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Abstract

Homology modeling is the most commonly used technique to build a three-dimensional model for a protein sequence. It
heavily relies on the quality of the sequence alignment between the protein to model and related proteins with a known
three dimensional structure. Alignment quality can be assessed according to the physico-chemical properties of the three
dimensional models it produces. In this work, we introduce fifteen predictors designed to evaluate the properties of the
models obtained for various alignments. They consist of an energy value obtained from different force fields (CHARMM,
ProsaII or ANOLEA) computed on residue selected around misaligned regions. These predictors were evaluated on ten
challenging test cases. For each target, all possible ungapped alignments are generated and their corresponding models are
computed and evaluated. The best predictor, retrieving the structural alignment for 9 out of 10 test cases, is based on the
ANOLEA atomistic mean force potential and takes into account residues around misaligned secondary structure elements.
The performance of the other predictors is significantly lower. This work shows that substantial improvement in local
alignments can be obtained by careful assessment of the local structure of the resulting models.
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Introduction

The three-dimensional structure of proteins is central to many

applications, such as structure-function studies, site-directed

mutagenesis, or structure based design of active compounds.

Since the creation of the Protein Data Bank [1], the number of

protein structures solved by experimental techniques have grown

exponentially, with more than 38000 protein structures available

today (as of 7 September 2006). Despite this strong experimental

effort, it represents hardly above 1% of the number of proteins of

the SwissProt plus TrEMBL databases (SwissProt release 50.6 of 5

September 2006; TrEMBL release 33.6 of 5 September 2006).

Interestingly, only 945 different folds are currently represented in

the PDB, as reported by the SCOP classification [2]. This can be

compared to the 4000 different folds that are predicted to be

present in the proteome [3]. Homology modeling methods, in

which a structural model for a protein with a known sequence (the

target) is generated using experimental structures of related

proteins (templates), provide a way to close the gap between the

large number of known sequences and the limited number of

related structures. Homology modeling methods are based on the

fact that proteins with a detectable degree of sequence identity

associated with the conservation of topology and function are very

likely to share the same fold [2,4].

To this day, homology modeling methods represent one of the

most reliable approache to generate a structural model for a

protein sequence [5], when at least one suitable template is

available. From the fifth Critical Assessment of techniques for

protein Structure Prediction (CASP5) experiments [6], it appears

that the critical steps to obtain a good model are: 1) the selection of

the template, 2) the alignment between the target and templates

sequences, 3) the modeling of regions not present or structurally

different from those in the template and 4) the modeling of side

chains. Among these, the second step is the most critical because a

wrong alignment between the target and templates will systemati-

cally lead to misfolded models [7]. When the sequence identity

between a target and its template(s) is above 50%, a pair wise

alignment is usually correct and the resulting model quality is

comparable to low resolution crystal structures or medium-resolution

NMR structures [8]. When the sequence identity ranges from 25%

to 50%, serious errors are prone to appear in the alignment. Below

25%, the quality of an automated alignment is usually not sufficient

to build an accurate model and human expertise and/or

experimental data are needed. Multiple sequence alignments can

certainly help stretching the range of usable sequence identity, but

they are essentially subject to the same limitations.

The local sequence identity is usually variable along the

alignment between the target and its template. This often leads

to situations where two regions of the alignment are easy to align,

but are separated by a short stretch where the sequence identity is

locally low, and for which a relatively small number of alternative

alignments have to be considered. It was proposed to evaluate
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these alternative alignments through their corresponding homol-

ogy models [see 9,10,11,12 and see below]. In such approaches,

errors in the initial sequence alignment might be identified subject

to two conditions. First, it should be possible to obtain reliable

models for each alternative alignment. Second, as pointed out by

John et al. [9], a discriminative scoring function should be

available to point out the model obtained from the correct

alignment among the models obtained from the wrong ones.

Model quality can be assessed using various techniques, like

geometric or energetic criteria derived from known protein

structures. Among the formers, PROCHECK [13] is widely used

to scan a model for unlikely bonds, angles and dihedrals values and

for the solvent accessible surface of amino acids. While such

criteria are useful to describe the quality of a protein structure

locally, i.e. at the residue level, their ability to recognize a

misfolded model is limited [14]. To this aim, methods based on a

mean force potential (MFP) describing the free energy of

interaction between atoms or residues have been developed.

Verify3D [15], using statistical preference of amino acids for their

environment, could be considered a precursor of MFP methods.

ProsaII [16] is a residue based MFP using local and non-local

interactions. ANOLEA (17, http://protein.bio.puc.cl/cardex/

software/index.html) is an atom-based MFP, where only non-

local interactions are taken into account.

