the rate at which a group in state si ∈ Ω transitions
o state uj ∈ Ω , and where

∑
uj∈Ω πuj,si = 0 for all si ∈ Ω .

ere, πp
uj,si(y) are the philopatric and πd

uj,si(y) the dispersal group

ransition rates of the focal species, and where all other transition

20
rates due to other species and abiotic factors are given in πmc
uj,si(y).

The transition rates due to the focal species can be expressed
in terms of i-processes given in (37)–(41) by summing over all
physiological states of the parents and their possible progeny,
that is, we have

π
p
uj,si(y) =

∑
a,b∈P

λ̄
p
auj,bsi(y)Nbs

πd
uj,si(y) =

∑
a,c∈P

∑
wk∈Ω

λ̄d
auj,s,cwk(y)Ncwywk,

(44a)

for all au, bs ∈ C, j ∈ Iu, i ∈ Is and θ ∈ {M, R}, where

λ̄
p
auj,bsi(y) = λ

M,p
auj,bsi(y)

ibs
Nbs
+ λ

R,p
auj,bsi(y)

Nbs − ibs
Nbs

λ̄d
auj,s,cwk(y) = λ

M,d
auj,s,cwk(y)

kcw
Ncw
+ λ

R,d
auj,s,cwk(y)

Ncw − kcw
Ncw

(44b)

with

λ
θ ,p
auj,bsi(y) = λ

θ ,pB
auj,bsi(y)+ λ

θ ,T
auj,bsi(y)+ λ

θ ,D
auj,bsi(y) (45)

re the rates of an average individual where the average is taken
ver the allelic states M and R.

.3. Mutant-resident population dynamics

Consider the focal species in the metacommunity and let nM =

nM,as)as∈C ∈ RkC
+ denote the mutant density vector where nM,as =

i∈Is
iasysi is the density of mutant individuals in class as ∈ C,

nd let nR = (nR,as)as∈C ∈ RkC
+ denote the resident density

ector where nR,as =
∑

i∈Is
(Nas − ias)ysi is the density of resident

ndividuals in class as ∈ C. The mutant-resident density dynamics
s given by

ṅM = GM(y)nM

ṅR = GR(y)nR,
(46)

here GM(y) = (gM
au,bs(y))au,bs∈C ∈ RkC×kC is the mutant fitness

atrix with elements

gM
au,bs(y) =

∑
j∈Iu

∑
i∈Is

[
λ
M,d
auj,bsi(y)+ λ

M,pB
auj,bsi(y)+ λ

M,T
auj,bsi(y)+

+ δa,b

(
πuj,si(y)−

∑
c∈P

λ
M,T
cuj,asi(y)− λ

M,D
auj,asi(y)

) ]
yM,bsi|M,bs,

(47)

iving the rate at which a single mutant in class bs ∈ C produces
utants in class au ∈ C, and where GR(y) = (gR

au,bs(y))au,bs∈C ∈
kC×kC is the resident fitness matrix with elements

gR
au,bs(y) =

∑
j∈Iu

∑
i∈Is

[
λ
R,d
auj,bsi(y)+ λ

R,pB
auj,bsi(y)+ λ

R,T
auj,bsi(y)+

+ δa,b

(
πuj,si(y)−

∑
c∈P

λ
R,T
cuj,asi(y)− λ

R,D
auj,asi(y)

) ]
yR,bsi|R,bs,

(48)

iving the rate at which a single resident in class bs ∈ C produces
esidents in class au ∈ C. Here, yM,bsi|M,bs = (ibsysi)/nM,bs denotes
he probability that a mutant bs ∈ C inhabits a group in genetic
tate i ∈ Is and yR,bsi|R,bs = ((Nbs − ibs)ysi)/nR,bs denotes the
robability that a resident bs ∈ C inhabits a group in genetic
tate i ∈ Is (Appendix A.2.1). Note that similarly to the resident
pecies population dynamics, all the densities of all species are
unctions of the mutant-resident metacommunity state y and
ence in order to study the dynamics of nM and/or nR in (46)
hey need to be coupled with the dynamics of y in (42).
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.4. Relative mutant-resident population dynamics

To analyze the spread of the mutant allele, it is convenient
o rewrite the mutant-resident population dynamics (46)–(48)
y using two new vectors. First, with a slight abuse of notation,
e use the vector n = (nas)as∈C ∈ RkC

+ of total densities where
as = Nasxs for all as ∈ C is the total density of mutant and
esident individuals in class as ∈ C. Second, we use the vector
= (pM,as)as∈C ∈ [0, 1]kC to describe the within-class mutant

requencies where pM,as = nM,as/nas for all as ∈ C is the
roportion (frequency) of mutants within class as ∈ C. Note that
he pair of vectors (nM,nR) can be expressed in terms of (n, p),
nd vice versa, because (nM,as, nR,as) = (pM,asnas, (1−pM,as)nas) for
ll as ∈ C and (nas, pM,as) = (nM,as + nR,as, nM,as/(nM,as + nR,as))
or all as ∈ C. The latter representation is common in population
enetics (e.g., Nagylaki, 1992).
The vector of density dynamics satisfies

ṅ = Ḡ(y)n, (49)

here Ḡ(y) = (ḡau,bs(y))au,bs∈C ∈ RkC×kC is the average mutant-
esident fitness matrix where each element

ḡau,bs(y) =
∑
j∈Iu

∑
i∈Is

[
λ̄d
auj,bsi(y)+ λ̄

pB
auj,bsi(y)+ λ̄T

auj,bsi(y)+

+ δa,b

(
πuj,si(y)−

∑
c∈P

λ̄T
cuj,asi(y)− λ̄D

auj,asi(y)

) ]
ysi|s

(50)

ives the rate at which an average individual in class bs ∈ C
roduces individuals of class au ∈ C. The average is taken over
he allelic states M, R and over all the genetic states the group it
nhabits can be in, so that ysi|s = ysi/xs is the probability that the
roup s ∈ C that the average individual inhabits is in genetic state
∈ Is (see Appendix A.2.2). The vector of within-class mutant

requency dynamics satisfies

˙ = F(y)p, (51)

here

= Fsel(y)+ F̄(y). (52)

ere, Fsel(y) = (f selau,bs(y))au,bs∈C ∈ RkC×kC and F̄(y) =

f̄au,bs(y))au,bs∈C ∈ RkC×kC have elements, respectively, given by

sel
au,bs(y) =

nbs

nau

[
gM
au,bs(y)− ḡau,bs(y)

]
, (53)

nd

¯au,bs(y) =

{
nbs
nau

ḡau,bs(y) for bs ̸= au
−
∑

cw ̸=au
ncs
nau

ḡau,cw(y) for bs = au.
(54)

ecause the rate in (53) describes differential growth due to
ifferent individuals having different phenotypes it captures the
ffect of selection on allele frequency change (hence the super-
cript). And because the rate in (54) depends only on the average
henotype it captures effects on allele frequency change due to
ndividuals in different classes having different average growth
ates. We have added a bar analogously to (49) as it depends only
n the average phenotype where the average is taken over the
llelic states (see further discussion in Section 8). A similar parti-
ioning of F was given for well-mixed populations in Lion (2018b,
21
Appendix 3) and Priklopil and Lehmann (2020, eq. 8a), and be-
cause the changes due to non-selective forces have generally been
referred to as changes due to ‘‘transmission’’ (Kirkpatrick et al.,
2002) in the present context we refer to these changes as ‘‘class
transmission’’. We note that because n and p are functions of the
tate of the mutant-resident metacommunity y, in order to study
he relative mutant-resident population dynamics of n and/or p,
49) and/or (54) need to be coupled with the dynamics of y in
42).

.5. Average mutant frequency

The total proportion (frequency) of mutants in the metacom-
unity given as an arithmetic mean is defined as

=
nM

n
(=

1
n
· nM), (55)

where nM =
∑

as∈S nM,as is the total mutant density, n =∑
as∈S nas is the total mutant and resident density in the focal

species (with a slight abuse of notation) and 1 is a vector of all 1 of
length kC . The dynamics of p in (55) is obtained by differentiation
and by using Sections 4.2–4.4, and it can be written as

ṗ =
1
n
·
[
GM(y)nM − Ḡ(y)np

]
=

1
n

∑
au,bs∈C

[
gM
au,bs(y)pM,bs − ḡau,bs(y)p

]
nbs.

(56)

In order to study its dynamics it must be coupled with the
dynamics of y in (42).

5. Mutant-resident dynamics for similar phenotypes

We now study mutant-resident dynamics for closely similar
phenotypes, with a particular focus on the change in the arith-
metic mean allele frequency (55). To that end, we set zM = zR+δη

here the vector η = (ηas)as∈C ∈ RkC gives the direction of the
eviation (where zR = z ∈ Z) and δ is a small parameter. To

evaluate the mutant-resident dynamics for small δ, we Taylor ex-
pand about δ = 0 the dynamical equations for y,n and p in (42),
(49) and (51), respectively. To facilitate the Taylor expansion, we
use the following consistency relation relating mutant-resident
i-processes (Section 3.1) to the resident i-processes (Section 4.1):

λ
θ,ξ

auj,bsi(y)
⏐⏐⏐
δ=0
= λ

ξ

au,bs(x), for all au, bs ∈ C, i ∈ Is, j ∈ Iu

and θ ∈ {M, R},
(57)

and for ξ ∈ {d, pB, T,D}, and we will also use λ
θ ,dB
auj,w,bsi(y)

⏐⏐⏐
δ=0
=

λdB
au,w,bs(x). These consistency relations say that whenever mu-

tants and residents express identical phenotypes, the i-processes
are independent of the genetic structure of the metacommunity.
From (57), it directly follows that

πuj,si(y)

⏐⏐⏐⏐⏐
δ=0

= qu,s(x), for all u, s ∈ S, i ∈ Is, j ∈ Iu, (58)

and

gθ
au,bs(y)

⏐⏐⏐⏐⏐
δ=0

= hau,bs(x), for θ ∈ {M, R} and for all au, bs ∈ C,
(59)
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nd consequently the growth-rates in (49) and (51) satisfy

ḡau,bs(y)
⏐⏐⏐
δ=0
= hau,bs(x)

fau,bs(y)
⏐⏐⏐
δ=0
= f ◦au,bs(x) =

{
nbs
nau

hau,bs(x) for bs ̸= au
−
∑

cw ̸=au
ncs
nau

hau,bs(x) for bs = au

(60)

for all au, bs ∈ C.
It follows from the above relations that the dynamics for y,n

and p for small δ can be written as

ẋ = Q(x)x+ O(δ)
ṅ = H(x)n+ O(δ)
ṗ = F◦(x)p+ O(δ),

(61)

where we used (58) and (60) and where F◦(x) = (f ◦au,bs(x))au,bs∈C
is the relative fitness matrix for mutants (when δ = 0) with
elements as defined in (60). Note that because the dynamics of n
and p depend only on x up to order O(1), we have represented
the dynamics of the genetically explicit vector y by using the
genetically implicit vector x whose dynamics in (61) up to order
O(1) follows from (42), (58) and xs =

∑
i∈Is

ysi (the dependency
on y in (61) comes only via the terms of order O(δ)). The dynamics
of the arithmetic mean mutant frequency p in (55) for small δ is
obtained by Taylor expansion and by using (59)–(60), in which
case (56) reduces to

ṗ =
1
n
· H(x)

[
nM − np

]
+ O(δ)

=
1
n

∑
au,bs∈C

hau,bs(x)
[
pM,bs − p

]
nbs + O(δ),

(62)

hich must be coupled with the dynamics for p and x in (61) and
here the dependency on y comes only via O(δ).
The remaining aim of this paper is to prove the ‘‘invasion

mplies substitution’’-principle by way of applying geometric
ingular perturbation theory developed for fast–slow ODE sys-
ems in Fenichel (1979). A fast–slow ODE system in a standard
orm (Fenichel, 1979; Kuehn, 2015; Wechselberger, 2020), which
s relatively easy to analyze, is a system of ODEs where a model
arameter tunes the rate at which the various dynamical vari-
bles operate: for small parameter values δ some variables are

fast variables in that their Taylor expansion about δ = 0 is
ominated by O(1), while others are slow variables and their
aylor expansion about δ = 0 is dominated by O(δ). We see from
61), however, that for small δ the dynamics of the vectors x,n
nd p, as well as the arithmetic mean mutant frequency p in (62),
re all dominated by the terms O(1) thus all having a phase of fast
ynamics. As a consequence, the mutant-resident system is not
eadily in the desired (standard) fast–slow form.

In order to construct an appropriate fast–slow system, we
roceed in three steps. First, we study the purely fast dynamics of
he within-class mutant frequency vector p where δ = 0, and find
ts steady state p̂ (Section 5.1). Second, by using the properties
f p̂ we find a slow variable that can be used, on a suitably
hosen slow timescale, as a proxy for the arithmetic mean mutant
requency (Section 5.2). Finally, we study the slow dynamics of
his slow variable and calculate all the necessary fast variables
Section 5.3) that define the complete mutant-resident fast–slow
ystem which will be then studied in Section 6.

