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Summary 

The shift from solitary to social organisms constitutes one of the major transitions in 

evolution. The highest level of sociality is found in social insects (ants, termites and some 

species of bees and wasps). Division of labor is central to the organization of insect societies 

and is thought to be at the root of their ecological success. There are two main levels of 

division of labor in social insect colonies. The first relates to reproduction and involves the 

coexistence of queen and worker castes: while reproduction is usually monopolized by one 

or several queens, functionally sterile workers perform all the tasks to maintain the colony, 

such as nest building, foraging or brood care. The second level of division of labor, relating to 

such non-reproductive duties, is characterized by the performance of different tasks or roles 

by different groups of workers. This PhD aims to better understand the mechanisms 

underlying division of labor in insect societies, by investigating how genes and physiology 

influence caste determination and worker behavior in ants. 

In the first axis of this PhD, we studied the nature of genetic effects on division of labor. We 

used the Argentine ant Linepithema humile to conduct controlled crosses in the laboratory, 

which revealed the existence of non-additive genetic effects, such as parent-of-origin and 

genetic compatibility effects, on caste determination and worker behavior. In the second axis, 

we focused on the physiological regulation of division of labor. Using Pogonomyrmex seed-

harvester ants, we performed experimental manipulation of hibernation, hormonal 

treatments, gene expression analyses and protein quantification to identify the physiological 

pathways regulating maternal effects on caste determination. Finally, comparing gene 

expression between nurses and foragers allowed us to reveal the association between 

vitellogenin and worker behavior in Pogonomyrmex ants. 

This PhD provides important insights into the role of genes and physiology in the regulation 

of division of labor in social insect colonies, helping to better understand the organization, 

evolution and ecological success of insect societies. 
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Résumé 

L'une des principales transitions évolutives est le passage de la vie solitaire à la vie sociale. 

La socialité atteint son paroxysme chez les insectes sociaux que sont les fourmis, les 

termites et certaines espèces d'abeilles et de guêpes. La division du travail est la clé de 

voûte de l'organisation de ces sociétés d'insectes et la raison principale de leur succès 

écologique. La division du travail s’effectue à deux niveaux dans les colonies d'insectes 

sociaux. Le premier niveau concerne la reproduction et implique la coexistence de deux 

castes : les reines et les ouvrières. Tandis que la reproduction est le plus souvent 

monopolisée par une ou plusieurs reines, les ouvrières stériles effectuent les tâches 

nécessaires au bon fonctionnement de la colonie, telles que la construction du nid, la 

recherche de nourriture ou le soin au couvain. Le second niveau de division du travail, qui 

concerne les tâches autres que la reproduction, implique la réalisation de différents travaux 

par différents groupes d'ouvrières. Le but de ce doctorat est de mieux comprendre les 

mécanismes sous-jacents de la division du travail dans les sociétés d'insectes en étudiant 

comment les gènes et la physiologie influencent la détermination de la caste et le 

comportement des ouvrières chez les fourmis. 

Dans le premier axe de ce doctorat, nous avons étudié la nature des influences génétiques 

sur la division du travail. Nous avons utilisé la fourmi d'Argentine, Linepithema humile, pour 

effectuer des croisements contrôlés en laboratoire. Cette méthode nous a permis de révéler 

l'existence d'influences génétiques non additives, telles que des influences dépendantes de 

l'origine parentale ou des effets de compatibilité génétique, sur la détermination de la caste 

et le comportement des ouvrières. Dans le second axe, nous nous sommes intéressés à la 

régulation physiologique de la division du travail. Nous avons utilisé des fourmis 

moissonneuses du genre Pogonomyrmex pour effectuer des hibernations artificielles, des 

traitements hormonaux, des analyses d'expression de gènes et des mesures de 

vitellogénine, ce qui nous a permis d’identifier les mécanismes physiologiques régulant les 

effets maternels sur la détermination de la caste. Enfin, la comparaison d’expression de 
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gènes entre nourrices et fourrageuses suggère un rôle de la vitellogénine dans la régulation 

du comportement des ouvrières chez les fourmis moissonneuses. 

En détaillant les influences des gènes et de la physiologie dans la régulation de la division du 

travail dans les colonies d'insectes sociaux, ce doctorat fournit d’importantes informations 

permettant de mieux comprendre l'organisation, l’évolution et le succès écologique des 

sociétés d'insectes. 
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“None preaches better than the ant, 
and she says nothing” 

Benjamin Franklin 

 

 

“J’aime la force, et de la force que j’aime, 
une fourmi peut en montrer autant qu’un éléphant” 

Stendhal 
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Eusociality 

One of the major transitions in evolution is the shift from solitary to social organisms, along 

with the transitions from prokaryotes to eukaryotes, asexual to sexual reproduction and 

unicellular to pluricellular organisms (Maynard Smith and Szathmary 1995; Szathmary and 

Maynard Smith 1995). Eusociality, the highest level of social organization, describes 

societies in which there are overlapping generations, cooperative care of the brood and 

coexistence of fertile and sterile individuals (Wilson 1971). Eusociality is widespread in the 

animal kingdom. It has mostly been described in insects (in Hymenoptera, Isoptera, 

Hemiptera, Thysanoptera and Coleoptera) (Holldobler and Wilson 1990; Ross and Matthews 

1991; Stern and Foster 1996; Crespi et al. 1997) but also in crustaceans (in Synalpheus 

shrimps) (Duffy 1996; Duffy and Morrison 2000) and mammals (in two species of mole rat) 

(Burda et al. 2000). The recent discovery of eusocial fluke worms (Hechinger et al. 2011) 

suggests that eusociality may be even more common than generally realized (Newey and 

Keller 2010). 

Eusociality has long appeared paradoxical to many theorists in the field of evolution. Darwin 

himself feared that the evolution of altruistic behaviors could be "fatal" to his theory (Darwin 

1859). Although he did not resolve the paradox, Darwin understood the importance of family 

relationships that would later become the basis of kin selection theory. In 1964, Hamilton 

extended natural selection to relatives using a genetic framework (Hamilton 1964a, 1964b). 

This theory, later named kin selection theory (Maynard Smith 1964), rapidly became a 

keystone for our modern understanding of social evolution (Bourke and Franks 1995). Kin 

selection states that individuals can transmit copies of their genes not only by reproducing 

themselves (direct fitness), but also by helping relatives that share genes inherited from 

recent common ancestors (indirect fitness). This theory explains how the combination of high 

relatedness and particular ecological conditions can lead to the evolution of eusociality 

(Bourke and Franks 1995; Hughes et al. 2008; Boomsma 2009; Boomsma et al. 2011). 
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Eusociality is best exemplified by social insects, a group comprised mainly of ants, termites 

and some bee and wasp species, and which has achieved great ecological success. Ants, 

for instance, have colonized most terrestrial biomes and represent 15-20% of the terrestrial 

animal biomass (Schultz 2000). They occupy keystone positions in most terrestrial 

environments and have strong ecological impacts due to their varied roles as scavengers, 

predators, granivores and herbivores (Holldobler and Wilson 1990). Ants are also important 

in below ground processes through the alteration of the physical and chemical environment 

and through their effects on plants, microorganisms, and other soil organisms (Folgarait 

1998). Understanding the ecological dominance of social insects requires investigation into 

the complex organization of their societies. 

Division of labor in insect societies 

Division of labor, the cornerstone of insect societies, is the phenomenon whereby different 

groups of individuals perform different tasks or roles. By enhancing colony performance, 

division of labor is thought to be one of the main factors responsible for the tremendous 

ecological success of social insects (Wilson 1971; Oster and Wilson 1979; Holldobler and 

Wilson 1990). There are two main levels of division of labor in insect societies: the first 

relates to reproduction and the second to all non-reproductive tasks necessary to take care 

of the colony. 

Reproductive division of labor 

While reproduction is usually monopolized by one or several queens, functionally sterile 

workers perform all the tasks involved in colony maintenance. Queens and workers usually 

show great differences in morphology, physiology and lifespan. For instance, queens 

outweigh minor workers by a factor of 130 in the leafcutter ant Atta cephalotes (Stradling 

1978; Mintzer 1990) and produce up to 80 eggs per hour in the red imported fire ant 

Solenopsis invicta (Tschinkel 1988, 2006). In the black garden ant Lasius niger, queens can 
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reach the extreme age of 29 years, whereas workers live only 1–2 years (Kutter and Stumper 

1969; Holldobler and Wilson 1990). These differences between queens and workers arise 

from a developmental switch which occurs during the larval stages (Wilson 1971; Holldobler 

and Wilson 1990). Understanding the mechanisms underlying the determination of the 

female caste in social insect colonies is crucial to understand the organization and ecological 

success of insect societies. 

The proximate mechanisms regulating the production of queens and workers in social 

insects have received much attention. For several decades, it was assumed that social insect 

female brood were fully totipotent in their early stages, and that environmental factors alone 

determined whether an individual becomes a queen or a worker. However, several recent 

studies have revealed that genetic factors can, and often do, play an important role in female 

caste determination (Smith et al. 2008b; Schwander et al. 2010). These genetic influences 

range from plastic genotypes that are biased toward queen or worker development [e.g. 

Pogonomyrmex rugosus (Schwander and Keller 2008), Acromyrmex echinatior (Hughes and 

Boomsma 2008)] to a strictly genetic determination [e.g. Pogonomyrmex lineages (Helms 

Cahan et al. 2002; Julian et al. 2002; Volny and Gordon 2002, Helms Cahan and Keller 

2003), Solenopsis xyloni (Helms Cahan and Vinson 2003), Wasmannia auropunctata 

(Fournier et al. 2005)]. Maternal factors such as temperature or queen age have also long 

been suspected to affect caste determination (Gösswald 1951; Bier 1954; Petersen-Braun 

1977; Passera 1980; Vargo and Passera 1992). However, it is only recently that maternal 

effects on caste determination have been documented experimentally (Schwander et al. 

2008). Cross-fostering of eggs between hibernated and non-hibernated Pogonomyrmex 

colonies revealed strong maternal effects on caste production, as only eggs produced by a 

hibernated queen could develop into queens, irrespective of the hibernation status of the rest 

of the colony (Schwander et al. 2008). Such maternal effects on the caste fate of the female 

offspring require that the hibernation triggers changes in the queen that regulate caste 

determination in the offspring. 
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Division of labor among workers 

The second level of division of labor relates to the performance of tasks that are not related 

to reproduction, such as nest building, foraging or brood care. This division of labor among 

the worker force stems from differences between workers in their likelihood and ability to 

perform different tasks. A minority of ant species have morphologically differentiated worker 

subcastes, whose morphology is adapted to the performance of specific tasks (Wilson 1980; 

Detrain and Pasteels 1991; Robinson et al. 2009). In most species, however, workers are 

morphologically uniform in size and shape (Oster and Wilson 1979; Robinson 1992). In such 

species, within-colony task specialization results from workers differing in their responses to 

environmental signals indicating colony needs for specific tasks (Wilson 1971; Oster and 

Wilson 1979; Robinson and Page 1989a). Three main factors are known to influence worker 

thresholds for particular tasks. The first is age, as evidenced by workers frequently moving 

from one task to another as they become older (Wilson 1971; Seeley 1982). The second is 

individual experience, which has been shown to influence task preference in a few species 

(Theraulaz et al. 1998; Ravary et al. 2007). Finally, in almost all species studied, the genetic 

background of workers seems to affect their likelihood to undertake different tasks (Oldroyd 

and Fewell 2007). 

Aim of the PhD 

The aim of this PhD is to investigate the genetic components and physiological regulation of 

division of labor in insect societies. Specifically, this PhD was constructed around two axes. 

First, we used the Argentine ant Linepithema humile to study the nature of genetic influences 

on caste determination and worker behavior (Axis 1). Second, we focused on 

Pogonomyrmex ants to study how physiological changes in queens and workers affect caste 

production and behavior, respectively (Axis 2).  
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Axis 1: Genetic components to division of labor 

Genetic effects on division of labor 

Many studies have investigated the effects of genes on division of labor in insect societies, 

by comparing queen/worker ratio or worker task performance between subfamilies 

(matrilines or patrilines). This method revealed genetic effects on caste determination 

(Hughes and Boomsma 2008; Schwander and Keller 2008; Smith et al. 2008a; 

Frohschammer and Heinze 2009) and worker behavior (Calderone and Page 1988; Frumhoff 

and Baker 1988; Robinson and Page 1988, 1989b; Stuart and Page 1991; Snyder 1992; 

Snyder 1993; Estoup et al. 1994; Kaib et al. 1996; Blatrix et al. 2000; Kryger et al. 2000; 

Goodisman and Crozier 2003; Jones et al. 2004; Julian and Fewell 2004; Schwander et al. 

2005; Waddington et al. 2010). Although authors usually discussed these effects as if they 

were simple additive genetic effects, the mere demonstration of maternal or paternal effects 

on division of labor in colonies with several matrilines or patrilines does not allow one to 

discriminate between additive and non-additive genetic effects such as parent-of-origin 

specific effects associated with imprinting, epistasis and genetic compatibility effects 

(Schwander and Keller 2008; Libbrecht et al. 2011). The only way to discriminate between 

additive and non-additive effects is to conduct controlled crosses to quantify paternal and 

maternal effects, as well as the interaction between parental effects.  

The Argentine ant as a model system 

The Argentine ant Linepithema humile is one of the most studied invasive species (Pysek et 

al. 2008). Native to South America, it has colonized many places throughout the world, 

particularly in Mediterranean climates, and occurs on six continents and many oceanic 

islands (Suarez et al. 2001; Wetterer et al. 2009; Vogel et al. 2010). This species is also 

highly polygynous (up to several hundred mated and functional queens coexist in a colony) 

(Newell 1909; Markin 1970) and has an unusual social organization in its introduced range, 
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whereby individuals mix freely within large supercolonies containing a high number of 

interconnected nests (Giraud et al. 2002; Holway et al. 2002; Ingram 2002). The combination 

of polygyny and unicoloniality results in a very low relatedness (indistinguishable from 0) 

between nestmates (Krieger and Keller 2000; Tsutsui and Case 2001; Giraud et al. 2002). 