Scoring schemes relying on physics-based energies haves been

used to discriminate between native and near-native structures

[18,19,20]. These energies are computed from molecular

mechanics energy functions with solvation models [18,21] but

do not include entropic terms. Machine learning-based methods

combine scores from physics-based energies and statistical

potentials. They include Neural Network [22], Genetic Algorithm

[23] and Support Vector Machine [14].

A recent benchmark involving physics-based scoring functions,

MFP and machine learning based approaches pointed out that

structural information is very informative when evaluating the

quality of an alignment [14,24]. The need to restrict scoring

functions around the region to optimize has also been suggested

[22,25].

In order to evaluate the quality of models, fifteen predictors

were defined in this article. Each of them consists in an energy

function computed on a wide or narrow residue selection around

misaligned regions. For each alternative alignment, the MOD-

ELLER program [11] is used to build an ensemble of one hundred

models, all solutions of the same distance geometry problem, but

with different initial conditions for the molecular dynamics

optimization step. These models sample the conformational space

allowed by the alignment derived restraints used during the

dynamics. The local quality of the models evaluated by the

predictors is used to identify the optimal alignment among all

possible ungapped alignments.

Five energies functions were investigated: the standard

CHARMM energy [27] with two different dielectric constants,

the CHARMM energy including the solvation free energy

computed using the Generalized Born model (GBMV2 [28,29]),

and two MFP, ProsaII and ANOLEA.

Three different residue selections around the misaligned region

were investigated, taking into account either all the residues of the

model, or the residues contained in the misaligned region plus their

close neighbors, or the residues in the misaligned regions belonging

to a secondary structure element plus their close neighbors.

The fifteen predictors were assessed on ten challenging local

alignments optimization problems of both a helix and b sheets,

among which challenging CASP cases with no sequence identity

between the template and the target. The best predictor was able

to retrieve the structural alignment for 9 out of the 10 test cases. It

is based on the ANOLEA energy computed on a subset of residues

around the misaligned secondary structure element. The success

rate of predictors based on ProsaII is at most 60%, and predictors

based on the CHARMM 19 or 22 energies, with or without the

solvation free energy, remain lower than 30%.

In what follows, we first describe the ten local alignments

optimization problems selected to assess our method. Second, the

generation and scoring of alignments is presented step by step.

Third, the performance of the various predictors is presented and

detailed for a challenging CASP5 target. Finally, the physical

ground of this approach is discussed.

Materials and Methods

The main steps of our approach are outlined in Figure 1 and

detailed below.

Identification of the region of interest (ROI)
For each test case (see below), the structural alignment between

the target and the template was computed using the MALIGN3D

routine in the MODELLER. This alignment was used as a

reference to which the alternative alignments are compared. An

initial sequence-based sequence alignment was computed with T-

Coffee [30], using default parameters. In the selected test cases (see

below), comparison of the sequence-based alignment and the

structural alignment revealed several discrepancies observed in

both loop regions and secondary structure elements (SSE). Due to

their high sequence variability and intrinsic flexibility, loops are

usually not well predicted using homology based approaches and

are better suited for ab initio methods [31]. For this reason, this

study focuses on local alignment optimization of SSE without a

direct optimization of loop alignments. The ROI was defined as a

misaligned region containing a SSE limited at the N and C

terminal part by two unambiguously aligned regions or by one

unambiguous region and a chain termini, see Figure 2.

Alignment search space
The residues in the ROI were grouped in one ungapped mobile

block of residues containing the misaligned SSE and its adjacent

loops, if any. All possible ungapped alignments were generated by

shifting this block along the template sequence (Fig. 2), with the

constraint that the SSE of the target sequence always contained a

constant number of amino acids. This procedure is referred to as

‘‘sliding window’’ below. Each alternative alignment was identified

by the offset, Dseq, between the position of the mobile block in the

alternative alignment compared to its position in the reference

structural alignment; by definition, the structural alignment is

characterized by Dseq = 0, a negative Dseq value is used when the

amino acids of the target are moved toward the N-terminal region of

the template, and a positive Dseq when moved to the C-terminal.

Model building
From each of the alternative alignments explored by the sliding

window search described above, 100 models were built by the

MODEL homology modeling routine of MODELLER 6.2.

Disulfide bonds were explicitly defined, and default parameters

were used. To build models, MODELLER satisfies spatial

restraints derived from the sequence alignment between the target

and its templates. The optimization is based on MD simulations;

different models can be generated using different random seeds for

the assignment of the initial random velocities.

Each model generated by MODELLER was energy minimized

using the CHARMM program with the CHARMM19 force field

Local Alignment Assessment
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[32,33], a dielectric constant of 1 and a 20 Å cutoff. This

minimization consisted in 30 steps of Steepest Descent, followed

by 30 steps of Adopted Basis Newton-Raphson. Positions of the Ca
atoms were constrained using mass weighted harmonic forces

constant of 10 kcal/(mol Å2) that were present during the entire

minimization.