.1. Fast dynamics of the within-class mutant frequency

To study the fast dynamics of the vector p we set δ = 0 in the
hird equation in (61), which gives

ṗ = F◦(x)p. (63)
22
Because the rows of F◦ sum to 0 it is well-known that the steady
tate satisfies

ˆ = 1pc (64)

or some constant pc ∈ R (e.g., Lessard and Soares, 2018). This
mplies that the within-class mutant frequencies at the steady
tate are all equal p̂M,as = pc for all as ∈ C. For biologically
meaningful values we need pc ∈ [0, 1], and the exact value of pc
that pM,as(t) for all as ∈ C converges to as t →∞ depends on the
initial condition (x(t0), p(t0)) for some initial time t0. The system
63) thus contains infinite number of steady states (equilibria)
nd the biologically meaningful values lie on a line [0, 1]. This
as two important consequences. First, any linear combination
f within-class frequencies, at the steady state (64), is equal to
c. More specifically, every arbitrarily weighted average mutant
requency

φ = φ · nM (=
∑
as∈C

φasnaspM,as), (65)

here φ = (φas)as∈C is some arbitrary vector of weights normal-
zed such that φ · n = 1, must satisfy

ˆφ = pc (66)

t the steady state where p̂M,as = pc for all as ∈ C. This is in
particular true also for the arithmetic mean frequency p in (55)
where φ = 1/n. This implies that every average mutant frequency
pφ(t)→ pc as t →∞, and where the exact value of pc depends
on the initial condition (x(t0), p(t0)). Second, the kC-dimensional
ector p is, at the steady state (64), a 1-dimensional vector p̂ =
pc because it can be spanned by using a single vector 1pc (Hirsch
t al., 1974). This will play an important role in the proof of the
‘invasion implies substitution’’-principle (Section 7). Finally, we
ant to note that so far we have analyzed the fast dynamics of p
nd pφ dominated by O(1) only; in later sections we will see that
hese variables have also a phase of slow dynamics and this will
e analyzed in later sections (see in particular Section 6).

.2. Reproductive value weighted mutant frequency

In the previous Section 5.1 we found that for δ = 0 and for any
eights φ, the average mutant frequency (65) satisfies pφ(t)→ pc
s t → ∞ with the exact value of pc depending on the initial
ondition (x(t0), p(t0)). If one were then to find weights φ for
hich pφ(t) = pc for all t ≥ t0, then such an average frequency
ould stay constant in the fast dynamics where δ = 0, and hence
ould be a slow variable for a system where δ is small but non-
ero (a pre-requisite to construct a standard fast–slow system).
e can achieve this by setting φ = vn where the weights vn for
on-zero δ are (with a slight abuse of notation) defined as average
eproductive values, where the average is taken over allelic states
Priklopil and Lehmann, 2020; see also Lion, 2018a,b), and is
hus the mutant-resident reproductive value analogue to the one
efined for the resident population in Section 3. Such average
ndividual reproductive values satisfy

−v̇n = vnḠ(y), (67)

or any δ, with the normalization vn · n = 1 where n is given
y (49). By defining a reproductive values weighted mutant fre-
uency (see (65)) as

v = vn · nM =
∑
as∈C

vn
asnaspM,as, (68)

ts dynamics is obtained by differentiation and satisfies

ṗv = vn ·
[
GM(y)− Ḡ(y)

]
nM

=

∑
vn
au

(
gM
au,bs(y)− ḡau,bs(y)

)
pM,bsnbs,

(69)
au,bs∈C
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or any δ. Indeed, because GM(y) − Ḡ(y) = 0 for δ = 0 (59)–
60), the Taylor expansion of (69) about δ = 0 is dominated by
(δ) and hence the reproductive value weighted average mutant
requency pv is a slow variable. We note that since (69) is valid
or arbitrary δ and thus arbitrary strength of selection, it must be
oupled with the dynamics of y in (42).

.3. Slow dynamics of the weighted mutant frequency

We here study the slow dynamics of the weighted mutant
requency pv in (68)–(69), with a specific aim to identify all the
dynamical variables that it depends on in order to construct
a complete fast–slow mutant-resident system. To that end, we
Taylor expand (69) about δ = 0 and then change the timescale
to slow time while letting δ go to 0. To this end, we introduce a
slow time variable τ , set τ = δt from which we get the relation
d
dt = δ d

dτ , and by letting δ go to 0 we get

d
dτ

pv =
d
dδ

[ ∑
au,bs∈C

vn
au

(
gM
au,bs(y)− ḡau,bs(y)

)
pM,bsnbs

]
δ=0

,

(70)

giving the rate at which the reproductive valued weighted fre-
quency changes in a pure slow time τ where δ = 0. Note that in
the fast timescale t , the above expression is nothing else than the
O(δ)-term of the Taylor expansion.

Next, we take the derivative in (70) in such a way that it
allows us to arrive at an expression for the directional selection
coefficient as given in (2). To do this, we must take separate
(partial) derivatives with respect to phenotypes of individuals
according to the ‘spatial’ relationship between the focal individual
and other individuals from the focal species who affect its fitness
either via interactions or directly (the effect on itself). For ease of
presentation, we label the phenotypes and write the individual
fitness (16) as

hau,bs(x) = hau,bs(zfoc,bs, z loc, s, zpop, x), (71)

where zfoc,bs (and z foc) indicates the phenotype of the focal in-
dividual (hence the subscript), z loc indicates the phenotype of
the local group members of the focal individual (hence the sub-
script) but excluding the focal individual, and zpop indicates the
phenotype of individuals outside of the group of the focal in-
dividual (i.e. population/species at large, hence the subscript).
We emphasize that all individuals in the resident metacommu-
nity express the resident phenotype z ∈ Z and that these are
just labels to distinguish the spatial relationship of individuals
to the focal individual according to which the different partial
derivatives will be taken in Section 5.3.1. Likewise, we write
gau,bs(y) = gau,bs(zM,bs, zM,loc, zR,loc, si, zM,pop, zR,pop, y) for a fo-
cal mutant and ḡau,bs(y) = gau,bs(zM,loc, zR,loc, si, zM,pop, zR,pop, y)
for an average individual where the notation and interpreta-
tion of zMfoc , zMloc and zMpop (and zRfoc , zRloc and zRpop ) for the
mutant-resident metacommunity is similar.

5.3.1. Properties of fitness
To take the derivative in (70) we apply a property that relates,

for small δ, mutant-resident fitnesses (47)–(48) to the resident
fitness (16). This property follows from the so-called generalized
law of mass action in situations where weak selection results
from small differences in phenotype (Diekmann et al., 2001;
Meszéna et al., 2005; Dercole, 2016, for discussion on the dif-
ferent forms of weak selection see Wild and Traulsen, 2007;
Lehmann and Rousset, 2014). The generalized law of mass action
says that the first-order perturbation of the mutant phenotype of
all mutant individuals in a spatially well-mixed mutant-resident
23
species, is equal to the first-order perturbation of the phenotype
of all individuals in a purely resident species when multiplied
by the frequency of mutant individuals. This is computationally
convenient because instead of considering full distributions of
individuals only population means need to be calculated. This
property holds for non-linear environmental feedbacks and is
secured by assuming that all individuals undergo pairwise inter-
actions in continuous time and that individuals with the same
phenotype are exchangeable (Dercole, 2016). Below we will pro-
vide an analogue of this property for the present metacommunity
model.

For small but non-zero δ, the mutant fitness matrix GM(y) is
related to the resident fitness matrix H(x) in the following way.
First,

∂gM
au,bs(y)

∂zMfoc,bs

⏐⏐⏐
δ=0
=

∂hau,bs(x)
∂zfoc,bs

for all au, bs ∈ C (72)

and where all other partial derivatives with respect to zMfoc,cw for
cw ̸= bs ∈ C are 0. Second,

∂gM
au,bs(y)

∂zMloc,cs

⏐⏐⏐
δ=0
=

∂hau,bs(x)
∂zloc,cs

pM,cs|M,bs for all au, bs ∈ C, c ∈ P

(73)

where all other partial derivatives with respect to zMloc,cw for
w ̸= s ∈ S are 0, and finally,

∂gM
au,bs(y)

∂zMpop,cw

⏐⏐⏐
δ=0
=

∂hau,bs(x)
∂zpop,cw

pM,cw for all au, bs, cw ∈ C. (74)

In (73) we introduced the conditional within-group mutant fre-
quency pM|M = (pM,as|M,bs)abs∈B ∈ [0, 1]kB defined as

pM,as|M,bs =
pMM,abs

pM,bs
, for all a, b ∈ P, s ∈ S, (75)

where pMM,abs is an element of the vector of (within-group)
mutant-pair frequencies pMM = (pMM,abs)abs∈B ∈ [0, 1]kB defined
as

pMM,abs =
nMM,abs

nabs
, for all abs ∈ B. (76)

Here, nMM,abs =
∑

i∈I iasibsysi denotes the density of mutant-pairs
abs ∈ B and nabs is the total density (with a slight abuse of
notation) of pairs abs ∈ B, that is, the total density of pairs inde-
pendent of their phenotype. The conditional mutant frequencies
pM|M thus give the frequency of mutants conditional that another
(randomly sampled) individual in the group is a mutant.

In (72), the partial derivative is taken with respect to the focal
individual itself and because any mutant individual is (trivially)
a mutant with probability 1, the proportionality coefficient is
simply 1. In other words, the ‘frequency’ of a mutant allele in a
single mutant individual is 1. The derivative on the right-hand-
side measures (when multiplied by δ) the additional offspring
the focal individual produces per unit of time due to the focal
individual itself expressing the mutation (‘direct fitness effect’).
In (73), the partial derivative with respect to all local individuals
is proportional to the conditional within-group mutant frequency
in class cs ∈ C, pM,cs|M,bs, conditional on the focal individual
being a mutant bs ∈ C. This property reflects the fact that
genetic correlations between conspecifics build up within groups
of finite size, and the derivative on the right-hand-side mea-
sures (when multiplied by δ) the additional offspring the focal
individual produces per unit of time due to interactions with
all local individuals that express the mutation (‘indirect fitness
effect’). Finally, the partial derivative with respect to non-local
individuals in (74) is proportional to the (unconditional) within-
class mutant frequency because no genetic correlations build up
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etween members in different groups in the infinite island model
see, e.g., Rousset, 2004 for the finite island model).

Using (72)–(74) and analogues properties for (mutant-
esident) resident fitness (not shown here), the average fitness
atrix Ḡ(y) is related to the (pure resident) resident fitness
atrix H(x) as
∂ ḡau,bs(y)
∂zMfoc,bs

⏐⏐⏐
δ=0
=

∂hau,bs(x)
∂zfoc,bs

pM,bs

∂ ḡau,bs(y)
∂zMloc,cs

⏐⏐⏐
δ=0
=

∂hau,bs(x)
∂zloc,cs

pM,cs

∂ ḡau,bs(y)
∂zMpop,cw

⏐⏐⏐
δ=0
=

∂hau,bs(x)
∂zpop,cw

pM,cw for all au, bs, cw ∈ C,

(77)

and where all other partial derivatives with respect to zMfoc,cw for
cw ̸= bs ∈ C and with respect to zMloc,cw for w ̸= s ∈ S are all
0. Notice that all proportionality coefficients are (unconditional)
within-class mutant frequencies. In the first relation in (77) this is
because an average individual is a mutant with probability given
by the within-class mutant frequency, in the second relation this
is because no genetic correlations arise for an average individual
and in the final relation this is because no genetic correlations
arise between non-group members.

5.3.2. Slow dynamics of the weighted mutant frequency and the fast
variables

Taking the derivative in (70) and partitioning it according to
the different individuals as discussed above, we obtain
d
dτ

pv =
∑

au,bs∈C

vn
au

[ ∂hau,bs(x)
∂zfoc,bs

ηbspM,bs(1− pM,bs)+

+

∑
cs∈C

∂hau,bs(x)
∂zloc,cs

ηcs(pMM,bcs − pM,bspM,cs)
]
nbs,

(78)

where we used the definition for directional derivatives, the
properties (72)–(74), (77) and (75). We can see from (78) that the
dynamics of the slow weighted mutant frequency pv depends on
the dynamics of x,n, p, vn and pMM. This is convenient because
instead of analyzing the dynamics of the large system for y it
is enough to study the simpler dynamics of x,n, p, vn and pMM
(and as will be shown below). Because we have already derived
dynamical equations for x,n and p, and in (61) showed that they
are dominated by O(1) and so is vn because under the consistency
relation (59) its dynamics reduces to (17), the next task is to
find the equation for a vector of mutant-pair frequencies pMM
Section 5.3.3).

.3.3. Mutant-pair frequencies
In order to see whether pMM defined in (76) is a fast or

low variable, we study its dynamical equation for δ = 0 (Ap-
endix B.2). The dynamics of pMM = (pMM,abs)abu∈B is given as

ṗMM,abu =
∑

s̸=u∈S

∑
d∈P

nds

nabu

[
αCA
abu,ds + αIM

abu,ds

]
pM,ds

+

∑
s̸=u∈S

∑
c,d∈P

ncds

nabu
αDP
abu,cdspMM,cds−

− pMM,abu
Nabu

nabu

∑
s̸=u∈S

qu,sxs for all abu ∈ B,

(79)

hich can be written in vector form as

˙MM = E(p, pMM, x). (80)

ere, E(p, pMM, x) ∈ RkB is a vector of rates at which pMM
hanges, and because the elements are non-zero the vector of
24
utant-pair frequencies pMM is dominated by terms of order O(1)
and is hence a fast variable (it is to be seen whether it changes
also in slow time, Section 6).

