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Abstract

Despite using modern microbiological diagnostic approaches, the aetiological

agents of pneumonia remain unidentified in about 50% of cases. Some bacteria

that grow poorly or not at all in axenic media used in routine clinical bacteriology

laboratory but which can develop inside amoebae may be the agents of these lower

respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-

resisting bacteria, which coevolved with amoebae to resist their microbicidal

machinery, may have developed virulence traits that help them survive within

human macrophages, i.e. the first line of innate immune defence in the lung. We

review here the current evidence for the emerging pathogenic role of various

amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we

discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel

Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne

mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).

Introduction

Despite advances in antibiotic therapy, pneumonia remains

one of the leading infectious causes of death in developed

countries and a major cause of morbidity, especially in the

elderly population and among patients with chronic under-

lying diseases (Mandell et al., 2007). Although a broad

spectrum of microbial pathogens have been recognized as

causal agents of respiratory tract infections (RTIs), the

offending microorganism remains unknown in about half

of the cases of community-acquired pneumonia (CAP)

(Bochud et al., 2001; Echols et al., 2008), and three quarters

of the cases of nosocomial pneumonia (Costa et al., 2001).

Microorganisms causing pneumonia may be acquired

from respiratory droplets through human-to-human con-

tact or from aerosolized particles from an animal or

environmental reservoir. The epidemiology of RTI thus

strongly depends on the interactions between humans and

their ecosystem and evolves according to environmental

changes due to human activities, climatic or ecological

perturbations. Pandemics of influenza or the emergence of

new respiratory diseases such as severe acute respiratory

syndrome are dramatic illustrations of these phenomena. To

some extent, agents of pneumonia have been identified in

the context of outbreaks or case series occurring in a

particular setting. For instance, psittacosis (parrot fever)

was described for the first time in seven individuals exposed

to pet birds in Switzerland in the 19th century (Ritter, 1880).

More recently, the epidemics of severe pneumonia affecting

war veterans in a hotel in Philadelphia in 1976 led to the

discovery of the fastidious gram-negative rod Legionella

pneumophila as a causal agent of respiratory diseases (Fraser

et al., 1977; McDade et al., 1977). In this latter situation,

water was found to be the source of contamination. Rowbo-

tham (1980, 1983) then demonstrated that L. pneumophila

may multiply within free-living amoebae and hypothesized

that these protists may represent a reservoir for these

intracellular bacteria.

Free-living amoebae live in water, soil and at the water–air

interface. As they generally use bacteria as their main

nutritional source, they are especially present in large

quantities in sediments and biofilms (Rodriguez-Zaragoza,

1994). Thus, humans have been increasingly exposed to

amoebae and to their related bacterial pathogens with the

progressive development of various modern man-made

water systems such as water-treatment plants, cooling
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towers, air conditioners, humidifiers, spas and swimming

pools (Rodriguez-Zaragoza, 1994; Greub & Raoult, 2004;

Pagnier et al., 2009a). Apart from L. pneumophila, which has

mainly been recognized due to the dramatic importance of

the Philadelphia outbreak, many other bacteria that resist

the phagocytic amoebae may also use these protists as

widespread reservoirs and may have acquired virulence

traits promoting their resistance to macrophages. Interest-

ingly, some of these amoebae-resisting bacteria have also

been discovered during outbreaks of RTI (Herwaldt et al.,

1984; Birtles et al., 1997). Indeed, given their intracellular

lifestyle, they either do not grow or only poorly grow in

conventional axenic media. It is important that the micro-

biology community be well aware of these new emerging

human agents of pneumonia and develop new diagnostic

tools for their identification. Amoebal coculture and amoe-

bal enrichment coupled with detection of potential intra-

amoebal bacteria have been demonstrated to be largely

successful in identifying a large biodiversity of new patho-

gens from patients (Greub et al., 2004b; Thomas et al., 2006;

Corsaro et al., 2009; Pagnier et al., 2009a, b).

In this review, we intend to present the current evidence

of the role of various amoebae-resisting bacteria as agents of

RTI in humans. More specifically, we will discuss the likely

role of Legionella-like amoebal pathogens (LLAPs), novel

Chlamydiae (Parachlamydia acanthamoebae, Simkania nege-

vensis), waterborne mycobacteria and Bradyrhizobiaceae

(Bosea and Afipia spp.).

Diagnostic tools for the identification of
amoebae-resisting bacteria

For a better characterization of the microbial biodiversity,

various molecular approaches are available, including a

coupled cloning and sequencing approach, and metage-

nomics using new pyrosequencing techniques such as the

454 and Solexa/Illumina technologies. However, such se-

quence-based ecological studies do not provide the strains

for subsequent studies, and consequently culture-based

ecological studies are of equal if not greater importance.

However, most culture-based studies are biased towards

bacteria able to grow efficiently on different axenic media,

broths and/or agar plates, and approaches that selectively

amplify amoebae-resisting bacteria may be useful. Two main

approaches, amoebal coculture and amoebal enrichment,

have been applied so far to recover amoebae-resisting

bacteria in culture (Fig. 1). Amoebal coculture is a cell

culture method in which axenic amoebae are used as a host

cell culture, whereas amoebal enrichment uses an enteric

bacterium such as Escherichia coli as a food source for

amoebae that are potentially present in the investigated

sample. Once isolated by amoebal enrichment, the amoebae

may then be studied for the possible presence of intra-

amoebal microorganisms. Both approaches have been suc-

cessfully used in recent years to uncover a variety of

amoebae-resisting microorganisms from both environmen-

tal and clinical samples (Adekambi et al., 2004; Greub et al.,

2004b; Thomas et al., 2006, 2008; Loret et al., 2008; Corsaro

et al., 2009; Pagnier et al., 2009b).

Understanding the pathogenic role of
amoebae-resisting bacteria: a
comprehensive model approach

The availability of a bacterial strain growing in amoebae

allows its pathogenic potential to be tested, for instance as

an agent of pneumonia, using the comprehensive approach

that has been applied to P. acanthamoebae (Greub, 2009).

This global strategy includes (1) testing the permissiveness

of lung fibroblasts, pneumocytes and alveolar macrophages

to the new bacterial species; (2) developing diagnostic tools

(serology, antigen-detection assays, PCR and immunohisto-

chemistry) to study patients with and without lower RTIs;

and (3) investigating the pathogenic role of some selected

species in an animal model of pneumonia. For species that

emerge as new pathogens or exhibit very peculiar interesting

biological phenotypes, the availability of a given strain also

allows better understanding of the biology of the species

involved, using functional genomics, proteomics and cell

biology.