Model evaluation using predictors
The models obtained after energy minimization were evaluated

by means of various ‘‘predictors’’. A predictor is defined as an

energy function combined with a selection of residue. First, the

different energy terms are calculated for each selected residue

taking into account the complete environment, and then the sum

of the energy of the selected subset of residues (see below) is

assigned to the model. When all models generated for a given

alignment have been evaluated, the predictor score distribution of

the formers is assigned to the latter. When all alternative

alignments have been evaluated, a statistical assessment is

performed to compare the distribution of their predictor scores.

A total of fifteen different, yet closely related, predictors were

assessed, taking into account five different energy functions

(CHARMM e = 1, CHARMM e = 4, CHARMM GBMV2,

ProsaII and ANOLEA) and three different selections of residues

(All, ROI, SSE) corresponding to wide or narrow region around

the misaligned SSE, see below.

Energy functions
Five different energy types were used to evaluate the structural

models.

CHARMM energies
The CHARMM program was used to compute the energy of

the selected residues using the CHARMM19 or the CHARMM

22 force field. The electrostatic contribution was computed in

three different ways: 1) using a distance-independent dielectric

value of 1 (vacuum), referred to as CDIE e = 1, 2) using a distance-

dependent dielectric value (simple electrostatic screening), referred

to as RDIE e = 4, and 3) using the Generalized Born using

Molecular Volume analytical method 2 (electrostatic solvation

energy), referred to as GBMV2 below.

ProsaII score
The ProsaII MFP [16] was used to compute the energy of the

selected residues using a window of 1 residue.

ANOLEA energy
Similarly, the ANOLEA MFP was used to compute the energy

of the selected residues using the recommended averaging over

five contiguous residues.

Residues selections
Three different residue selections were assessed, from wider to

narrower around the ROI.

First, the All selection takes into account all residues of the model.

Second, the ROI selection contains two subsets of residues. The

first subset contains all residues of the ROI. The second subset

contains all the residues surrounding the first subset with a

maximum distance threshold between heavy atoms. The optimal

distance threshold was investigated (see results). Since the second

subset varies from model to model, only residues that meet the

distance threshold in at least 50% of the models were considered

and used to assess the energy of the 100 models.

Third, the SSE selection also contains two subsets of residues.

The first subset contains only the residues of the SSE of the ROI.

The second subset contains all the residues surrounding the first

subset with a maximum distance threshold between heavy atoms.

Again, only residues that meet the distance threshold in at least

50% of the models were considered.

Statistical analysis
A statistical analysis of the distributions of predictor scores was

carried out to check whether the score distributions of the

predictors computed for each alignment are significantly different.

A Kolmogorov-Smirnov test showed that distributions were not

normal and a Bartlett’s test revealed that their variances are also

different (data not shown). The conditions were not met to use a

Student’s t-test and a non-parametric rank-based Wilcoxon test

Figure 1. Flowchart of the method. A reference structural
alignment of the target and the template is generated by the
MALIGN3D command in MODELLER [11] (step 1). The initial target-
template sequence alignment is realized by T_COFFEE (step 2). The
regions of interest (ROI), defined as misaligned secondary structure
elements together with their adjacent loops, are identified by
comparison of the initial target-template sequence alignment with
the reference structural alignment. A set of alignments to evaluate is
generated using an exhaustive ungapped search in the ROI (step 3).
Hundred models for each alignment are built using MODELLER (step 4).
For each model, an energy minimization is done in vacuum using
CHARMM (step 5). The energy for the minimized models is calculated
(step 6). The secondary structure is assigned with DSSP [24] and the
predictor’s scores are calculated (step 7). After all alignments are
processed, a statistical analysis using the statistical package R (http://
www.R-project.org) is further performed on the predictor to associate a
degree of confidence to the prediction (step 8) and the best alignment
is determined (step 9). See Materials and Methods for details.
doi:10.1371/journal.pone.0002645.g001

Local Alignment Assessment
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was performed instead, using a confidence threshold a of 0.05.

The statistical package R (http://www.r-project.org) was used to

carry out the tests.

