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Abstract

We formulate a noncooperative game to model competition for policyholders among
non-life insurance companies, taking into account market premium, solvency level, mar-
ket share and underwriting results. We study Nash equilibria and Stackelberg equilibria
for the premium levels, and give numerical illustrations.
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1 Introduction

Insurance pricing is a classical topic for both actuaries and academics. Standard actuarial
approaches for non-life insurance typically suggest to use expectation, standard deviation,
or quantiles of the underlying risk to determine a suitable premium. For an overview of
principles of premium calculation, see e.g. Teugels & Sundt (2004). The resulting (so-
called technical) premium is then often altered by marketing and management departments,
and actual deviations from the technical premium can be considerable. Affordability by
customers and mutualization across the portfolio are often used as arguments to justify that
policyholders do not necessarily pay the risk-based premium. But another important reason
for such deviations from the technical premium is the dependency on market conditions. In
order to study that factor, a market model is needed to study the economic interactions
between insurers and policyholders.

Basic economic models suggest that the equilibrium premium is the marginal cost, as
any upward deviation from this premium equilibrium will result in losing all the policies
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René Descartes, F-67000 Strasbourg, France
‡Department of Actuarial Science, Faculty of Business and Economics, University of Lausanne, UNIL-

Dorigny, 1015 Lausanne, Switzerland.

1



1 INTRODUCTION 2

in the next period. Other advanced economic models generally focus on moral hazard and
adverse selection. The Rothschild and Stiglitz’s model (see Rothschild & Stiglitz (1976))
deals with a utility-based agent framework where policyholders have private information on
their own risk. In this model, insurers provide a menu of contracts, i.e. pairs of premium and
deductible, from which policyholder can freely choose. At the equilibrium, individuals with
low risk aversion choose full coverage, whereas individuals with high risk aversion are more
attracted to partial coverage. Note that an equilibrium price may not exist if all insurers
offer just one type of contract. Picard (2009) considers an extension by allowing insurers to
offer participating contracts (such as mutual-type contracts). This feature guarantees the
existence of an equilibrium, which reveals the risk level of the policyholders. An important
area of applications for such models is health insurance, where moral hazard and adverse
selection play a major role, see e.g. Geoffard et al. (1998), Wambach (2000) and Mimra &
Wambach (2010). But, in practice customers do not move from one insurer to a cheaper
one as swiftly as economic models anticipate. The inertia of the insurance demand prevents
policyholders to always look for the cheapest insurer, see Smith et al. (2000) for a case study
in Australia. Accordingly, the customer behavior is much more complicated.

Moreover, the economic models mentioned above are not able to incorporate some in-
surance market features. Taylor (1986, 1987) deals with underwriting strategies of insurers
and provides first attempts to model optimal responses of an insurer to the market on a
given time horizon, see also Kliger & Levikson (1998), Emms et al. (2007), Moreno-Codina
& Gomez-Alvado (2008) for extensions. All these papers focus on one single insurer and in
that way assume that insurers are playing a game against an impersonal market player, so
that the market price is independent of their own actions.

In this paper, we want to further investigate the suitability of game theory for insurance
market modelling. The use of game theory in actuarial science has a long history dating
back to K. Borch and J. Lemaire, who mainly used cooperative games to model risk transfer
between insurer and reinsurer, see e.g. Section 3.1 of Brockett & Xia (1995) for a review.
Among earlier work using noncooperative game theory to model the non-life insurance mar-
ket, two kinds of models were pursued: the Bertrand oligopoly where insurers set premiums
and the Cournot oligopoly where insurers choose optimal values of insurance coverage. Pol-
born (1998) considers a Bertrand model in which rational consumers maximize their utility
function and for which the equilibrium premium is the expected loss. Rees et al. (1999)
extend this model by requiring insurers to announce both a premium and a capital value.
Under rational behavior, the premium equilibrium remains the expected loss and the capital
equilibrium avoids insolvency. Powers & Shubik (1998) propose a Cournot model with two
types of players. Policyholders state the amount that they are willing to pay, and insurers
state the amount of risk they are willing to underwrite. Based on a clearing-house system
to determine the market price, each player maximizes its expected utility. Assuming risk
neutral insurers and risk averse consumers, the resulting premium equilibrium is larger than
the expected loss. They also study scale effects of the number of insurers on the premium
equilibrium. Powers & Shubik (2006) include reinsurers as additional players and study the
optimal number of reinsurers in an insurance market.
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The present paper aims to model competition in non-life insurance markets with nonco-
operative game theory in order to extend the insurer-vs-market reasoning of Taylor (1986,
1987). We extend the Bertrand model of Rees et al. (1999) by considering a lapse model
and an aggregate loss model for policyholders. The lapse model describes the policyholder
behavior through a lapse probability which is a function of the premiums offered by the
insurers. We also consider a solvency constraint function for insurers. As a main result,
we show that incorporating competition when setting premiums leads to a significant devia-
tion of Nash and Stackelberg equilibria both from the actuarial premium and a one-insurer
optimized premium.

The rest of the paper is organized as follows. Section 2 develops the one-period non-
cooperative game of this paper. Existence and uniqueness of a premium equilibrium are
established. Section 3 presents numerical illustrations of the game. A conclusion and per-
spectives are given in Section 4.