Another important feature of L. humile is that it is possible to obtain both males and queens, 

as well as induce mating, in the laboratory (Keller and Passera 1992). This provided us with 

the rare opportunity to conduct controlled crosses to test for the existence of non-additive 

genetic effects on caste allocation (Chapter 1) and worker behavior (Chapter 2). 

Axis 2: Physiological regulation of division of labor 

Physiological regulation of caste differentiation and worker behavior in bees 

Among social insects, the honeybee Apis mellifera has been the primary focus of studies of 

the physiological regulation of caste differentiation and worker behavior. Several 

physiological pathways, known to interact with each other in solitary insect species, were 

found to be involved in the regulation of division of labor. Insect vitellogenin is a yolk protein 

expressed in the fat bodies, released to the hemolymph and internalized into competent 

oocytes where it is used as a source of amino acids for the developing embryo (Hagedorn 

and Kunkel 1979). The production of vitellogenin is affected by the juvenile hormone (Comas 

et al. 1999; Tatar et al. 2001), a major insect hormone with multiple effects on growth, 

reproduction, and longevity (Flatt et al. 2005). Several studies have established interactions 

between vitellogenin and juvenile hormone in the regulation of caste differentiation and 

worker behavior in honeybees (Barchuk et al. 2002; Amdam et al. 2003; Amdam et al. 2004; 

Amdam et al. 2007; Corona et al. 2007; Nelson et al. 2007; Ament et al. 2008; Nilsen et al. 

2011; Wurm et al. 2011). Both vitellogenin and juvenile hormone are known to interact with 

the nutrient sensitive insulin signaling pathway, which regulates growth, reproduction and 

lifespan in insects (Tissenbaum and Ruvkun 1998; Stocker and Hafen 2000; Giannakou and 
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Partridge 2007). Key components of this pathway, such as the insulin-like peptides, have 

also been found to be involved in the regulation of caste differentiation and worker behavior 

(Corona et al. 2007; Ament et al. 2008; Daugherty et al. 2011; Nilsen et al. 2011). Despite 

important advances in the understanding of the physiological regulation of caste 

differentiation and worker behavior in A. mellifera, very little is known about the physiological 

regulation of queen production and worker behavior in ants.  

The use of Pogonomyrmex ants as model systems 

Harvester ants refer to species that collect and store seeds for later consumption. Half of the 

harvester ant species in the world belong to Pogonomyrmex, a genus of 60 species found in 

the deserts of North, Central and South America (Taber 1999) that have important effects on 

community structure and ecosystem functioning, as their presence affects plant species 

composition and diversity (MacMahon et al. 2000). 

Pogonomyrmex ants have been primarily used as model systems to study caste 

determination. The first example of strictly genetic caste determination was described in P. 

barbatus (Helms Cahan et al. 2002; Julian et al. 2002; Volny and Gordon 2002; Helms 

Cahan and Keller 2003) while genetic compatibility effects between parental genomes were 

found to influence caste determination in P. rugosus (Schwander and Keller 2008). 

Interestingly, maternal effects on caste determination were also documented in this species, 

in which only eggs produced by a hibernated queen can develop into new queens, 

irrespective of the hibernation status of the rest of the colony (Schwander et al. 2008). Such 

maternal effects require that hibernation-triggered physiological modifications in queens 

regulate caste determination in the offspring. We used a combination of carefully-designed 

experimental manipulation of hibernation, hormonal treatments, gene expression analyses 

and vitellogenin quantification to identify the physiological mechanisms regulating maternal 

effects on caste determination in P. rugosus (Chapter 3). Finally, the genome of P. barbatus 

was recently sequenced (Smith et al. 2011b) and revealed the existence of two vitellogenin 
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genes in this species. We compared the expression of these genes between queens, nurses 

and foragers to investigate the role of vitellogenin in the physiological regulation of worker 

behavior in ants (Chapter 4).  

 

  



 

 25 

 

 

 

 

 

 

 

CHAPTER 1  



 

 26 

 



 

 27 

 

 

 

 

 

CHAPTER 1 

 

 

Genetic components to caste allocation in a 

multiple-queen ant species 

 

 

Romain Libbrecht, Tanja Schwander and Laurent Keller 

 

 

 

 

Libbrecht, R., Schwander, T., and Keller, L. 2011. Genetic components to caste allocation in a 
multiple-queen ant species. Evolution 65: 2907-2915 



 

 28 

  



CHAPTER 1 

 29 

Abstract 

Reproductive division of labor and the coexistence of distinct castes are hallmarks of insect 

societies. In social insect species with multiple queens per colony, the fitness of nestmate 

queens directly depends on the process of caste allocation (i.e., the relative investment in 

queen, sterile worker and male production). The aim of this study is to investigate the genetic 

components to the process of caste allocation in a multiple-queen ant species. We 

conducted controlled crosses in the Argentine ant Linepithema humile and established 

single-queen colonies to identify maternal and paternal family effects on the relative 

production of new queens, workers and males. There were significant effects of parental 

genetic backgrounds on various aspects of caste allocation: the paternal lineage affected the 

proportion of queens and workers produced while the proportions of queens and males, and 

females and males were influenced by the interaction between parental lineages. In addition 

to revealing non-additive genetic effects on female caste determination in a multiple-queen 

ant species, this study reveals strong genetic compatibility effects between parental 

genomes on caste allocation components. 
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Introduction 

One of the major transitions in evolution is the shift from solitary organisms to societies with 

reproductive division of labor (Maynard Smith and Szathmary 1995; Szathmary and Maynard 

Smith 1995). In eusocial Hymenoptera (ants, bees and wasps), reproductive division of labor 

is associated with morphological differences between the reproductive queens and the non-

reproductive workers (Wilson 1971; Holldobler and Wilson 1990; Bourke and Franks 1995). 

These morphological differences, which can be extremely marked in some ant species, arise 

from a developmental switch during the larval stage (Wilson 1971; Holldobler and Wilson 

1990). 

For several decades, it was assumed that social insect female brood are fully totipotent, and 

that environmental factors alone determine whether an individual becomes a reproductive 

queen, or a functionally sterile worker. However, several recent studies have revealed that 

genetic factors can, and often do, play an important role in queen and worker caste 

determination [see (Smith et al. 2008b; Schwander et al. 2010) for review]. These genetic 

influences range from plastic genotypes that are biased toward queen or worker 

development [e.g. Pogonomyrmex rugosus (Schwander and Keller 2008), Acromyrmex 

echinatior (Hughes and Boomsma 2008)] to a strictly genetic determination [e.g. 

Pogonomyrmex lineages (Helms Cahan et al. 2002; Julian et al. 2002; Volny and Gordon 

2002; Helms Cahan and Keller 2003), Solenopsis xyloni (Helms Cahan and Vinson 2003), 

Wasmannia auropunctata (Fournier et al. 2005)].  

The occurrence of a genetic component to caste determination has important implications in 

species where colonies contain several queens, as this may influence each queen’s relative 

reproductive success. Several studies have shown that queens within a colony may differ in 

their relative contribution to worker and queen production (Ross 1988; Bourke et al. 1997; 

Fournier et al. 2004). However, it is unknown whether these differences arise from 

competitive interactions among queens and other social effects or whether intrinsic genetic 
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differences among queens and/or their mates directly bias the developmental trajectories of 

their female brood.  

Another important factor affecting queen reproductive success in multiple-queen colonies is 

their relative contribution to male production. Social Hymenoptera have a haplodiploid sex 

determination system whereby diploid females develop from fertilized eggs while haploid 

males develop from unfertilized eggs (Crozier 1977). Both queens and workers have been 

shown to influence the proportion of new queens and males produced in their colonies. 

Queens may influence the sex ratio produced by altering the relative proportion of haploid 

and diploid eggs laid (Passera et al. 2001; Rosset and Chapuisat 2006) while workers may 

later affect sex ratio by selectively killing males or preferentially rearing females into queens 

rather than workers (Pamilo 1991; Aron et al. 1995; Passera et al. 1995; Keller et al. 1996; 

Sundstrom et al. 1996; Hammond et al. 2002). Accordingly, in multiple-queen colonies of 

ants such as Linepithema humile, Pachycondyla sp., Pheidole pallidula and Formica exsecta, 

queens vary in their relative contribution to male and female (queens and workers) 

production (Fournier and Keller 2001; Heinze et al. 2001; Fournier et al. 2004; Kummerli and 

Keller 2007b). Similarly, a skew in the production of males or new queens has been reported 

in L. humile and Leptothorax acervorum (Bourke et al. 1997; Fournier and Keller 2001). 

However, it remains unknown whether these contribution differences among queens have 

genetic components and, if so, whether these components are additive or result from 

epistatic and pleiotropic effects.  

The aim of this study is to investigate genetic effects on the process of caste allocation (the 

relative investment in queen, worker and male production) in an ant species with multiple 

queens per colony. For this purpose, we conducted controlled crosses in the Argentine ant L. 

humile. Colonies of this species contain numerous reproductive queens (Newell 1909; 

Markin 1970) and, in contrast to most other ants, it is possible to obtain both males and 

queens, as well as induce mating, in the laboratory (Keller and Passera 1992). After 

conducting controlled crosses, we established single-queen colonies to study the effects of 
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maternal and paternal genetic backgrounds, as well as the interaction between parental 

genomes on caste allocation. 

Methods 

Production of parental lineages 

We collected L. humile colonies on 11 February 2008 in Port-Leucate (3°2'20"E, 

42°51'22"N), southern France and set up 13 single-queen colonies with 2.5cm3 (ca. 1000) 

workers. To ensure that colonies contained only brood from the mother queen, we removed 

all the brood present during the first two weeks. The queens were then allowed to lay eggs 

during eight weeks before being removed so as to stimulate the production of sexuals (new 

queens and males) (Keller and Passera 1992; Keller and Passera 1993). Colonies were then 

regularly checked to transfer all male and queen pupae to queenless and broodless recipient 

colonies, set up to receive the pupae of only a single sex and colony. This allowed us to 

obtain large numbers of unmated queens and males of the same lineage (i.e., produced by 

the same mother queen). These individuals were used to conduct the controlled crosses. 

Controlled crosses 

Of the 26 recipient colonies, six produced enough new queens and four produced enough 

males to conduct replicate crosses between these maternal and paternal lineages. Mating 

was obtained by placing one unmated queen with four to six males overnight in a 6.5-cm-

diameter vial (Keller and Passera 1992). In L. humile, queens are inseminated by only one 

male even if they mate multiple times (Keller et al. 1992; Krieger and Keller 2000). These 

crosses allowed us to obtain between two and eight singly inseminated queens for 22 of the 

24 possible maternal-by-paternal lineage combinations (Table 1). The 110 newly mated 

queens were then overwintered with ca. 1000 workers for three months in the dark at 10 ± 

2°C, 60% humidity to trigger the production of sexual offspring (Vargo and Passera 1992). 
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  PATERNAL LINEAGES 

  Pat1 Pat2 Pat9 Pat13 
M

A
TE

R
N

A
L 

LI
N

E
A

G
E

S
 Mat3 4 6 5 - 

Mat5 4 3 8 7 

Mat6 2 4 6 4 

Mat7 - 6 2 5 

Mat8 6 6 5 8 

Mat12 2 6 5 6 
 

Table 1 - The number of singly mated queens obtained per parental lineages combination. Each of 
these singly mated queens is a new queen from one of the maternal lineages (rows) inseminated by a 

male from one of the paternal lineages (columns). 

 

After overwintering each mated queen was placed with a new set of ca. 600 workers 

(collected randomly in the same stock colony composed of a mix of several field colonies 

collected on 16 February 2009) and no brood, in 20x14x5cm transparent plastic boxes under 

a 12hr:12hr artificial light:dark cycle at 25°C, 60% humidity. Colonies were fed a mixture of 

mealworms, eggs, honey and vitamins three times a week. Queens were allowed to lay eggs 

during six weeks before being removed. Under field conditions, 90% of the queens are killed 

by the workers before the beginning of the reproductive season (Markin 1970; Keller et al. 

1989). Thus, queen removal mimicked the conditions leading to the production of males and 

new queens in the field (Keller and Passera 1992; Keller and Passera 1993). Colonies were 

then monitored weekly to remove all pupae produced. As the pupal stage lasts more than 

seven days at 25°C in L. humile (R. Libbrecht, personal observation), this allowed us to 

count all queen, worker and male pupae produced, and estimate the worker/queen, 

male/queen, and male/female ratios.  
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Statistical analysis 

Among the 110 colonies that overwintered successfully, 20 were removed from the analysis: 

five queens died during the experiment, four colonies did not produce any offspring, and 11 

colonies did not produce any female offspring suggesting that the queens were not 

inseminated. To test for the effect of maternal and paternal lineages (taken as random 

variables) on colony-level offspring production, we conducted 2-way analyses of variance 

(ANOVAs) on models optimized to fit our data. The numbers of offspring, females and males 

were analyzed using a generalized linear model (GLM) with Poisson distributed errors. The 

worker/queen, male/queen and male/female proportions were analyzed using a GLM with 

binomial errors. The models were checked for overdispersion and corrected when needed 

using quasi-likelihood to specify an appropriate variance function. Correlation tests were 

carried out using Spearman rank correlation tests. All statistical analyses were performed 

with R (http://www.R-project.org). 

Results  

Every component of caste allocation varied considerably among the single-queen colonies. 

Both the proportion of the female offspring that developed into queens (female caste ratio) 

and the proportion of queens among the sexual offspring (sex ratio) ranged from 0 to 1 

(female caste ratio: 0.091 ± 0.16 and sex ratio: 0.38 ± 0.36, mean ± sd) while the proportion 

of females among all the offspring produced ranged from 0.008 to 1 (0.78 ± 0.26, mean ± 

sd). 