Choice of test cases
Challenging alignment optimization problems were selected

from the literature according to the following criteria: the global

sequence identity between the target and its template must be

lower than 35%, a crystal structure must be available for the

target, and the sequence based and structural alignments must

differ in one or more regions encompassing secondary structure

elements (SSEs). Proteins with various folds were selected: a helices

(a), only b-strands (b) and both a and b (a/b). We chose a CASP1

target: the human eosinophil-derived neurotoxin (EDN) [34], five

CASP5 targets: T0141, T0143, T0151, T0169 and T0178, [35], a

low sequence identity pair of hemoglobin protein (1ash-1flp) and

the homotrimeric human B cell activating factor (hBAFF) protein,

which is a member of the tumor necrosis factor ligands (TNFL)

family. For EDN, the initial sequence alignment between the

target and its template was that proposed by Sali [34]. All test

cases are listed in Table 1.

Results

This article addresses the question of the local optimization of

the sequence alignment between a target sequence and its

corresponding template, a critical problem in homology modeling.

This optimization was carried out by generating all possible

ungapped alignments, for which a score is assigned according to

the quality of their corresponding models. This score is based on

different subsets of particular pair wise energy types, termed

‘‘predictors’’. The method is outlined in Figure 1 and detailed in

Material and Methods. The ROI chosen for each test case, and

the corresponding alignment search space are presented first.

Second, the variability between models is presented, as well as the

impact of the energy minimization. The results for all predictors

are then discussed, followed by an insight into the most efficient

one. Finally, an illustrative example is detailed.

Selected ROI
A single ROI was selected for hBAFF (strand D), EDN (helix 1),

T0141 (strand 10), T0143 (helix 6), T0151 (strand 7) and T0169

(strand 5). Two ROI distant in the sequence space were

independently refined for 1flp (helix 7 then helix 1) and T0178

(strand 8 and helix 7). The alignment search space for each test case

is reported in Figure 3. The global sequence identities between

targets and their templates range from 13 to 33%, and the local

sequence identities of the SSE in the ROI range from 0 to 56%, see

Table 1. For each ROI, the offset between the sequence alignment

and the structural alignment (Dseq) is given in the last column.

Models building
The structural variability between 100 models computed from

the structural alignment using MODELLER and energy mini-

mized using CHARMM is illustrated for the 1flp helix 1 test case,

using the per residue backbone RMSD after optimal superimpo-

sition of the entire structure (Figure 4). As expected, the RMSD is

higher in loops than in structured regions. This comes from the

fact that the loops are less confined by alignment derived

restraints, due to their lower sequence identity as well as their

inherent structural flexibility compared to secondary structure

elements that are stabilized by well known hydrogen bond

interaction.

Model minimization
The energy of minimized models is, as expected, both much

lower and less variable, as illustrated in Figure 5 for the 1flp helix 1

case. An important decrease in both the energy and its variability

for CHARMM-based predictors was observed after energy

minimization (Fig. 5A–C). ANOLEA-based predictors are also

significantly influenced by energy minimization (Fig. 5E), while

ProsaII-based predictors are marginally impacted (Fig. 5D), as

expected for a residue based force field.

The correct alignment for 1flp helix 1 (Figure 5F) was obtained

using the ANOLEA/SSE predictor from minimized models (p-

value = 1.6?10223), whereas it was not retrieved when non

minimized models were used. For other test cases, the removal

Figure 2. Illustration of the sliding window method for the case of hBAFF strand D. The initial sequence based alignment of hBAFF
sequence with 1tnf sequence was realized with T_COFFEE. The region of interest (ROI) is defined as the misaligned secondary structure element
(strand D) together with its adjacent loops. All residues in the ROI are grouped in one ungapped block. The method consists in sliding this block
through the window (red rectangle) defined by strand D of the 1tnf (chain A) template. The explored alignments were identified by their sequence
offset (Dseq) to the structural alignment. It corresponds to a sequence offset to the structural alignment of Dseq = 25 (green horizontal rectangle).
The structural alignment is right shifted by five position (Dseq = 0, red horizontal rectangle).
doi:10.1371/journal.pone.0002645.g002

Local Alignment Assessment
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of this minimization step lead to less discriminative (as reflected by

higher p-values), or even wrong predictions (data not shown). This

supports that energy minimized models not only help in reducing

the variance of the energy but also change the predictor landscape,

allowing better predictions to be made. The energy of models was

thus always minimized before evaluation by the predictors.

Evaluation of the predictors
The results obtained with the fifteen predictors over the entire

test set are summarized in Table 2 and 3 and detailed below.

Comparison of the different energy types
Predictions based on the CHARMM 19 and 22 force field

(CDIE, RDIE, GBMV2) show that the different level of

approximation to treat the solvent has little impact, with a

maximum success rate of 30%, whatever the residues selections

taken into account. Due to the poor performance of these

predictors, the p-values are not reported in Table 2 and their

results are not discussed further. The performance of other

predictors is shown in Table 3.

The reliability of ProsaII-based predictors is marginally

impacted by the subset of residues taken into account, as reflected

by their success rates: 60% for All, 50% for ROI and 50% for SSE.