To characterize for δ = 0 the steady state of pMM we focus
or convenience on the equivalent discrete-time jump-process
ynamics, which is given by

p′MM =
[
C(x)+M(p, x)

]
p+ D(x)pMM, (81a)

here C(x) and D(x) are as in (30), and M(p, x) =

Mabu,ds(p, x))abu∈B,ds∈C ∈ RkB×kC where Mabu,ds(p, x) =

ew∈C Mabu,ds,ew(x)pM,ew and

Mabu,ds,ew(x) =
1

Nabu

αIM
abu,ds,ew(x)NdsxsNewxw∑

w ̸=u∈S qu,w(x)xw

(81b)

ives the conditional probability that a randomly sampled
utant-pair abu ∈ B was produced when a local mutant parent
s ∈ C paired up with a new immigrant mutant offspring ew ∈ C

(note the dependency on the mutant frequency in (81)). For all
pairs abu ∈ B we have∑
ds∈C

Cabu,ds(x)+
∑
ds∈C

∑
ew∈C

Mabu,ds,ew(x)+
∑
cds∈B

Dabu,cds(x) = 1, (82)

aying that with probability 1 each pair of individuals has either
common (local) parent, a non-local parent, or different local
arents (the rows of the matrices C(x), D(x) and M(p, x) sum to
).
The steady state solution p̂MM for δ = 0 is obtained by solving

ˆMM = [C(x̂)+M(p̂, x̂)]p̂+D(x̂)p̂MM in (81) evaluated at p̂ and x̂,
nd we get

p̂MM = (I− D(x̂))−1C(x̂)p̂+ (I− D(x̂))−1M(p̂, x̂)p̂
= (I− D(x̂))−1C(x̂)1pc + (I− D(x̂))−1(I− D(x̂)− C(x̂))1p2c
= (I− D(x̂))−1c(x̂)pc + (1− (I− D(x̂))−1c(x̂))p2c
= r̂pc + (1− r̂)p2c

(83)

here we used (64), (82) and (35), respectively, and where pc ∈
0, 1] is a constant that depends on the initial condition as dis-
ussed in Section 5.1 (we can also obtain this solution by solving
79)–(80)). We have thus obtained that whenever x(t) → x̂ as
→ ∞ (Section 3.5), then pMM(t) → p̂MM = r̂pc + (1 − r̂)p2c as
→∞. Moreover, p̂MM can be expressed in terms of the steady
tate value for relatedness r̂ (Section 3.5) and pc (Section 5.1),
nd hence its general solution consist of infinite (curve of) steady
tates (equilibria) because it is a quadratic function of pc ∈
0, 1]. Finally, we note that we have made no assumptions on
he relationship between within-group mutant pair frequencies
MM(t), relatedness r(t) and the average mutant frequency pφ(t)
or t < ∞: their relationship given in (83) is obtained only as a
imit when t →∞.

. Mutant-resident dynamics as a fast–slow system

We are now ready to analyze the fast–slow ODE system where
utant and resident individuals have closely similar phenotypes

δ is small). Owing to Section 5, the complete fast–slow system
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or the mutant-resident dynamics is given in fast time t as

ẋ = Q(x)x+ O(δ)
ṅ = H(x)n+ O(δ)

−v̇n = vnH(x)+ O(δ)
ṗ = F◦(x)p+ O(δ)

ṗMM = E(p, pMM, x)+ O(δ)

ṗv = δ
∑

au,bs∈C

vn
au

[ ∂hau,bs(x)
∂zfoc,bs

ηbspM,bs(1− pM,bs)+

+

∑
cs∈C

∂hau,bs(x)
∂zloc,cs

ηcs(pMM,bcs − pM,bspM,cs)
]

δ=0

nbs + O(δ2),

(84)

hich, on using d/ dt = δ d/ dτ can be equivalently written in
slow time τ = δt as

δ
d
dτ

x = Q(x)x+ O(δ)

δ
d
dτ

n = H(x)n+ O(δ)

−δ
d
dτ

vn = vnH(x)+ O(δ)

δ
d
dτ

p = F◦(x)p+ O(δ)

δ
d
dτ

pMM = E(p, pMM, x)+ O(δ)

d
dτ

pv =
∑

au,bs∈C

vn
au

[ ∂hau,bs(x)
∂zfoc,bs

ηbspM,bs(1− pM,bs)+

+

∑
cs∈C

∂hau,bs(x)
∂zloc,cs

ηcs(pMM,bcs − pM,bspM,cs)
]

δ=0

nbs

+ O(δ).

(85)

he two systems (84) and (85) are equivalent, the only difference
s the notation. Next we study the fast and slow subsystems of
84) and (85) by setting δ = 0, respectively, and then in Section 7
we will join the two subsystems together.

6.1. Fast subsystem and the critical manifold

We obtain the fast subsystem by setting δ = 0 in (84), which
yields

ẋ = Q(x)x
ṅ = H(x)n

−v̇n = vnH(x)
ṗ = F◦(x)p

ṗMM = E(p, pMM, x)
ṗv = 0.

(86)

he fast variables (x,n, vn, p, pMM) thus change in the fast sub-
ystem while the purely slow variable pv stays constant. More
pecifically, whenever x(t) → x̂ as t → ∞ (Section 3.5), then
lso (n(t), vn(t), p(t), pMM(t)) → (n̂, v̂n, p̂, p̂MM). Recall that the
ectors n̂ and v̂n describe the unique steady state of the size
nd class structure (Section 3.5), and p̂ = 1pc and p̂MM =

ˆpc + (1 − r̂)p2c give its genetic structure at the steady state of
he fast subsystem. Because pv(t) = pc for all t (Section 5.1),
he variable pv is a constant in the fast subsystem (86) and we
an identify pc with pv. Thus, as t → ∞, the general solution

n ˆ ˆ ˆn ˆ ˆ
f (x,n, v , p, pMM, pv) converges to a curve (x,n, v , p, pMM, pv)

25
hat is parametrized by pv ∈ [0, 1], and a specific ‘initial value
roblem’ with an initial condition (x(t0), p(t0)) for some initial
ime t0 converges to a single point on this curve.

We collect all the steady states of the fast subsystem into a
ingle set

M0 = {(x,n, vn, p, pMM, pv) ∈ RkS × RkC × RkC

× RkC × RkB × R :
x = x̂, n = n̂, vn = v̂n, p = 1pv, pMM = r̂pv
+ (1− r̂)p2v, pv ∈ [0, 1]},

(87)

which defines the critical manifold of the system (e.g., Kuehn,
2015 for general considerations and Priklopil and Lehmann, 2020
in the context of the ‘‘invasion implies substitution’’-principle).
The critical manifold thus gives the steady states of the general
solution of (86) and is a curve consisting of an infinite number
of steady states (equilibria) parametrized by pv ∈ [0, 1] (see
Fig. 2, panels (a)–(c) for a graphical representation). Because x̂
s assumed to be hyperbolically stable (Section 3.5) the critical
anifold is said to be a normally hyperbolically stable invariant
anifold. For such manifolds the dynamics near the manifold is
ominated by the hyperbolicity condition (i.e. in the normal di-
ection to the manifold) while the fast dynamics on the manifold
s constant (in the fast subsystem). Indeed, all the variables are
onstant on M0 and because pv is defined on an interval [0, 1]
the manifold is a 1-dimensional manifold in a (3kC+kS+kB+1)-
dimensional space and can be seen as the state space for the
pure slow dynamics where δ = 0 in (85) (studied in detail in
Section 6.2). This manifold plays an important role in the proof
of the ‘‘invasion implies substitution’’-principle: in the fast–slow
mutant-resident system where δ is small but non-zero the critical
manifold persists as a so-called slow manifold (Fenichel, 1979),
and, the dynamics of the fast–slow mutant-resident system (84)–
(85) on and near the slow-manifold is equivalent to the dynamics
of pv on and near M0 in the slow subsystem (Section 6.2).

6.2. Slow subsystem on the critical manifold

We obtain the slow subsystem by setting δ = 0 in (85).
owever, motivated by Section 6.1, we are in fact not interested
n every possible slow subsystem of (85), only the one associated
o x̂ and the critical manifold M0 (87). Indeed, there may be
ther steady states satisfying 0 = Q(x)x and hence other critical
anifolds and slow subsystems. The slow subsystem of interest

s then given jointly by the critical manifold M0 in (87) and the
ynamics of the weighted mutant frequency pv restricted to this
anifold,

d
dτ

pv =
∑

au,bs∈C

[
vn
au

[ ∂hau,bs(x)
∂zfoc,bs

ηbspM,bs(1− pM,bs)+

+

∑
cs∈C

∂hau,bs(x)
∂zloc,cs

ηcs(pMM,bcs − pM,bspM,cs)
]
nbs

]
M0

= pv(1− pv)Sη(x̂),

(88a)
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Fig. 2. Panels (a)–(c) depict the fast and slow subsystems and the critical manifold M0 (86)–(87) (where δ = 0, Sections 6.1–6.2), and, panels (d)–(f) depict their
ingular perturbations and the slow manifold Mδ (where δ small but non-zero, Section 7). (a) The phase-plane for the fast variables (x,n, vn) (the ‘‘x-axis’’) and the
low variable pv (the ‘‘y-axis’’). In the fast subsystem (Section 6.1) the slow variable pv stays constant while the fast variables converge to (x̂, n̂, v̂n) whenever x(t0)
s in the neighborhood (indicated by gray semi-circles) of x̂ for some initial time t0 . A specific solution for the fast subsystem is depicted with small arrows and
here the empty circle shows the initial condition for t0 . The slow subsystem (Section 6.2) is constrained on M0 , and a particular solution is constructed by taking
he steady state of the fast subsystem (where t → ∞) as the initial condition for the slow subsystem (x(τ0),n(τ0), vn(τ0), pv(τ0)) = (x̂, n̂, v̂n, pc). In this example
v(τ )→ 1 as τ →∞. (b) The shape of M0 on the (p, pv)-plane where p̂ = 1pv (top panel) and (pMM, pv)-plane where p̂MM = r̂pv + (1− r̂)p2v (bottom panel). Note
hat the shape of M0 in the bottom panel depends on the steady state for relatedness r̂. (c) Phase-plane for the fast (and slow) arithmetic mutant frequency p
55) and the slow reproductive value weighted mutant frequency pv (the notation is identical to panel (a)). Note that p = pv on M0 and that their dynamics on
M0 is as given in (88) and (91). (d) The phase plane for (x,n, vn, pv) as a singular perturbation of (a) where, in particular, the slow manifold Mδ is O(δ)-close to

0 as is the initial condition (gray circle) and the solution on Mδ . Moreover, because Mδ is a stable manifold, the solutions in the neighborhood of Mδ approach
he solutions on Mδ . (e) The shape of Mδ as a perturbation of M0 discussed in (b). (f) The phase plane for (p, pv) as a singular perturbation of (c). Note that the
olutions p(τ )|Mδ

and pv(τ )|Mδ
are O(δ)-distance away from each other because Mδ lies off-diagonal. The interpretation of the solutions is identical to (d).
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here

η(x̂) =
∑

au,bs∈C

v̂n
au

[∂hau,bs(x̂)
∂zfoc,bs

ηbs +
∑
cs∈C

∂hau,bs(x̂)
∂zloc,cs

r̂bcs ηcs

]
n̂bs (88b)

is evaluated at the critical manifold M0. To obtain Eq. (88) we
ave taken the limits δ → 0 and t → ∞ and recall that

throughout we have assumed that the total population size is
infinity. Eq. (88) can thus be seen as the first moment of change in
the reproductive value weighted allele frequency of the diffusion
approximation for slow subsystems (Ethier and Nagylaki, 1980,
1988).

6.3. Solution of the slow subsystem

Given that the dynamics of the weighted mutant frequency pv
can be solved from a single ODE given in (88), we can express
this in the context of an initial value problem as follows. First,
recall that the fast subsystem (86) converges to M0 as t → ∞,
and that the exact point on M0 that the fast subsystem converges
to depends on the given initial condition (x(t0), p(t0)) which
determines pv = pc ∈ [0, 1] that parametrizes M0 (Section 6.1).
We will assume that this point is an initial condition for the slow
subsystem, and to this end we define pv(τ0) = pc for some initial
slow time τ0, and let

(x(τ ),n(τ ), vn(τ )) = (x̂, n̂, v̂n) (89)
0 0 0

26
and

(p(τ0), pMM(τ0)) = (1pv(τ0), r̂pv(τ0)+ (1− r̂)pv(τ0)2). (90)

ote that the dependency of (89)–(90) on (x(t0), p(t0))) comes
nly through (90). Then, in slow time τ , the weighted mutant
requency pv(τ ) changes according to (88) for all τ ≥ τ0, and for
he initial condition (89)–(90) its solution is

v(τ | x(t0), p(t0)) =
1

1+ 1−pv(τ0)
pv(τ0)

exp[−τSη(x̂)]
, (91)

where Sη(x̂) is given in (88b) and where we have indicated that
the initial condition pv(τ0) = pc depends on (x(t0), p(t0)).