For each component of caste allocation, we found significant effects of either the paternal 

lineage or the interaction between parental lineages. The female caste ratio was significantly 

influenced by the paternal lineage (F3,12 = 6.44, P = 0.007, Figure 1) while there was no 

significant effect of the maternal lineage (F5,12 = 1.77, P = 0.19) and no significant interaction 

between maternal and paternal lineages (F12,89 = 0.75, P = 0.69). The sex ratio and the 
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proportion of females among the offspring were not significantly influenced by the paternal 

(queen/male proportion: F3,12 = 1.12, P = 0.38; female/male proportion: F3,12 = 1.82, P = 0.2) 

nor the maternal lineage (queen/male proportion: F5,12 = 1.18, P = 0.38; female/male 

proportion: F5,12 = 0.70, P = 0.63). By contrast, there were significant interactions between 

maternal and paternal lineages on both of these proportions (queen/male proportion: F12,88 = 

2.06, P = 0.032, Figure 2; female/male proportion: F12,89 = 3.29, P < 0.001, Figure 3). The 

effect sizes for the different components of caste allocation are summarized in Table 2. 

 

 

 

Figure 1 - The proportion of new queens among female offspring is significantly affected by the 
paternal lineage (mean ± se for each paternal lineage). 
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Figure 2 - The proportion of new queens among sexual offspring is significantly affected by the 

interaction between parental lineages (each bar depicts the mean for all queens per combination of 
parental lineages). 

 

 

 
Figure 3 - The proportion of females among offspring is significantly affected by the interaction 

between parental lineages (each bar depicts the mean for all queens per combination of parental 
lineages). 
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Because there appeared to be extreme variation among colonies in the total number of 

offspring produced  (range 23-234; 120.3 ± 45.6, mean ± sd), we also tested for parental 

lineage effects on numbers of different offspring produced. The total number of offspring was 

significantly affected by the maternal lineage (F5,12 = 3.33, P = 0.04) but not by the paternal 

lineage (F3,12 = 1.35, P = 0.30) nor by the interaction between maternal and paternal lineages 

(F12,89 = 1.74, P = 0.076). By contrast, we found a different pattern when separately analyzing 

the numbers of males and females produced: neither the paternal (number of males: F3,12 = 

1.26, P = 0.33; number of females: F3,12 = 2.21, P = 0.14) nor the maternal lineage (number 

of males: F5,12 = 0.81, P = 0.56; number of females: F5,12 = 1.52, P = 0.25) significantly 

affected these numbers, while there was a significant interaction between parental lineages 

(number of males: F12,89 = 3.24, P < 0.001; number of females: F12,89 = 2.45, P = 0.01). The 

effect sizes for the numbers of male and female offspring produced are summarized in Table 2. 

 

 
Maternal 
lineage 

Paternal 
lineage 

Interaction 
between 

maternal and 
paternal 
lineages 

Relative proportion of new queens and workers 7.08% 15.43% ** 9.58% 

Relative proportion of new queens and males 11.12% 6.35% 22.68% * 

Relative proportion of females and males 7.86% 12.24% 26.9% *** 

Number of offspring 22.48% * 5.46% 16.18% 

Number of females 13.09% 11.46% 20.68% ** 

Number of males 9.68% 8.99% 28.49% *** 
 

Table 2 - Reduction of deviance obtained when the maternal lineage, the paternal lineage or the 
interaction between parental lineages is added to the model. These percentages thus represent the 

extent to which an explanatory variable improves the model’s ability to account for the empirical data. 
The significance of maternal and paternal lineage effects and of their interaction is also notified 

(* = P<0.05; ** = P<0.01; *** = P<0.001). 
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Finally, to test for possible allocation trade-offs, we analyzed correlations between caste 

numbers produced. Significant negative correlations revealed trade-offs between queen and 

male (n = 90, rho = -0.24, P = 0.024, Figure 4), and female and male productions (n = 90, rho 

= -0.34, P = 0.001, Figure 5). There appeared to be no trade-off between queen and worker 

production as the number of queens and workers were positively correlated (n = 90, rho = 

0.32 , P = 0.002, Figure 6). 

 

 

 

 

Figure 4 - Across colonies the number of new queens produced is negatively correlated with the 
number of males produced. 
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Figure 5 - Across colonies the number of females produced is negatively correlated with the number 
of males produced. 

 

 

 

 

 

Figure 6 - Across colonies the number of new queens produced is positively correlated with the 
number of workers produced. 
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Discussion 

This study demonstrates strong effects of the maternal and paternal lineages on offspring 

production and caste allocation (i.e., the proportion of queens, workers and males produced) 

in the Argentine ant L. humile. The maternal lineage had a significant effect on the number of 

offspring produced and the paternal lineage influenced the proportion of females developing 

into queens or workers (i.e., the process of caste determination). There were also significant 

interactions between parental lineages for the two other components of caste allocation, 

namely the proportion of offspring being queens or males and the relative production of 

males and females. 

Several lines of evidence suggest that these parental lineage effects have genetic 

components. First, all the experiments were conducted under highly controlled laboratory 

conditions, with colonies containing similar numbers of workers, thus largely removing 

possible environmental effects. Second, the workers that reared the new queens and the 

males were unrelated to them and all came from the same stock colonies hence insuring a 

uniform social environment. Finally, after mating, queens of all lineages were placed in new 

colonies containing a new set of workers coming from the same stock colonies. Again, the 

number of workers was standardized in all colonies. As a result, mothers, fathers and 

grandmothers of the broods considered in the analyses were kept under similar 

environmental and social conditions. This design thus makes it highly likely that parental 

lineage effects on caste allocation and brood production stem from genetic variation among 

lineages, even if some environmental influences cannot completely be ruled out. Importantly, 

a genetic component on sex ratio and caste allocation may stem from both direct and indirect 

effects. Direct influences could originate from genetic differences in offspring survival and/or 

development whereas indirect effects could stem from workers altering brood care and/or 

rearing allocations in response to changes in brood composition (Linksvayer 2006). A 

combination of direct and indirect effects is also possible. For example, a direct genetic effect 

inducing a larger proportion of females to develop into queens may reduce the resources 
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available and lead workers to eliminate a greater proportion of males. In the following 

sections we discuss in more details the effect of parental lineages on each component of 

offspring production and caste allocation.  

The first interesting finding of our study is that the paternal lineage affected the relative 

production of queens and workers while no significant effect of the maternal lineage was 

detected. This pattern reveals that the genetic effects on female caste determination in L. 

humile have a complex architecture, as classic additive effects would imply an influence of 

both parental lineages. This result is unlikely to stem from little statistical power for detecting 

maternal lineage effects. Because of haplodiploidy, the proportion of within-lineage additive 

genetic variation is smaller for the maternal than the paternal lineages (this is because full 

sisters share a larger portion of their genome than full brothers). As a consequence, additive 

genetic factors are more likely to generate significant effects of the maternal than the 

paternal lineage. The influence of only the paternal lineage on female caste fate is thus best 

consistent with parent of origin specific effects and/or other epigenetic factors. Thus, caste-

biasing genes could be expressed in the female brood only if paternally inherited. 

Alternatively, heritable epigenetic changes that affect the likelihood for the female offspring to 

develop into queens could be triggered by male-dependent conditions. 

One important issue discussed by previous studies that reported genetic effects on female 

caste determination is the maintenance of genetic variation for the trait, as alleles biasing 

caste development toward queens should quickly go to fixation (Crozier and Pamilo 1996). 

Four hypotheses have been proposed to account for the maintenance of genetic variation. 

First queen-biasing alleles are associated with costs such as decreased colony productivity 

(Bourke and Ratnieks 1999; Wenseleers and Ratnieks 2004). Second, queen-biasing alleles 

are deleterious when in the homozygous form (Keller and Ross 1998; Hayashi et al. 2007). 

Third, under sexual antagonism (Rice 1984), queen-biasing alleles, which are favored in 

females, decrease male fitness (Moritz et al. 2005). Finally, genetic influences on female 

caste can be maintained if the genetic architecture underlying caste biasing is complex 
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(Schwander et al. 2010). The finding of imprinting and/or epigenetic effects on caste 

determination is very interesting in this perspective because it reveals a new type of genetic 

influences, that are more complex than additive genetic effects. The traditional method used 

to test for genetic components to caste determination is to compare the relative 

representations of patrilines among new queens and workers in species with only one 

multiply-mated queen per colony (Hughes and Boomsma 2008; Schwander and Keller 2008; 

Smith et al. 2008a; Frohschammer and Heinze 2009). However, this experimental design 

does not allow inferring the genetic architecture underlying caste bias. We call for more 

studies on the influence of genetic architecture on the developmental fate of female brood to 

get a better understanding of the maintenance of genetic effects on caste determination in 

social insect species. 

Our study also revealed significant interactions between parental lineages on sex ratio 

(proportion of queens and males) while neither the maternal nor the paternal lineage affected 

this proportion. The lack of maternal and paternal lineage effects are difficult to interpret 

given that the source colonies used for setting up the parental lineages already showed a 

biased sex ratio (male bias for the paternal and queen bias for the maternal lineages). This 

may have altered the distribution of genetic variability for sex ratio between the maternal and 

paternal lineages. By contrast, several mechanisms could explain the interaction between 

parental lineages on sex ratio. Sex ratio could be influenced directly by interactions between 

parental lineages if compatibility between parental genomes affects the viability of female 

broods or influences the likelihood of egg fertilization. Alternatively, sex ratio may be 

influenced indirectly via changes in the proportion of females that develop into queens rather 

than workers. The latter explanation is unlikely in L. humile because, contrary to the 

proportion of males and females, the proportion of new queens and workers produced was 

not significantly affected by the interaction between parental lineages. Our analyses of brood 

numbers are best consistent with compatibility affecting fertilization probability, though 

additional effects on female brood viability or the worker propensity to preferentially raise 
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new queens and/or eliminate males remain possible. Indeed, the numbers of males and 

females produced were negatively correlated and both were significantly affected by 

interactions between the maternal and paternal lineages. This is the expected pattern if 

queens laid a fixed number of eggs independently of the ratio of haploid to diploid eggs 

among them, thereby generating a trade-off in the numbers of males and diploid brood 

produced. Queens may actively change sex allocation depending on qualities of the sperm 

transferred by their mate (Fjerdingstad and Boomsma 1997; Fjerdingstad 2004) or 

fertilization success may be passively influenced by compatibilities between parental 

genomes. Whatever the detailed mechanism, our results reveal that interactions between 

queens and males can affect the colony sex ratio. Previous studies showed that the queen 

influences the colony sex ratio in S. invicta, F. selysi and Cardiocondyla kagutsuchi (Passera 

et al. 2001; Rosset and Chapuisat 2006; Frohschammer and Heinze 2009). However, 

because these studies were not designed to detect potential effects of the interaction 

between the queens and their mates, it is impossible to infer whether the reported queen 

influences also stem from interaction effects or between-queen differences. 

The finding that interactions between the queen and her mate may affect the relative 

production of new queens and males has important implications for sex ratio and conflict 

theory in social insects. Because of the haplodiploid mechanism of sex determination, there 

is a potential conflict between queens and their mates over the sex ratio produced (Haig 

1998; Helantera and Ratnieks 2009), as males have all their genes in their daughters but 

none in the males produced. There is thus strong pressure on males to bias the sex ratio 

toward females (Haig 1998) while queens should favor balanced sex ratios because they are 

equally related to their daughters and sons. The finding that the interaction between queens 

and males can influence the sex ratio produced should be added to the traditional 

queen/worker framework when studying intra-colonial conflicts in social insects.  

Our study also provides a new explanation for why queen in multi-queen societies often tend 

to specialize in the production of a single caste. For example, queens producing more males 
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produce fewer queens in L. humile (Fournier and Keller 2001) and F. exsecta (Kummerli and 

Keller 2007a; Kummerli and Keller 2007b). A trade-off between the contribution to worker 

and queen production has been reported in Pheidole pallidula (Fournier et al. 2004) and a 

trade-off between worker and male production in Leptothorax acervorum (Hammond et al. 

2006). In these studies it was not possible to determine whether the queen specializations 

(Kummerli and Keller 2007a; Kummerli and Keller 2007b) resulted from competition and 

social interactions between queens or from intrinsic differences between the broods 

produced by queens. In our single-queen colonies, we found similar trade-offs for the relative 

investment into males and queens, as well as males and females, revealing that competition 

and social interactions between queens are not required to generate specializations. In 

addition, given that caste allocation in our colonies was also influenced by the interaction 

between parental lineages, queen specialization reported in the previous studies may at least 

partly stem from genetic differences. More generally, queen specialization is likely to be 

affected by complex genetic interactions between the queen and her mate. Such interaction 

effects between queens and males may help to explain the maintenance of queen 

specialization in social insect species with multiple queens per colony. 

Finally, we also found that the total number of offspring produced in our experimental 

colonies was affected exclusively by the maternal lineage. This is not surprising given that 

both the number of eggs produced and the nutrients in the eggs depend on the mother 

queens. Since males only contribute their sperm to offspring production, paternal effects in 

this case would have to occur mainly via some type of chemical manipulation of the females, 

possibly in combination with effects on diploid brood viability. The effect of the maternal 

lineage on the number of offspring produced thus stems most likely from between-lineage 

variation in fecundity and/or egg viability. This variation may derive from genetic differences 

between queens from different lineages (Frohschammer and Heinze 2009), maternal effects 

(Schwander et al. 2008) and/or different environmental conditions experienced by different 

lineages during their development. As explained above, all colonies were maintained under 
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highly controlled conditions so that differences in environmental conditions should only have 

a minor contribution to differences between lineages compared to genetic or maternal 

effects.  