In contrast, the success rate of ANOLEA-based predictors

increase as the subset of residues taken into account is narrowed

around the SSE: 40% for All, 50% for ROI, and 90% for SSE. The

ANOLEA/SSE predictor is thus the most reliable predictor among

the fifteen predictors tested.

Comparison of residue selection
Optimization of the selection of neighbors

The selections ROI and SSE include neighboring residues (see

Material and Methods). Two residues are considered neighbors if,

in at least 50% of the models generated, one of their heavy atom

distances is smaller than 4 Å, in order to focus on the first shell of

residues around the SSE. The importance of this cutoff was

evaluated for the 1flp helix test case by exploring values ranging

from 2 to 6 Å by step of 0.5 Å, in combination with the most

successful predictor, ANOLEA/SSE (Figure 6). Interestingly, the

structural alignment is identified for each cutoff value, and our

approach appears to be robust regarding this parameter (data not

shown). As mentioned above, an arbitrary value of 4 A was used

for all calculations.

Influence of the residue selection on the ANOLEA
predictor

The structural variability between models resulted in a broad

energy distributions for the ANOLEA/All predictor (Fig. 7A). In the

figure, the two distributions with the lowest mean score values are

shown. As can be seen, the distributions of predictor scores

overlap. With the ROI selection, the variance arising from the

conformational variability of residues not in the neighborhood of

the ROI is removed (Fig. 7B). Compared to the ANOLEA/All

selection, the distributions are thus narrower and better separated.

These distributions are even sharper for the ANOLEA/SSE

predictor because the variations caused by loops flanking the

SSE in the ROI are also excluded. This is reflected by much lower

p-values (Fig. 7C). A summary of the predictions based on

ANOLEA and their associated p-values is presented in Table 3.

The ANOLEA/All predictor was able to identify unambiguously

the structural alignments for hBAFF, 1flp (helix 1), T0143 and

T0178 (strand 8). Associated p-values range from 3.8?1022 to

1.3?10213. The structural alignment was ambiguously identified

for 1flp (helix 7), T0141 and T0169, as reflected by not statistically

significant p-values. The prediction is wrong for EDN, T0151 and

T0178 (helix 7).

Table 1. List of the test cases.

Target
Length in
residues Folda Templateb

Global seq
idc (%)

SSE seq id
in ROId (%) SSE content and limits in ROIe Residues in ROIf

Initial
DSeqg

hBAFF 432 b homo trimer 1tnf, A,B,C 22 38 b-strandD (M208-K215) and
(M352-K359) and (M496-K503)

D203-L224
D347-L368
D491-L512

25
25
25

1flp 142 a 1ash 13 13 a helix1 (A4-A19) S1-A20 5

1flp 142 a 1ash 13 6 a helix7 (A103-Y120) G100-G121 23

EDN 134 a / b 7rsa 33 56 a helix1 (W7-H15) K1-S20 6

T0141 187 a / b 1aro, L 14 33 b-strand10 (E116-E118) C108-A124 6

T0143 216 a / b 1agj, A 27 10 a helix6 (E200-N209) N199-A216 24

T0151 106 a / b 1eyg, D 33 0 b-strand7 (E105-P108) D104-S123 24

T0169 156 a / b 1l0c, A 17 17 b-strand5 (R104-T109) R100-V112 23

T0178 219 a / b 1jcj, A 27 50 b-strand8 (R300-T303) D299-S304 212

T0178 219 a / b 1jcj, A 27 6 a helix7 (Y201-R213) S198-A218 3

aFold of the target according to SCOP.
bPDB code of the template and its chain identifier, when present.
cStructure-based global sequence identity between the target and the template.
dStructure-based sequence identity between the target and the template of the secondary structure element (SSE) in the region of interest (ROI).
eType of SSE in the ROI with its limits on the target sequence. The SSE limits on the target sequence are deduced from the template SSE using the alignment
correspondence.

fLimits of the ROI on the target sequence, (the ROI includes the residues of the SSE plus the residues in the adjacent loops).
gThe offset of the initial target-template alignment (see Material and Methods) from the structural alignment is quantified by DSeq. The reference is the structural

alignment (DSeq = 0). A shift of the target SSE sequence to the C-terminal or N-terminal part has positive or negative value, respectively.
doi:10.1371/journal.pone.0002645.t001

Local Alignment Assessment
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Figure 3. For each test case, the SSE in the ROI is colored in red on a protein ribbon representation and is defined by a red rectangle
in the alignments. The different alignments are represented and the corresponding score using the ANOLEA/SSE Local predictor is plotted. In
T0141 test case, the ‘‘new strands’’ label in the alignment picture represents the position of a beta finger present in the structure of T0141 but absent
in the 1aro_L template.
doi:10.1371/journal.pone.0002645.g003