Amoebal pathogens as causal agents of
pneumonia: clinical evidence

Legionella species

Legionella pneumophila

The potential role of water systems as a reservoir of human

respiratory diseases was recognized for the first time when

L. pneumophila was identified as the causal agent of an

outbreak of pneumonia in Philadelphia in 1976 (Fraser

et al., 1977; McDade et al., 1977). This bacterium is wide-

spread in our aquatic environment including man-made

water systems and is one of the first examples of amoebae-

resisting bacteria that has been described (Rowbotham, 1980,

1983). It is estimated to account for 2–7% of all cases of CAP

affecting both immunocompromised and immunocompe-

tent hosts (Doebbeling & Wenzel, 1987; Marrie et al., 1989;

Fang et al., 1990a; Woodhead, 2002). Nosocomial outbreaks

of Legionnaires’ disease are also frequently reported and may

result from bronchoaspiration of contaminated potable

water rather than inhalation of aerosolized particules (Blatt

et al., 1993; Sabria & Yu, 2002). In addition to potentially

severe respiratory diseases, legionellosis may present as a

flu-like syndrome called pontiac fever, which may be
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Fig. 1. Culture-based approaches that may be used to selectively grow amoebae-resisting microorganisms. (a) Amoebal coculture is a cell culture

approach that uses amoebae as cell background and that can be used to isolate strict intracellular bacteria starting directly from clinical and/or

environmental samples or by inoculation of free-living amoebae potentially containing amoebal pathogens or endosymbionts. Screening may then be

achieved with various stainings and/or by PCRs. Subcultures on fresh amoebae in presence/absence of different antibiotics may help in isolating a given

strain from heavily contaminated environmental samples. (b) Free-living amoebae may be isolated by amoebal enrichment, which consists in the

inoculation of clinical and/or environmental samples on non-nutritive agar plates previously seeded with Escherichia coli and/or Enterobacter cloacae,

which serve as a food source for the amoebae potentially present in the investigated sample. Once inoculated, agar plates can be screened daily for the

presence of an amoebal migration front and, when positive, subcultured on new non-nutritive agar. Amoebae can then be screened for the presence of

amoebae-resisting microorganisms by amoebal coculture and or molecular approaches.
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misdiagnosed as a viral infection and whose incidence is

possibly underestimated (Doebbeling & Wenzel, 1987).

Legionella pneumophila is a fastidious gram-negative rod

which is rarely detected by examination of gram stains of

clinical samples and which needs buffered charcoal yeast

extract (BCYE) agar to be grown. The availability of a

urinary-specific antigen test for the detection of L. pneumo-

phila serogroup 1, which accounts for about 85–90% of

legionellosis in Europe and America, allows a rapid diag-

nosis of the disease. This test, in combination with cultures,

exhibits an overall good sensitivity and specificity and its

widespread use has improved the identification of Legionella

pneumonia in hospitalized patients (Waterer et al., 2001).

Molecular diagnostic tools have shown promising results

but these methods lack standardization and their availability

is limited (Waterer et al., 2001; Murdoch, 2003). The actual

role of L. pneumophila in less severe pneumonia in the

community as well as the incidence of respiratory diseases

attributed to other Legionella species thus remain difficult to

estimate (Waterer et al., 2001; Murdoch, 2003).

Legionella species other than L. pneumophila

Since the discovery of L. pneumophila, about 45 other

Legionella species have been identified (Benson & Fields,

1998). These species share the same aquatic environment as

L. pneumophila and about half of them have been associated

with respiratory infections in humans (Table 1) (Muder &

Yu, 2002; Roig et al., 2003). However, only a limited number

of species seems to be relevant pathogens, whereas the others

have been identified as the cause of pneumonia in anecdotal

case reports. In a multinational survey, they have been

estimated to account for 5–10% of legionellosis (Benin

et al., 2002; Yu et al., 2002). The distribution of Legionella

spp. is variable around the world: for instance, Legionella

longbeachae is responsible for as many as 30% cases of

Legionella diseases in Australia and New Zealand, whereas

it accounts for only 3–4% of cases on the European and

American continents (Yu et al., 2002). Legionella bozemanii,

Legionella micdadei, Legionella dumoffii, Legionella anisa and

Legionella feelei may account for most of the 1–5% remain-

ing cases of Legionnaires’ diseases (Fang et al., 1989;

McNally et al., 2000; Benin et al., 2002; Muder & Yu, 2002;

Yu et al., 2002). In contrast to L. pneumophila infections,

pulmonary diseases attributed to other Legionella spp. have

been mainly reported in a nosocomial context affecting

immunocompromised patients such as haematopoietic or

solid organ transplant recipients, patients under long-term

corticoid therapy or splenectomized patients (Muder et al.,

1983; Fang et al., 1989; Muder & Yu, 2002). With the

exception of L. longbeachae, other Legionella spp. are rarely

involved in CAP, although community outbreaks of pontiac

fever have also been reported with L. anisa, L. micdadei,

L. feelei and Legionella sainthelensi (Herwaldt et al., 1984;

Goldberg et al., 1989; Fenstersheib et al., 1990; Loeb et al.,

1999).

Most Legionella species grow on BCYE agar media, but

specific cultures for Legionella are not routinely performed

in cases of CAP. Moreover, these media usually contain

antibiotics for the selection of L. pneumophila that may

inhibit the growth of some other Legionella species. The

urinary antigen test does not detect species other than L.

pneumophila serogroup 1, and PCR methods are as yet not

widely used. For these reasons, Legionella spp. other than L.

pneumophila are rarely identified as causal agents of infec-

tions and their role in the epidemiology of community- and

hospital-acquired pneumonia has not been assessed pre-

cisely. The fact that these species exhibit a variable ability to

infect and proliferate within amoebae may partly explain

why they are less frequently involved in RTIs compared with

L. pneumophila (Neumeister et al., 1997; Gao et al., 1999).

LLAPs

Historically, the term Legionella-like amoebal pathogens was

introduced to designate obligate intracellular parasites of free-

living amoebae which were closely related to the legionellae

(Fig. 2) and which, unlike other Legionella spp., exhibited

little or no growth on conventional bacteriological media

such as BCYE agar (Rowbotham, 1986; Greub & Raoult,

2004). Most strains were originally isolated from water

supplies during investigations of individual cases or outbreaks

of Legionnaires’ disease (Adeleke et al., 1996; Birtles et al.,

1996). Because of their limited ability to grow in culture,

these bacteria could not be completely characterized and were

initially designated by numbers (e.g. LLAP-1–14). The first

isolation of an LLAP (LLAP-3) in a clinical specimen was

reported in 1991 using amoebal enrichment of the sputum of

a patient with pneumonia who exhibited seroconversion

against this strain (Fry et al., 1991). Phylogenetic analyses

subsequently allowed its classification in the species Legionella

lytica (Birtles et al., 1996), whereas other LLAP strains were

characterized and assigned to new species of Legionella

(Legionella drozanskii, Legionella rowbothamii, Legionella fal-

lonii, Legionella drancourtii) (Adeleke et al., 1996, 2001; La

Scola et al., 2004). The term of LLAPs thus has been retained

for historical reasons, as most of these species have now been

recognized to belong phylogenetically to the Legionella genus.