2 A one-period model

Consider I insurers competing in a market of n policyholders with one-year contracts (n is
fixed). The policyholders are assumed to react to price changes (either stay with the present
insurer or switch to one of the competitors), but do not have any other influence on the
premium level (which is a realistic assumption, in particular for personal lines of business
such as compulsory third-party motor liability). In view of the one-year time horizon and the
randomness of claim sizes, this model focuses on non-life insurance products (i.e. products
for which the claim event is not linked to the life of the policyholder).

The “game” for insurers is to set the premium for which policies are offered to the
policyholders. Let (x1, . . . , xI) ∈ RI be a price vector, with xj representing the premium
of Insurer j. Once the premium is set by all insurers, the policyholders choose to renew or
to lapse from their current insurer. Then, insurers pay occuring claims during the coverage
year. At the end of the period, underwriting results are determined, and the insurer capital is
updated: some insurers may be bankrupt. As we deal with a one-period model, for simplicity
we do not consider investment results.

In the next subsections, we present the four components of the game: (i) a lapse model,
(ii) a loss model, (iii) an objective function and (iv) a solvency constraint function. These
four components are critical factors for the analysis of the non-life insurance market, see e.g.
IASB (2008). In the sequel, a subscript j ∈ {1, . . . , I} will always denote an insurer index,
whereas a subscript i ∈ {1, . . . , n} denotes policyholder index. In the sequel, “insurer” is
used when referring to players of the insurance game.
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2.1 Lapse model

In this subsection, we present our lapse model which is designed as a compromise between re-
flecting the policyholders’ behavior in a reasonable way, yet keeping mathematical tractabil-
ity. Let nj be the initial portfolio size of Insurer j (such that

∑I
j=1 nj = n). It seems natural

that the choice of policyholders for an insurer is highly influenced by the choice of the pre-
vious period. We assume that the dispatch (among the I insurers) of the nj policyholders of
Insurer j follows an I-dimensional multinomial distributionMI(nj, pj→(x)) with probability
vector pj→(x) = (pj→1(x), . . . , pj→I(x)). The probability pj→k(x) to move from Insurer j to
Insurer k naturally depends on the price vector x, (concretely, the difference of premiums).
Empirically, the probability to lapse pj→k(x) (with k 6= j) is generally much lower than the
probability to renew pj→j(x). To our knowledge, only the UK market shows lapse rates
above 50%, cf. Dreyer (2000).

In the economics literature, pj→k is considered in the framework of discrete choice models.
In the random utility maximization setting, McFadden (1981) or Anderson et al. (1989)
propose multinomial logit and probit probability choice models. In this paper, we choose
a multinomial logit model, because of its simplicity (the probit link function, based on
the multivariate normal distribution, would not significantly change the shape of the lapse
function). Working with unordered choices, we arbitrarily set the insurer reference category
for pj→k to j, the current insurer. We define the probability for a customer to go from insurer
j to k given the price vector x by the multinomial logit model

pj→k(x) =


1

1+
∑
l6=j

efj(xj,xl)
if j = k,

efj(xj,xk)

1+
∑
l6=j

efj(xj,xl)
if j 6= k,

(1)

where the sum is taken over the set of insurers {1, . . . , I} and fj is a price-sensitivity function.
We consider two types of price functions

f j(xj, xl) = µ̄j + ᾱj
xj
xl

and f̃j(xj, xl) = µ̃j + α̃j(xj − xl). (2)

The first function f j assumes a price-sensitivity according to the ratio of proposed premium

xj and competitor premium xl, whereas f̃j works with the premium difference xj − xl.
Parameters µj, αj represent a base lapse level and price-sensitivity, respectively. We assume
that insurance products display positive price elasiticity of demand αj > 0. One can check
that

∑
k pj→k(x) = 1.

Equation (1) can be rewritten as

pj→k(x) = pj→j(x)
(
δjk + (1− δjk)efj(xj ,xk)

)
,

with δij denoting the Kronecker delta. It is difficult to derive general properties of the
distribution of a sum of binomial variables with different probability parameters, except
when the size parameters nj are reasonably large, in which case the normal approximation
is appropriate.
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The portfolio size Nj(x) of insurer j for the next period is a random variable determined
by the sum of renewed policies and (new) policyholders coming from other insurers. Hence,
Nj(x) is a sum of I independent binomial variables (Bkj)k with parameters nk, pk→j(x)

Nj(x) = Bjj(x) +
I∑

k=1,k 6=j

Bkj(x). (3)

This assumption is in contrast to the standard models in classical ruin theory, where the
portfolio size is assumed constant over time (see e.g. Asmussen & Albrecher (2010) for a
recent survey and Malinovskii (2010) for an attempt to have a premium-dependent portfolio
size). With this insurer choice model, the expected portfolio size of insurer j reduces to

E (Nj(x)) = nj × pj→j(x) +
∑
l 6=j

nl × pj→k(x).