Figure 4. Mean backbone (bb) RMSD per residue for 100 models of 1flp h1 testcase for Dseq = 0. Secondary structure elements limits are
indicated by horizontal bars on the upper x axis. Regions of high variability correspond to loops.
doi:10.1371/journal.pone.0002645.g004

Local Alignment Assessment
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The performance of the ANOLEA/ROI predictor is better than

the All predictor, with associated p-values for successful prediction

ranging from 3.0?1022 to 4.2?10232. Compared to the ANOLEA/

All predictor, these lower p-values reflect a higher confidence as

the residues selection is narrowed around the ROI.

The prediction results for the ANOLEA/SSE predictor are given in

Table 3 and shown in Figure 3. The alignment corresponding to the

structural alignment has the most favorable score in 9 out of the 10

test cases, associated with statistically significant p-values, ranging

from 5.0?1022 to 2.2?10232. Among the three ANOLEA-based

Figure 5. Influence of energy minimization for six different predictors CDIE/All (A), RDIE/All (B), GBMV2/All (C), ProsaII/All (D),
ANOLEA/All (E) and ANOLEA/SSE (F) applied to the test case 1flp helix1. The six corresponding profiles and their standard deviation are
shown for minimized and non minimized models, with plain and dotted lines, respectively.
doi:10.1371/journal.pone.0002645.g005

Local Alignment Assessment
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predictors, ANOLEA/SSE was found to be the most successful, and

also lead systematically to statistically more significant p-values.

If Anolea/SSE and ProsaII/SSE predictors have had the same

performance level, the probability to obtain such a result by

chance (90% success vs 50%, respectively) was estimated to 2.7%

by a two-tails bootstrap with 108 iterations. Even though only a

limited number of test cases was addressed in this article, this

probability is low enough to clearly state that the ANOLEA/SSE

performs better than ProsaII/SSE.

Illustrative example
The T0178 case from the CASP5 experiment was reported to

be very difficult [35]. The sequence identity between the helix 7 of

the template and the corresponding helix of the target is only 6%,

and the global sequence identity is only 27%. A comparison

between the reference alignment and the initial sequence

alignment showed that the helix 7 of the latter was shifted by

three residues toward the C-terminus (Fig. 3). For all alignments

evaluated, the score assigned by the three ANOLEA-based

Table 2. Summary of alignment refinement results for our set of test cases using two enthalpic scoring functions and three
different residues selections.

Target
SSE in the
ROIa

Initialb

DSeq CHARMM19 CHARMM22

CDIE e = 1 RDIE e = 4 GB CDIE e = 1 RDIE e = 4 GB

All ROI SSE All ROI SSE All ROI SSE All ROI SSE All ROI SSE All ROI SSE

1kxg (hBAFF) Strand D 25 F s S f s s f s S f f f f f f f f F

1flp Helix 1 5 S f S s s s s f S S F F s F S f F F

1flp Helix 7 23 F F F F F F s F F f F F s S S S S S

1gqv (EDN) Helix 1 6 f f f F f f F f f f F S f S S f S S

1j3g (T0141) Strand 10 6 s S S s S S s S S S F f f f S s F f

1qy6 (T0143) Helix 6 24 f f f f f f f f f F F F F f F F F F

1ue6 (T0151) Strand 5 24 F F F F F F F F F F f F f F F f f f

1mk4 (T0169) Strand 5 23 s s s s S s s s s f F F S f F f F F

1mhz (T0178) Strand 8 212 s f f s f f s f f S S S s S S S S S

1mhz (T0178) Helix 7 23 F F F F F F F F F S S f S S s S S f

F stands for failure and S for success. When the p-value associated with the prediction is significant, the outcome is formatted in bold character, otherwise in lowercase
italic.
aSecondary structure element (SSE) in the region of interest (ROI) (see Table 1 for more details about the ROI).
bOffset between the initial target-template alignment (see Material and Methods) and the structural alignment. The reference is the structural alignment (DSeq = 0). A

shift of the target SSE sequence to the C-terminal part (N-terminal) has negative (positive) value.
doi:10.1371/journal.pone.0002645.t002

Table 3.