Moreover, most of them are currently able to grow on BCYE

agar because of the improvement in the quality of media and

possibly because of a progressive adaptation by successive

subcultures on amoebae.

The pathogenic role of LLAPs has been investigated in

two series of patients suggesting that these fastidious bacter-

ia may be a cause of pneumonia in some cases (Table 1)

(McNally et al., 2000; Marrie et al., 2001). A French study
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Table 1. Pathogenic role of Legionella spp. in pneumonia

Legionella species Pathogenic role in pneumonia References

L. pneumophila 2–7% of community-acquired pneumonia (8% of those

requiring ICU), 5% of nosocomial pneumonia

Doebbeling & Wenzel (1987), Marrie et al. (1989), Fang

et al. (1990a), Woodhead (2002)

Most frequent cause of Legionella pneumonia (91.5%) Yu et al. (2002)

L. longbeachae Second cause of Legionella pneumonia worldwide

(3.9%)

Yu et al. (2002)

Frequent cause of potentially severe community-acquired

pneumonia in Australia, New Zealand and South East

Asia

Grove et al. (2002), Yu et al. (2002), Phares et al. (2007)

Few cases reported in Europe or United States McKinney et al. (1981), Yu et al. (2002), McClelland et al.

(2004), Kumpers et al. (2008)

L. bozemanii Third cause of community-acquired Legionella

pneumonia (2.4%)

Fang et al. (1989), McNally et al. (2000), Yu et al. (2002)

Cause of severe pneumonia in immunocompromised

patients (frequent complications: empyema, cavitation)

Fang et al. (1989), Swinburn et al. (1988), Taylor &

Albrecht (1995), Harris et al. (1998), Muder & Yu (2002)

L. micdadei Cause of life-threatening pneumonia in

immunocompromised patients

Myerowitz et al. (1979), Muder et al. (1983), Fang et al.

(1987), Doebbeling et al. (1989), Muder & Yu (2002)

Purulent pneumonia or pulmonary abscesses in solid-

organ transplant recipients

Myerowitz et al. (1979), Rogers et al. (1979), Mehta et al.

(1983), Ernst et al. (1998), Knirsch et al. (2000)

L. anisa Rare cause of community-acquired or nosocomial

pneumonia

McNally et al. (2000), Yu et al. (2002), La Scola et al.

(2003b), Doleans et al. (2004)

Identified as the cause of an outbreak of pontiac fever in

California

Fenstersheib et al. (1990)

L dumoffii Some cases of pneumonia reported mainly in

immunocompromised patients

Fang et al. (1990b), Murdoch & Chambers (2000), Muder

& Yu (2002), Yu et al. (2002)

L. feeleii About 10 cases of pneumonia reported in the literature

(75% in immunocompromised patients)

Lee et al. (2009)

One outbreak of pontiac fever in an automobile plant Herwaldt et al. (1984)

L. jordanis Subacute or chronic respiratory infection with

constitutional symptoms (rare cases described)

Thacker et al. (1988b), Vinh et al. (2007)

L. sainthelensi Two outbreaks of respiratory infections in nursing homes

(Canada)

Loeb et al. (1999)

L. maceachernii Case reports of pneumonia in immunocompromised

patients

Wilkinson et al. (1985a), Thomas et al. (1992), Dumoff

et al. (2004), van Dam et al. (2006)

L. gormanii Case reports of pneumonia in immunocompromised

patients

Griffith et al. (1988), Ephros et al. (1989), Towns et al.

(1994)

L. wadsworthii Case reports of pneumonia in immunocompromised

patients

Edelstein et al. (1982), Yu et al. (2002)

L. cincinnatiensis Case reports of pneumonia in renal transplant recipients

or haemodialysis patient

Thacker et al. (1988a), Jernigan et al. (1994)

L. tucsonensis Case reports of pneumonia in immunocompromised

patients

Thacker et al. (1989), Doleans et al. (2004)

L. oakridgensis 3 cases of pneumonia observed in patients with

connective tissue diseases

Tang et al. (1985), Lo Presti et al. (2000)

L. parisiensis One case report of pneumonia in a liver transplant

recipient

Lo Presti et al. (1997)

L. lansingensis One case report of pneumonia in a patient with chronic

lymphocytic leukaemia

Thacker et al. (1992)

L. hackeliae One case report of pneumonia immunocompromised

patient

Wilkinson et al. (1985b)

L. lytica (LLAP 3, 7 and 9) Seroconversion observed in cases of community-acquired

pneumonia

Fry et al. (1991), McNally et al. (2000)

L. drancourtii (LLAP 4 and 12) Seroprevalence study suggesting a pathogenic role Marrie et al. (2001)

L. fallonii (LLAP 10) Seroprevalence study suggesting a pathogenic role McNally et al. (2000)

L. rowbothamii (LLAP 6) Seroprevalence study suggesting a pathogenic role McNally et al. (2000)

L. drozanskii (LLAP 1) Seroprevalence study suggesting a pathogenic role McNally et al. (2000), Marrie et al. (2001)
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reported serological evidence for recent infections with

LLAP in 1.4% of CAP (Marrie et al., 2001). Most of them

were attributed to LLAP-4 (L. drancourtii). An alternative

potential pathogen was, however, isolated in about half of

these cases. Similarly, a significant rise in antibodies against

LLAP-1, -3, -6, -9 and -10 was reported in 7% of patients

with CAP of unknown aetiology in a North American series

(McNally et al., 2000). Data from other parts of the world or

other subsets of population are lacking, although the

ubiquity and biodiversity of Legionella spp., including

LLAPs, in water systems has been reported worldwide

(Thomas et al., 2006; Diederen et al., 2007; Wery et al.,

2008; Hsu et al., 2009). The role of LLAPs in human diseases

is difficult to assess, as their pathogenic role was suggested

only by serological tests in relatively few cases, and in the

absence of direct microbiological documentation by other

diagnostic tools such as culture or molecular methods.

Moreover, in vitro studies or animal models supporting

their pathogenicity are currently lacking.

Chlamydia-related bacteria

Molecular and phylogenetic studies have recently revealed a

rich diversity of microorganisms within the order Chlamy-

diales and allowed the identification of new families distinct

from the well-known Chlamydiaceae (Everett et al., 1999;

Corsaro & Greub, 2006; Greub, 2009). The term ‘Chlamy-

dia-like organisms’, ‘novel Chlamydiae’, ‘Chlamydia-related

bacteria’ or ‘amoebae-resistant Chlamydiae’ have been used

to designate these strict intracellular bacteria that may infect

and survive within free-living amoebae. Growing evidence

suggests that some of them may be the cause of RTIs in

humans (Friedman et al., 2003; Corsaro & Greub, 2006;

Greub, 2009).