2.2 Loss model

Let Yi be the aggregate loss of policy i during the coverage period. We assume no adverse
selection among policyholders of any insurers, i.e. Yi are independent and identically dis-
tributed (i.i.d.) random variables, for all i = 1, . . . , n. Let us assume a simple frequency –
average severity loss model

Yi =

Mi∑
l=1

Zi,l,

where the claim number Mi is Policyholder i. The claim severities (Zi,l)l are i.i.d. as some
generic random variable Z. The aggregate claim amount for Insurer j is then

Sj(x) =

Nj(x)∑
i=1

Yi =

Nj(x)∑
i=1

Mi∑
l=1

Zi,l,

where Nj(x) is the portfolio size defined in Equation (3). We consider two claim number
distributions: (i) Mi follows a Poisson distribution P(λ) and (ii) Mi follows a negative
binomial distribution NB(r, p). These instances of the frequency – average severity model

are such that the aggregate claim amount Sj(x) =
∑Nj(x)

i=1 Yi is still a compound distribution
of the same kind, since Yi are assumed i.i.d. random variables. Hence, the aggregate claim
amount Sj(x) of Insurer j is a compound distribution

Sj(x) =

M̃j(x)∑
l=1

Zl,

where all claim severities Zl
i.i.d.∼ Z and the claim number M̃j(x) follows either a Poisson

distribution P(Nj(x)λ) or a negative-binomial distribution NB(Nj(x)r, p). In the numerical
applications, these two loss models are denoted PLN and NBLN, respectively. For the
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distribution of Z, we choose the lognormal distribution, which is due to its heavy-tailedness
and at the same time pleasant statistical properties is a popular modeling assumption in
many lines of non-life insurance. This choice is by no means crucial, as any other can be
handled in an analogous way.

2.3 Objective function

In the two previous subsections, we presented two components of the insurance markets: the
lapse model (how policyholders react to premium changes) and the loss model (how policy-
holders face claims). We now turn our attention to the underwriting strategy of insurers,
i.e. on how they set premiums.

In Section 2.1, we assumed that price elasticity of demand for the insurance product is
positive. Thus, if the whole market underwrites at a loss, any actions of a particular insurer
to get back to profitability will result in a reduction of his business volume. This has two con-
sequences for the choice of the objective function: (i) it should involve a decreasing demand
function of price xj given the competitors price vector x−j = (x1, . . . , xj−1, xj+1, . . . , xI) and
(ii) it should depend on an assessment of the insurer break-even premium πj per unit of
exposure.

The parameter πj corresponds to the estimated mean but depends on the assessment of
loss expectation by insurer j. We thus define πj as

πj = ωjaj,0 + (1− ωj)m0,

where aj,0 is the actuarial premium based on the past loss experience of insurer j, m0 is the
market premium, available for instance, via rating bureaus or through insurer associations
and ωj ∈ [0, 1] is the credibility factor of insurer j.∗ ωj reflects the confidence of insurer j in
its own loss experience: the closer to 1, the more confident insurer j is. Note that πj takes
into account expenses implicitly via the actuarial and the market premiums.

We choose the demand function as

Dj(x) =
nj
n

(
1− βj

(
xj

mj(x)
− 1

))
, (4)

where βj > 0 is the elasticity parameter and mj(x) is a market premium proxy. The demand
Dj(x) is not restricted to [0, nj/n], and thus Dj targets both renewal and new business. In
this form, Dj(x) approximates the expected market share E (Nj(x)) /n presented in Section
2.1. As the elasticity parameter βj is positive, a premium increase (of insurer j) will result
in a decrease of the demand for insurance. The market proxy used in Equation (4) is the

∗Rating bureaus or rating agencies are organizations collecting statistical data from insurers in order to
publish market information both for insurers and policyholders. The credibility factor is the weight given to
individual loss experience in contrast to collective loss data.
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mean price of the other competitors

mj(x) =
1

I − 1

∑
k 6=j

xk.

The market proxy aims to assess other insurer premiums without specifically targeting one
competitor. It can be interpreted as the premium of an ideal medium competitor. Conse-
quently, Insurer j typically does not target the cheapest, the most expensive or the leader
insurers.

Now we can state our objective function. We suppose that Insurer j maximizes the
expected profit of next year policies which we here define in the multiplicative form

Oj(x) =
nj
n

(
1− βj

(
xj

mj(x)
− 1

))
(xj − πj) , (5)

i.e. the product of the demandDj and the expected profit per policy, representing a company-
wide expected profit. Thus, maximising the objective function Oj leads to a trade-off between
increasing premium to favour higher projected profit margins and decreasing premium to
defend the current market share. Note that Oj has the nice property to be infinitely differ-
entiable with respect to x.

2.4 Solvency constraint function

Another key feature of the model is a solvency constraint the goal of which is to require
insurers to hold a certain amount of capital in order to protect policyholders against adverse
collective claim experience. Therefore, in addition to maximizing a certain objective function,
insurers must satisfy a solvency constraint imposed by the regulator. A reasonable criterion
to find the minimum capital requirement is linked to deviations of the aggregate losses from
its expected value, concretely the difference of a high-level quantile and the mean of the loss
distribution. For simplicity, this quantity is supposed to be a linear function of the standard
deviation of the loss distribution. In practice, the solvency capital is also required on a
prospective basis; we take here the simplifying assumption to use only the in-force policy
number. Thus, we define the solvency constraint function as

g1j (xj) =
Kj + nj(xj − πj)(1− ej)

kσ(Y )
√
nj

− 1, (6)

where k is the solvency coefficient chosen to approximate a 99.5% quantile and ej denotes
the expense rate. The numerator corresponds to the sum of the current capital Kj and the
expected profit on the in-force portfolio, whereas the denominator approximates the required
capital. The constraint g1j (x) ≥ 0 is equivalent to Kj +nj(xj −πj)(1− ej) ≥ kσ(Y )

√
nj, but

g1j is normalized with respect to capital, providing better numerical stability. In A, we give
details about the choice of the constant k.
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In addition to the solvency constraint, we need to impose bounds on the possible pre-
mium. A first choice could be simple linear constraints as xj − x ≥ 0 and x− xj ≥ 0, where
x and x represent the minimum and the maximum premium, respectively. However, the
following equivalent reformulation is numerically more stable:

g2j (xj) = 1− e−(xj−x) ≥ 0 and g3j (xj) = 1− e−(x−xj) ≥ 0.