In conclusion, the use of controlled crosses in the laboratory allowed us to demonstrate 

widespread effects of both parental genetic backgrounds on several components of caste 

allocation. Our study provides evidence that non-additive genetic effects account for 

between-queen and between-colony variations in the caste and sex ratios produced. Such 

diverse influences of non-additive genetic effects demonstrate overall complex architectures 

of the genetic components to caste allocation. More such studies are strongly needed to 

develop insights into the genetics of phenotypic plasticity and caste allocation in social 

insects. 
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Abstract 

Division of labor is central to the organization of insect societies. Within-colony comparisons 

between subfamilies of workers (patrilines or matrilines) revealed genetic effects on division 

of labor in many social insect species. Although this has been taken as evidence for additive 

genetic effects on division of labor, it has never been experimentally tested. To determine the 

relative roles of additive and non-additive genetic effects (e.g., genetic compatibility, epistasis 

and parent-of-origin imprinting effects) on worker behavior, we performed controlled crosses 

using the Argentine ant Linepithema humile. Three of the measured behaviors (the efficiency 

to collect pupae, the foraging propensity and the distance between non-brood-tenders and 

brood) were affected by the maternal genetic background and the two others (the efficiency 

to feed larvae and the distance between brood-tenders and brood) by the paternal genetic 

background. Moreover, there were significant interactions between the maternal and paternal 

genetic backgrounds for three of the five behaviors. These results are most consistent with 

parent-of-origin and genetic compatibility effects on division of labor. The finding of non-

additive genetic effects is in strong contrast with the current view and has important 

consequences for our understanding of division of labor in insect societies. 
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Introduction 

Division of labor is characterized by the performance of different tasks or roles by different 

groups of individuals. The most striking examples of division of labor in nonhumans occur in 

insect societies. By enhancing colony performance and homeostasis, division of labor is 

thought to be one of the main factors responsible for the tremendous ecological success of 

ants, termites, bees and wasps (Wilson 1971; Oster and Wilson 1979; Holldobler and Wilson 

1990).  

Task specialization within a colony results from workers differing in their responses to 

environmental signals indicating colony needs for specific tasks (Wilson 1971; Oster and 

Wilson 1979; Robinson and Page 1989a). Four main factors are known to influence worker 

thresholds for particular tasks. The first is worker size and morphology, both of which 

correlate with worker behavior in almost all species in which this has been studied [e.g., 

(Wilson 1980; Detrain and Pasteels 1991; Robinson et al. 2009)]. The second is age, as 

evidenced by workers frequently moving from one task to another as they become older 

(Wilson 1971; Seeley 1982). The third is individual experience, which has been shown to 

influence task preference in a few species (Theraulaz et al. 1998; Ravary et al. 2007). 

Finally, in almost all species studied, the genetic background of workers seems to affect their 

likelihood to undertake different tasks (Oldroyd and Fewell 2007). Besides some reports of 

artificial selection for honeybee worker behaviors (Rothenbuhler 1964; Pérez-Sato et al. 

2009), evidence for genetic effects on task specialization comes primarily from the finding of 

differences between subfamilies (matrilines or patrilines) in the worker likelihood and 

efficiency to perform different tasks in species where colonies contain either several queens 

or one multiply-mated queen. Such genetic effects on task performance have been shown to 

influence a wide range of behaviors in ants (Stuart and Page 1991; Snyder 1992; Snyder 

1993; Blatrix et al. 2000; Julian and Fewell 2004; Schwander et al. 2005; Waddington et al. 

2010), bees (Calderone and Page 1988; Frumhoff and Baker 1988; Robinson and Page 
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1988, 1989b; Estoup et al. 1994; Kryger et al. 2000; Jones et al. 2004) and termites (Kaib et 

al. 1996; Goodisman and Crozier 2003).  

The finding of between-matriline and between-patriline differences in task performance has 

lead to the realization that task specialization and division of labor are influenced by genetic 

effects. Authors usually discussed these effects as if they were simple additive genetic 

effects. However, the mere demonstration of maternal or paternal effects on division of labor 

in colonies with several matrilines or patrilines does not allow one to discriminate between 

additive and non-additive genetic effects such as parent-of-origin specific effects associated 

with imprinting, epistasis and genetic compatibility effects (Schwander and Keller 2008; 

Libbrecht et al. 2011). In both cases, one would expect an association between matriline and 

patriline affiliation and the performance of specific tasks. The only way to discriminate 

between additive and non-additive effects is to conduct controlled crosses to quantify 

paternal and maternal effects, as well as the interaction between parental effects.  

So far such controlled crosses have only been used twice in social insects, the aim being to 

investigate the effects of parental genetic backgrounds on various aspects of caste 

allocation. In the seed-harvester ant Pogonomyrmex rugosus the process of caste 

determination was shown to be strongly influenced by interactions between the parental 

genomes, but neither by the paternal nor the maternal colony of origin (Schwander and 

Keller 2008). Similarly, in the Argentine ant Linepithema humile, controlled crosses revealed 

both significant parent-of-origin influences and interactions between parental genomes on 

various components of caste allocation (Libbrecht et al. 2011). Although there have been 

numerous studies investigating the roles of paternal and maternal effects on division of labor, 

surprisingly no controlled crosses have been conducted so far and it remains completely 

unknown whether genetic effects on division of labor stem from additive effects or more 

complex, non-additive effects such as parent-of-origin influences or interactions between the 

parental genomes. 
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The aim of this study was to conduct controlled crosses in the Argentine ant Linepithema 

humile to investigate the genetic components affecting worker behavior and patterns of 

division of labor. In contrast to most other ants it is possible to obtain both males and queens 

in the laboratory and to mate them under controlled conditions (Keller and Passera 1992; 

Libbrecht et al. 2011). By conducting controlled crosses, we investigated the effects of both 

the maternal and paternal genetic backgrounds, as well as their interaction, on five measures 

of worker behavior that were indicators of the likelihood of workers to perform several tasks 

and their efficiency to perform them. 

Methods 

Production of parental lineages 

The first step of our experiment consisted in producing sufficient numbers of unmated 

queens and males to conduct the controlled crosses in the laboratory. To this end, we 

collected Linepithema humile colonies on February 11, 2008 in Port-Leucate (3°2'20"E, 

42°51'22"N), southern France and established 13 single-queen colonies with each 2.5cm3 

(ca. 1000) workers in the laboratory. Colonies were kept under a 12hr:12hr artificial light:dark 

cycle at 25°C, 60% humidity and were fed a mixture of mealworms, eggs, honey and 

vitamins three times a week. To ensure that colonies contained only brood from the mother 

queen, we removed all the brood present during the first two weeks. The queens were then 

allowed to lay eggs during eight weeks before being removed so as to stimulate the 

production of new queens and males (Keller and Passera 1992; Keller and Passera 1993). 

Colonies were then regularly checked to transfer all the male and queen pupae produced to 

queenless and broodless recipient colonies, set up to each receive the pupae of only a single 

sex and colony. This design allowed us to obtain large numbers of unmated queens and 

males of the same lineage (i.e., produced by the same mother queen). These individuals 

were used to conduct the controlled crosses. 
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Controlled crosses 

Of the 26 (13 female and 13 male) recipient colonies, six produced enough new queens and 

four produced enough males to conduct replicate crosses between these maternal and 

paternal lineages. Mating was obtained by placing one unmated queen with four to six males 

overnight in a 6.5cm-diameter vial (Keller and Passera 1992). In Linepithema humile, queens 

are inseminated by a single male (Keller et al. 1992; Krieger and Keller 2000). The crosses 

allowed us to obtain between two and eight singly-inseminated queens for 22 of the 24 

possible maternal-by-paternal lineage combinations. The 110 newly mated queens were then 

overwintered with ca. 1000 workers for three months in the dark at 10±2°C, 60% humidity to 

trigger the production of sexual offspring (Vargo and Passera 1992) which were used in 

another study (Libbrecht et al. 2011). 

Single-cohort colonies 

Worker behavior is known to be affected by age (Wilson 1971; Seeley 1982) and experience 

(Theraulaz et al. 1998). To control for these factors, all experiments were performed on 

single-cohort colonies (Giray and Robinson 1994) consisting of groups of workers of the 

same age with similar nursing and foraging experience. To produce such workers, each 

mated queen was placed with a new set of ca. 600 workers (collected randomly in a stock 

colony composed of a mix of several field colonies collected on February 16, 2009) and no 

brood, in 20x14x5cm transparent plastic boxes. To set up the single-cohort colonies, 50 

worker pupae were collected from each colony and isolated with 5-7 marked workers which 

took care of them, ensuring the emergence of adult workers. The marked workers were 

removed from the single-cohort colonies as soon as the first workers emerged from the 

pupae. The workers used in the behavioral experiments were collected in the single-cohort 

colonies four weeks after the isolation of pupae. We quantified the efficiency of workers to 

feed larvae, their speed to collect pupae, their foraging propensity and their average distance 

to the brood.  
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Efficiency to feed larvae 

The efficiency to feed larvae was assessed by measuring the mass gained by larvae when 

tended by workers for three days. For each single-cohort colony, 20 workers were collected 

and introduced in a 5cm-diameter plastic box containing 10 third-instar larvae randomly 

collected from a stock colony. The workers and larvae were kept for three days in complete 

darkness with water and food very close to the larvae, so that the workers did not have to 

forage. The larvae were weighed before and after the three days using a microbalance 

(Mettler Toledo MT5) to a precision of 1µg. The difference between the initial and final larval 

mass was used as a proxy for the efficiency of worker feeding behavior. 

Efficiency to collect pupae 

The efficiency to collect pupae was quantified as the time needed by 20 workers to collect 12 

pupae. For each single-cohort colony, 20 workers were anesthetized with CO2 and 

introduced in an arena (5x10.5cm) containing 12 pupae evenly distributed around the center 

of the arena. All these pupae were randomly collected from a stock colony. We videotaped 

the arena in the dark using an infrared camcorder (Sony HDR-XR200) and recorded the time 

needed to collect the twelfth pupae once the first worker woke up. 

Foraging propensity 

Once the workers had gathered the pupae in one or several piles, some workers tended to 

stay close to the brood (later referred to as brood-tenders) while others tended to move away 

from the brood and walk around the arena (later referred to as non-brood-tenders). Once the 

workers had gathered all the pupae we extracted, for each colony, screenshots for 20 time 

points in the dark (every 30s for 10 minutes) and 12 time points in the light (every 10s for 1 

minute after the light was switched on and every 30s for the next 3 minutes). For each 

screenshot, we recorded the numbers of brood-tenders, defined as any worker with less than 

one ant-length to the nearest pupa, and non-brood-tenders, defined as all other workers with 



CHAPTER 2 

 58 

more than one ant-length to the nearest pupa. The proportion of non-brood-tenders was 

used as a proxy for the foraging propensity. 

Distance to the brood 

The distance between workers and brood was measured for both brood-tending and non-

brood–tending workers. We used the same screenshots (32 time points) as for the foraging 

propensity to record the distance between workers and brood in the dark and in the light. The 

software ImageJ (http://rsbweb.nih.gov/ij) was used to collect the spatial coordinates of each 

worker, as well as the center of each pile of pupae. These coordinates were then used to 

infer the distance between each worker and the center of the closest pile of pupae. Brood-

tenders and non-brood-tenders were analyzed separately. 

Statistical analysis 

Among the 110 colonies that overwintered successfully, four colonies did not produce any 

offspring, 11 colonies did not produce any females (perhaps because the queens were not 

inseminated), 25 colonies did not produce enough brood to set up a single-cohort colony with 

50 pupae and five colonies lost their queen. Therefore, a total of 65 single-cohort colonies 

could be used for all behavioral experiments, except the nursing of larvae and collection of 

pupae experiments for which 2 and 7 colonies, respectively, were discarded for technical 

reasons. To test for the effect of paternal and maternal lineages on worker behavior (as well 

as time when required), we conducted two-way analyses of variance (ANOVAs) on linear 

models optimized to fit our data. When needed, the data were transformed so that the 

residuals of the models followed a normal distribution. The proportion of non-brood-tenders 

and the distance between workers and brood were analyzed using a linear mixed-effect 

model with a Satterthwaite compilation of degrees of freedom. For each response variable, 

we used a single value (proportion or mean) per time point per colony and we specified the 

colony as a random factor to avoid pseudoreplication and take into account the non-

independence of repeated measures. The time to collect pupae and the difference in larval 



CHAPTER 2 

 59 

mass were analyzed using a linear model. Correlation tests were carried out using Spearman 

rank correlation tests. 

Results 

Our measures of worker behavior revealed that worker likelihood and efficiency to perform 

tasks varied greatly among the single-cohort colonies. The change in larval mass over three 

days varied from -0.44 to 0.69mg (0.17 ± 0.23, mean ± sd), the time to collect pupae from 

227 to 1063s (515 ± 221), the proportion of non-brood-tenders from 0.1 to 0.8 (0.41 ± 0.12), 

the distance between workers and the center of the pile of pupae from 0.01 to 1.07cm (0.28 

± 0.14) for brood-tending and 0.21 to 8.6cm (2.19 ± 1.74) for non-brood tending individuals. 

There was a significant positive correlation between normal conditions (darkness) and 

stressful conditions (light) for the foraging propensity (rho = 0.64, p < 0.0001), and the 

distance between brood and either brood-tenders (rho = 0.83, p < 0.0001) or non-brood-

tenders (rho = 0.59, p < 0.0001).  

The maternal lineage had a significant effect on three of the five behavioral measures. These 

were the time needed to collect the 12 pupae (Figure 1, F5,52 = 2.71, p = 0.03), the proportion 

of non-brood-tenders (Figure 2, F5,341 = 3.62, p = 0.003) and the distance between non-

brood-tenders and the brood (Figure 3, F5,872 = 6.75, p < 0.0001). The paternal lineage had 

no significant effect on any of these measures but significantly affected the two others, 

namely the change over time in the larval mass (Figure 4, F3,44 = 3.30, p = 0.026) and the 

distance between brood-tenders and the center of the closest pile of pupae (Figure 5, F3,141 = 

8.98, p < 0.0001). 

The interaction between parental lineages significantly affected three of the five measures of 

behavior. These were the change in larval mass over three days (Figure 4, F10,44 = 2.22, p = 

0.033), the proportion of non-brood-tenders (Figure 2, F10,341 = 2.3, p = 0.01), and the 

distance between brood-tenders and the brood pile center (Figure 5, F10,141= 2.79, p = 

0.0035). 
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Figure 1 - The time to collect pupae (mean ± se) is significantly affected by the maternal lineage. 