It is important to note that while (x(τ ),n(τ ), vn(τ )) =
(x̂, n̂, v̂n) stay constant for all τ ≥ τ0, the genetic structure
changes according to p(τ ) = 1pv(τ ) and pMM(τ ) = r̂pv(τ )+ (1−
ˆ)pv(τ )2 for all τ ≥ τ0 and where pv(τ ) = pv(τ | x(t0), p(t0)) is
he solution in (91). Because p and pMM change also in the fast
ubsystem (Section 6.1), they are both fast and slow variables.
oreover, because every average mutant frequency pφ in (65) in

he fast subsystem converges to pc as t → ∞ (Section 5.1), we
ill also define

φ(τ0) = pv(τ0). (92)

hen, pφ(τ ) = pv(τ ) for all τ ≥ τ0, and the solution of pφ and thus
lso the solution of the arithmetic mean mutant frequency p in
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55), is identical to the solution (91). See Fig. 2, panels (a)–(c) for
graphical representation.

. Invasion implies substitution

We are now ready to state and prove the ‘‘invasion implies
ubstitution’’-principle for the metacommunity model.

nvasion implies substitution — principle. Suppose that resi-
ent individuals express phenotype z ∈ Z and that the resident

dynamics of the metacommunity is given as in (10). Suppose
further that the metacommunity is near a hyperbolically stable
steady state x̂ that satisfies 0 = Q(x̂)x̂, and that a mutation
generates a mutant phenotype z+δη where η gives the direction
of the deviation and δ characterizes the distance between mutant
and resident phenotypes. Then, for sufficiently small δ and/or
large time t ≥ t0 where t0 is some initial time, the dynamics of
the arithmetic mean mutant frequency p can be approximated as

ṗ = p(1− p)δSη(x̂)+ O(δ2) (93)

with solution

p(t) =
1

1+ 1−pc
pc

exp[−tδSη(x̂)]
+ O(δ), (94)

where

Sη(x̂) =
∑

au,bs∈C

v̂n
au

[∂hau,bs(x̂)
∂zfoc,bs

ηbs +
∑
cs∈C

∂hau,bs(x̂)
∂zloc,cs

r̂bcs ηcs

]
n̂bs. (95)

he constant pc in (94) is the asymptotic mean mutant frequency
of the fast subsystem where δ = 0 and it depends on the initial
ondition (x(t0), p(t0)) where p(t0) is the initial distribution of
ithin-class mutant frequencies. In Sη(x̂), the density distribution
ector n̂ and the reproductive value vector v̂n are the right and
eft dominant eigenvectors of H(x̂) with a scaling v̂n · n̂ = 1
where H(x̂) is the resident fitness matrix in (15). The relatedness
vector r̂ satisfies r̂ = c(x̂) + D(x̂)r̂ where c(x̂) is a vector giving
the probabilities that a pair of individuals have a common parent
and D(x̂) is a matrix giving the probabilities that this pair has two
distinct parents within the same group (Section 3.4.1).

7.1. Proof of the principle

Here we give a poof of the ‘‘invasion implies substitution’’-
principle stated above. First, recall that in Section 4 we set up
a mutant-resident metacommunity model for arbitrary δ, and
in Section 5 we showed that in order to study the spread of a
mutant allele for small δ we can study the fast–slow dynam-
ics of five fast variables (x,n, vn, p, pMM) dominated by O(1)
and a single slow variable pv dominated by O(δ). To do this,
in Section 6 we set up a fast–slow mutant-resident system for
(x,n, vn, p, pMM, pv) and then analyzed its fast and slow subsys-
tems where δ = 0. In the fast subsystem (Section 6.1), we found
that whenever x converges to x̂, all the remaining fast variables
(n, vn, p, pMM) of interest converge to the critical manifold M0
at which (x,n, vn) = (x̂, n̂, v̂n) are isolated steady state points
and (p, pMM) = (1pv, r̂pv + (1 − r̂)p2v) take values on a curve
parametrized by pv ∈ [0, 1] which is a constant in the fast
subsystem (and hence is on M0 by definition). The exact point
pv = pc ∈ [0, 1] on M0 that the fast subsystem converges
to depends on the initial condition (x(t0), p(t0)) where x(t0) is
chosen sufficiently close to x̂.

In the slow subsystem (Section 6.2), we found that the slow
variable pv changes according to an ODE given in (88) and when
coupled with an initial condition its solution is given by (91). Con-
sequently, the fast variables (x,n, vn) = (x̂, n̂, v̂n) stay constant
 b
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in the slow subsystem and are thus purely fast variables, and the
two moments of allelic states (p, pMM) = (1pv, r̂pv + (1 − r̂)p2v)
change due to pv and are hence both fast and slow variables.
Next, we perturb the fast and slow subsystems using classical
results from geometric singular perturbation theory (Fenichel,
1979; Hek, 2010; Kuehn, 2015; Priklopil and Lehmann, 2020),
which proves the ‘‘invasion implies substitution’’-principle for
small but nonzero δ. To this end, we proceed in two steps. In step
1 we apply ‘Fenichel’s first theorem’ (e.g. Priklopil and Lehmann,
2020, Appendix A.4., Fenichel’s invariant manifold theorem 1)
saying that because M0 is a normally hyperbolic invariant man-
ifold, for small but non-zero δ there exists a so-called slow
manifold Mδ that is (i) O(δ)-close and diffeomorphic to M0, and,
(ii) invariant under the fast–slow mutant resident dynamics (84)–
(85). Property (i) says that for any point on M0 there is a point
on Mδ that is O(δ)-close. We will state this in terms of an initial
condition of the slow subsystem as

(x(τ0),n(τ0), vn(τ0))|Mδ
= (x(τ0),n(τ0), vn(τ0))|M0+O(δ)

= (x̂, n̂, v̂n)+ O(δ) (96a)

nd

p(τ0), pMM(τ0))|Mδ
= (1pv(τ0), r̂pv(τ0)+ (1− r̂)pv(τ0)2)|M0+O(δ),

(96b)

nd which is valid for any initial condition (i.e., any point on M0)
nd where O(δ) is a vector of O(δ). The property (ii) says that
or all τ ≥ τ0, the solutions starting on Mδ will remain on Mδ .
mportantly, the two properties (i) and (ii) together imply that for
ll τ ≥ τ0 the ODE’s (or vector fields) and their solutions on Mδ

re small perturbation of the ODE’s (vector fields) and solutions
n M0. More precisely, because the dynamics of pv(τ ) on M0
enoted as pv(τ )|M0 can be written as an ODE (88) and when
oupled with an initial condition its solution is given as in (91)
or all τ ≥ τ0 (Section 6.2), the dynamics of pv on Mδ can be
ritten as an ODE
d
dτ

pv
⏐⏐⏐
Mδ

= pv(1− pv)Sη(x̂)+ O(δ), (97)

and when coupled with an initial condition given in (96), its
solution is

pv(τ )
⏐⏐⏐
Mδ

=
1

1+ 1−pc
pc

exp[−τSη(x̂)]
+ O(δ) (98)

here pc = pv(τ0) is the initial weighted mutant frequency in the
low subsystem. Eqs. (97)–(98) are the first order approximations
f the dynamics on Mδ .
So far we focused on the dynamics of pv(τ ). But since on M0

e have pv(τ ) = pφ(τ ) for all τ ≥ τ0 (Section 6.3), and because
is nonzero in (97)–(98), we can re-write (97)–(98) in fast time
= τ/δ and in terms of pφ as

d
dt

pφ

⏐⏐⏐
Mδ

= δpφ(1− pφ)Sη(x̂)+ O(δ2) (99)

and

pφ(t)
⏐⏐⏐
Mδ

=
1

1+ 1−pc
pc

exp[−tδSη(x̂)]
+ O(δ). (100)

qs. (97)–(100) thus establish the first order approximation for
ny average mutant frequency in the fast–slow mutant resident
ystem (84)–(85) restricted to the slow manifold Mδ . We note
hat while the solutions pv and pφ on Mδ are both O(δ)-distance
way from their solutions on M0, they are also O(δ)-distance
way from each other (Fig. 2 panel (f), see further discussion
elow).
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It now remains to investigate whether the first order approxi-
mations (97)–(100) on Mδ are generic in the sense that any other
solution nearby is a small perturbation away, which is a necessary
requirement for us to be able to choose initial conditions away
from Mδ . This leads to step 2 of the proof in which we apply
Fenichel’s results on the persistence of the stability properties
of manifolds (e.g. Priklopil and Lehmann, 2020, Appendix A.4.,
Fenichel’s invariant manifold theorems 2 and 3). These results
say that because M0 is attracting so is Mδ , and moreover, all the
ariables near Mδ converge to Mδ exponentially fast. The exact
ates can be estimated as given in Priklopil and Lehmann (2020,
ppendix A.4., Corollaries 1 and 2). Therefore, a solution pφ(t)

with an initial condition pφ(t0) near Mδ , for some initial time t0,
ill become arbitrarily close to (99)–(100) in finite time that de-
ends on δ. See Fig. 2 panels (d)–(f) for a graphical representation

of the proof. □
Using the weighted mutant frequency pv and geometric singu-

ar perturbation theory (Fenichel, 1979; Hek, 2010; Kuehn, 2015),
e showed that the ‘‘invasion implies substitution’’-principle
olds for our metacommunity model, saying that the dynamics of
ny average population-wide mutant frequency pφ can in fact be
pproximated for sufficiently small δ and/or large fast time t by a

single scalar valued dynamical equation (93)–(95). Moreover, the
rate at which change in mutant frequency occurs in the ‘normal’
population dynamical time t is characterized by δSη(x̂) giving the
umber of additional mutant alleles produced per unit of time
y the focal mutant allele (see further discussion in Section 7.2).
his can be expressed purely in terms of quantities obtained
rom the resident metacommunity dynamics evaluated at their
teady states, and are thus constant over the relevant timescales.
e note that because the rate of mutant frequency change is
easured per unit of time, this rate is of order O(δ) slower in

ast time t than in slow time τ because 1/t = δ/τ (compare
.g. (97) and (99)), and thus Sη(x̂) characterizes the rate of mutant
requency change in the slow evolutionary time τ . In contrast,
he solution of the average mutant frequency pφ of the fast–
low system where δ is small is O(δ)-distance away from the
olution of the slow subsystem (where δ = 0), and this distance
s independent of the timescale (compare e.g. (98) and (100)).
his implies that the per unit time change in the arithmetic mean
utant frequency is δ-distance away from the asymptotic change

n the reproductive value weighted frequency. Moreover, as δ

pproaches 0 but remains non-zero, the slow subsystem (91)
ives an increasingly good approximation to (94).

.2. Inclusive fitness effect and singular points

An alternative representation of the directional selection co-
fficient δSη(x̂) as characterized in (95) can be obtained by con-
idering a class-frequency vector u = (uas)as∈C = n/n where
=
∑

as∈C nas is the total density of the focal species. Because
each individual can be identified with the allele it carries, we will
interpret n as the total number of mutant and resident alleles in
the focal species and u as the distribution of the context they
ind themselves in Kirkpatrick et al. (2002), and recall that the
istribution of mutants and residents is given by p. In other
ords, given we randomly sample a carrier of the mutant al-

ele (or resident allele) at the steady state for a process where
= 0, ûas is the probability that this allele finds itself in class

as ∈ C. Then, by re-scaling the critical manifold (87) as n̂ =
n̂û and n̂v̂n = v̂u such that v̂u · û = 1 where vu is the
adjoint variable associated to u (and corresponds to the standard
scaling of reproductive value, e.g., Taylor, 1990), the directional
selection coefficient δSη(x̂) characterized in (95) can be written
and interpreted as given in (2) (by adding a superscript u to
v). Note that in (2) we write S (z) thus using z instead of x̂
η

28
as the main argument because it is commonly used as such to
study phenotype evolution and we shall follow this notational
change henceforth. We emphasize that under both scalings, (2)
and (95), the directional selection coefficient measures the ‘ad-
ditional’ mutant alleles produced by a randomly sampled carrier
of the mutant allele, i.e., a focal mutant individual. This is true
in particular in the second summation in (2) and (95) where the
contribution of group members is accounted for.