The bounds x and x could for instance be justified by a prudent point of view of a government
regulator. In the sequel, we set x = E (Y ) /(1 − emin) < x = 3E (Y ), where emin is the
minimum expense rate.

Summarizing, the constraint function gj(xj) = (glj(xj))1≤l≤3 for Insurer j is

{xj, gj(xj) ≥ 0} =
{
xj ∈ [x, x], Kj + nj(xj − πj)(1− ej) ≥ k995σ(Y )

√
nj
}
. (7)

2.5 Solution concepts

We consider two solution concepts for our game: the Nash equilibrium for which it is assumed
that insurer actions are taken simultaneously, and the Stackelberg equilibrium for which
actions take place sequentially with a leader, see e.g. Fudenberg & Tirole (1991), Osborne
& Rubinstein (2006).

Definition (Nash equilibrium). For a game with I insurers, with payoff functions Oj and
action set Xj, a Nash equilibrium is a vector x? = (x?1, . . . , x

?
I) such that for all j = 1, . . . , I,

x?j solves the subproblem
sup
xj∈Xj

Oj(xj, x
?
−j).

where xj and x−j denote the action of insurer j and the other insurers’ actions, respectively.
The action set Xj of Insurer j may be parametrized as Xj = {xj, gj(xj) ≥ 0}.

A Nash equilibrium can hence be interpreted as a point at which no insurer has an
incentive to deviate, given the actions of the other insurers. Now, we turn to the definition
of a Stackelberg equilibrium. For simplicity, we assume there is one unique leader (Insurer
1) and insurers j ∈ {2, . . . , I} are followers.

Definition (Stackelberg equilibrium). For a game with one leader and I − 1 followers, with
payoff functions Oj and action set Xj, a Stackelberg equilibrium is a vector x? = (x?1, . . . , x

?
I)

such that x?1 solves the problem

sup
x1∈X1

O1(x1, x
?
−1(x1))

and x?−1(x1) is a Nash equilibrium for the subgame with the I − 1 followers and given action
x1 for insurer 1.
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2.6 Game sequence

For our game with objective functions Oj in (5) and constraint functions gj in (7), the game
sequence is given as follows

(i) Insurers set their premium according to a Nash or a Stackelberg equilibrium x?.

(ii) Policyholders randomly choose their new insurer according to probabilities pk→j(x
?):

we get Nj(x
?).

(iii) For the one-year coverage, claims are random according to the frequency –average
severity model relative to the portfolio size Nj(x

?).

(iv) Finally the underwriting result is determined by UWj(x
?) = Nj(x

?)x?j(1− ej)−Sj(x?)
and new capital is Kj +UWj(x

?), where ej denotes the expense rate and Kj the initial
capital value.

2.7 Properties of the premium equilibrium

In this subsection, we investigate properties of the premium equilibrium. We start by showing
existence and uniqueness of a Nash equilibrium. Then, we focus on the sensitivity analysis
on model parameters of such an equilibrium. Finally, we study the existence of a Stackelberg
equilibrium.

Proposition 2.1. The insurance game with I insurers whose objective functions and sol-
vency constraint functions are defined in Equations (5) and (7), respectively, admits a unique
Nash premium equilibrium.

Proof. The strategy set is R = [x, x]I , which is nonempty, convex and compact. Given
x−j ∈ [x, x], the function xj 7→ Oj(x) is a quadratic function with second-degree term
−βjx2j/mj(x) < 0 up to a constant nj/n. Thus, this function is (strictly) concave. Moreover,
for all insurers, the constraint functions g1j are linear functions, hence also concave. By
Theorem 1 of Rosen (1965), the game admits a Nash equilibrium, i.e. existence is guaranteed.
By Theorem 2 of Rosen (1965), uniqueness is verified if we have the following inequality for
all x, y ∈ R,

I∑
j=1

rj(xj − yj)∇xjOj(y) +
I∑
j=1

rj(yj − xj)∇xjOj(x) > 0, (8)

for some r ∈ RI with strictly positive components ri > 0. As the function xj 7→ Oj(x)
is a strictly concave and differentiable function for all x−j, we have ∇xjOj(x)(yj − xj) >
Oj(y)−Oj(x) and equivalently ∇xjOj(y)(xj − yj) > Oj(x)−Oj(y). Thus,

(xj − yj)∇xjOj(y) + (yj − xj)∇xjOj(x) > Oj(y)−Oj(x) +Oj(x)−Oj(y) = 0.

Taking r = (1, . . . , 1), Equation (8) is verified.
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Proposition 2.2. Let x? be the Nash premium equilibrium of the insurance game with I
insurers. For each Insurer j, the insurer equilibrium x?j with x?j ∈]x, x[ depends on the
parameters in the following way: it increases with break-even premium πj, solvency coefficient
k995, loss standard deviation σ(Y ), expense rate ej and decreases with sensitivity parameter
βj and capital Kj. When x?j = x or x, the premium equilibrium is independent of those
parameters.