Simkaniaceae

Simkania negevensis, formerly called microorganism ‘Z’ or

‘Simkania Z’, is the member of these Chlamydia-like organ-

isms whose implication in RTIs has been most extensively

studied. This bacterium may easily grow within the

Acanthamoeba amoeba (Fig. 3) and may also use free-living

amoebae as a widespread environmental reservoir. Simkania

negevensis was first described in 1993 as a cell culture

contaminant of unknown origin exhibiting a typical two-

stage developmental cycle, with infectious elementary

bodies and replicative reticulate bodies (Fig. 4), but differing

significantly from Chlamydiaceae (Kahane et al., 1993). Its

seroprevalence in the population displays important varia-

tions around the world, having been reported to be as high

as 55–80% in Israel and only 4% in Japan (Friedman et al.,

1999, 2006; Johnsen et al., 2005; Yamaguchi et al., 2005).

These differences may be partially due to the respective

sensitivity and specificity of the serological approaches used

and to the cut-off defining positivity. The involvement of

S. negevensis in RTIs has been investigated in several large

cohorts of patients in Europe, the Middle East and America

using serological or molecular diagnostic methods (Table 2)

(Kahane et al., 1998; Lieberman et al., 2002, 1997; Greenberg

et al., 2003; Kumar et al., 2005; Friedman et al., 2006; Fasoli

et al., 2008; Heiskanen-Kosma et al., 2008; Nascimento-

Carvalho et al., 2009). Some of these analyses reported an

association with CAP, exacerbations of chronic obstructive

Fig. 2. Legionella drancourtii, i.e. LLAP-12, within Acanthamoeba cas-

tellannii as seen by gram staining (a) and Diff-Quick staining (modified

May–Grünwald Giemsa) (b), respectively. Infected amoebae, which

contain numerous rod-shaped bacteria, are circled by a dotted line.

Microscopy performed 24 h postinfection at a low MOI of about 1/10;

� 1000 magnification.

FEMS Microbiol Rev 34 (2010) 260–280 c� 2010 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

265Amoebal pathogens as causal agents of pneumonia



pulmonary diseases or bronchiolitis in adults and children

(Kahane et al., 1998; Lieberman et al., 2002, 1997; Friedman

et al., 2003, 2006; Greenberg et al., 2003; Fasoli et al., 2008;

Heiskanen-Kosma et al., 2008; Nascimento-Carvalho et al.,

2009). The importance of this bacterium as a causal agent of

CAP is, however, difficult to evaluate and seems relatively

marginal (o 2% of all aetiologies) in view of these results. Its

incidence may be higher in some populations or ethnic

groups where a high seroprevalence of S. negevensis has been

documented, for example in the Middle East (Bedouins)

(Kahane et al., 1998; Friedman et al., 1999) or Northern

Canada (Inuits) (Greenberg et al., 2003), whereas it remains

to be determined in many other parts of the world. A study

carried out in Brooklyn (NY) deserves mention as it did not

identify any association with respiratory diseases despite a

Fig. 3. Simkania negevensis within Acanthamoeba castellannii, as seen

by electron microscopy 24 h postinfection. Please note (a) the presence

of several dividing reticulate bodies (arrows). (b) An elementary body in

the process of being phagocytized (arrow). Magnification � 7000 and

�10 000, respectively. Scale bar = 2 mm.

Fig. 4. The two developmental stages of Simkania negevensis: the reticulate

body, i.e. the metabolically active dividing stage (a) and the elementary body,

i.e. the infectious stage (b). Simkania negevensis may also infrequently

exhibit a third stage, the crescent body (initially reported for Parachlamydia

acanthamoebae), which may be seen on some electron microscopy prepara-

tions (c). Electron micrographs: magnification � 70 000; Scale bar= 0.2mm.
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high prevalence (23.5%) of antibody titers against S. nege-

vensis among adults and children in this population, sug-

gesting that these Chlamydia-related bacteria are simple

colonizers (Kumar et al., 2005). Thus, thorough evaluation

of the pathogenic role of S. negevensis is warranted, as most

studies did not include a control group, and among the few

studies with a control group, most failed to demonstrate a

significant correlation with lower RTIs (Table 2).

The implication of S. negevensis in other respiratory

diseases, such as chronic cough or asthma, has also been

investigated and could not be demonstrated conclusively

(Johnsen et al., 2005; Kumar et al., 2005; Korppi et al., 2006).

In one study, S. negevensis was detected by a PCR method in

bronchoalveolar lavage samples of lung transplant recipients

with a surprisingly high prevalence (97.5%, when compared

with only 14.1% in other solid-organ transplant recipients;

Po 0.0001) (Husain et al., 2007). Many of these patients did

not have documented pneumonia and the pathogenic role

of S. negevensis in this context thus remains unclear. The

authors of this study postulated a possible role in acute graft

rejection, although the analysis was underpowered to reach

statistical significance. Like other Chlamydia-related organ-

isms, S. negevensis may infect free-living amoebae such as

Acanthamoeba which are widespread in water, including

hospital water supplies (La Scola et al., 2002; Thomas et al.,

2006). Hospitalized patients exposed to aerosolized parti-

cles, such as those undergoing mechanical ventilation, may

thus be colonized or infected by these intracellular bacteria,

whose pathogenic role in this setting has been poorly

investigated (La Scola et al., 2002). However, it is worth

noting that in vitro studies of the pathogenesis of

S. negevensis have demonstrated its ability to infect human

macrophages and to induce a host cell inflammatory re-

sponse, supporting its potential ability to cause human

infections and the need for further clinical investigations

(Kahane et al., 2008, 2007).

Parachlamydiaceae

This family has drawn increasing attention in the last decade

because of the potential pathogenicity of its first recognized

member, P. acanthamoebae, which was identified as the

cause of an outbreak of fever of undetermined origin

occurring in Vermont in 1989 (Birtles et al., 1997). An

amoeba of the Acanthamoeba genus was isolated from the

water of a humidifier and was subsequently shown to be

infected with a gram-negative bacterium termed Hall’s

coccus. This organism was characterized by comparative

sequence analyses (Birtles et al., 1997) and was found to be

similar to a Chlamydia-like endoparasite of Acanthamoeba

(strain Bn9) previously identified in the nasal mucosa of

healthy subjects (Amann et al., 1997). Hall’s coccus and

strain Bn9 were subsequently assigned to the species

P. acanthamoebae within the Chlamydiales order (Everett

Table 2. Simkania negevensis as causal agents of pneumonia: review of the literature

Population (country) and

number of patients Disease Diagnostic method

Positive

results

P value

(if controls)