 

 

 

 

Figure 2 - The proportion of non-brood-tenders (mean ± se) is significantly affected by the maternal 
lineage and by the interaction between parental lineages. 
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Figure 3 - The distance between non-brood-tenders and the brood (mean ± se) is significantly 
affected by the maternal lineage. 

 

 

 

 

Figure 4 - The change in larval mass over three days (mean ± se) is significantly affected by the 
paternal lineage and by the interaction between parental lineages. 
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Figure 5 - The distance between brood-tenders and the brood pile center (mean ± se) is significantly 
affected by the paternal lineage and by the interaction between parental lineages. 
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experiments. Finally, while we cannot completely rule out the existence of maternal effects 

during oviposition or larval development, the paternal effects must have been of genetic 

nature only, as males died after mating and never encountered their progenies. 

The finding that three of the five behavioral measures were affected by the maternal lineage 

and the two others by the paternal lineage is surprising. If there were additive genetic effects 

on worker behavior, one would expect a given behavior to be similarly affected by the 

maternal and paternal lineages (Schwander and Keller 2008; Libbrecht et al. 2011). The 

finding of all tested behaviors being affected by either the maternal or the paternal lineage is 

best explained by parent-of-origin specific effects through epigenetic changes. This 

interpretation is consistent with recent findings indicating that social insects are capable of 

epigenetic modifications. First DNA methylation was found to occur widely among ants, bees 

and wasps (Kronforst et al. 2008). Second the genome sequences of several bee and ant 

species revealed the conservation of a DNA methylation toolkit across social Hymenoptera 

(Wang et al. 2006; Bonasio et al. 2010; Nygaard et al. 2011; Smith et al. 2011a; Smith et al. 

2011b; Suen et al. 2011; Wurm et al. 2011; Gadau et al. 2012). Parent-of-origin specific 

effects could occur if genes that affect behavior were imprinted and differed in expression 

depending on whether they were maternally or paternally inherited, as found in mammals 

(Isles et al. 2006; Garfield et al. 2011).  

Importantly, this study also revealed that three of the five measured behaviors (the efficiency 

to feed larvae, the foraging propensity and the distance between brood-tenders and the 

brood pile center) were significantly affected by the interaction between parental lineages. 

This indicates widespread genetic compatibility effects on worker behavior. These findings 

are important, in particular because the worker intrinsic propensity and efficiency to perform 

a given task are the basis of division of labor in social insects (Wilson 1971; Oster and 

Wilson 1979).  
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The finding of non-additive genetic effects, such as parent-of-origin and genetic compatibility 

effects on behavior have important implications for our understanding of the role of genetic 

diversity in social insects. Genetic effects on division of labor have been documented in 

many species of social insects, primarily through the finding of within-colony behavioral 

differences between matrilines or patrilines (Oldroyd and Fewell 2007). As these genetic 

effects were typically assumed to be additive, it was argued that an increase in genetic 

diversity among the worker force would increase behavioral diversity and colony 

performance (Crozier and Page 1985). In line with this view a greater genetic diversity has 

been shown to facilitate division of labor (Page and Robinson 1991; Mattila and Seeley 2007; 

Oldroyd and Fewell 2007) and enhance colony performance (Oldroyd et al. 1992; Fuchs and 

Schade 1994; Page et al. 1995; Costa and Ross 2003; Jones et al. 2004; Wiernasz et al. 

2004; Mattila and Seeley 2007; Oldroyd and Fewell 2007) in some social insects. However, 

in some other species, studies failed to find a link between genetic diversity and colony 

performance (Sundstrom and Ratnieks 1998; Fjerdingstad et al. 2003; Rosset et al. 2005; 

Fournier et al. 2008). The discrepancy between these studies could stem from between-

species differences in the genetic architecture underlying division of labor. Of interest would 

be to investigate whether additive and non-additive genetic effects on division of labor 

produce different links between genetic diversity and colony performance, and to what extent 

such differences impact colony performance. 

In conclusion, the use of controlled crosses allowed us to investigate for the first time the 

genetic architecture of division of labor in a social insect species. Maternal and paternal 

effects were found to each affect several behaviors but surprisingly, no behavior was 

simultaneously affected by both the maternal and paternal lineages. Such a pattern is not 

expected under simple additive genetic effects and rather suggests parent-of-origin specific 

effects on behavior. Our study also revealed genetic compatibility effects between parental 

genomes on three of the five behaviors recorded. These findings, together with the recent 

empirical (Schwander and Keller 2008; Libbrecht et al. 2011) and theoretical (Dobata and 
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Tsuji 2012) documentation of similar effects on caste and sex allocation, indicate that non-

additive genetic effects play an important and unrecognized role in the organization of social 

insect colonies. Such effects are likely to have important implications in our understanding of 

social organization, the resolution of kin conflicts, the maintenance of multiple mating and 

other important issues in social insect biology. 
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Abstract 

Polyphenism is the phenomenon where alternative phenotypes are produced by a single 

genotype in response to environmental cues. An extreme case is found in social insects, 

where reproductive queens and sterile workers that greatly differ in morphology and behavior 

can arise from a single genotype. The first experimental evidence for maternal effects on 

caste determination, the differential larval development toward the queen or worker caste, 

was recently documented in Pogonomyrmex seed-harvester ants, in which only colonies with 

a hibernated queen produce new queens. However, the proximate mechanisms behind these 

intergenerational effects have remained elusive. We used a combination of artificial 

hibernation, hormonal treatments, gene expression analyses and vitellogenin quantification 

to investigate how the combined effect of environmental cues and hormonal signaling affects 

the process of caste determination in Pogonomyrmex ants. The results show that the 

interplay between insulin signaling, juvenile hormone and vitellogenin regulates maternal 

effects on the production of alternative phenotypes and set vitellogenin as a likely key player 

in the intergenerational transmission of information. This study reveals how environmental 

cues experienced by one generation can translate into phenotypic variation in the next 

generation. 
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Introduction 

Polyphenism, whereby alternative phenotypes are produced by a single genotype (Michener 

1961; Mayr 1963; Stearns 1989; West-Eberhard 1989), allows adequate responses to 

environmental cues such as temperature, nutrition and population density in many species 

(Simpson et al. 2011). The most striking example of polyphenism is found in insect societies 

(Wheeler 1986), where the reproductive division of labor implies the coexistence of fertile 

queens and sterile workers that greatly differ in morphology and behavior (Wilson 1971; 

Holldobler and Wilson 1990). Even though recent studies revealed genetic influences on 

caste determination in social insects [reviewed in (Schwander et al. 2010)], female caste fate 

is primarily influenced by environmental factors in most species studied (Winter and 

Buschinger 1986; Keller et al. 1997; Moritz et al. 2005; Hartfelder et al. 2006; Hayashi et al. 

2007; Hughes and Boomsma 2008; Schwander and Keller 2008; Smith et al. 2008a; 

Frohschammer and Heinze 2009; Koyama et al. 2009; Rabeling et al. 2009; Libbrecht et al. 

2011). 

Many studies have focused on the proximate mechanisms regulating the development of 

alternative phenotypes in response to environmental changes [reviewed in (Simpson et al. 

2011)]. In social insects, the honeybee Apis mellifera has been the primary focus of studies 

of caste differentiation. In this species, worker-triggered differences in larval diet affect the 

insulin/insulin-like growth factor signaling (IIS) pathway (Wheeler et al. 2006; Patel et al. 

2007; de Azevedo and Hartfelder 2008; Mutti et al. 2011), which is known to regulate the 

release of neuropeptides (e.g. allatostatin, allatotropin) that affect the production of juvenile 

hormone (JH) by the corpus allatum (Tu et al. 2005; Mutti et al. 2011). Changes in JH 

modulate the expression of several genes (Dubrovsky et al. 2000; Li et al. 2007; Minakuchi 

et al. 2008), including genes regulating vitellogenesis (Comas et al. 1999; Tatar et al. 2001), 

resulting in differences in vitellogenin (Vg) levels between honeybee queen- and worker-

destined brood (Barchuk et al. 2002). The same pathways may also play a role in the 

regulation of caste differentiation in ant larvae, as caste-specific expressions of genes 
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involved in the IIS pathway were documented in Solenopsis invicta (Lu and Pietrantonio 

2011) and Diacamma sp. (Okada et al. 2010). Interestingly, caste-specific differences in IIS, 

JH and Vg were also documented in adult ants and bees (Amdam et al. 2004; Amdam et al. 

2007; Corona et al. 2007; Nelson et al. 2007; Ament et al. 2008; Nilsen et al. 2011; Wurm et 

al. 2011), suggesting further roles of these pathways in the regulation of social life (Amdam 

et al. 2003; Amdam et al. 2004). 

Maternal effects on polyphenism, through which the environment experienced by the mother 

is translated into phenotypic variation in the offspring, have long been documented in solitary 

insects but their proximate mechanisms remain poorly understood (Hunter-Jones 1958; 

Sutherland 1969; Saiful Islam et al. 1994; Miller et al. 2008). In ants, several studies 

suggested that maternal factors such as temperature or queen age may affect caste 

determination (Gösswald 1951; Bier 1954; Petersen-Braun 1977; Passera 1980; Vargo and 

Passera 1992). However, it is only recently that the first example of maternal effects on 

female caste polyphenism was documented experimentally (Schwander et al. 2008). Cross-

fostering of eggs between hibernated and non-hibernated Pogonomyrmex colonies revealed 

strong maternal effects on caste production, as only eggs produced by an hibernated queen 

had a chance to develop into queens, irrespective of the hibernation status of the rest of the 

colony (Schwander et al. 2008). Such maternal effects on the caste fate of the female 

offspring require that the hibernation triggers changes in the queen that regulate 

polyphenism in the offspring. JH may be involved in this process, as Pogonomyrmex queens 

treated with JH were found to produce bigger workers (Cahan et al. 2011). 

We propose that the interplay between IIS, JH and Vg regulates maternal effects on caste 

polyphenism by translating the environmental conditions experienced by the queen into the 

production of alternative phenotypes in the offspring. Under this hypothesis, IIS would 

translate environmental cues into changes in JH and JH would affect the production of Vg. 

The Vg content in queens would then influence the Vg content in eggs, thus affecting the 

caste fate of the offspring. This hypothesis makes four predictions. First, a pharmacological 
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increase of JH in queens should mimic the effect of hibernation and stimulate the production 

of queens. Second, hibernation should affect IIS and the production of JH in queens. Third, 

both hibernation and a JH increase should stimulate the production of Vg in queens. Finally, 

Vg content should differ between queen- and worker-destined eggs. We tested these 

predictions by performing artificial hibernation, hormonal treatments, gene expression 

analyses and vitellogenin quantification in Pogonomyrmex rugosus, an ant species where 

temperature-triggered changes in the queen had previously been shown to affect the relative 

production of queens and workers. Each of the four predictions was confirmed by our 

experiments thus revealing that the interplay between IIS, JH and Vg regulates maternal 

effects on caste polyphenism in P. rugosus. 

Methods 

Ant collection 

Pogonomyrmex rugosus founding queens were collected during nuptial flights on July 15th, 

2008 in Bowie, Arizona, USA (N32°18’54’’//W109°29’03’’). After worker eclosion, the colonies 

were kept in laboratory conditions (30°C, 60% humidity and 12h/12h light:dark cycle) in 

plastic boxes containing a nest, a foraging area and water tubes, and were fed once a week 

with grass seeds and a mixture of eggs, honey and crushed mealworms. The experiments 

were performed on 92 2.5 years old colonies that had never been exposed to cold and never 

produced queens. The colonies were divided in four groups: acetone (n=26), non-acetone 

(n=15), hibernation (n=25) and methoprene (n=26). 

Experimental manipulations 

The first phase was set up to test the effect of an exposure to cold. Colonies from the 

hibernation group were kept for 2.5 months in a dark climate chamber at 13°C ± 1°C and 

60% humidity. The transition to and out of hibernation was done over a period of two weeks 

by progressively decreasing or increasing temperature in a 8h/16h light:dark cycle. All the 
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other colonies (acetone, non-acetone and methoprene groups) were kept in the usual 

laboratory conditions (30°C, 60% humidity and 12h/12h light:dark cycle). The first phase 

terminated at week 0, when the second phase started. The second phase was set up to test 

the effect of JH treatment. To do so we used methoprene (Sigma-Aldrich), a synthetic analog 

of JH. The colonies from the methoprene group were fed four mealworms crushed with 

0.1mg of methoprene in 0.1 ml of acetone each week for eight weeks (from week 0 to week 

7). Colonies from the hibernation and acetone groups received four mealworms crushed in 

acetone, while colonies from the non-acetone group received four crushed mealworms 

without acetone. The proportion of queens produced did not differ significantly between the 

acetone and non-acetone groups (acetone: n = 26; non-acetone: n = 15; Mann-Whitney U-

test: U = 204, P = 0.15). Thus, all further mentions of a control group will refer to the acetone 

group. 

Sample collection 

Samples were collected in each colony to assess the proportion of queens among the female 

offspring produced, the number, size and Vg content of eggs produced, the expression of 

candidate genes and the JH and ecdysteroid titers in queens. All the pupae produced were 

collected from week 3 until no brood remained and observations of size and morphology 

allowed the assignation of each pupae to the queen or worker caste. The proportion of 

queens among the offspring produced was then calculated for each colony (except one 

which did not produce enough offspring; control: n= 26, hibernation: n= 25, methoprene: n= 

25). At week 4, the queen of each colony was isolated for 24 hours in a 2ml plastic tube 

closed with wire mesh and placed in the colony. Thus, the queen could still communicate 

with workers, reducing the stress of isolation. This method allowed us to collect and count 

the number of eggs produced by each queen in 24 hours (control: n= 26, hibernation: n= 25, 

methoprene: n= 25). At week 5, a batch of eggs was collected in each colony (between 5 

and 52 eggs per colony; 26.1 ± 8.9, mean ± sd) and weighed using a microbalance (Mettler 

Toledo MT5) to a precision of 1 µg (control: n= 26, hibernation: n= 25, methoprene: n= 25). 
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The eggs were then stored at -80°C for further measurement of vitellogenin content, 

successfully performed on eggs produced by 40 colonies (control: n= 15, hibernation: n= 11, 

methoprene: n= 14). At week 7, the queen was collected in each colony, flash-frozen in liquid 

nitrogen and stored at -80°C for later RNA extraction (control: n= 13, hibernation: n= 13, 

methoprene: n= 13). 