Proof. The premium equilibrium x?j of insurer j solves the necessary Karush-Kuhn-Tucker
conditions:

∇xjOj(x
?) +

∑
1≤l≤3

λj?l ∇xjg
l
j(x

?
j) = 0,

0 ≤ λj?, gj(x
?
j) ≥ 0, gj(x

?
j)
Tλj? = 0,

(9)

where λj? ∈ R3 are Lagrange multipliers, see e.g. Facchinei & Kanzow (2009). In the last
part of equation (9), gj(x

?
j)
Tλj? = 0 is the complementarity equation implying that the lth

constraint glj is either active (glj(x
?
j) = 0) or inactive (glj(x

?
j) > 0), but λj?l = 0.

We suppose that x?j ∈]x, x[. Hence, λj?2 = λj?3 = 0. There are two cases: either the
solvency constraint g1j is active or not. Let us assume the solvency constraint is inactive.
Insurer j’s premium equilibrium verifies ∇xjOj(x

?) = 0, i.e.

nj
n

(
1− 2βj

x?j
mj(x?)

+ βj + βj
πj

mj(x?)

)
= 0. (10)

Let xjy be the premium vector with the jth component equal to y, i.e. xjy = (x1, . . . , xj−1,
y, xj+1, . . . , xI). Given a parameter z on which we want to investigate the sensitivity, we
define the function F j

x as

F j
x(z, y) =

∂Oj

∂xj
(xjy, z),

where the objective function (also) depends on z. Equation (10) can be simply rewritten as
F j
x?(z, x?j) = 0.

By the continuous differentiability of F with respect to z and y and the fact that
F j
x(z, y) = 0 has at least one solution (z0, y0), we can invoke the implicit function theo-

rem, see e.g. Zorich (2000). So there exists a function ϕ defined in a neighborhood of (z0, y0)

such that F j
x(z, ϕ(z)) = 0 and ϕ(z0) = y0. Furthermore, if ∂F j

x

∂y
(z0, y0) 6= 0, the derivative of

ϕ is given by

ϕ′(z) = −
∂F j

x

∂z
(z, y)

∂F j
x

∂y
(z, y)

∣∣∣∣∣∣
y=ϕ(z)

.

In our case, we have

∂F j
x

∂y
(z, y) =

∂2Oj

∂x2j
(xjy, z) = −2αj

nj
nmj(x)

< 0.
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As a consequence, the sign of ϕ′ is simply

sign(ϕ′(z)) = sign

(
∂F j

x

∂z
(z, ϕ(z))

)
.

Let us consider z = πj. We have

∂F j
x

∂z
(z, y) =

njβj
nmj(x)

> 0.

Thus, the function πj 7→ x?j(πj) is increasing.

Let z be the sensitivity coefficient βj. We have

∂F j
x

∂z
(z, y) =

nj
n

(
−2βj

y

mj(x)
+ 1 +

πj
mj(x)

)
.

Using F j
x(z, ϕ(z)) = 0, it leads to

∂F j
x

∂z
(z, ϕ(z)) =

nj
n

−1

z
< 0.

Thus, the function βj 7→ x?j(βj) is decreasing. In such a case of an inactive constraint, the
premium equilibrium is independent of the initial portfolio size nj.

When the solvency constraint is active, the premium equilibrium x?j verifies g1j (x
?
j) = 0,

i.e.

x?j = πj +
k995σ(Y )

√
nj −Kj

nj(1− ej)
. (11)

Here, the implicit function theorem is not necessary since x?j does not depend on x?−j. We
deduce that x?j is an increasing function of πj, k995, σ(Y ), ej and a decreasing function Kj.

The function nj 7→ x?j(nj) is not necessarily monotone. Let z be nj. Differentiating
Equation (11) with respect to z, we get

ϕ′(z) =
1

z3/2(1− ej)

(
−kσ(Y )

2
+
Kj√
z

)
,

whose sign depends on the value of the other parameters.

Proposition 2.3. Let x? be the premium equilibrium of the insurance game with I insurers.
When no constraint functions are active, the premium equilibrium solves a linear system of
equations Mβx

? = v, where

Mβ =

 2β1 −1+β1
I−1 . . . −1+β1

I−1
. . .

−1+βI
I−1 . . . −1+βI

I−1 2βI

 and v =

β1π1...
βIπI

 .
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Proof. As, no constraint functions are active, if x? is a Nash equilibrium, x? must verify for
all j

∇xjOj(x
?) = 0⇔ 2βjx

? − (1 + βj)
1

I − 1

∑
k 6=j

x?k = βjπj.

The latter equation can be rewritten as Mβx = β ◦π. The matrix Mβ is diagonally dominant
if and only if for all j

|2βj| >
∑
k 6=j

∣∣∣∣−1 + βj
I − 1

∣∣∣∣⇔ βj > 1.

Having positive diagonal terms, Mβ is invertible, see e.g. Horn & Johnson (1990). Thus,
x? = M−1

β β ◦ π. In the special case where βj = β for all j, Mβ is a Toeplitz matrix.

Proposition 2.4. The insurance game with I insurers with objective function (5) and sol-
vency constraint function (7) admits a Stackelberg premium equilibrium.

Proof. By Proposition 2.1, the subgame for followers has a unique Nash equilibrium x?−1(x1)
for all x1 ∈ [x, x]. By the continuity of objective functions Oi and the strict concavity of
functions xi 7→ Oi(x), Berge’s maximum theorem (see e.g. Aubin (1998)) implies that the
function x1 7→ x?−1(x1) is continuous. Therefore, the leader game consists in maximizing
on the interval [x, x] the continuous function x1 7→ O1(x1, x

?
−1(x1)). Hence, the function

x1 7→ O1(x1, x
?
−1(x1)) attains its maximum on the interval [x, x].