Recent infection�

and no alternative

pathogen References

Adults (Israel) 308 CAP Serology (IgG, IgA) 112 (37%) No control 4 (1.3%) Lieberman et al. (1997)

Infants (Israel) 239 Bronchiolitis Culture and/or PCR

(NP swabs)

60 (25%) Po 0.001 38 (16%) Kahane et al. (1998)

Adults (Israel) 190 COPD

exacerbation

Serology (IgG, IgA) 120 (63%) Not significant 1 (0.5%) Lieberman et al. (2002)

Infants (Canada) 22 Bronchiolitis PCR (NP swabs) 14 (64%) No control 2 (9%) Greenberg et al. (2003)

Adults/children (USA) 188 Bronchiolitis,

Pneumonia

Serology (IgG) (n = 69) 14 (18%) Not significant NA Kumar et al. (2005)

Asthma PCR (NPl swabs)

(n = 169)

29 (17%) Not significant NA

Adults (UK) 29 RTI Serology (IgG) 18 (62%) Not significant NA Friedman et al. (2006)

Serology (IgA) 5 (17%) P = 0.004 NA

Children (UK) 222 Bronchiolitis Culture and/or PCR

(NP swabs)

111 (50%) No control NA Friedman et al. (2006)

Children (Italy) 101 CAP Serology (IgM, IgG) 20–30% No control 2 (2%) Fasoli et al. (2008)

Children (Finland) 174 CAP Serology (IgM) 18 (10%) No control 6 (3.4%) Heiskanen-Kosma et al.

(2008)

Children (Brazil) 184 CAP Serology (IgM, IgG) 3 (1.6%) No control 1 (0.5%) Nascimento-Carvalho

et al. (2009)

�Recent infection was defined as: serological evidence for recent infection (positive IgM or significant increase between initial and convalescent IgG

titres) or positive PCR result during the course of infection.

COPD, chronic obstructive pulmonary disease; NA, data not available.
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et al., 1999). The ability of P. acanthamoebae to replicate

within free-living amoebae of the genus Acanthamoeba has

been well described and is shown in Fig. 5.

Further studies reported a significantly higher rate of

seropositivity for P. acanthamoebae among patients with

RTIs when compared with healthy controls (Marrie et al.,

2001; Greub et al., 2003b; Greub, 2009). However, serologi-

cal evidence for a recent infection in the absence of other

potential documented pathogens could be assessed in only a

few cases, suggesting that these bacteria may account for

o 1% of CAP (Marrie et al., 2001; Greub et al., 2003a) and

about 8% of ventilator-associated pneumonia (VAP) (Greub

et al., 2003b) (Table 3). More recently, the use of a specific

real-time PCR allowed the identification of P. acanthamoe-

bae or a related species as the only potential pathogen in as

many as 13% of children with bronchiolitis, suggesting that

the pathogenic role of Parachlamydiaceae may be under-

estimated in some clinical settings (Casson et al., 2008c).

Moreover, experimental models have demonstrated the

ability of P. acanthamoebae to enter and replicate within

human macrophages (Greub et al., 2003c, 2005) and pneu-

mocytes (Casson et al., 2006) and to cause pneumonia in

mice (Casson et al., 2008a). Molecular analyses also allowed

the identification of other members of the family Parachla-

mydiaceae in respiratory samples of some cases of pneumo-

nia (Corsaro et al., 2002; Casson et al., 2008b; Haider et al.,

2008). Protochlamydia naegleriophila was detected as the

unique potential pathogen in an immunocompromised

patient with lung infiltrate (Casson et al., 2008b) and one

case of CAP possibly attributed to Protochlamydia amoebo-

phila has been reported (Haider et al., 2008) (Table 3).

Further clinical studies are warranted to better define the

pathogenicity and the epidemiology of P. acanthamoebae

and other Parachlamydiaceae among the causal agents of

RTIs.

Other Chlamydia-related organisms

Culture- and molecular-based studies on human, animal or

environmental samples have led to the identification of

many new Chlamydia-related organisms, attesting to the

rich biodiversity within the order Chlamydiales (Greub,

2009). New strains have been identified and assigned to

different families according to phylogenetic analyses,

whereas others failed to grow in culture and could only be

described by comparative sequence analyses. Some of them

have been documented by PCR methods in human respira-

tory samples, but their pathogenic role remains unknown

(Ossewaarde & Meijer, 1999; Corsaro et al., 2001; Haider

et al., 2008). Using a molecular approach targeting the 16S

rRNA gene (a conserved gene in the genome of all bacteria),

Haider et al. (2008) recently found DNA of Chlamydia-

related organisms in about 1% of adult patients with CAP,

Fig. 5. Parachlamydia acanthamoebae within Acanthamoeba castellan-

nii, as seen by gram staining (a), Diff-Quick staining (modified

May–Grünwald Giemsa) (b), and immunofluorescence (c), respectively.

Microscopy performed 24 h postinfection at an MOI of about � 10. (a)

Note that elementary bodies are generally gram-positive, whereas the

reticulate bodies are gram-negative. (c) The cell wall of P. acanthamoe-

bae (in green) was stained with mice polyclonal anti-Parachlamydia

antibodies whereas the amoeba was stained with concanavalin A.

Magnification � 1000.
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including Waddlia chondrophila (Family: Waddliaceae) and

Rhabdochlamydia porcellionis (Family: Rhabdochlamydia-

ceae) (Haider et al., 2008). No sequence related to

S. negevensis or P. acanthamoebae was detected in this series.

The presence of Rhabdochlamydia spp. in respiratory samples

of premature neonates has been recently reported, although

their role as a causal agent of pneumonia or other systemic

infections could not be assessed (Lamoth et al., 2009). It is

thus difficult to estimate which proportion of RTIs in

humans are caused by these Chlamydia-like organisms.

Waterborne mycobacteria

Nontuberculous mycobacteria are associated with dissemi-

nated or pulmonary infection in immunocompromised

patients and may be the cause of various infectious diseases

such as lymphadenitis, cutaneous infections or, rarely,

pneumonia in the immunocompetent host (Falkinham,

1996). Among them, the Mycobacterium avium complex

and Mycobacterium kansasii are the species most frequently

associated with respiratory tract colonization or true infec-

tion in both immunocompromised and immunocompetent

patients (Falkinham, 1996; Field & Cowie, 2006). Mycobac-

terium xenopi, Mycobacterium fortuitum, Mycobacterium

simae, Mycobacterium abscessus, Mycobacterium chelonae,

Mycobacterium gordonae and Mycobacterium malmoense are

other recognized agents of pneumonia, occurring mainly in

immunocompromised hosts or patients with underlying

pulmonary diseases (Table 4) (Field & Cowie, 2006).