We can now further change the perspective on the contri-
bution of group members by swapping indices in the second
summation in (2), and using ucs = (Ncs/Nbs)ubs for all bs, cs ∈ C,
we then obtain the representation

Sη(z) = S̃(z) · η =
∑
bs∈C

Sbs(z)ûbsηbs, (101)

with S̃(z) = (Sbs(z)ûbs)bs∈C where

bs(z) =
∑
au∈C

v̂u
au

[
∂hau,bs(x̂)
∂zfoc,bs

+

∑
cs∈C

∂hau,cs(x̂)
∂zloc,bs

Ncs

Nbs
r̂bcs

]
(102)

is the selection pressure on phenotypic component zbs ∈ ZC . Sim-
ilarly to (2) and (95), the first term in the brackets
∂hau,bs(x̂)/∂zfoc,bs, when multiplied by δ, gives the additional
number of gene copies (or offspring number owing to asexual
reproduction) in class au ∈ C produced per unit of time by an
individual of class bs ∈ C as a consequence of it bearing the
mutant instead of the resident allele. In contrast to (2) and (95),
however, the term [(∂hau,bs(x̂)/∂zloc,cs)(Ncs/Nbs)] in the second
summation, when multiplied by δ, gives the additional number
of class au ∈ C gene copies produced per unit of time by all
non-focal local individuals of class cs ∈ C (group members of the
focal individual) as a consequence of a focal individual of class
bs ∈ C bearing the mutant instead of the resident allele. The
weight r̂bcs ensures that we only count those non-focal individuals
cs ∈ C who have a common ancestor with the focal individual
bs ∈ C and are thus likewise mutants. Each such additional
mutant gene copy in class au ∈ C is then weighted with its
reproductive value v̂u

au that gives the expected asymptotic number
of descendants, and we finally sum over all classes of the offspring
au ∈ C. Therefore, in (101)–(102), the individual fitness ‘belongs’
to the focal individual in the first term in (102) (as in (2) and
(95)), whereas in the second term in (102) it ‘belongs’ to non-
focal but related individuals (in contrast to (2) and (95)) that are
affected by the focal’s trait(s). The focal individual can thereby be
taken as the actor of all fitness changes as prescribed by inclusive
fitness theory (Hamilton, 1970), and (102) is fully consistent with
the exact representation of inclusive fitness for (physiolgically)
class-structured populations (Lehmann and Rousset, 2020, eq. 4).
Hence, (101) separates mutational step size from structure of
selection by associating all fitness consequences of an allele that
would induce an unilateral phenotypic change ηbs into Sbs(z) for
all bs ∈ C in (102).

It then follows from (101) that a singular point z∗ ∈ Z needs
to satisfy

Sbs(z∗) = 0 for all bs ∈ C, (103)

since at a singular point no unilateral deviation in phenotype
should result in a change in fitness, that is, (101) needs to be
0 for all η. Whether such a singular point will be approached
by gradual evolution from within its neighborhood hinges on
the concept of convergence stability (Eshel, 1983; Lessard, 1990;
Christiansen, 1991; Leimar, 2009). However, because convergence
stability along with other properties of singular points (e.g. evo-
lutionary branching Geritz et al., 1998; Ajar, 2003) is a ‘second
order’ property we leave such further analysis for future work.
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ere we simply state that while in the context of multidimen-
ional phenotypic evolution the direction of change of pheno-
ype can depend on the mutation process, the covariance of the
lass-specific mutational increments are unlikely to interfere with
he convergence stability of singular points when the mutation
atrix is positive definite (Leimar, 2005, 2009).

. Discussion

We have proved the ‘‘invasion implies substitution’’-principle
(93)–(95), Section 7) for the evolution of a multidimensional
uantitative trait expressed by the individuals of a focal species
hat is physiologically class structured e.g. by age, size and stage,
nd that resides in a metacommunity with finite local community
ize where reproduction, dispersal, survival, and development are
tochastic and frequency and density dependent.

.1. Evolutionary dynamics across multiple timescales

The evolutionary dynamics discussed in this paper are driven
y three qualitatively different evolutionary forces (processes):
utation, selection and class transmission. Mutation-driven
hanges in the metacommunity are caused by the apparently
andom modification of the expression of the phenotype. And
hile selection is classically driven by the differential survival
nd reproduction due to differences in phenotypes among indi-
iduals, class transmission is driven by the differential survival
nd reproduction due to individuals residing in different classes.
utant frequency can thus change not only due to selection but
lso class transmission, even in the absence of selection (see (52)).
n the following we will examine all these processes in detail and
ow they contribute to the adaptive dynamics of a quantitative
rait.

In the mutant-resident metacommunity model with arbitrary
henotypic effects (Section 4), both selection and class
ransmission are arbitrarily strong and intertwined. They together
rive the change in mutant allele frequency at all times, a change
hat can involve density-dependent and frequency-dependent
ynamics potentially leading to allelic coexistence (polymor-
hism). In Section 5, however, we showed (as expected) that
nder the assumption (i) of phenotypic closeness, the effect of
election on the mutant frequency dynamics is much weaker
han the effect of class transmission. Hence, the large system
f mutant frequency dynamics can be partitioned into two sim-
ler limiting subsystems (Section 6), one that is driven only by
lass transmission on a fast population dynamical timescale (fast
ubsystem, Section 6.1) and the other driven only by selection
n a slower micro-evolutionary timescale (slow subsystem, Sec-
ion 6.2). One can further analyze these subsystems in isolation
nd join them together using geometric singular perturbation
ethods (Fenichel, 1979; Hek, 2010; Kuehn, 2015) eventually

eading to the ‘‘invasion implies substitution’’-principle (93)–(95)
Section 7). In order to follow these steps, however, we had to
vercome the difficulty that in class-structured populations there
oes not exist a priori a purely slow variable driven by selection

only and that can be used as a proxy for mutant frequency (e.g.
Rousset, 2004; Priklopil and Lehmann, 2020). Such a variable
can nevertheless be constructed by weighting the distribution
of mutants by reproductive values (Taylor, 1990; Rousset, 2004;
Grafen, 2015; Lion, 2018b; Priklopil and Lehmann, 2020), because
by definition such weights scale away any changes due to class
transmission. Hence, the assumption of small phenotypic differ-
ences and the use of the weighted frequency together lead to
he separation of timescales and the consequent separation of

volutionary dynamics into frequency changes caused by class T

29
transmission and selection, which in turn underlies arithmetic
mean allele frequency change (93)–(95) whose sign is indepen-
dent of frequency. Our result thus extends earlier work whose
representation of (1) was given in terms of a reproductive value
weighted mutant frequency and not the arithmetic mean (Roze
and Rousset, 2004; Rousset and Ronce, 2004; Rousset, 2004;
Van Cleve et al., 2010; Priklopil and Lehmann, 2020).

We must stress that the arithmetic mean allele frequency
change (93)–(95) holds not only in the limiting slow subsystem
where δ → 0 and where the population dynamical time t →∞
Section 6.2), but also for small but non-zero δ in the ‘normal’
opulation dynamical time t∗ ≤ t ≤ ∞ where t∗ is some
inite time after which (93)–(95) hold (Section 7). In this respect,
ur results complement earlier work on the mutant allele dy-
amics in slow subsystems (e.g. Wakeley, 2003; Roze and Rous-
et, 2003; Rousset, 2004; Wakeley and Takahashi, 2004; Lessard,
009, and see for well-mixed but age and/or class-structured
opulations Lessard and Soares, 2018; Soares and Lessard, 2019,
020). In this work, the strength of selection δ is inversely pro-
ortional to the system size that tends to infinity while δ → 0
ut keeping their product finite, and it invokes a two timescale
ethod of Ethier and Nagylaki (1980). Our result (1)–(2) for small
ut nonzero δ holds whenever one can show that the metacom-
unity is ‘structurally stable’ in the sense that the steady state
f the metacommunity and its stability properties persist under
he small perturbation caused by the invasion of the mutant,
hat is, when δ deviates from 0. In the present metacommunity
odel, this is guaranteed by the assumption of hyperbolicity (ii),
nd jointly with the assumption on phenotypic similarity (i) and
he weighted frequency pv fully justify the ‘‘invasion implies
ubstitution’’-principle (93)–(95). Recurrent invasion-substitution
vents thus cause the seemingly gradual changes in the struc-
ure of the metacommunity and the gradual evolution of the
henotype of interest.
The final question is whether and how is the process of gradual

volution affected by the mutation processes. For scalar-valued
henotypes, recurrent invasion-substitution events will always
ither increase or decrease the phenotypic value until the phe-
otype becomes a singular point and the same should hold for
ultidimensional traits under mild assumptions on the muta-

ion matrix when the singular point is convergence stable (see
ection 7.2). Interestingly, a mutation rate that results in several
ompeting mutations in the metacommunity does not interfere
ith the qualitative nature of this gradual process. This is be-
ause any finite number of overlapping mutations perturb the
tructure of the resident species only to order O(δ) (Meszéna
t al., 2005). Therefore, if the mutation of interest results in a
ositive selection coefficient δSη(z) in a resident metacommunity,
he selection coefficient remains positive upon the arrival of any
ew mutations, provided the assumption (i) for small phenotypic
ffects holds. Naturally, this is also true for the other ‘overlap-
ing’ mutations: any mutation that results in a positive selection
oefficient δSη(z) will go to fixation upon a successful invasion
vent. A mutation rate that generates several overlapping muta-
ions thus only affects the rate of evolution but not its direction.
urthermore, it is important to emphasize that the ‘‘invasion im-
lies substitution’’-principle (93)–(95) is valid also for polymor-
hic resident metacommunities (Priklopil and Lehmann, 2020).
n such a case the ‘‘invasion implies substitution’’-principle holds
long each ‘‘morph’’ of the polymorphic resident species requiring
s many directional selection coefficients as there are morphs.

herefore, provided we stay away from singular points and mu-
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ations have small phenotypic effects, the ‘‘invasion implies
ubstitution’’-principle (1)–(2) gives a complete description of the
radual evolutionary process.

.2. Evolutionary dynamics across multiple fluctuations

Because we have formulated the metacommunity dynamics
s a stochastic processes that can depend on the state of the
roup and the metacommunity at large, our model captures
requency- and density-dependent environmental feedbacks both
t the group- as well as metacommunity-level. Our model also
pplies to situations where reproduction, dispersal, survival and
hysiological development depends on locally fluctuating ex-
ernal factors, defined as any factors that are not contained in
he environmental feedback, and can thus generate the effect of
nvironmental stochasticity on a local (group) scale and when-
ver the external factors can be expressed as discrete variables.
xtending our model to capture globally fluctuating external
actors would require to introduce an additional ‘‘environmental’’
tate space E whose elements would affect all quantities used
n this paper but not change their functional form, that is, all
ates used in this paper would also be functions of E (in the
ontext of this present paper but for well-mixed populations
ee a recent approach in Cai and Geritz, 2020). Yet, we expect
hat by taking an appropriate average over the ergodic path of
nvironmental states including such environmental change is
nlikely to change the generic shape of the selection coefficient,
point illustrated by Lenormand et al. (2009), proven more

enerally by Lion (2018b, eq. 23) for panmixia, and implied by
he analysis of Svardal et al. (2015, eq. B.8) for spatial structure.
oreover, in metacommunity models where the total size of the

ocal species is finite, our dynamical equations can in principle be
sed to construct a diffusion approximation with two timescales
o analyze the effect of genetic drift on the evolutionary dynamics
e.g., Wakeley, 2003; Roze and Rousset, 2004; Rousset, 2004;
oares and Lessard, 2020). Here, the infinitesimal mean of the
iffusion is given by the mean change (88) and the infinitesimal
ariance is obtainable from the recurrence equations for relat-
dness (Rousset, 2004, chapter 9-11). Finally, we formulated our
odel only in the context of haploid reproduction. Still, allowing

or diploidy and sexual reproduction under additive gene action
ithin individuals should only require changing the scaling of the
ean change in allele frequency (93) and to interpret relatedness

n the directional selection coefficient (95) in a diploid context
as per simpler models with diploidy and class-structure, Roze
nd Rousset, 2004; Van Cleve et al., 2010). In conclusion, while
e have left several biological questions to be settled in fu-
ure work, we believe that the present model contributes to
he understanding of adaptive evolution of structured natural
opulations.
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Appendix A. Individual fitness

A.1. Resident individual fitness

In this section we detail the steps to obtain individual fitness
(16) from the resident group and metacommunity dynamics (10).
Using nau = Nauxu, we have

ṅau = Nauẋu

= Nau

∑
s∈S

[
qpu,s(x)+ qdu,s(x)+ qmc

u,s (x)
]
xs

=

∑
s∈S

Nau

[∑
c,b∈P

λ
p
cu,bs(x)Nbs +

∑
c∈P

∑
dw∈C

λdB
cu,s,dw(x)Ndwxw

+ qmc
u,s (x)

]
xs,

(A.1)

here we have applied Section 3.2. Whenever an individual a ∈ P
is produced or removed from group s ∈ S so that this group
transitions to u ∈ S , the number of a ∈ P in the group changes
and Nau is either equal to Nas+ 1 or Nas− 1, otherwise Nau = Nas.
This motivates us to re-write the above as

ṅau =
∑
s∈S

(Nau − Nas + Nas)

[∑
c,b∈P

λ
p
cu,bs(x)Nbs

+

∑
c∈P

∑
dw∈C

λdB
cu,s,dw(x)Ndwxw + qmc

u,s (x)

]
xs

=

∑
s∈S

(Nau − Nas)

[∑
b∈P

λ
pB
au,bs(x)Nbs + λT

au,bs(x)Nbs

+

∑
dw∈C

λdB
au,s,dw(x)Ndwxw

]
xs+

+

∑
s∈S

(Nau − Nas)

[∑
c∈P

λT
cu,as(x)Nas + λD

au,as(x)Nas

]
xs+

+

∑
s∈S

Nas

[∑
c,b∈P

λ
p
cu,bs(x)Nbs

+

∑
c∈P

∑
dw∈C

λdB
cu,s,dw(x)Ndwxw + qmc

u,s (x)

]
xs

(A.2)

where in the second equality we have applied Sections 3.1–3.2,
and by relabeling the indices on the second line in (A.2) we get

ṅau =
∑
s∈S

∑
b∈P

[
(Nau − Nas)

(
λ
pB
au,bs(x)+ λT

au,bs(x)
)
+

+

∑
w∈S

(Nau − Naw)xwλdB
au,w,bs(x)

]
Nbsxs+

+

∑
s∈S

(Nau − Nas)

[∑
c∈P

λT
cu,as(x)Nas + λD

au,as(x)Nas

]
xs+

+

∑
s∈S

qu,s(x)Nasxs.