3 Numerical illustration

All numerical applications are carried out with the R software, R Core Team (2012), cf.
B for computation details. We start by describing the reference parameters in Section 3.1
for which we give the Nash premium equilibrium in Section 3.2. Then, we continue with a
sensitivity analysis in Section 3.3 and an analysis of the distribution of the capital at the
end of the game in Section 3.4 for the Nash premium equilibrium. Finally, we compare the
results with the Stackelberg equilibrium in Section 3.5.

3.1 Reference parameters

We consider a game with three insurers operating a 10 000-customer insurance market, i.e.
n = 10000, I = 3. Insurer initial portfolio sizes are (n1, n2, n3) = (4500, 3200, 2300). The
portfolio size is chosen such that Insurer 1 is the leader, Insurer 2 the challenger and Insurer
3 the outsider with 45%, 32% and 23% market shares, respectively.

We consider the two types of loss models presented in Section 2.2, i.e. (i) PLN loss model
such that E (Y ) = 1, σ(Y ) = 4.472 and (ii) NBLN loss model such that E (Y ) = 1, σ(Y ) =
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10.488. They differ only on the assumption of the frequency distribution (and not on the
severity distribution). For these two models, we have a coefficient of variation of the loss
distribution of 4.472 and 10.488, respectively (which are reasonable magnitudes for practical
purposes).

The weight parameters ωj used in the computation of the insurer break-even premium
are ω = (1/3, 1/3, 1/3). We choose the actuarially based premiums āj,0’s and the market
premium m̄0 given in Table 1. Table 1 also gives the break-even premium πj. Since the
objective functions coincide between the two loss models, we expect premium equilibria to
have similar values for both loss models.

P1 P2 P3 market P1 P2 P3
PLN/NBLN 1.10 1.15 1.05 1.10 1.10 1.1166 1.0833

āj,0 m̄0 πj

Table 1: Premium parameters: āj,0, m̄0, πj

Before giving the sensitivity parameters βj, we present the two lapse models used. For
customer behavior, we have two parameters µj, αj per insurer given a price-sensitivity func-
tion, see Equation 2.

P1 P2 P3
µ̃j -2.890 -2.508 -2.209
α̃j 9.252 7.306 6.161
µ̄j -12.143 -9.814 -8.370
ᾱj 9.252 7.306 6.161

Table 2: Lapse parameters µ̄j, ᾱj, µ̃j, α̃j

In Table 2, we give the lapse parameters. Given x1 = (1, 1, 1) and x1.05 = (1.05, 1, 1),
lapse parameters are such that 1 − p1→1(x

1) = 10% and 1 − p1→1(x
1.05) = 15% for Insurer

1 (resp. 14% and 19% for Insurer 2 and 18% and 23% for Insurer 3). Such values of lapse
rates are close to actually observed lapse rates e.g. in continental Europe for private motor
lines of business. With these lapse parameters, the expected numbers of lost policies when
all insurers propose the same premium are 450.1, 448.0 and 414.0. In Figure 1, total lapse
rate functions (i.e. xj 7→ 1− pj→j(x)) are plotted on the interval [1, 3] for x−j = (1.5, 1.75).
The left-hand plot shows the total lapse rate function when using price-sensitivity function
f j and the right-hand plot for f̃j.

Price sensitivity parameters βj of objective functions are fitted using 1− βj(xj/mj(x)−
1) ≈ pj→j(x).With x1.05, we get βj = (1−pj→j(x))/0.05 and obtain (β1, β2, β3) = (3.0, 3.8, 4.6).
The remaining parameters are capital values and the expense rates. Capital values (K1, K2, K3)
are set such that the initial solvency coverage ratio is 133%. Expense rates are (e1, e2, e3) =
(15%, 15%, 15%).
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Figure 1: Total lapse rate functions

3.2 Benchmark results for Nash equilibrium

Since we consider two loss models (PLN, NBLN) and two price-sensitivity functions f j, f̃j, we
define in fact four sets of parameters, which differ on the loss model and the price-sensitivity
function. In Table 3, we report the vector of premium equilibria x? of the four models in the
first three columns. In addition to x?, we also give the expected difference ∆j in portfolio
size (negative means Insurer j expects to lose customers at x?) and the estimated solvency
coverage ratio ρj (recalling that the initial solvency coverage ratio is 133%) given by

∆j = E (Nj(x
?))− nj, ρj =

Kj + E (Nj(x
?)) (x?j − πj)(1− ej)

kσ(Y )
√

E (Nj(x?))
.

x?1 x?2 x?3 ∆1 ∆2 ∆3 ρ1 ρ2 ρ3
PLN-f̃j 1.544 1.511 1.471 -307.1 -10.58 317.7 3.524 2.993 2.729

PLN-f j 1.544 1.511 1.471 -256 -12.79 268.7 3.529 2.993 2.727

NBLN-f̃j 1.544 1.511 1.471 -307.1 -10.58 317.7 2.295 2.042 1.881

NBLN-f j 1.544 1.511 1.471 -256 -12.79 268.7 2.292 2.043 1.887

Table 3: Benchmark (Nash) premium equilibrium

The premium equilibrium vector x? is the same for the four different tested models.
We recall that a change in the loss model does not affect the objective function but only
the constraint function by changing the standard deviation σ(Y ) of the aggregate claim

distribution. Furthermore, as the parameters of price-sensitivity functions f j, f̃j are set with
the same procedures, the resulting price-sensitivity parameters βj are identical. Therefore,
having the same break-even parameters πj, we logically find that the premium equilibrium
is the same for the four tested models as long as the constraint functions are not active.
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However, effects of loss models on portfolio sizes and capital levels are strongly different.
With f̃j, any deviation from competitors’ premium is more heavily penalized than with f j.
The expected solvency coverage ratio also substantially differs between the two loss models,
while the impact of price-sensitivity functions is moderate.