Gene expression analysis 

Whole body queen samples were used to measure the expression of genes involved in the 

IIS pathway (two insulin-like peptide genes: ILP1 and ILP2), JH production (one gene coding 

for JH epoxidase: JHepox) and vitellogenesis (two vitellogenin genes: Vg1 and Vg2). RNA 

extractions were performed using a modified protocol including the use of Trizol (Invitrogen) 

for the initial homogenization and the RNeasy plus micro extraction kit (Qiagen). For each 

individual queen, cDNAs were synthesized using 500 ng of total RNA, random hexamers and 

Applied Biosystems reagents. Levels of mRNA were quantified by quantitative real-time 

polymerase chain reaction (qRT-PCR) using ABI Prism 7900 sequence detector and SYBR 

green. All qPCR assays were performed in triplicates and subject to the heat-dissociation 

protocol following the final cycle of the qPCR in order to check for amplification specificity. 

qRT-PCR values of each gene were normalized by using an internal control gene (RP49). 

Paralog-specific primers (sequences available in appendix 1) were designed using sequence 

alignment (Thompson et al. 1997) and primer analysis (Rychlik 2007) programs. Primer 

sequences overlapped coding regions split by introns, allowing the specific amplification of 

cDNA levels over potential genomic DNA contaminations. Transcript quantification 

calculations were performed by using the ΔΔCT method (Livak and Schmittgen 2001). 

Vitellogenin content in eggs 

The eggs were macerated in 100 µL of extraction buffer (0.1 M Tris-HCl pH 7.5, 0.1 M NaCl, 

2.5 mM EDTA, 0.5% Tritom X-100, 5% glycerol), followed by centrifugation at 8000 g for 10 

min. The supernatant was collected and the amount of total proteins was measured by the 
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Bradford method (Bradford 1976), using a BSA standard curve. The amount of Vg was 

calculated by dot-blotting using Ectatomma tuberculatum (Formicidae: Ectatomminae) anti-

Vg antibodies (Azevedo et al. 2011). Different dilutions of E. tuberculatum Vg (ranging from 

0,003 to 45 µg of proteins) and 10 µg of total protein of each P. rugosus egg extract were 

applied  (2 µL/dot) on a nitrocellulose membrane. The membrane was incubated with 5% 

nonfat dry milk in PBST (0.1M PBS pH 8.0 plus 0.1% Tween-20) for 1 hour, followed by 1h30 

incubation with rabbit anti-vg antibody diluted 1:500 in PBST plus 2.5% nonfat dry milk, 

washing 3 times in PBST and incubating for 1h30  with anti-rabbit IgG conjugated with 

horseradish peroxidase (Sigma) diluted 1:5000 in PBST + 2.5% nonfat dry milk, washing 3 

times with PBST and revelation with DAB/H2O2 solution. The membrane was dried and 

scanned, and the optical density of the dots analyzed with the software ImajeJ 

(http://rsbweb.nih.gov/ij/) after background correction and calculation of the median grey 

value. The E. tuberculatum Vg dilutions were used to build a standard curve plotting Vg 

quantity against the optical density of the dot (median grey value). The calculation of Vg 

amount per total protein in each egg extract was based on this curve. 

Statistical analyses 

To test for the effect of the treatments on the proportion of queens among the offspring, gene 

expression and egg number and weight, we conducted analyses of variance (ANOVAs) on 

models optimized to fit our data. The proportion of queens was fit using a generalized linear 

model with quasi-binomial errors. The gene expression data were fit using a general linear 

model with normal errors. The Vg measures could not be normalized and were analyzed 

using Kruskal-Wallis and Mann-Whitney non-parametric tests. All statistical analyses were 

performed with R (http://www.R-project.org). 
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Results 

To investigate the mechanisms of caste allocation, we compared the production of queens 

between control, hibernated and methoprene-treated P. rugosus colonies. There was a great 

variation among colonies in the proportion of queens among the offspring produced, ranging 

from 0 to 0.47 (0.05 ± 0.11, mean ± sd). There was a significant effect of the treatments on 

the proportion of queens produced (F2,73 = 40.51, P < 0.001; Figure 1). Hibernation 

significantly increased the proportion of queens among the female offspring (t = 2.06, P = 

0.04). The methoprene treatment had a similar – albeit stronger – effect, as the 

queen/worker ratio among the female offspring was significantly higher in colonies fed 

methoprene-treated food compared to control colonies (t = 5.39, P < 0.001). When only 

pupae that did not receive any treatment during larval development but were produced by 

treated queens (thus those collected after week 11) were considered, there was also a 

significant difference between control and methoprene-treated colonies in the proportion of 

queens produced (t = -5.56, P < 0.001). 

 

Figure 1 – The proportion of queens among the offspring produced was increased in hibernation (HIB) 
and methoprene (MET) treatments compared to control (CTL). *: P < 0.05; ***: P < 0.001. 
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The treatments also significantly affected the expression of all the genes tested (ILP1: F2,36 = 

5.30, P = 0.01); ILP2: F2,36 = 19.47, P < 0.001; JHepox: F2,36 = 4.12, P = 0.02; Vg1: F2,36 = 

11.15, P < 0.001; Vg2: F2,36 = 7.93, P = 0.001). Compared to the control group, both 

hibernation and methoprene treatments upregulated the expression of ILP1 (hibernation: t = 

1.92, P = 0.06; methoprene: t = 3.24, P = 0.003; Figure 2), ILP2 (hibernation: t = 4.02, P < 

0.001; methoprene: t = 6.14, P < 0.001; Figure 2), JHepox (hibernation: t = -2.28, P = 0.03; 

methoprene: t = -2.65, P = 0.01; Figure 3), Vg1 (hibernation: t = 2.20, P = 0.03; methoprene: 

t = 4.72, P < 0.001; Figure 4) and Vg2 (hibernation: t = 2.15, P = 0.04; methoprene: t = 3.98, 

P < 0.001; Figure 4). 

 

 

 

 

Figure 2 – ILP1 and ILP2 were upregulated in hibernation and methoprene treatments. The y axis 
indicates the relative gene expression in queens, corresponding to the ILP1 and ILP2 mRNA levels 

relative to the RP49 (control) mRNA level. (*): P = 0.06; **: P < 0.01; ***: P < 0.001. 
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Figure 3 – JHepox was upregulated in hibernation and methoprene treatments. The y axis indicates 

the relative gene expression in queens, corresponding to the JHepox mRNA level relative to the RP49 
(control) mRNA level. *: P < 0.05. 

 

 

 
Figure 4 – Vg1 and Vg2 were upregulated in hibernation and methoprene treatments. The y axis 
indicates the relative gene expression in queens, corresponding to the Vg1 and Vg2 mRNA levels 

relative to the RP49 (control) mRNA level. *: P < 0.05; ***: P < 0.001. 
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There was no significant difference between treatments in the number (F2,72 = 1.35, P = 0.27) 

and weight (F2,72 = 1.09, P = 0.34) of eggs produced. However, the treatments significantly 

affected the proportion of Vg among total proteins (Kruskal-Wallis χ2 = 6.63, P = 0.04, Figure 

5). The proportion of Vg among the protein content of eggs produced by both hibernated (U 

= 42, P = 0.038) and methoprene-treated (U = 53.5, P = 0.026) queens was significantly 

higher than in eggs produced by control queens. By contrast, this proportion did not differ 

significantly between eggs produced by hibernated and methoprene-treated queens (U = 79, 

P = 0.93). 

 

 

 

 

Figure 5 – The proportion of Vg among total proteins was increased in eggs produced in hibernation 
and methoprene treatments. *: P < 0.05. 
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Discussion 

Each of the four predictions developed under the hypothesis that the interplay between IIS, 

JH and Vg regulates maternal effects on caste polyphenism in P. rugosus was confirmed by 

this study. In line with the first prediction that an artificial increase of JH in queens should 

stimulate the production of queens, the feeding of P. rugosus colonies with a juvenile 

hormone analog (methoprene) mimicked the effect of hibernation, with both hibernated and 

methoprene-treated colonies showing an increased production of queens. These results 

reveal a role of JH in the regulation of caste polyphenism in P. rugosus. In this species, 

maternal effects were previously found to stimulate the production of queens in response to 

hibernation, as only colonies headed by an hibernated queen produced queens, whether or 

not the workers had been exposed to cold (Schwander et al. 2008). The exposure to cold 

therefore triggers changes in queens that make them more likely to lay queen-destined eggs. 

In this study, the methoprene treatment also targeted the queen, as evidenced by an 

increase in the proportion of queens among the offspring developing from eggs laid by 

methoprene-treated queen. Similar results were found in Pheidole pallidula, where direct 

topical application of JH on the queen stimulated the production of queens (Passera and 

Suzzoni 1979). Overall, the observed effects of hibernation and methoprene treatments show 

that hibernation-triggered JH changes in queens are involved the production of queens in P. 

rugosus. 

The second prediction was that hibernation should affect IIS and JH in queens. In line with 

this prediction, our results revealed that genes involved in IIS (ILP1 and ILP2) were 

upregulated in P. rugosus hibernated queens. This suggests that hibernation can translate 

into changes in the IIS pathway. Low temperature or the associated photoperiod changes 

could directly affect IIS, as reported in the regulation of insect diapause (Sim and Denlinger 

2008). Alternatively, the effect of exposure to cold could have been mediated by a change in 

the queen nutritional status due to decreased activity and metabolism (Mellanby 1939) or 

lower food intake during hibernation. Such effects of nutrition on IIS have been reported in 
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Drosophila (Britton et al. 2002; Ikeya et al. 2002; Puig and Tjian 2006). Changes in IIS 

usually result in the release of neuropeptides (e.g., allatostatin, allatotropin) that influence the 

production of JH by the corpus allatum (Tu et al. 2005). Accordingly, the exposure to cold 

also upregulated the expression of JHepox, coding for JH epoxidase, an enzyme involved in 

the production of JH. These results show that in P. rugosus queens, IIS regulates JH in 

response to environmental changes such as those experienced during hibernation. 

The third prediction was that both hibernation and an artificial increase in JH should stimulate 

the production of Vg. In our experiments, both hibernation and methoprene treatments 

stimulated the production of queens and upregulated the expression of Vg genes (Vg1 and 

Vg2) in queens. The effect of hibernation on vitellogenesis is likely to have been triggered by 

the increase in JH production due to temperature-triggered changes in IIS. This is supported 

by the finding that the methoprene treatment also upregulated Vg expression These results 

show that JH-regulated vitellogenesis in adult P. rugosus queens is involved in the regulation 

of caste polyphenism.  

Finally, the fourth prediction was that the Vg content in eggs should correlate positively with 

their likelihood of developing into queens. This prediction was also supported by our data. 

While neither the number nor the weight of eggs produced differed between control, 

hibernated and methoprene-treated queens, the proportion of Vg in the protein content was 

significantly higher in eggs produced by both hibernated and methoprene-treated queens 

than control queens. It is likely that the increased production of Vg in hibernated and 

methoprene-treated queens translated into in a higher Vg content in the eggs, increasing 

their likelihood of developing into queens. How the Vg content in eggs alters the caste fate 

remains to be investigated but, as Vg is thought to act as a nutritive source for the embryo 

(Hagedorn and Kunkel 1979), more Vg in the egg could result in more energy during early 

development, facilitating the path toward queen development. The finding of a higher 

proportion of Vg in eggs produced by queen-producing hibernated and methoprene-treated 

queens is consistent with our fourth prediction, and shows that the quantity of Vg injected in 
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the eggs is involved in the early regulation of caste allocation and plays a role in the 

intergenerational transmission of information required for maternal effects on polyphenism to 

happen. 

Overall, this study describes the mechanisms that allow the environmental cues experienced 

by one generation to be translated into phenotypic variation in the next generation. IIS in 

queens translates environmental cues into changes in JH and JH regulates the production of 

Vg. The Vg content in queens affects the quantity of Vg injected into the eggs produced, 

influencing their development toward the queen or worker caste. In addition to the insights 

provided on the regulation of maternal effects on caste determination in social insects, this 

study may also provide new routes to study the mechanisms regulating intergenerational 

effects on insect polyphenism. Maternal effects have been found to be involved in the 

regulation of well-described examples of polyphenism, such as the density-dependent phase 

change in locusts (Hunter-Jones 1958) or the seasonally triggered production of winged 

individuals in aphids (Sutherland 1969). This study raises the possibility that the interplay 

between IIS, JH and Vg is also involved in the maternal regulation of such polyphenisms. 
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Abstract 

Division of labor, the cornerstone of insect societies, implies the coexistence of individuals 

differing in reproduction and behavior. The reproductive ground plan hypothesis asserts that 

physiological pathways regulating reproduction in solitary insects have been co-opted to 

regulate worker behavior in insect societies. Although well-supported by studies in the 

honeybee Apis mellifera, in which the vitellogenin (Vg) gene regulates the onset of foraging, 

this hypothesis have remained poorly tested in other social insects. Ant species which 

genome harbors multiple Vg genes, such as Pogonomyrmex barbatus and Solenopsis 

invicta, provide great opportunities to investigate the role of Vg genes. In this study, we 

compared the expression of the two Vg genes present in the genome of P. barbatus between 

queens, nurses and foragers. The expression of Vg1 differed among queens, nurses and 

foragers while that of Vg2 only differed between nurses and foragers. Such patterns of 

expression reveal that Vg1 is associated with reproduction and behavior, and Vg2 with 

behavior only. This is consistent with Vg genes regulating worker behavior in ants and 

suggests that the co-option of reproductive pathways, thus not restricted to bees, plays a 

major role in social evolution. Furthermore, gene expression and phylogenetic analyses 

suggest that the Vg genes in ants, which duplication occurred after the divergence from 

bees, have underwent neo or sub-functionalization to acquire caste and behavioral specific 

functions. 