(A.3)

Now, for all s ̸= u ∈ S , we have Nau−Nas = 1 and Nau−Naw = 1
on the first and second line in (A.3), respectively, because an
offspring a ∈ P is produced by birth into a group that transitions
to u ∈ S , and N − N = −1 on the third line in (A.3) because
au as



T. Priklopil and L. Lehmann Theoretical Population Biology 142 (2021) 12–35

a

r
w
t

h

w

q

w
l
s
b
p
r
e
f
(
c
L

h

H
λ

λ

T
t

parent a ∈ P is removed by physiological transition or death
from a group that transitions to u ∈ S. In all other situations
where s ∈ S transitions to u ∈ S we have Nau = Nas. We thus get,
after some reorganization,

ṅau =
∑
s∈S

∑
b∈P

[
λ
pB
au,bs(x)+ λT

au,bs(x)+ λdB
au,bs(x)

]
Nbsxs−

−

∑
s∈S

[∑
c∈P

λT
cu,as(x)+ λD

au,as(x)

]
Nasxs +

∑
s∈S

qu,s(x)Nasxs

=

∑
bs∈C

[
λ
pB
au,bs(x)+ λT

au,bs(x)+ λdB
au,bs(x)

]
nbs+

+

∑
s∈S

[
qu,s(x)−

∑
c∈P

λT
cu,as(x)− λD

au,as(x)

]
nas

=

∑
bs∈C

hau,bs(x)nbs,

(A.4)

where for u ̸= s ∈ S we can then write

hau,bs(x) =

⎧⎪⎨⎪⎩
λd
au,bs(x)+ λ

pB
au,bs(x)+ λT

au,bs(x) for a ̸= b
λd
bu,bs(x)+ λ

pB
bu,bs(x)+ qu,s(x)

−
∑

c ̸=a∈P λT
cu,bs(x)− λD

bu,bs(x) for a = b,

(A.5a)

and for u = s ∈ S we have

has,bs(x) = λd
as,bs(x)+ δa,bqs,s(x) = λd

as,bs(x)− δa,b
∑

w ̸=s∈S

qw,s(x),

(A.5b)

for all a, b ∈ P . Alternatively, we can represent (A.5) with a single
equation

hau,bs(x) = λd
au,bs(x)+ λ

pB
au,bs(x)+ λT

au,bs(x)

+ δa,b

[
qu,s(x)−

∑
c∈P

λT
cu,as(x)− λD

au,as(x)

]
,

(A.6)

for all au, bs ∈ C, and which is the expression for individual
fitness (16) given in Section 3.

A.1.1. Individual fitness: connection to previous models and formu-
lations

Physiologically unstructured metapopulation model. Here we
consider a single physiologically unstructured species and sup-
pose that groups are identical in terms of abiotic factors. The set
of g-states can then be represented with S = {0, 1, 2, . . . ,Nmax}

specifying the number of individuals of this focal species inhab-
iting a group, and the only processes occurring in each group
are death, philopatric birth and birth via dispersal, which is
conceptually similar to models with local group demographic
fluctuations considered previously (Metz and Gyllenberg, 2001;
Cadet et al., 2003; Rousset and Ronce, 2004; Lehmann et al., 2006;
Alizon and Taylor, 2008; Parvinen, 2013). The individual fitness
(16) then reduces to

hN ′,N (x) = λd
N ′,N

(x)+ λ
pB
N ′,N

(x)+
(
q
N ′,N

(x)− λD
N,N (x)

)
for all N,N

′

∈ S, (A.7)

where

q
N ′,N

(x) =
(
λ
pB
N ′,N

(x)+ λD
N ′,N

(x)
)
N +

∑
K∈S

λdB
N ′,N,K

(x)KxK

′ ′

(A.8)

for all N,N ∈ S, N ̸= N.
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Here,

λD
N ′,N

(x) =
{
µN (x) for N

′

= N − 1
0 otherwise,

(A.9)

and

λ
pB
N ′,N

(x) =
{
β

p
N (x) for N

′

= N + 1
0 otherwise,

(A.10)

and λd
N ′,N

(x) =
∑

K∈S xKλdB
N ′,K ,N

(x) where

λdB
N ′,K ,N

(x) =

{
βd

N ′
K
←N

(x) for N
′

= K + 1

0 otherwise.
(A.11)

By convention we have µ0(x) = 0, βp
Nmax

(x) = 0 and βd

N ′
Nmax
← N

(x) =
0. The interpretation of (A.7) is analogous to the one in (16)
except that the i-process for physiological transitions as well as
all the other processes of non-focal species and abiotic factors are
absent. Note that, if we further have β

p
N (x) = (1 − m)βN (x) and

βdB

N ′
K
←N

(x) = mβN (x) for some migration probability m and birth
ate βN (x) depending only on the local density of the parent and
hich is the realm of the aforementioned demographic models,
hen

N ′,N (x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βN (x)+ qN+1,N (x) for N

′

= N + 1
xN−2mβN (x)+

(
qN−1,N (x)− µN (x)

)
for N

′

= N − 1
xN−1mβN (x)+ qN,N (x) for N

′

= N
xN ′−1mβN (x) for N

′

̸= {N − 1,N,N + 1},

(A.12)

here

N ′,N
(x)

=

⎧⎪⎪⎨⎪⎪⎩
(1−m)βN (x)N +m

∑
K∈S βK (x)KxK for N

′

= N + 1
µN (x)N for N

′

= N − 1
−[qN+1,N (x)+ qN−1,N (x)] for N

′

= N
0 otherwise.

(A.13)

Well-mixed physiologically structured population model. Here
e reduce our metacommunity model to a well-mixed popu-

ation model for a single focal species that is physiologically
tructured. In so doing, we assume that each ‘group’ is inhabited
y at most one individual and that individuals reproduce via dis-
ersal into an empty uninhabited group. The set of g-states can be
epresented with S = {0} ∪ P implying that each group is either
mpty or it is inhabited by a single individual that is in one of the
inite number of physiological states. The only processes are birth
via dispersal), physiological transition and death. This model is
onceptually similar to the one in Lion (2018a,b) and Priklopil and
ehmann (2020). The individual fitness (16) then reduces to

a,b(x) = λd
a,b(x)+ λT

a,b(x)− δa,b

(∑
c∈P

λT
c,b + λD

b,b

)
,

for all a, b ∈ P. (A.14)

ere, for all a, b ∈ P , we have λd
a,b(x) = x0λdB

a,0,b(x) where
d
a,0,b(x) = βd

a
0
←b

(x), and λD
b,b(x) = µb(x) and

T
a,b(x) =

{
γa←b(x) for a ̸= b
0 otherwise.

(A.15)

he interpretation of (A.14) is analogous to the one in (16), except
hat here each ‘group’ can transition from one state to another
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nly due to the i-processes of the focal parent individual b ∈ P .
herefore, the ‘survival’ term in the brackets in (A.14) implies that
he focal parent a = b ∈ P has either died and is removed
from the group or it physiologically transitions to some other
physiological state.

Conditional fitness. The concept of individual fitness (16) has
been considered in the previous literature for discrete-time pro-
cesses (Lehmann et al., 2016; Ohtsuki et al., 2020) and could
generically be called unconditional individual fitness because it
is evaluated unconditionally on whether or not a group tran-
sition occurs. We can distinguish its dispersal and philopatric
components, as discussed in Section 3.3, by writing

hau,bs(x) = hd
au,bs(x)+ hp

au,bs(x), (A.16a)

where

hd
au,bs(x) =

∑
w∈S

xwhd
au,w,bs(x) (A.16b)

and

hd
au,w,bs(x) = λdB

au,w,bs(x)

hp
au,bs(x) = λ

pB
au,bs(x)+ λT

au,bs(x)

+ δa,b

[
qu,s(x)−

∑
c∈P

λT
cu,as(x)− λD

au,as(x)

]
.

(A.16c)

The conditional individual fitness (e.g. Rousset, 2004; Rousset
and Ronce, 2004; Lehmann and Rousset, 2010 Lehmann et al.,
2016, Appendix E) is defined as the fitness of an individual given
a group-transition (it is conditional on the realization of the state
after the transition), and this can be written as

wau,bs(x) = wd
au,bs(x)+ w

p
au,bs(x), (A.17a)

where wd
au,bs(x) =

∑
w∈S xwwd

au,w,bs(x) and where

wd
au,w,bs(x) =

hd
au,w,bs(x)
qu,w

w
p
au,bs(x) =

hp
au,bs(x)
qu,s

.

(A.17b)

ote that when a = b ∈ P , then w
p
au,as(x) =

+
λ
pB
au,as(x)−

∑
c∈P λTcu,as(x)−λDau,as(x)

qu,s
and when a ̸= b ∈ P , then

w
p
au,bs(x) =

λ
pB
au,bs(x)+λTau,bs(x)

qu,s
. If we now further make the assump-

tions of the ‘‘physiologically unstructured metapopulation model’’
case where S = {0, 1, 2, . . . ,Nmax} and use (A.16)–(A.17) along
with (A.12)–(A.13) and noting that hd

N ′,K ,N
(x) = mβN (x) for N

′

=

K + 1, then we recover equations (A.43)-(A.48) of Lehmann and
Rousset (2010), which holds as the conditional fitnesses for the
model of Alizon and Taylor (2008).

A.2. Mutant-resident individual fitnesses

A.2.1. Fitness of mutant and resident individuals
The derivation of fitness functions for mutant-resident dynam-

ics is analogous to the one for resident dynamics (Appendix A.1).
Using nM,au =

∑
j∈Iu

jauyuj and the fact that upon a transition
from si ∈ Ω to uj ∈ Ω the number of mutants that are added or
 d
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removed is jau − ias for all a ∈ P , we get

ṅM,au =
∑
j∈Iu

jauẏuj

=

∑
j∈Iu

jau
∑
s∈S

∑
i∈Is

πuj,si(y)ysi

=

∑
j∈Iu

∑
s∈S

∑
i∈Is

(ias + jau − ias)πuj,si(y)ysi

=

∑
j∈Iu

∑
s∈S

∑
i∈Is

(jau − ias)

[∑
b∈P

(
λ
M,pB
auj,bsi(y)+ λ

M,T
auj,bsi(y)

)
ibs

+

∑
k∈Iw

∑
dw∈C

λ
M,dB
auj,s,dwk(y)kdwydw

]
ysi

+

∑
j∈Iu

∑
s∈S

∑
i∈Is

(jau − ias)

[∑
c∈P

λ
M,T
cuj,asi(y)+ λ

M,D
auj,asi(y)

]
iasysi

+

∑
j∈Iu

∑
s∈S

∑
i∈Is

[∑
c,b∈P

λ̄
p
cu,bsi(y)Nbs

+

∑
c,d∈P

∑
wk∈Ω

λ̄d
cu,s,dwk(y)Ndwywk

]
iasysi+

+

∑
s∈S

∑
i∈Is

πmc
uj,si(y)iasysi.

(A.18)

y exchanging the indices and using yM,bsi|M,bs =
ibsysi
nM,bs

, we can
re-write the above as

ṅM,au =
∑
bs∈C

∑
j∈Iu

∑
i∈Is

[
(jau − ias)

(
λ
M,pB
auj,bsi(y)+ λ

M,T
auj,bsi(y)

)
ibs+

+

∑
w∈S

(jau − iaw)xwλ
M,dB
auj,w,bsi(y)

]
yM,bsi|M,bsnM,bs

+

∑
s∈S

∑
j∈Iu

∑
i∈Is

(jau − ias)

×

[∑
c∈P

λ
M,T
cuj,asi(y)+ λ

M,D
auj,asi(y)

]
yM,asi|M,asnM,as

+

∑
s∈S

∑
j∈Iu

∑
i∈Is

[
π

p
uj,si(y)+ πd

uj,si(y)+ πmc
uj,si(y)

]
yM,asi|M,asnM,as

=

∑
bs∈C

gM
au,bs(y)nM,bs,

(A.19)

here

M
au,bs(y) =

∑
j∈Iu

∑
i∈Is

[
λ
M,d
auj,bsi(y)+ λ

M,pB
auj,bsi(y)+ λ

M,T
auj,bsi(y)+ (A.20)

+ δa,b

(
πuj,si(y)−

∑
c∈P

λ
M,T
cuj,asi(y)− λ

M,D
auj,asi(y)

) ]
yM,bsi|M,bs,

(A.21)

hich is the partitioning given in (47).
The derivation of the resident fitness for the mutant-resident

ynamics (48) is identical to (A.18)–(A.20), except that one needs
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o replace the numbers of mutants within a group ias with resi-
ent numbers Nas − ias, for all as ∈ C, class-specific densities for
utants nM,as with resident densities nR,as, for all as ∈ C, as well
s conditional group frequencies yM,bsi|M,bs with yR,bsi|R,bs, for all

b ∈ P, si ∈ Ω .