The genus Mycobacterium has been considerably enriched

with the discovery of a large number of new species during

the last decades (Primm et al., 2004). These mycobacterial

species have been isolated from water sources, soil, air,

human or animal reservoirs, reflecting their ubiquity in the

environment (Falkinham, 2002; Primm et al., 2004). Natural

fresh or salt waters, such as lakes, rivers, swamps, estuaries

or marine streams, are common habitats of opportunistic

mycobacteria. Their resistance to chlorine and most disin-

fectants used for water treatment as well as their ability to

survive despite low nutrient levels, low oxygen content or

extreme temperatures allow them to colonize drinking water

supplies, cooling towers, swimming pools and other recrea-

tional water systems (Falkinham, 2002; Black & Berk, 2003;

Pagnier et al., 2009b). Their selection by surface disinfec-

tants may also promote their widespread occurrence in the

hospital environment. Moreover, these pathogens are able to

form biofilms and to colonize medical devices such as

bronchoscopes (Wallace et al., 1998; Falkinham, 2002).

Nontuberculous waterborne mycobacteria are frequently

isolated from clinical specimens (Martin-Casabona et al.,

2004) and nosocomial outbreaks have been reported

(Wallace et al., 1998; Phillips & von Reyn, 2001). In most

cases, the presence of such microorganisms in the respira-

tory tract reflects transient colonization. However, several

cases or small outbreaks of hospital-acquired pneumonia

have been ascribed to M. xenopi, M. chelonae and M. simae

(Wallace et al., 1998; Phillips & von Reyn, 2001; Conger

et al., 2004). Community-acquired respiratory diseases such

Table 3. Parachlamydiaceae as causal agents of pneumonia: review of the literature

Genus/species

Population (country)

and number of patients Disease Diagnostic method

Positive

results

P value

(if controls)

Recent

infection�

and no

alternative

pathogen References

Parachlamydia

acanthamoebae

Adults (Canada) 371 CAP Serology (IgM, IgG) 8 (2.2%) Po 0.01 1 (0.3%) Marrie et al. (2001)

Adults/children (France) 1200 Pneumonia PCR (BAL) 1 (0.1%) No control 1 (0.1%) Greub et al. (2003a)

Adults (France) 37 VAP Serology (IgM, IgG) 5 (13.5%) Po 0.001 3 (8.1%) Greub et al.

(2003b)

ICU adults (France) 210 Pneumonia PCR and culture (BAL),

serology (IgM, IgG)

3 (1.4%) No control 1 (0.5%) Berger et al. (2006)

Children (Switzerland) 39 Bronchiolitis PCR (NP swabs) 6 (15%) No control 5 (13%) Casson et al.

(2008c)

Protochlamydia

amoebophila

Adults (Austria) 387 CAP PCR (respiratory

samples)

1 (0.3%) No control 1 (0.3%) Haider et al. (2008)

Protochlamydia

naegleriophila

Adults/children (Switzerland)

65

Pneumonia PCR (BAL) 1 (1.5%) Not

significant

1 (1.5%) Casson et al.

(2008b)

Other

Parachlamydia

spp. (unclassified)

Adults/children (France/Italy)

170

Pneumonia PCR (respiratory

samples)

2 (1.2%) No control NA Corsaro et al.

(2002)

�Recent infection was defined as: serological evidence for recent infection (positive IgM or significant increase between initial and convalescent IgG

titres) or positive PCR result during the course of infection.

BAL, bronchoalveolar lavage fluid; NA, data not available.
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as hypersensitivity pneumonitis and even cases of true

pneumonia have been reported in healthy individuals ex-

posed to aerosols from different water sources (spas, swim-

ming pools, hot tubs, metalworking fluid) (Embil et al.,

1997; Primm et al., 2004).

Mycobacteria and free-living amoebae thus share the

same ecosystem and their close interaction has been sus-

pected since the presence of mycobacteria within an amoe-

bal host was first reported in 1973 (Jadin, 1973). Further in

vitro studies not only demonstrated that mycobacteria were

able to enter and replicate within the trophozoites and cysts

of amoebae or other protozoa (Krishna Prasad & Gupta,

1978; Cirillo et al., 1997; Steinert et al., 1998; Strahl et al.,

2001; Taylor et al., 2003; Adekambi et al., 2006; Mura et al.,

2006; Whan et al., 2006; Thomas & McDonnell, 2007), but

also that amoeba-grown mycobacteria displayed increased

virulence in macrophage and mouse models of infection

(Cirillo et al., 1997). Their recovery in hospital water

networks has been strongly associated with the presence of

amoebae (Thomas et al., 2006). Moreover, pathogenic

strains of M. kansasii exhibit a better ability to grow in

Acanthamoeba castellanii than the nonpathogenic strains

colonizing the respiratory tract (Goy et al., 2007). The

mechanisms involved in the pathogenicity of M. avium with

respect to macrophages and amoebae have been found to be

very similar (Danelishvili et al., 2007). These findings

suggest that mycobacteria, like legionellae, may take advan-

tage of amoebae, using them as a reservoir and as an

evolutionary niche for the development of virulence factors.

In contrast to legionellae and to some Chlamydia-like

organisms residing within the cytosol of the amoebal cysts,

mycobacteria are located within the double layers of the

cysts (Steinert et al., 1998). This evolutionary adaptation

may allow them to survive in a hostile environment such as

phagocytic human cells and to resist to high chlorine

concentrations or to the action of antibiotics (Miltner &

Bermudez, 2000; Adekambi et al., 2006; Thomas & McDon-

nell, 2007).

Bradyrhizobiaceae

Afipia spp. and Bosea spp. are recently discovered gram-

negative bacteria belonging to the class of Alphaproteobac-

teria (family: Bradyrhizobiaceae) and somehow related to

Table 4. Mycobacteria other than tuberculosis (MOTT): review of the most frequent agents of pneumonia

Mycobacterium species Pathogenic role in pneumonia References

M. avium intracellulare complex Most frequent cause of MOTT-associated respiratory

infection (variable presentation)

Olivier (1998), Field & Cowie (2006), Kim et al. (2008),

Parrish et al. (2008)

More frequent in HIV and immunocompromised patients Olivier (1998), Field & Cowie (2006), Parrish et al. (2008)

Cause of hypersensitivity pneumonia after exposure to hot

tubes

Embil et al. (1997), Field & Cowie (2006)

M. kansasii Pulmonary disease similar to M. tuberculosis. One of the

MOTT most frequently associated with pneumonia in both

immunocompetent and immunocompromised hosts

Evans et al. (1996a, b), Campo & Campo (1997), Taillard

et al. (2003), Maliwan & Zvetina (2005), Kim et al. (2008)

M. xenopi One of the MOTT most frequently associated with

pneumonia in both immunocompetent and

immunocompromised hosts

Juffermans et al. (1998), Faress et al. (2003), Andrejak

et al. (2007), Kim et al. (2008), van Ingen et al. (2008),

Marusic et al. (2009)

M. malmoense Most frequent cause of MOTT-associated respiratory

infection in the United Kingdom and Sweden, especially in

patients with underlying lung diseases. Cavitations are

often present

Research Committee of the British Thoracic Society

(2001), Henriques et al. (1994), Field & Cowie (2006)

M. chelonae Rare cause of fever and pneumonia in neutropenic cancer

patients

McWhinney et al. (1992), Levendoglu-Tugal et al. (1998),

Peres et al. (2009)

Rare cause of pneumonia in patients with oesophageal or

swallowing disorders

Burke & Ullian (1977), Hadjiliadis et al. (1999)

M. fortuitum Rare cause of pneumonia in patients with oesophageal or

swallowing disorders

Howard et al. (1991), Hadjiliadis et al. (1999)

Some cases of pneumonia reported mainly in

immunocompromised patients

Marchevsky et al. (1982), Ellis & Qadri (1993), Al Shaalan

et al. (1997), Abe et al. (1999), Miguez-Burbano et al.