3.3 Sensitivity analysis to parameters

In Tables 4 and 5, we perform a sensitivity analysis considering the NBLN-f̄j model as the
reference model. Table 4 reports the analysis with respect to capital (solvency coverage
ratios decrease by 60%) and price sensitvity parameter (all βj increase by 33%). Table 5
focuses on actuarially based premiums (all āj,0 increase by 33%), average market premium
(m̄0 increases by 33%) and credibility factors (all ωj increases by 33%). The results of this
sensitivity analysis are in line with Proposition 2.2. We observe that any slight difference in
one component of premium equilibrium x? can lead to very different situations of solvency
for all insurers. For instance, in Table 4 with the capital down scenario, an increase of the
premium equilibrium implies a fall in the expected solvency coverage ratio.

x?1 x?2 x?3 ∆1 ∆2 ∆3 ρ1 ρ2 ρ3
base 1.544 1.511 1.471 -256 -12.79 268.7 2.292 2.043 1.887
capital down 1.561 1.527 1.505 -212.4 22.56 189.8 1.423 1.191 1.105

x?1 x?2 x?3 ∆1 ∆2 ∆3 ρ1 ρ2 ρ3
base 1.544 1.511 1.471 -256 -12.79 268.7 2.292 2.043 1.887
price sens. up 1.406 1.385 1.353 -196.7 -25.26 222 2.002 1.819 1.704

Table 4: Sensitivity to capital and price-sensitivity parameters

x?1 x?2 x?3 ∆1 ∆2 ∆3 ρ1 ρ2 ρ3
base 1.544 1.511 1.471 -256 -12.79 268.7 2.292 2.043 1.887
actuarial up 1.714 1.678 1.632 -256.4 -20.48 276.9 2.393 2.117 1.958

x?1 x?2 x?3 ∆1 ∆2 ∆3 ρ1 ρ2 ρ3
base 1.544 1.511 1.471 -256 -12.79 268.7 2.292 2.043 1.887
market up 1.884 1.841 1.796 -255.6 -5.798 261.4 2.494 2.202 2.021

x?1 x?2 x?3 ∆1 ∆2 ∆3 ρ1 ρ2 ρ3
base 1.544 1.511 1.471 -256 -12.79 268.7 2.292 2.043 1.887
credibility up 1.544 1.513 1.469 -256.7 -25.59 282.3 2.292 2.038 1.89

Table 5: Sensitivity to break-even premium

3.4 Loss uncertainty analysis

In Figure 2, we plot the histograms of the capital of Insurer 3 at the end of the game.
We consider two of the four models of Table 3: PLN-f j and NBLN-f j models. In such
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a setting, the premium equilibrium is given by x? = (1.544, 1.511, 1.471). In both Figures
2a and 2b, the solid vertical line gives the initial capital value K3. We observe the huge
difference of capital values. The solvency in the NBLN case is much weaker (with 11.4% of
sample capital values below the initial value) than the PLN case (with 0.2%). For the PLN
case, the premium equilibrium x? seems rather unfair compared to the actuarial premium.
In practice, two scenarios seem natural: (i) some customers may leave the market (because
they cannot afford such a high premium) and may start a mutual fund or stay uninsured,
(ii) no customer notices this gap for the joy of insurers.

(a) PLN-f̄j model (b) NBLN-f̄j model

Figure 2: Histograms of capital levels (sample size of 5000)

3.5 Comparison with Stackelberg equilibrium

Table 6 reports the Stackelberg premium equilibrium. Compared to the Nash equilibrium
of Table 3 (where x? = (1.544, 1.511, 1.471), the equilibrium value is significantly higher for
the Stackelberg equilibrium. We also notice that there is a small difference in terms of the
loss model in Table 6, which does not appear in Table 3. In terms of premium ranking,
Insurer 1 (the leader) is still higher than competitors, and Insurer 3 asks the cheapest
premium at the Stackelberg equilibrium. Regarding the robustness of the premium value,
the Stackelberg equilibrium is notably higher than the pure premium E (Y ) = 1 and also
higher than the Nash equilibrium. Finally, the computation complexity is higher for the
Stackelberg equilibrium since we carry out a double-level optimization when minimizing the
function x1 7→ O1(x1, x

?
−1(x1)).