A.2.2. Fitness of an average individual
We can obtain the average individual fitness (49)–(50) by tak-

ing an average over mutant and resident individual fitness’s (47)
and (48). Here, instead, we will provide an alternative derivation
that is similar to the derivation for resident fitness (16): the
average individual growth-rate (49)–(50) can be calculated from
the mutant-resident group and metacommunity dynamics (42) as

ṅau = Nauẋu

= Nau

∑
j∈Iu

∑
s∈S

∑
i∈Is

[
π

p
uj,si(y)+ πd

uj,si(y)+ πmc
uj,si(y)

]
ysi

= Nau

∑
j∈Iu

∑
s∈S

∑
i∈Is

[∑
c,b∈P

λ̄
p
cuj,bsi(y)Nbs

+

∑
c∈P

∑
dw∈C

λ̄dB
cuj,s,dwk(y)Ndwxw + πmc

uj,si(y)

]
ysi

=

∑
bs∈C

∑
j∈Iu

∑
i∈Is

[
(Nau − Nas)

(
λ̄
pB
auj,bsi(y)+ λ̄T

auj,bsi(y)
)

+

∑
w∈S

(Nau − Naw)xwλ̄dB
auj,w,bsi(y)

]
Nbsysi+

+

∑
s∈S

∑
j∈Iu

∑
i∈Is

(Nau − Nas)

[∑
c∈C

λ̄T
cuj,asi(y)+ λ̄D

auj,asi(y)

]
Nasysi+

+

∑
s∈S

∑
j∈Iu

∑
i∈Is

[∑
c,b∈P

λ̄
p
cuj,bsi(y)Nbs

+

∑
c∈P

∑
dw∈C

λ̄dB
cuj,s,dwk(y)Ndwxw + πmc

uj,si(y)

]
Nasysi

=

∑
bs∈C

ḡau,bs(y)nbs,

(A.22)

where

ḡau,bs(y) =
∑
j∈Iu

∑
i∈Is

[
λ̄d
auj,bsi(y)+ λ̄

pB
auj,bsi(y)+ λ̄T

auj,bsi(y)+ (A.23)

+ δa,b

(
πuj,si(y)−

∑
c∈P

λ̄T
cuj,asi(y)− λ̄D

auj,asi(y)

) ]
ysi|s,

(A.24)

which is the partitioning (50) from the main text.

Appendix B. Relatedness and genetic correlations

B.1. Jump-process approach

To facilitate the derivation of the recursion (30) for relatedness
(Section 3.4.1), we represent here the metacommunity dynamics
33
as a discrete-time jump-process. To this end, we focus on a single
group and take a probabilistic perspective on the group dynamics
by viewing the vector x(t) = x as the probability distribution
of the state of some focal group at time t (Section 3). The state
of the focal group is considered as a random variable which we
denote with S(t) for all t . In the continuous-time formulation
discussed in the main text, the focal group (as well as all other
groups in the metacommunity) can thus be seen as undergoing
a continuous-time (non-homogeneous) Markov chain {S(t) | t ∈
[t0, tf ]} on the state space S for some initial time t0 and final time
tf (and recall that the non-homogeneity is implicit and comes via
the group transition matrix (10) being a function of x(t)). Now,
because we want to consider a jump chain (or embedded Markov
chain, e.g., Iosifescu, 2007) associated to the above continuous-
time Markov chain, we are interested in the probabilities at which
the i-processes happen. Let Πk = S(Tk) denote the random
variable of this jump process giving the state of the group at
the kth jump starting at time t0, where each jump time Tk is
(also) a random variable. The resident group dynamics of this
discrete-time Markov chain can then be written as

x(Tk+1) = Ax(Tk), (B.1a)

where each element

au,s =

{
−

qu,s
qs,s
=

qu,s∑
w ̸=s∈S qw,s

u ̸= s

0 u = s
(B.1b)

gives the probability at which a group in state s ∈ S transi-
tions to state u ∈ S (because no state is absorbing). Using the
discrete-time group dynamics (B.1) we obtain a jump-process for
relatedness (30)–(32) as given in the main text.

B.2. Mutant-pair dynamics

Here we derive the mutant-pair dynamics (79)–(80) when δ =

0 (Section 5.3.3). The ODE for the total (or average) density of
local pairs nabu for all abu ∈ B is given, with a slight abuse of
notation, identically to (21). By defining nMM,abs =

∑
i∈I iasibsysi

as the density of mutant-pairs abs ∈ B, the ODE for mutant-pair
dynamics is given as

ṅMM,abu =
∑
j∈Iu

jaujbu
∑
s∈S

∑
i∈Is

πuj,si(y)ysi

=

∑
s̸=u∈S

[∑
d∈P

αCA
abu,ds(x)nM,ds +

∑
d∈P

αIM
abu,ds(x)nM,ds

+

∑
c,d∈P

αDP
abu,cds(x)nMM,cds

]
− nMM,abu

∑
w ̸=u

qw,u(x), for all abu ∈ B,

(B.2)

here the above rates are given in terms of i-processes as in
23)–(25) and where we used the consistency relation (58).

We obtain the ODE (79) for the mutant-pair frequencies pMM
efined in (76) by differentiation and using (21) and (B.2),
hereby

ṗMM,abu =
d
dt

(
nMM,abu

nabu

)
=

ṅMM,abu

nabu
− pMM,abu

ṅabu

nabu

for all abu ∈ B.

(B.3)

References

Ajar, E., 2003. Analysis of disruptive selection in subdivided populations. BMC
Evol. Biol. 3 (1), 22.

http://refhub.elsevier.com/S0040-5809(21)00058-7/sb1
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb1
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb1


T. Priklopil and L. Lehmann Theoretical Population Biology 142 (2021) 12–35

A

A

B

C

C

C

C
C

C

C

C

C

D
D
D

D

D

E

E

E

E

F

F

F

G

G

G

G
G

G

G

H

H

H
H

H

H

I

I

lizon, S., Taylor, P., 2008. Empty sites can promote altruistic behavior.
Evolution: Int. J. Org. Evol. 62 (6), 1335–1344.

rrigoni, F., 2003. Deterministic approximation of a stochastic metapopulation
model. Adv. Appl. Probab. 35 (3), 691–720.

arbour, A.D., Pugliese, A., 2004. Convergence of a structured metapopulation
model to Levins’s model. J. Math. Biol. 49 (5), 468–500.

adet, C., Ferrière, R., Metz, J.A.J., van Baalen, M., 2003. The evolution of dispersal
under demographic stochasticity. Am. Nat. 162 (4), 427–441.

ai, Y., Geritz, S.A.H., 2020. Resident-invader dynamics of similar strategies in
fluctuating environments. J. Math. Biol. 1–53.

antrell, R.S., Cosner, C., Lam, K., 2017. Resident-invader dynamics in infinite
dimensional systems. J. Differential Equations 263 (8), 4565–4616.

aswell, H., 2000. Matrix Population Models. Sinauer Associates, Massachusetts.
harlesworth, B., 1994. Evolution in Age-Structured Populations, second edition

Cambridge University Press, Cambridge.
hesson, P.L., 1981. Models for spatially distributed populations: the effect of

within-patch variability. Theor. Popul. Biol. 19 (3), 288–325.
hesson, P.L., 1985. Coexistence of competitors in spatially and temporally

varying environments: a look at the combined effects of different sorts of
variability. Theor. Popul. Biol. 28 (3), 263–287.

hristiansen, F.B., 1991. On conditions for evolutionary stability for a
continuously varying character. Amer. Nat. 138 (1), 37–50.

row, J.F., Kimura, M., 1970. An Introduction To Population Genetics Theory.
Harper and Row, New York.

awkins, R., 1986. The Blind Watchmaker. Longman, Harlow.
awkins, R., 1997. Climbing Mount Improbable. WW Norton & Company.
ercole, F., 2016. The ecology of asexual pairwise interactions: The generalized

law of mass action. Theor. Ecol. 9 (3), 299–321.
ercole, F., Rinaldi, S., 2008. Analysis of Evolutionary Processes: The Adaptive

Dynamics Approach and Its Applications. Princeton University Press.
iekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A.J., Thieme, H.R.,

2001. On the formulation and analysis of general deterministic structured
population models II. Nonlinear theory. J. Math. Biol. 43 (2), 157–189.

shel, I., 1983. Evolutionary and continuous stability. J. Theoret. Biol. 103 (1),
99–111.

thier, S., Nagylaki, T., 1980. Diffusion approximations of Markov chains with
two time scales and applications to population genetics. Adv. Appl. Probab.
12 (1), 14–49.

thier, S., Nagylaki, T., 1988. Diffusion approximations of Markov chains with two
time scales and applications to population genetics, II. Adv. Appl. Probab. 20
(3), 525–545.

wens, W.J., 2012. Mathematical Population Genetics 1: Theoretical Introduction.
vol. 27, Springer Science & Business Media.

enichel, N., 1979. Geometric singular perturbation theory for ordinary
differential equations. J. Differential Equations 31 (1), 53–98.

isher, R.A., 1930. The Genetical Theory of Natural Selection. OxfordClarendon
Press.

rank, S.A., 1998. Foundations of Social Evolution. vol. 2, Princeton University
Press.

andon, S., Michalakis, Y., 1999. Evolutionarily stable dispersal rate in a
metapopulation with extinctions and kin competition. J. Theoret. Biol. 199
(3), 275–290.

eritz, S.A.H., Kisdi, E., Meszéna, G., Metz, J.A.J., 1998. Evolutionarily singular
strategies and the adaptive growth and branching of the evolutionary tree.
Evol. Ecol. 12 (1), 35–57.

illespie, J.H., 2004. Population Genetics: A Concise Guide. Johns Hopkins
University Press, Baltimore, Maryland.

rafen, A., 2006. A theory of Fisher’s reproductive value. J. Math. Biol. 53, 15–60.
rafen, A., 2015. Biological fitness and the price equation in class-structured

populations. J. Theoret. Biol. 373, 62–72.
reiner, G., Heesterbeek, J.A.P., Metz, J.A.J., 1994. A singular perturbation theorem

for evolution equations and time-scale arguments for structured population
models. Can. Appl. Math. Q. 3 (4), 435–459.

rey, D., Hutson, V., Szathmary, E., 1995. A re-examination of the stochastic
corrector model. Proc. R. Soc. B: Biol. Sci. 262, 29–35.

amilton, W.D., 1964. The genetical evolution of social behaviour. I. J. Theoret.
Biol. 7 (1), 1–16.

amilton, W.D., 1970. Selfish and spiteful behavior in an evolutionary model.
Nature 228, 1218–1220.

amilton, W.D., 1988. This week’s citation classic. Current Contents 40, 16.
artl, D.L., Clark, A.G., Clark, A.G., 1997. Principles of Population Genetics. vol.

116, Sinauer associates Sunderland, MA.
ek, G., 2010. Geometric singular perturbation theory in biological practice. J.

Math. Biol. 60 (3), 347–386.
irsch, M., Devaney, R., Smale, S., 1974. Differential Equations, Dynamical

Systems, and Linear Algebra. vol. 60, Academic Press.
naba, H., 2017. Age-Structured Population Dynamics in Demography and

Epidemiology. Springer.
osifescu, M., 2007. Finite Markov Processes and their Applications. Dover, New

York.
34
Ito, H.C., Dieckmann, U., Metz, J.A.J., 2020. Lotka–Volterra Approximations for
evolutionary trait-substitution processes. J. Math. Biol. 80 (7), 2141.

Kingman, J., 1992. Poisson Processes. Oxford University Press, Oxford.
Kirkpatrick, M., Johnson, T., Barton, N., 2002. General models of multilocus

evolution. Genetics 161 (4), 1727–1750.
Kuehn, C., 2015. Multiple Time Scale Dynamics. vol. 191, Springer.
Kuijper, B., Johnstone, R.A., 2019. The evolution of early-life effects on social

behaviour-why should social adversity carry over to the future? Philos. Trans.
R. Soc. Lond. B Biol. Sci. 374 (1770), 20180111. http://dx.doi.org/10.1098/rstb.
2018.0111.

Lehmann, L., Alger, I., Weibull, J., 2015. Does evolution lead to maximizing
behavior? Evolution 69 (7), 1858–1873.

Lehmann, L., Mullon, C., Akcay, E., Van Cleve, J., 2016. Invasion fitness, inclusive
fitness, and reproductive numbers in heterogeneous populations. Evolution
70 (8), 1689–1702.

Lehmann, L., Perrin, N., Rousset, F., 2006. Population demography and the
evolution of helping behaviors. Evolution 60 (6), 1137–1151.

Lehmann, L., Rousset, F., 2010. How life history and demography promote or
inhibit the evolution of helping behaviours. Philos. Trans. R. Soc. B 365
(1553), 2599–2617.

Lehmann, L., Rousset, F., 2014. The genetical theory of social behaviour. Philos.
Trans. R. Soc. B 369 (1642), 20130357.

Lehmann, L., Rousset, F., 2020. When do individuals maximize their inclusive
fitness?. The American Naturalist 195 (4), 717–732.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M.,
Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., et al., 2004. The
metacommunity concept: a framework for multi-scale community ecology.
Ecol. Lett. 7 (7), 601–613.