(2006)

M. simae One of the MOTT most frequently isolated from respiratory

samples

Valero et al. (1995), El Sahly et al. (2002), Samra et al.

(2005)

Cause of pneumonia in patients with underlying pulmonary

diseases, rarely in AIDS patients

Bell et al. (1983), Huminer et al. (1993), Valero et al.

(1995), Maoz et al. (2008)

M. gordonae Frequently isolated from sputum, but rare cause of

respiratory infection

Eckburg et al. (2000), Thomsen et al. (2002), Field &

Cowie (2006)

FEMS Microbiol Rev 34 (2010) 260–280c� 2010 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

270 F. Lamoth & G. Greub



Brucella spp. and Bartonella spp. (Brenner et al., 1991; Das

et al., 1996). These Bradyrhizobiaceae are able to resist to

amoebal microbicidal effectors (Fig. 6). The original isola-

tion of Afipia spp. in clinical specimens such as lymph nodes

(Afipia felis) or bone biopsy (Afipia clevelandensis) raised the

question about their pathogenic role in human diseases,

particularly in cat scratch disease (English et al., 1988;

Brenner et al., 1991; Hall et al., 1991). However, subsequent

analyses identified Bartonella henselae as the causal agent of

this latter disease and the precise pathogenic role of Afipia

remained undetermined (Jerris & Regnery, 1996). These

bacteria were first detected in human respiratory samples

by Brenner et al. (1991), who described the new genus

Afipia. Drancourt et al. (1997) detected the presence of

antibodies against A. clevelandensis in 1.5% of sera tested in

the French national centre for rickettsial diseases and

postulated a cross-reactivity between this bacterium and

Brucella spp. or Yersinia spp., as about half of the cases had a

diagnosis of certain or probable brucellosis or yersiniosis.

However, about 15% of patients from this series were

diagnosed as having pneumonia (Drancourt et al., 1997).

The subsequent isolation of Afipia spp. and Bosea spp. in

hospital water supplies suggests a possible role in nosoco-

mial pneumonia (La Scola et al., 2000, 2002, 2003b, c;

Thomas et al., 2006, 2007). Sero-epidemiological analyses

revealed evidence of exposure to Afipia spp. and closely

related Alphaproteobacteria in 13% of patients with hospital-

acquired pneumonia, whereas no specific antibodies were

detected in healthy blood donors (Po 0.01) (La Scola et al.,

2002). The same strains were simultaneously detected in the

water supplies of the intensive care units where these

patients were staying. In another series of 30 patients in a

single intensive care unit in France, seroconversion to Afipia

spp. and Bosea spp. was documented in 17% and 20%

patients with VAP, respectively (La Scola et al., 2003b). No

alternative potential pathogen was documented in about

half of these cases. This study also reported a case of

pneumonia with detection of Bosea massiliensis by PCR in

bronchoalveolar lavage fluid associated with seroconversion

to the same microorganism (La Scola et al., 2003b). In

another analysis of 210 ICU patients with pneumonia, Bosea

spp. were detected in eight (3.8%) patients by culture, PCR

or serological testing (B. massiliensis and Bosea thiooxidans)

(Berger et al., 2006). However, evidence for recent infection

was documented in only one case and potential alternative

pathogens of pneumonia were isolated in all cases. All

patients but one had hospital-acquired pneumonia. Afipia

spp. were not detected in this population (Berger et al.,

2006). A Bosea and some other Alphaproteobacteria have also

been isolated from nasal swabs of hospitalized patients by

amoebal coculture, although their pathogenic role was

unclear (Greub et al., 2004b). Interestingly, the possible

implication of the Bradyrhizobiaceae in CAP has not yet

been investigated. Bosea strains have also been isolated from

environmental sources of water other than hospital net-

works such as river water or drinking water plants (Rapala

et al., 2006; Thomas et al., 2007) and Afipia spp. were the

most common bacterial species found in biofilms from a

dental unit water system in Baltimore (Singh et al., 2003).

The actual role of Bradyrhizobiaceae in RTIs thus remains

difficult to assess on the basis of serological diagnostic tools,

which lack sensitivity and specificity, and in the absence of

microbiological documentation in clinical specimens in

most cases.

Biodiversity of amoebae-resisting
microorganisms and perspectives for
further investigations

Free-living amoebae represent a widespread evolutionary

niche that may favour the selection of virulence traits in

intra-amoebal bacteria, enabling them to survive in other

phagocytic cells, including alveolar macrophages, which are

one a major line of immune defence against invading

pathogens. The examples of emerging pathogens provided

in this review probably represent only the tip of the iceberg,

and there is still a largely underestimated biodiversity of

amoebae-resisting bacteria, which may have acquired their

ability to cause diseases in humans by the development of

virulence traits during their intra-amoebal life. This huge

and so far unexplored biodiversity not only includes mem-

bers of the clade presented in this review, i.e. Legionella spp.,

Chlamydiae, Bradyrhizobiaceae and mycobacteria, but also

many other bacterial clades and giant viruses (Greub &

Raoult, 2004). At least one of the amoebae-resisting viruses

Fig. 6. Bosea sequanensis (arrows) within Acanthamoeba castellannii,

as seen by electron microscopy. Magnification � 7000. Scale bar = 2 mm.

The inset is a drawing showing the limits of the amoeba (discontinuous

line) that contains about 19 bacteria (light grey); three bacteria that are

localized outside of the amoeba are highlighted in dark grey.
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discovered so far, the mimivirus, is also resistant to human

macrophages and may be involved in lower RTIs, as sug-

gested by clinical studies and by a well documented labora-

tory-acquired infection (see Box 1).