  



 

 92 

 
  



CHAPTER 4 

 93 

Introduction 

Division of labor is the cornerstone of insect societies and implies the coexistence of 

individuals that differ in morphology, reproduction and behavior in social insect colonies 

(Wilson 1971; Holldobler and Wilson 1990). There are usually two main levels of division of 

labor. The first relates to reproduction, which is monopolized by one or several queens while 

sterile workers perform all the tasks to take care of the colony. The second level of division of 

labor occurs among workers, with groups of individuals being specialized in different tasks.  

Work in the honeybee Apis mellifera has lead to the development of the reproductive ground 

plan hypothesis, which asserts that the physiological pathways regulating reproduction also 

regulate worker behavior in insect societies (Amdam et al. 2003; Amdam et al. 2004). This 

hypothesis is based on the early findings that the reproductive status influences the behavior 

in solitary wasps: females with developed ovaries (before oviposition) stay in the nest to build 

cells while females with undeveloped ovaries (after oviposition) leave the nest to forage for 

food (West-Eberhard 1987). The mechanisms regulating reproduction (and hence behavior) 

in solitary insect species would have been co-opted to regulate the behavior of functionally 

sterile workers in social species (Amdam et al. 2004). Several studies support this 

hypothesis in Apis mellifera. The comparison of workers with different foraging strategies 

(high or low pollen-hoarding strains) revealed differences in the number of ovarioles (Amdam 

et al. 2006) and the vitellogenin (Vg) content and gene expression (Amdam et al. 2004; Ihle 

et al. 2010 but see Oldroyd and Beekman 2008). In many social insect species, including A. 

mellifera, age is one of the factors influencing worker behavior, as evidenced by workers 

frequently moving from nursing to foraging tasks as they become older (Wilson 1971; Seeley 

1982). Together with the juvenile hormone (JH), Vg also regulates the temporal switch 

between nurse and forager activities in A. mellifera workers (Bloch et al. 2002; Amdam and 

Omholt 2003; Guidugli et al. 2005; Oldroyd and Beekman 2008). A causal link between Vg 

and behavior has also been documented, as workers with repressed Vg gene expression 



CHAPTER 4 

 94 

foraged earlier (Nelson et al. 2007). This last study showed that a single reproductive gene 

could regulate the behavior of functionally sterile workers in A. mellifera.  

To understand whether the co-option of reproductive pathways plays a major role in social 

evolution would require to investigate the link between reproductive physiology and behavior 

in other social insects (Amdam et al. 2004; Amdam and Page 2010), preferentially those, 

such as ants, having evolved sociality independently from bees (Brady et al. 2006; Moreau et 

al. 2006). A recent study reported JH differences between nurses and foragers in the ant 

Pogonomyrmex californicus (Dolezal et al. 2012). These results are consistent with the co-

option of reproductive pathways to regulate behavior, as JH is known to interact with Vg in 

insects (Robinson and Vargo 1997; Comas et al. 1999; Tatar et al. 2001), including in 

Pogonomyrmex ants (see chapter 3). However, the link between JH and Vg differs between 

species (Amdam and Omholt 2003) and developmental stages (Hartfelder and Engels 1998; 

Bloch et al. 2002), and no study so far has investigated the link between Vg and worker 

behavior in ants. Interestingly, the seed-harvester ant Pogonomyrmex barbatus and the fire 

ant Solenopsis invicta have more than one Vg genes in their genome (Wurm et al. 2011). For 

instance, the genome of S. invicta harbors four Vg genes, among which two are preferentially 

expressed in queens (Vg2 & Vg3) and two in workers (Vg1 & Vg4), suggesting a role of Vg 

genes in the regulation of reproduction (Wurm et al. 2011). The question of whether Vg 

genes also play a role in the regulation of worker behavior in ants remains to be investigated. 

In this study, we analyzed the patterns of Vg genes (Vg1 and Vg2) expression in queens, 

nurses and foragers in Pogonomyrmex barbatus. This analysis allowed us to test whether Vg 

genes expression was associated with reproduction and behavior, and to compare the 

expression patterns of Vg1 and Vg2 genes. Finally, the construction of a phylogenetic tree of 

the known Vg gene sequences in Hymenoptera provided information on the origin and 

evolution of multiple Vg genes in ants. 
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Methods 

Sample collection 

Pogonomyrmex barbatus founding queens were collected during mating flights on July 15th, 

2008 in Bowie, Arizona, USA (N32°18’54’’//W109°29’03’’). After worker eclosion, the colonies 

were kept in laboratory conditions (30°C, 60% humidity and 12h/12h light:dark cycle) in 

15*13*5cm plastic boxes with water tubes, and were fed once a week with grass seeds and a 

mixture of eggs, honey and smashed mealworms. Samples were collected in seven 

Pogonomyrmex barbatus colonies on December 16th, 2010. The queen (n = 1 per colony) 

was collected from the seven colonies while nurses (n = 12 per colony) and foragers (n = 12 

per colony) could only be collected from five colonies because we failed to assign enough 

ants to the nurse or forager behavioral group in two colonies. Nurses were defined as ants 

taking care of brood in the nest tube. To collect foragers, each colony was connected with a 

cardboard-made bridge to a foraging area composed of a plastic box containing grass seeds. 

Foragers were defined as ants handling a food item in the foraging area. Ant samples were 

flash-frozen in liquid nitrogen and kept at -80°C for further RNA extraction. Although task 

performance in workers is age related, with nurses tending to be younger than foragers 

(Holldobler and Wilson 1990), the association between physiology and behavior was recently 

found to be independent of age in Pogonomyrmex californicus (Dolezal et al. 2012).  

Gene expression analysis 

Whole body worker samples were used to measure the expression of Vg1 and Vg2 genes. 

RNA extractions were performed using a modified protocol including the use of Trizol 

(Invitrogen) for the initial homogenization step, RNeasy extraction kit and DNAse I (Qiagen) 

treatment to remove genomic DNA traces. For each individual worker, cDNAs were 

synthesized using 500 ng of total RNA, random hexamers and Applied Biosystems reagents. 

Levels of mRNA were quantified by quantitative real-time polymerase chain reaction (qRT-

PCR) using ABI Prism 7900 sequence detector and SYBR green. All qPCR assays were 
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performed in duplicates and subject to the heat-dissociation protocol following the final cycle 

of the qPCR in order to check for amplification specificity. qRT-PCR values of each gene 

were normalized by using an internal control gene (RP49). Paralog-specific primers 

(sequences available in appendix 1) were designed using sequence alignment (Thompson et 

al. 1997) and primer analysis (Rychlik 2007) programs. Primer sequences overlapped coding 

regions split by introns, allowing the specific amplification of cDNA levels over eventual 

genomic DNA contaminations. Transcript quantification calculations were performed by using 

the ΔΔCT method (Livak and Schmittgen 2001). 

Phylogenetic tree 

The phylogenetic tree of Vg genes was constructed as follows. Initial protein alignments were 

performed using ClustalW2 (Larkin et al. 2007) and then edited using Jalview (Waterhouse et 

al. 2009). Edited sequences were realigned using ClustalX 2.0.12. The parsimony tree was 

established using PAUP 4.0 b10 (Swofford 2003) and was rooted using the most divergent 

sequence in each group as the outgroup. Bootstrap support for internal branches was 

evaluated from 10,000 full-heuristic searches, and groups with a frequency greater than 50% 

were retained in the consensus tree. 

Statistical Analysis 

All data were analyzed using R (http://www.r-project.org/) and the R packages lme4 (Bates 

2005) and languageR (Baayen 2008). The effect of caste on gene expression relative values 

was analyzed using linear mixed effects models. To avoid pseudoreplication, the colony was 

included as a random effect. We checked for normality and homogeneity by visual 

inspections of plots of residuals against fitted values. To assess the validity of the mixed 

effects analyses, we performed likelihood ratio tests to test that the models with fixed effects 

differed significantly from the null models with only the random effects. Throughout the 

paper, we present MCMC-estimated p-values that are considered significant at the α=0.05 

level. All significant results remained significant after Bonferroni correction. 
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Results 

We analyzed the expression patterns of Vg1 and Vg2 using the whole body of queens, 

nurses and foragers. The expression of both genes was associated with both the caste 

(queen or worker) and the behavior (nurse or forager) (Figure 1). 

On average, the Vg1 gene was 4.1 times more expressed in queens than in nurses (pMCMC 

< 0.0001) and 779 times more than in foragers (pMCMC < 0.0001). Therefore the expression 

of Vg1 was 190 times higher in nurses compared to foragers (pMCMC < 0.0001). 

The expression of Vg2 did not differ significantly between queens and nurses (pMCMC = 

0.84). However Vg2 was on average 4.8 times more expressed in foragers than in queens 

(pMCMC = 0.0004) and 6.5 times more expressed in foragers than in nurses (pMCMC < 

0.0001). 

 

 

Figure 1 – The y-axes indicate the relative gene expression, corresponding to the Vg1 or Vg2 mRNA 
levels relative to the RP49 (control) mRNA level. Vg1 was significantly more expressed in queens than 

in nurses or foragers, as well as more expressed in nurses than in foragers. Vg2 was significantly 
more expressed in foragers than in queens or nurses and its expression did not differ significantly 

between queens and nurses. NS: pMCMC > 0.05; ***: pMCMC < 0.0001. 
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In both queens and nurses, Vg1 was significantly more expressed than Vg2 (327 times more 

in queens, pMCMC = 0.0016; 107 times more in nurses, pMCMC < 0.0001). On the contrary, 

Vg2 was 11.5 times more expressed than Vg1 in foragers (pMCMC < 0.0001). 

A phylogenetic analysis (Figure 2) revealed that the ancestral Vg gene underwent a first 

duplication after ants split from bees. This duplication resulted in two daughter Vg genes: one 

is the ancestor of the P. barbatus Vg1 gene (Pogonomyrmex_Vg1 in the figure) and two S. 

invicta Vg genes (Solenopsis_Vg2 and Solenopsis_Vg3), the other is the ancestor of the P. 

barbatus Vg2 gene (Pogonomyrmex_Vg2) and the two other S. invicta Vg genes 

(Solenopsis_Vg1 and Solenopsis_Vg4). The phylogenetic analysis also revealed that the 

four Vg genes in S. invicta resulted from two independent rounds of Vg duplication after the 

divergence from Pogonomyrmex. 

 

 

 

Figure 2 – Parsimony tree of known hymenopteran vitellogenin protein sequences suggests that the 
first round of vitellogenin duplication occurred after the split between ants and other hymenopterans 

including bees and wasps. 
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Discussion 

The results of this study show that Vg is associated with both reproduction and behavior in 

the ant Pogonomyrmex barbatus. There are two Vg genes in the genome of P. barbatus and 

both (Vg1 and Vg2) were expressed in queens, nurses and foragers. Vg1 was more highly 

expressed in queens than in either nurses or foragers. This pattern is similar to that of the Vg 

gene in A. mellifera (Corona et al. 2007) and is consistent with Vg playing a predominant role 

in the regulation of reproduction. Vg2 was also expressed in the queen but the expression 

was very low compared to Vg1. This, together with the finding that Vg2 expression does not 

differ between fertile (queens) and  sterile (nurses) individuals, suggests that Vg2 is not 

involved in the regulation of reproduction. 

The finding that both Vg1 and Vg2 genes expression differ between nurses and foragers 

suggests a role of Vg genes in the regulation of worker behavior in P. barbatus. The 

expression of Vg1 was higher in nurses while the pattern was reversed for Vg2, which 

expression was higher in foragers. The results also highlight opposite differential expression 

of Vg genes in nurses and foragers, as Vg1 was more expressed than Vg2 in nurses while 

Vg2 was more expressed than Vg1 in foragers. The pattern of Vg1 expression (higher in 

nurses, lower in foragers) is similar to that of the Vg gene in A. mellifera workers, where 

decreased expression triggers the onset of foraging (Fluri et al. 1982; Nelson et al. 2007). 

Contrary to the expression of Vg1, which was associated with both reproduction and 

behavior, the level of expression of Vg2 gene was associated with behavior but not 

reproduction: its expression differed between foraging and non-foraging (queens and nurses) 

individuals but not between reproducing (queens) and non-reproducing (nurses) individuals. 

Interestingly, the genome of S. invicta also harbors more than one Vg genes and in this 

species, two of the four Vg genes are preferentially expressed in workers (Wurm et al. 2011). 

This suggests that P. barbatus may not be the only ant species where some Vg genes are 

implicated in worker behavior but not in reproduction. 
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The phylogenetic tree of known Vg genes in Hymenoptera provides some interesting 

information on the existence of multiple Vg genes in ants. First it shows that the first 

duplication of the ancestral Vg gene occurred after ants diverged from bees, explaining why 

ant species have two or more Vg genes while bees have only one. Two independent rounds 

of duplications occurred in the Solenopsis lineage after it diverged from the Pogonomyrmex 

lineage, explaining why there are four Vg genes in the S. invicta genome and only two in the 

P. barbatus genome. Second, it is interesting to note that the Vg genes preferentially 

expressed in queens in both P. barbatus (Pogonomyrmex_Vg1) and S. invicta 

(Solenopsis_Vg2 and Solenopsis_Vg3) (Wurm et al. 2011) cluster together on one side of 

the tree while the Vg genes preferentially expressed in foragers in both species 

(Pogonomyrmex_Vg2, Solenopsis_Vg1 and Solenopsis_Vg4) cluster together on the other 

side of the tree. This suggests that the first duplication of the ancestral Vg gene in ants 

produced two paralogs: one is the ancestor of Vg genes involved in reproduction and 

potentially behavior (e.g. Vg1 in P. barbatus) and the other is the ancestor of Vg genes that 

have lost their role in reproduction and correlate with worker behavior (e.g. Vg2 in P. 

barbatus). 