Target SSE in the ROIa Initialb DSeq Prosa II ANOLEA

All ROI SSE Allc ROId SSEe

1kxg (hBAFF) Strand D 25 f 9.0?1021 F 3.4?1028 F 1.2?1024 S 3.8?1022 s 7.4?1022 S 9.6?1023

1flp Helix 1 5 s 4.8?1021 S 2.4?1022 f 2.0?1026 S 1.2?1028 S 2.4?10220 S 1.6?10223

1flp Helix 7 23 S 1.2?10228 S 2.8?10234 S 2.6?10234 s 8.7?1021 S 6.1?1023 S 6.5?10213

1gqv (EDN) Helix 1 6 S 4.1?1023 S 8.0?10225 S 7.2?10222 f 8.0?1021 F 9.5?1023 S 4.1?10211

1j3g (T0141) Strand 10 6 s 5.7?1022 s 3.7?1021 s 1.6?1021 s 4.8?1021 S 3.0?1022 S 2.7?1023

1qy6 (T0143) Helix 6 24 S 9.5?10230 S 5.3?10215 S 2.6?10234 S 3.4?1028 S 7.0?10219 S 1.1?10222

1ue6 (T0151) Strand 5 24 s 5.5?1021 s 5.6?1021 S 2.0?10222 f 9.4?1021 F 1.6?10219 s 3.9?1021

1mk4 (T0169) Strand 5 23 S 3.0?1025 S 3.9?1027 S 5.4?10230 s 3.0?1021 s 3.3?1021 S 5.0?1022

1mhz (T0178) Strand 8 212 F 4.1?1022 F 9.9?1027 F 1.1?1023 S 1.3?10213 S 4.2?10232 S 2.2?10232

1mhz (T0178) Helix 7 23 f 1.2?1026 s 4.8?1021 f 6.3?10234 s 3.5?1021 s 8.9?1021 S 2.0?1022

Summary of alignment refinement results for our set of test cases using two scoring functions based on potential of mean force combined with three different residues
selections, as well as the associated p-values (see text for details). F stands for failure and S for success. When the p-value associated with the prediction is significant,
the outcome is formatted in bold character, otherwise in lowercase italic.
aSecondary structure element (SSE) in the region of interest (ROI) (see Table 1 for more details about the ROI).
bOffset between the initial target-template alignment (see Material and Methods) and the structural alignment. The reference is the structural alignment (DSeq = 0). A

shift of the target SSE sequence to the C-terminal part (N-terminal) has negative (positive) value.
cPrediction based on All residues selection.
dPrediction based on ROI Local residues selection.
ePrediction based on SSE Local residues selection.
doi:10.1371/journal.pone.0002645.t003
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predictors and the mean Ca RMSD between the models and the

crystal structure are plotted in Figure 8. The structural alignment

is identified correctly using the ANOLEA/All, the ANOLEA/ROI or

the ANOLEA/SSE predictors (Fig. 8A, 8B and 8C, respectively).

The two most favorable alignments according to the latter,

corresponding to Dseq = 0 and Dseq = 1, are even separated

enough to unambiguously point out the structural alignment, as

reflected by a statistically significant p-value of 2.0?1022.

Impact of Dseq on final model quality
As expected, the closer to the structural alignment, the lower the

RMSD to the X-ray structure of the resulting model. Figure 8D

shows that the Ca RMSD in the ROI between the model and the

crystal structure is about 1 Å when using the alignment identified

by the ANOLEA/SSE predictor. This value rises quickly to 6 Å for

incorrect alignments. Similar results are obtained for the other test

cases (data not shown) .

Discussion

The method presented in this paper makes use of structural

information to refine misaligned regions between a sequence to

model (the target) and its template. An exhaustive list of alternative

ungapped alignments is generated, and their likelihood is

evaluated in the structure space, using the following steps: 1) an

ensemble of 100 models are generated from each alternative

alignment using the MODELLER program, 2) each model is

energy minimized with the CHARMM program, 3) the model

quality is evaluated by predictor scores obtained using different

pair wise energy functions (CHARMM, ProsaII and ANOLEA)

computed on various residue selections around the misaligned

region (ALL, ROI, SSE), 4) the alignments are ranked by statistically

comparing the predictor score distributions of the corresponding

models.

One important aspect that needed to be worked out for this

approach to be successful is a careful accounting of the structural

variability inherent to the ensemble of 100 models generated by

satisfaction of spatial restraints. As illustrated in Figure 7, the

distributions of the predictor values largely overlap, emphasizing

the need to compare entire distributions rather than single values.

In order to reach statistical significance while keeping the number

of model low for CPU limitations, several aspects were considered;

first, an energy minimization was added to refine models created

by MODELLER. The standard deviation of the predictor value

distribution was shown to be reduced in minimized models, as

illustrated in Figure 5. This effect was more pronounced for

ANOLEA and CHARMM based predictors which are more

sensitive to small coordinate changes than ProsaII based

predictors, data not shown. Second, the component of the noise

resulting from distant parts of the structure was reduced by

considering only the residues of the ROI and its neighbors, as

illustrated by the improvements of correct predictions and their

confidence when considering the All and the ROI subset of

residues, see Table 2 and 3. Reducing further the variability by

removing the contributions of the loops adjacent to the SSE led to

a significant confidence improvement between the ANOLEA/ROI

and the ANOLEA/SSE predictors, see Table 3.