The research community should thus be aware of the

wide biodiversity of amoebae-resisting microorganisms in-

cluding novel Chlamydiae, new LLAP, some Bradyrhizobia-

ceae, the recently described novel waterborne mycobacterial

species and giant viruses. Although Parachlamydia and some

other amoebae-resisting Chlamydiae have already been

investigated for their pathogenic potential (Corsaro &

Greub, 2006; Greub, 2009), there is still an infinite and

exciting perspective for further investigations with regard to

the development of new diagnostic tools and the compre-

hension of the pathogenic roles and the cell biology of such

microorganisms.

Further investigations may be especially important given

the fact that the intra-amoebal environment may select

strains that are preferentially resistant to antibiotics and to

biocides. Such resistance may be due to the partial protection

conferred by amoebal trophozoites and cysts, or may result

from the acquisition of efflux mechanisms following exposi-

tion to heavy metals and other toxic compounds when inside

the amoebal host. The concomitant resistance to biocides

and chemical compounds that was first described in myco-

bacteria (Miltner & Bermudez, 2000), as well as the un-

expected resistance of Chlamydiae to quinolones (Maurin

et al., 2002; Casson & Greub, 2006; Goy & Greub, 2009), are

illustrations of the potential of amoebae-resisting bacteria to

select new virulence traits. Moreover, the intra-amoebal

environment likely represents an important niche for gene

exchange between intracellular pathogens, as exemplified by

the occurrence in Rickettsia bellii (Ogata et al., 2006) and in

P. amoebophila (Greub et al., 2004a) of similar genes encod-

ing a putative F-like conjugative DNA transfer system. Such

gene exchanges not only occur between different bacterial

clades, but also likely take place with giant amoebae-resisting

viruses and with the genomic content of the amoebal host

itself, explaining the relatively large genomes of amoebae-

resisting microorganisms.

Box 1. Mimivirus, a giant virus likely involved in lower respiratory tract infections

Mimivirus (Mimiviridae) is a double-stranded DNA virus belonging to the nucleocytoplasmic large DNA viruses (NCLDV). Initially discovered within

free-living amoebae recovered by amoebal enrichment from a cooling tower during the investigation of an outbreak of community-acquired

pneumonia in Bradford (UK), this microorganism was first considered to be a gram-positive bacterial coccus (La Scola et al., 2003a). However,

electron microscopy suggested that it was a giant virus of about 400 nm in diameter and subsequent studies unequivocally confirmed its affiliation

within the NCLDV, which also includes the Iridoviridae, the Phycodnaviridae, the Asfarviridae and the Poxviridae (Koonin, 2005). Its genome of about

1.18 Mb encodes for about 911 ORFs and six tRNA genes (Raoult et al., 2004).

As this virus was shown to grow well within Acanthamoeba polyphaga (La Scola et al., 2003a), its possible resistance to destruction by human

macrophages was readily suspected and confirmed by Ghigo et al. (2008). Thus, mimivirus was shown to selectively enter within human

macrophages and not into epithelial cells (Ghigo et al., 2008). More importantly, entry occurred by phagocytosis (as demonstrated by its inhibition by

overexpression of a dominant-negative form of a regulator of phagocytosis, dynamin-II), and was followed by efficient exponential replication (Ghigo

et al., 2008). This further supported the paradigm that intra-amoebal pathogens may also be resistant to macrophages and suggested its possible

pathogenic role towards humans.

Some clinical studies have further supported the possible role of mimivirus in lower respiratory tract infections. Thus, 36 (9.7%) patients with

community-acquired pneumonia exhibited antibody reactivity against mimivirus as compared with 12 (2.3%) of 511 healthy controls (Po 0.01) (La

Scola et al., 2005). In addition, serologic evidence of mimivirus infection was also observed in five (19.2%) of 26 intensive care unit patients, whereas

none of the 50 control patients were seropositive for mimivirus (Po 0.01). More importantly, mimivirus DNA was detected in a bronchoalveolar

lavage sample from a 60-year-old comatose patient who presented two episodes of hospital-acquired pneumonia during hospitalization in the

intensive care unit (La Scola et al., 2005). Moreover, in another study, patients exhibiting antimimivirus antibodies had longer durations of mechanical

ventilation and intensive-care unit stay, with median excesses of 7 and 10 days, respectively (Vincent et al., 2009). However, when testing 496

different pneumonia patients with two different real-time PCRs, other investigators failed to identify any case of mimivirus (Dare et al., 2008). This

discrepancy might potentially be due to the possible occurrence of mimivirus-like strains, which cross-react with mimivirus but exhibit some

differences in the region of the viral helicase and thiol-oxidoreductase genes used as PCR targets, preventing their detection using this method (Dare

et al., 2008). It is noteworthy that the pathogenic role of mimivirus has been clearly demonstrated by an accidental exposure of a laboratory

technician to mimivirus (Raoult et al., 2006). Besides strongly supporting the pathogenicity of mimivirus, this laboratory-acquired infection highlights

the importance of cautious manipulation of such emerging potential pathogens, especially given the current absence of antivirals that are efficient

against such giant viruses.

Finally, the pathogenic role of mimivirus was further supported by a mouse model of infection (Khan et al., 2007). Thus, mice inoculated through the

intracardiac route presented pneumonia similar to viral pneumonia due to measles, smallpox and rubella. Interestingly, a virophage called Sputnik

was found closely associated with a new giant virus also belonging to the Mimiviridae (La Scola et al., 2008). Both the giant virus and the virophage

may replicate efficiently within Acanthamoeba amoebae (Fig. 7). Whether this small icosahedral virus may modify the pathogenicity of the

Mimiviridae remains to be investigated.

In conclusion, humans are commonly exposed to mimivirus or cross-reacting agents and mimivirus was pathogenic at least towards humans following

accidental laboratory exposure and to mice following intravenous challenge. Moreover, this amoebae-resisting virus (or a related cross-reactive

species) should be considered as an emerging agent of both nosocomial and community-acquired pneumonia and clearly merits further study.
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Conclusion

Amoebae and intra-amoebal microorganisms have coe-

volved for millions of years and have generated a wide

biodiversity of microorganisms that are likely to be able to

resist both the phagocytic machinery of amoebae and hu-

man macrophages. Thus, the amoebal evolutionary crib may

have produced a widespread biodiversity of potential patho-

genic species that remain to be discovered. The isolation of

these fastidious bacteria and their species identification by

culture-based methods, such as amoebal coculture and the

amoebal enrichment, as well as the development of mole-

cular methods for their detection in clinical samples, are

warranted for a better assessment of their actual role in

human diseases such as pneumonia, which remains a major

cause of morbidity and mortality in the world. A better

comprehensive approach of the interactions between free-

living amoebae and amoebae-resisting organisms may give

further insights into the mechanisms of pathogenicity of

microorganisms and their mode of acquisition of resistance

to environmental aggressions, such as phagocytosis by

amoebae and macrophages, biocides or chemical com-

pounds, with potential implications for therapeutic ap-

proaches.
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