Leimar, O., 2005. The evolution of phenotypic polymorphism: randomized
strategies versus evolutionary branching. Amer. Nat. 165 (6), 669–681.

Leimar, O., 2009. Multidimensional convergence stability. Evol. Ecol. Res. 11 (2),
191–208.

Lenormand, T., Roze, D., Rousset, F., 2009. Stochasticity in evolution. Trends Ecol.
Evol. 24, 157–165.

Lessard, S., 1990. Evolutionary stability: one concept, several meanings. Theor.
Popul. Biol. 37 (1), 159–170.

Lessard, S., 2009. Diffusion approximations for one-locus multi-allele kin selec-
tion, mutation and random drift in group-structured populations: a unifying
approach to selection models in population genetics. J. Math. Biol. 59 (5),
659–696.

Lessard, S., Soares, C.D., 2018. Frequency-dependent growth in class-structured
populations: continuous dynamics in the limit of weak selection. J. Math.
Biol. 77 (1), 229–259.

Li, J., Brauer, F., 2008. Continuous-time age-structured models in population
dynamics and epidemiology. In: Mathematical Epidemiology. Springer, pp.
205–227.

Lion, S., 2018a. From the price equation to the selection gradient in class-
structured populations: a quasi-equilibrium route. J. Theoret. Biol. 447,
178–189.

Lion, S., 2018b. Class structure, demography, and selection: reproductive-value
weighting in nonequilibrium, polymorphic populations. Amer. Nat. 191 (5),
620–637.

Lion, S., Gandon, S., 2009. Habitat saturation and the spatial evolutionary ecology
of altruism. J. Evol. Biol. (ISSN: 1420-9101) 22 (7), 1487–1502. http://dx.doi.
org/10.1111/j.1420-9101.2009.01769.x, (Electronic).

Lynch, M., Walsh, B., 2018. Evolution and Selection of Quantitative Traits. Sinauer
Associates, New York.

Martcheva, M., Thieme, H.R., 2005. A metapopulation model with discrete size
structure. Natural Resour. Model. 18 (4), 379–413.

Martcheva, M., Thieme, H.R., 2006. Infinite ODE systems modeling size-
structured meta-populations and macroparasitic diseases. In: Mathematical
Biology and Epidemiology. Springer, Berlin Heidelberg New York.

Martcheva, M., Thieme, H.R., Dhirasakdanon, T., 2006. Kolmogorov’s differential
equations and positive semigroups on first moment sequence spaces. J. Math.
Biol. 53 (4), 642–671.

Massol, F., Débarre, F., 2015. Evolution of dispersal in spatially and temporally
variable environments: the importance of life cycles. Evolution 69 (7),
1925–1937.

Meszéna, G., Gyllenberg, M., Jacobs, F.J.A., Metz, J.A.J., 2005. Link between
population dynamics and dynamics of Darwinian evolution. Phys. Rev. Lett.
95 (7), 078105.

Metz, J.A.J., Gyllenberg, M., 2001. How should we define fitness in structured
metapopulation models? including an application to the calculation of
evolutionarily stable dispersal strategies. Proc. R. Soc. Lond. Ser. B: Biol. Sci.
268 (1466), 499–508.

Michod, R.E., Hamilton, W.D., 1980. Coefficients of relatedness in sociobiology.
Nature 288, 694–697.

Nagylaki, T., 1992. Introduction To Population Genetics. Springer-Verlag,
Heidelberg.

Ohtsuki, H., Rueffler, C., Wakano, J., Parvinen, K., Lehmann, L., 2020. The
components of directional and disruptive selection in heterogeneous
group-structured populations. J. Theoret. Biol. 507, 1–16.

http://refhub.elsevier.com/S0040-5809(21)00058-7/sb2
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb2
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb2
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb3
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb3
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb3
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb4
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb4
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb4
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb5
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb5
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb5
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb6
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb6
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb6
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb7
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb7
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb7
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb8
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb9
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb9
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb9
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb10
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb10
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb10
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb11
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb11
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb11
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb11
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb11
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb12
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb12
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb12
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb13
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb13
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb13
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb14
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb15
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb16
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb16
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb16
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb17
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb17
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb17
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb18
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb18
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb18
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb18
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb18
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb19
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb19
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb19
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb20
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb20
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb20
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb20
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb20
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb21
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb21
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb21
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb21
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb21
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb22
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb22
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb22
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb23
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb23
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb23
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb24
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb24
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb24
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb25
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb25
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb25
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb26
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb26
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb26
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb26
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb26
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb27
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb27
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb27
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb27
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb27
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb28
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb28
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb28
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb29
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb30
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb30
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb30
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb31
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb31
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb31
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb31
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb31
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb32
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb32
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb32
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb33
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb33
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb33
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb34
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb34
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb34
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb35
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb36
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb36
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb36
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb37
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb37
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb37
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb38
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb38
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb38
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb39
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb39
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb39
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb40
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb40
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb40
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb41
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb41
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb41
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb42
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb43
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb43
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb43
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb44
http://dx.doi.org/10.1098/rstb.2018.0111
http://dx.doi.org/10.1098/rstb.2018.0111
http://dx.doi.org/10.1098/rstb.2018.0111
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb46
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb46
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb46
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb47
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb47
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb47
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb47
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb47
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb48
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb48
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb48
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb49
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb49
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb49
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb49
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb49
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb50
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb50
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb50
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb51
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb51
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb51
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb52
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb52
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb52
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb52
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb52
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb52
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb52
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb53
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb53
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb53
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb54
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb54
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb54
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb55
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb55
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb55
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb56
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb56
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb56
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb57
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb57
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb57
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb57
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb57
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb57
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb57
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb58
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb58
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb58
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb58
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb58
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb59
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb59
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb59
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb59
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb59
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb60
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb60
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb60
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb60
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb60
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb61
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb61
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb61
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb61
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb61
http://dx.doi.org/10.1111/j.1420-9101.2009.01769.x
http://dx.doi.org/10.1111/j.1420-9101.2009.01769.x
http://dx.doi.org/10.1111/j.1420-9101.2009.01769.x
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb63
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb63
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb63
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb64
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb64
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb64
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb65
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb65
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb65
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb65
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb65
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb66
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb66
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb66
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb66
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb66
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb67
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb67
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb67
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb67
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb67
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb68
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb68
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb68
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb68
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb68
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb69
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb69
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb69
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb69
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb69
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb69
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb69
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb70
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb70
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb70
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb71
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb71
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb71
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb72
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb72
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb72
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb72
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb72


T. Priklopil and L. Lehmann Theoretical Population Biology 142 (2021) 12–35

P

P

P

P

R

R

R

R

R

R

R

R

R

arvinen, K., 2013. Joint evolution of altruistic cooperation and dispersal in a
metapopulation of small local populations. Theor. Popul. Biol. 85 (1), 12–19.

arvinen, K., Ohtsuki, H., Wakano, J.Y., 2018. Spatial heterogeneity and evolution
of fecundity-affecting traits. J. Theoret. Biol..

eña, J., 2011. Group-size diversity in public goods games. Evolution 66,
623–636.

riklopil, T., Lehmann, L., 2020. Invasion implies substitution in ecological
communities with class-structured populations. J. Theoret. Biol. 134 (134),
36–52.

odrigues, A.M.M., 2018. Demography, life history and the evolution of
age-dependent social behaviour. J. Evol. Biol. 31 (9), 1340–1353.

odrigues, A.M.M., Gardner, A., 2012. Evolution of helping and harming in
heterogeneous populations. Evolultion 66, 2065–2079.

once, O., Gandon, S., Rousset, F., 2000. Kin selection and natal dispersal in an
age-structured population. Theor. Popul. Biol. 58 (2), 143–159.

once, O., Promislow, D., 2010. Kin competition, natal dispersal and the moulding
of senescence by natural selection. Proc. R. Soc. B-Biol. Sci. 277 (1700),
3659–3667.

ousset, F., 2004. Genetic Structure and Selection in Subdivided Populations.
Princeton Univ. Press, Princeton.

ousset, F., 2006. Separation of time scales, fixation probabilities and conver-
gence to evolutionarily stable states under isolation by distance. Theor.
Popul. Biol. 69 (2), 165–179.

ousset, F., Ronce, O., 2004. Inclusive fitness for traits affecting metapopulation
demography. Theor. Popul. Biol. 65 (2), 127–141.

oze, D., Rousset, F., 2003. Selection and drift in subdivided populations: a
straightforward method for deriving diffusion approximations and applica-
tions involving dominance, selfing and local extinctions. Genetics 165 (4),
2153–2166.

oze, D., Rousset, F., 2004. The robustness of Hamilton’s rule with inbreeding and
dominance: kin selection and fixation probabilities under partial sib mating.
Amer. Nat. 164 (2), 214–231.
35
Soares, C.D., Lessard, S., 2019. Diffusion approximation for an age-class-
structured population under viability and fertility selection with application
to fixation probability of an advantageous mutant. J. Math. Biol. 79 (6–7),
2069–2110.

Soares, C.D., Lessard, S., 2020. First-order effect of frequency-dependent selection
on fixation probability in an age-structured population with application to
a public goods game. Theor. Popul. Biol. 133, 80–96.

Svardal, H., Rueffler, C., Hermisson, J., 2015. A general condition for adap-
tive genetic polymorphism in temporally and spatially heterogeneous
environments. Theor. Popul. Biol. 99, 76–97.

Taylor, P.D., 1990. Allele-frequency change in a class-structured population.
Amer. Nat. 135 (1), 95–106.

Van Cleve, J., Feldman, M., Lehmann, L., 2010. How demography, life history,
and kinship shape the evolution of genomic imprinting. Amer. Nat. 176 (4),
440–455.

Wakeley, J., 2003. Polymorphism and divergence for island-model species.
Genetics 163 (1), 411–420.

Wakeley, J., Takahashi, T., 2004. The many-demes limit for selection and drift in
a subdivided population. Theor. Popul. Biol. 66 (2), 83–91.

Wechselberger, M., 2020. Geometric singular perturbation theory beyond the
standard form. Springer Nature.

Wild, G., 2011. Inclusive fitness from multitype branching processes.. Bull. Math.
Biol. (ISSN: 1522-9602) 73 (5), 1028–1051.

Wild, G., Gardner, A., West, S.A., 2009. Adaptation and the evolution of parasite
virulence in a connected world. Nature 459 (7249), 983–986.

Wild, G., Traulsen, A., 2007. The different limits of weak selection and the
evolutionary dynamics of finite populations. J. Theoret. Biol. 247 (2),
382–390.

Wilson, D.S., 1992. Complex interactions in metacommunities, with impli-
cations for biodiversity and higher levels of selection. Ecology 73 (6),
1984–2000.

http://refhub.elsevier.com/S0040-5809(21)00058-7/sb73
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb73
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb73
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb74
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb74
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb74
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb75
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb75
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb75
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb76
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb76
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb76
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb76
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb76
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb77
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb77
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb77
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb78
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb78
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb78
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb79
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb79
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb79
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb80
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb80
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb80
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb80
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb80
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb81
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb81
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb81
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb82
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb82
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb82
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb82
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb82
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb83
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb83
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb83
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb84
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb84
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb84
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb84
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb84
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb84
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb84
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb85
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb85
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb85
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb85
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb85
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb86
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb86
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb86
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb86
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb86
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb86
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb86
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb87
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb87
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb87
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb87
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb87
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb88
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb88
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb88
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb88
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb88
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb89
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb89
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb89
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb90
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb90
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb90
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb90
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb90
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb91
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb91
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb91
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb92
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb92
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb92
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb93
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb93
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb93
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb94
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb94
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb94
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb95
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb95
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb95
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb96
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb96
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb96
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb96
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb96
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb97
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb97
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb97
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb97
http://refhub.elsevier.com/S0040-5809(21)00058-7/sb97

	Metacommunities, fitness and gradual evolution
	Introduction
	Outline of the model
	Resident dynamics in the metacommunity
	Individual-level processes
	Group state dynamics
	Resident population and reproductive value dynamics
	Relatedness dynamics
	The jump process for relatedness

	Steady states

	Mutant-resident dynamics in the metacommunity
	Individual-level processes
	Group state dynamics
	Mutant-resident population dynamics
	Relative mutant-resident population dynamics
	Average mutant frequency

	Mutant-resident dynamics for similar phenotypes
	Fast dynamics of the within-class mutant frequency
	Reproductive value weighted mutant frequency
	Slow dynamics of the weighted mutant frequency
	Properties of fitness
	Slow dynamics of the weighted mutant frequency and the fast variables
	Mutant-pair frequencies


	Mutant-resident dynamics as a fast–slow system
	Fast subsystem and the critical manifold
	Slow subsystem on the critical manifold
	Solution of the slow subsystem

	Invasion implies substitution
	Proof of the principle
	Inclusive fitness effect and singular points

	Discussion
	Evolutionary dynamics across multiple timescales
	Evolutionary dynamics across multiple fluctuations

	Acknowledgment
	Appendix A. Individual fitness
	Resident individual fitness
	Individual fitness: connection to previous models and formulations

	Mutant-resident individual fitnesses
	Fitness of mutant and resident individuals
	Fitness of an average individual


	Appendix B. Relatedness and genetic correlations
	Jump-process approach
	Mutant-pair dynamics

	References