In conclusion, the results of this study are consistent with Vg having been co-opted to 

regulate worker behavior in the ant P. barbatus, as found to happen in the honeybee A. 

mellifera. Given that ants and bees evolved sociality independently, this suggests that the co-

option of reproductive pathways to regulate the behavior of sterile individuals may be a major 

director of social evolution. Interestingly, the ancestral Vg gene was duplicated in ants after 

the divergence from bees (Wurm et al. 2011), resulting in the presence of several Vg genes 

in P. barbatus, S. invicta and probably other ant species. The finding that Vg2 has lost its 

reproductive function and correlates with worker behavior in P. barbatus suggests that, after 

the initial duplication in ants, the Vg genes underwent neo- or subfunctionalization to acquire 

caste and behavioral specific functions. More such studies are needed in other ant species to 
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extend the understanding of the roles of Vg genes in the regulation of social life in ant 

societies. 
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Summary of the main findings 

The cornerstone of insect societies is division of labor, whereby different groups of 

individuals specialize in the performance of specific tasks or roles (Wilson 1971; Oster and 

Wilson 1979; Holldobler and Wilson 1990). The aim of this PhD was to investigate the 

genetic components and physiological regulation of division of labor in social insects. 

In chapter 1, we investigated the genetic components of the process of caste allocation in 

the Argentine ant Linepithema humile. The use of controlled crosses in the laboratory 

allowed us to reveal the existence of non-additive genetic effects on female caste 

determination, as well as an effect of the interaction between queens and males on sex 

allocation. In chapter 2, we combined the same methods with behavioral analyses to 

investigate the nature of genetic effects on worker behavior in L. humile. This study revealed 

parent-of-origin and genetic compatibility effects on division of labor among the worker force. 

In chapter 3, we used a combination of artificial hibernation, hormonal treatments, gene 

expression analysis and vitellogenin quantification to investigate the process of caste 

determination in Pogonomyrmex rugosus. This study revealed crucial roles of insulin 

signaling, juvenile hormone and vitellogenin in the regulation of maternal effects on caste 

determination and set vitellogenin as a likely key player in the intergenerational transmission 

of information. In chapter 4, we compared the expression of vitellogenin genes between 

queens, nurses and foragers in P. barbatus and performed phylogenetic analyses to 

investigate the role of vitellogenin in the regulation of worker behavior in ants. The results of 

this study are consistent with vitellogenin having been co-opted to regulate worker behavior 

in P. barbatus and suggest that the vitellogenin genes underwent neo- or 

subfunctionalization to acquire caste and behavioral specific functions after the duplication of 

the ancestral vitellogenin gene in ants. 
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Axis 1: Genetic components to division of labor 

The main message of the first axis of this PhD, presented in chapters 1 and 2, is the 

importance of non-additive genetic influences, such as genetic compatibility effects, on 

division of labor in ants. This was supported by several original findings, such as the first 

report of non-additive genetic components to caste allocation in a multiple-queen ant 

species, the first report of effects of the interaction between queens and males on the sex 

ratio produced and the first report of genetic compatibility effects between parental genomes 

on worker behavior in social insects. 

The results of chapter 1 revealed an effect of the interaction between queens and males on 

the sex ratio produced. One of the hypotheses proposed to explain this result is that queens 

may actively change sex allocation depending on qualities of the sperm transferred by their 

mate. Under this hypothesis, male lineages are expected to differ in sperm quality. We 

developed a preliminary experiment to compare sperm quantity and viability between several 

lineages of males in L. humile. The methods and results of this experiment are detailed in 

appendix 2. We combined techniques of male genital tract dissection and fluorescence 

microscopy to measure the total number of sperm and their viability. The results revealed 

that the male lineages differed in sperm number but not in sperm viability. This experiment 

was performed as a follow-up to chapter 1 and used different lineages of males, thus making 

impossible the direct association between the number of sperm per male and the sex ratio 

produced. Nevertheless, the result of this experiment is interesting, as it does not rule out the 

hypothesis that queens may actively change sex allocation depending on the quantity of 

sperm receive during mating. 

AXIS 2 - Physiological regulation of division of labor 

The main messages of the second axis of this PhD (chapters 3 and 4) are first, the 

importance of hormones (e.g. insulin, juvenile hormone) in the sensing of environmental 
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changes and second, the co-option of vitellogenin, originally involved in reproduction, to 

regulate crucial aspects of social life in ants. Chapters 3 and 4 presented original findings, 

such as the first description of physiological mechanisms regulating maternal effects on 

polyphenism in insects and the first report of the role of vitellogenin in the regulation of 

worker behavior in ants. 

Conclusion 

Division of labor in insect societies involves the coexistence of fertile queens and sterile 

workers, as well as task specialization among the worker force. Because it enhances colony 

performance and productivity, division of labor is thought to be at the root of the ecological 

success of social insects (Wilson 1971; Oster and Wilson 1979; Holldobler and Wilson 1990). 

The findings of this PhD contribute to a better understanding of division of labor, as they 

reveal the nature of genetic and physiological processes involved in the determination of the 

caste and the regulation of worker behavior. Several results of this PhD also suggest that the 

co-option of existing pathways to regulate social life was not restricted to bees (Amdam et al. 

2004) but also occurred in ants, providing important information on the evolution of sociality. 

Perspectives 

In the first axis of this PhD, we revealed the existence of non-additive genetic effects on 

division of labor in the Argentine ant Linepithema humile. The use of controlled crosses is a 

powerful, yet seldom used, tool to detect such effects and future studies should apply this 

method to other social insect species. Additionally, it would be interesting to determine 

whether epigenetic mechanisms are involved in the regulation of parent-of-origin effects on 

caste determination and worker behavior. To do so will require to investigate whether 

paternally and maternally inherited alleles show differential expression, in particular for genes 

involved in the process of division of labor. Finally, more efforts should be made to study the 

effect of males on sex allocation. Chapter 1 showed an effect of the interaction between 
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queens and males on the sex ratio produced and a preliminary experiment revealed that 

male lineages differ in sperm quantity in L. humile. Future studies should investigate whether 

such differences between males lineages are associated with differences in sex allocation, 

whether different lineages of queens show different strategies of sex allocation in response 

to different sperm quantity and to what extent the effect of the interaction between queens 

and males on sex allocation has to be taken in account in studies of intracolonial conflicts 

over sex ratio in insect societies. 

In the second axis of this PhD, we highlighted the importance of the vitellogenin genes in the 

regulation of social life. Seven ant genomes are currently available (Bonasio et al. 2010; 

Nygaard et al. 2011; Smith et al. 2011a; Smith et al. 2011b; Suen et al. 2011; Wurm et al. 

2011; Gadau et al. 2012) and more should be sequenced in the near future. Preliminary 

investigations suggest that many ant species have several vitellogenin genes in their 

genome. Future studies should investigate the role of these vitellogenin genes by comparing 

their expression between queens and workers, and between different behavioral castes 

among the worker force. The use of RNAi should also be considered, as silencing of 

vitellogenin genes would be a powerful tool to understand their functions. Such studies, 

combined with phylogenetic analyses, will provide crucial information on the duplication of 

the ancestral vitellogenin gene in ants, the neo- or subfunctionalization of the daughter 

vitellogenin genes and their implication in the regulation of social life. 

Finally, in this PhD, we investigated the genetic components and physiological regulation of 

division of labor by tackling the effects of genes and physiology independently. Of interest 

would be to study how genes and physiology interact to regulate division of labor in insect 

societies. In that perspective, future studies should investigate how the expression of genes 

involved in candidate physiological pathways (e.g. insulin signaling, juvenile hormone or 

vitellogenin) differs between different genetic lineages or different combination of parental 

lineages, and whether or not this is associated with the regulation of caste allocation in 

queens, caste determination in larvae and behavior in workers. Together with the results of 
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this PhD, such investigations will provide a better understanding of division of labor in insect 

societies. 
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Appendix 1: 

Primer sequences for all genes tested in chapters 3 and 4 

 

 
Forward Reverse 

RP49 CGATAGATATGACAAACTCAAACGCAAC GTATTGGCCCTTGAAACGTCTGCG 

ILP1 GGATAACACGGGAGTCTATCGC AAGGGGCTTGCAATATCGTTC 

ILP2 CGATTACCCATTCGCCTACGAG GCGACTCCCTTCGATAACGTCT 

JHepox ATACTTCAAGCCGAGTTGGAC AAAGCTTCCGTCATTGGCAAG 

Vg1 ACAGGACGATGTTGTTTCGGAATTA TCGTCACGGATGATTGAATGGTATAT 

Vg2 TCTAATGATGGAGTTCTTTCGAGATCA ACGGAAGACTGAATAGTGAAGCGTT 

 

Primer sequences used for qRT-PCR (5'-3' order) 
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Appendix 2: 

Do male lineages differ in sperm quality in Linepithema humile? 

Romain Libbrecht, Elodie Gaide and Laurent Keller 

 

This experiment was conducted as a follow-up to chapter 1, which revealed an effect of the 

interaction between queens and males on the sex ratio produced in L. humile colonies. One 

of the hypotheses proposed to explain this result is that queens may actively change sex 

allocation depending on qualities of the sperm transferred by their mate. Under this 

hypothesis, male lineages are expected to differ in sperm quality. This experiment aimed to 

compare sperm quantity and viability between several lineages of males in L. humile. 

Methods 

Production of male lineages 

We collected L. humile colonies on 7 September 2010 in Port-Leucate (3°2'20"E, 

42°51'22"N), southern France and set up 16 single-queen colonies with 2.5cm3 (ca. 1000) 

workers. To ensure that colonies contained only brood from the mother queen, we removed 

all the brood present during the first two weeks. The queens were then allowed to lay eggs 

during three weeks before being removed so as to stimulate the production of sexuals (new 

queens and males) (Keller and Passera 1992; Keller and Passera 1993). Colonies were then 

regularly checked to transfer all male pupae to queenless and broodless recipient colonies. 

This allowed us to obtain large numbers of unmated males of the same lineage (i.e., 

produced by the same mother queen). Sixty males belonging to five different lineages 
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(lineages PS01, PS06, PS07, PS09, PS10; 12 males per lineage) were used to measure 

sperm quality and viability. 

Dissection protocol 

Males were dissected in a drop of a buffer solution (10 mM HEPES, 150 mM NaCl, 10% 

BSA, pH 7) on a petri dish kept on ice under a Leica stereomicroscope (magnification 8X). 

The internal reproductive system of males is attached to the genitalia and can easily be 

extracted from the abdomen by withdrawing the genitalia with minute forceps (Keller and 

Passera 1992). Male testes degenerate rapidly after emergence (Passera and Keller 1992), 

and the sperm are stored in the seminal vesicles, which were extracted and crushed in 15 µl 

of buffer. This solution was then vortexed for 2 minutes. Live and dead sperm were then 

differentially stained using the Live/Dead™ sperm viability kit (L-7011, Molecular Probes), 

which consists of a membrane-permeant nucleic acid stain for live sperm (SYBR-14) and a 

dead cell stain (propidium iodide). For each measurement, 5 µl SYBR-14 working solution 

(SYBR-14 stock diluted 250X in buffer solution) was added to the 15 µl of sperm solution and 

incubated for 10 min at 36°C. Afterwards, 10 µl of propidium iodide working solution 

(propidium iodide 2.4mM diluted 66X in buffer solution) was added to each sample and 

incubated for 10 minutes at 36°C, resulting in 30 µl of sperm solutino per male. 

Measure of sperm quantity 

5 µl of sperm solution was transferred in a Helber hematocytometer with field volumes of 

1.25e-06 mm3. The number of sperm present in 6 fields of the hematocytometer was counted 

in neutral light under a microscope (Leica DM5500, DFC 480 camera, magnification 400X). 

Sperm quantity was then calculated by multiplying the mean number of sperm per field by 

24000 (=0.03 ml / 1.25E-06 mm3, i.e. the ratio of the volume of the solution in which the 

seminal vesicles were crushed to that of a field). 
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Measure of sperm viability 

10 µl of sperm solution was transferred on a SuperFrost microscope slide. The number of 

live and dead sperm was then counted in 16 randomly selected fields using a fluorescence 

microscope (Leica DM5500, DFC 480 camera, 480 nm GFP and 516 nm rhodamine filters, 

magnification 400X). Sperm viability was calculated for each sample as the percentage of 

live sperm in the total number of sperm counted. 

Statistical analyses 

To test for the effect of male lineages on sperm quantity and viability, we conducted 1-way 

analyses of variance (ANOVAs) on models optimized to fit our data. The proportion of live 

sperm (square-root arcsine transformed) and the number of sperm were analyzed using 

general linear models. We checked for normality and homogeneity by visual inspections of 

plots of residuals against fitted values.. The correlation between sperm viability and sperm 

quantity was tested using Spearman rank correlation test. All statistical analyses were 

performed with R (http://www.R-project.org). 

Results 

The quantity of sperm per male ranged from 140000 to 600000 (354564 ± 95797) and was 

significantly affected by the male lineage (F4,55 = 3.08, P = 0.02; Figure 1). 

The proportion of live sperm ranged from 0.74 to 0.99 (0.92 ± 0.05, mean ± sd) and did not 

differ significantly between male lineages (F4,55 = 0.57, P = 0.68; Figure 2). 

Finally, there was no significant correlation between sperm quantity and viability (n = 60, rho 

= -0.06, P = 0.62). 
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Figure 1 – Sperm quantity (mean ± se) was significantly affected by the paternal lineage. 

 

 

Figure 2 – Sperm viability (mean ± se) did not significantly differ between paternal lineages. 
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Conclusion 

Chapter 1 revealed an effect of the interaction between queens and males on the sex ratio 

produced in L. humile colonies. One of the hypotheses proposed to explain this result is that 

queens may actively change sex allocation depending on qualities of the sperm transferred 

by their mate. This hypothesis would require differences in sperm quality between male 

lineages. Consistent to this prediction, this preliminary experiment revealed differences in 

sperm quantity (but not in sperm viability) among 5 male lineages in L. humile. However, this 

experiment did not allow us to test whether such differences were directly associated with 

differences in the sex ratio produced. Studies combining controlled crosses and techniques 

of male dissection and sperm measures will be needed to answer this question.
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