The results of Table 3 alternatively show that MFP based

predictors have a much higher success rate than semi-empirical

force fields, and that taking into account the solvation free energy

does not improve the reliability of the later. The performance of

the predictors based on ANOLEA and ProsaII is similar for the All

and ROI subset of residues, but when considering the SSE subset of

residue, ANOLEA clearly outperforms ProsaII (90% success

versus 50%). The good performance obtained with of the SSE

subset of residue comes from its ability to limit the impact of the

high variability inherent to homology modeling techniques.

These data suggest that the conformation of a SSE in its local

protein environment does correspond to a local minimum of its

free energy. Although this result is somewhat intuitive, it is not an

universal property; the conformation of particular regions of a

protein might be constrained by the rest of the fold so that the

minimum free energy conformation of the total protein results in

SSE conformations that are driven away from their local minima.

Experimental evidences also support this idea; pieces of a cleaved

protein can recombine via non covalent interactions to form a

structure with properties very similar to the native ones, while the

separated fragments alone are devoid of any structure and

function [36,37]. In the case of the bovine RNAse S [36], which

shares a common fold with the EDN test case that was optimized,

the fragment is a stretch of 20 residues at the N-terminal part of

the protein containing an 8 residues long helix flanked by two

loops. This helix of the RNAse S fragment corresponds to the helix

1 of the EDN test case. Additional experiments on RNAse S have

also shown that even after the deletion of 5 loop residues in the C-

terminal part of the fragment, the complex still conserves its

function and stability [38]. The same observation was reported for

the staphylococcal nuclease [37], where the protein is cleaved in a

first 43 residues fragment containing 4 strands and a second 100

residues fragment (with 4 strands and 3 helices). As stated by

Anfinsen et al. [39], ‘‘the cleavages and deletions do not destroy the

geometric ‘‘sense’’ of the chain’’. These observations suggest that the

interaction between secondary structure elements and their local

environment is determinant for the stability of a protein. In our

approach, the success of the SSE predictor compared to All and ROI

predictors comes as an illustration of this general principle.

Conclusions
The alignment between a target and its template is a current

bottleneck in homology modeling approaches, and methodological

improvements are needed to overcome this limitation, especially

Figure 6. Optimization of the ANOLEA/SSE Local predictor
specificity. The highest specificity is attained for an inter-residue
distance cut-off of all pairs of heavy atoms of 4 Å as deduced from the
scan by step of 0.5 Å from 2 to 6 Å for all the test cases. ANOLEA/SSE
Local predictor scores for 1flp helix1 test case versus alignment offset to
the structural alignment and for different inter-residue distance of all
pairs of heavy atoms (from 2 Å (smallest sphere) to 6 Å (biggest
sphere)).
doi:10.1371/journal.pone.0002645.g006
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when sequence identity is low. Although energy-based methods

are widely used to tackle this problem, they are currently limited

by their accuracy. This study shows that a small number of high-

quality, all atom, and minimized models are sufficient to reliably

evaluate a single alignment when using a sensitive and accurate

scoring function. The reliability of the prediction is greatly

enhanced by considering only the SSE to optimize and its

interaction with residues of adjacent SSEs only, neglecting the

Figure 7. ANOLEA-based predictors’ values distribution for the three different residues selections. A hundred models of 1flp helix1 test
case are superimposed. Only parts of the protein involved in each selection are represented and the corresponding predictor values distribution are
shown. The SSE in the ROI is represented in red. A, Predictor ANOLEA/All. B, Predictor ANOLEA/ROI Local. C, Predictor ANOLEA/SSE Local. The black
and gray colored histograms represent the predictors values distributions for the lowest predictor scores (structural alignment, :seq = 0) and for the
second lowest one, respectively. The bin width is set equal to the quarter of the variance (10 for A, 5 for B and C).
doi:10.1371/journal.pone.0002645.g007
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loops, whose large structural variability adds noise and impairs the

prediction based on the total energy

The method proposed in this article is able to discriminate the

structural alignment from several alternatives. Its success mainly

depends on the template quality in the ROI and its surrounding. If

the orientation, length and environment of misaligned secondary

structure are similar between the target and the template, the

approach has shown to be very efficient. The proposed sampling

method explores the free energy landscape of a SSE with the

assumption that no gaps are present. A full alignment optimization

combining an enhanced variant of the ANOLEA/SSE predictor (for

scoring) and a genetic algorithm (for sampling) is currently under

investigation.
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