A sensitivity analysis with respect to the initial portofolio size nj has been performed by
considering two scenarios: (n1, n2, n3) = (3500, 3200, 3300) and (n1, n2, n3) = (5500, 2700, 1800).
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x?1 x?2 x?3 ∆1 ∆2 ∆3 ρ1 ρ2 ρ3
PLN-f̃j 1.740 1.598 1.554 -1378 389 989.1 4.265 3.408 3.128

PLN-f j 1.740 1.598 1.554 -783.1 219.4 563.7 4.374 3.388 3.073

NBLN-f̃j 1.740 1.598 1.554 -1378 389 989.1 2.737 2.175 1.973

NBLN-f j 1.740 1.598 1.554 -783.1 219.4 563.7 2.707 2.184 1.996

Table 6: Stackelberg premium equilibrium

Capital levels Kj are determined by using the same coverage ratio ρi. The Stackelberg equi-
librium of Table 6 remains unchanged.

3.6 Sensitivity to the number of insurers

Our final numerical experiment illustrates the sensitivity of Nash premium and Stackel-
berg premium with respect to the number I of insurers. For the NBLN loss model and
the f j sensitivity function, we consider a scenario with 5 insurers by “duplicating” In-
surer 2 and Insurer 3. For instance, the initial portfolio sizes are (n1, n2, n3, n4, n5) =
(4500, 3200, 3200, 2300, 2300). Results are given in Table 7. The increase of insurers in
the market reduces the value of the equilibrium, both for Nash and Stackelberg equilibria.
However, the ranking remains the same as the leader (Insurer 1) still asks the most expensive
premium and Insurer 3 the cheapest. For the Stackelberg equilibrium, the leader premium
(Insurer 1) is significantly reduced by the addition of two followers (from 1.740 to 1.600),
while the reduction is moderate for followers. Note that results for 5 players still hold when
the total number of policyholers is renormalize to 10’000 (as in the 3-player game).

j 1 2 3 4 5
(base) Nash eq. 1.544 1.511 1.471

(base) Stack. eq. 1.740 1.598 1.554
Nash eq. 1.531 1.494 1.494 1.450 1.450

Stack. eq. 1.600 1.501 1.501 1.498 1.498

Table 7: Comparison of equilibria for 3 and 5 insurers

4 Conclusion

This paper assesses the suitability of noncooperative game theory for insurance market mod-
elling. We extend the one-insurer models of Taylor (1986, 1987) based on optimal control the-
ory and the subsequent extensions. We also enrich the Bertrand model of Polborn (1998) by
refining customer behavior and loss assumptions. Furthermore, the proposed game-theoretic
approach contributes to the growing literature of insurance customer behavior modelling,
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e.g. Onn & Mercer (1998), Dimitriyadis & Tektas (1998), Yu et al. (2009), Loisel & Mil-
haud (2011), Leung & Kwok (2012), Takagoshi & Matsubayahi (2013), Chen et al. (2013).
The approach proposed in this paper gives a first indicator of the effect of competition on
the insurers’ solvency. The proposed game models a rational behavior of insurers in setting
premiums taking into account other insurers. The ability of an insurer to sell contracts is
essential for its survival. In terms of equilibrium concepts, the Nash equilibrium is a natural
concept when there is no strong leadership, e.g. in private lines, whereas the Stackelberg
equilibrium is relevant for lines manifesting oligopolistic tendencies, typically corporate lines.
Numerical illustrations show that the Stackelberg premiums are higher than the Nash premi-
ums and that these premium levels become lower when the number of insurers in the market
increases.

The game can be extended in various directions. A natural next step is to consider
adverse selection among policyholders, since insurers do not propose the same premium to
all customers. A second extension is to model investment results as well as loss reserves and
reinsurance treaties. Furthermore, in practice, insurers play an insurance game over several
years, gather new information on incurred losses, available capital and competition level. In
addition from being dynamic, the market premium shows patterns of cycles with hard and
soft phases, known as insurance market cycles, see e.g. Weiss (2007) for a recent survey.
Hence, a dynamic game model for insurance markets to explain the occurrence of market
cycles could be of particular interest. This will be pursued in a future study.
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Pasteur de Strasbourg.

Dutang, C. (2012a), A survey of GNE computation methods: theory and algorithms. Work-
ing paper, IRMA.

Dutang, C. (2012b), GNE: computation of Generalized Nash Equilibria. R package version
0.97.

Emms, P., Haberman, S. & Savoulli, I. (2007), ‘Optimal strategies for pricing general insur-
ance’, Insurance: Mathematics and Economics 40(1), 15–34.

Facchinei, F. & Kanzow, C. (2009), Generalized Nash equilibrium problems. Updated version
of the ’quaterly journal of operations research’ version.

Fudenberg, D. & Tirole, J. (1991), Game Theory, The MIT Press.

Geoffard, P. Y., Chiappori, P.-A. & Durand, F. (1998), ‘Moral hazard and the demand for
physician services: First lessons from a French natural experiment’, European Economic
Review 42(3-5), 499–511.

Horn, R. A. & Johnson, C. R. (1990), Matrix Analysis, Cambridge University Press.

IASB (2008), Non-life insurance contracts, in ‘IASB Meeting, Insurance Working Group’.

Kliger, D. & Levikson, B. (1998), ‘Pricing insurance contracts - an economic viewpoint’,
Insurance: Mathematics and Economics 22(3), 243–249.

Leung, C. & Kwok, Y. (2012), ‘Patent-investment games under asymmetric information’,
European Journal of Operational Research 223(2), 441–451.

Loisel, S. & Milhaud, X. (2011), ‘From deterministic to stochastic surrender risk models: Im-
pact of correlation crises on economic capital’, European Journal of Operational Research
214(2).

Malinovskii, V. K. (2010), Competition-originated cycles and insurance companies. work
presented at ASTIN 2009.



REFERENCES 20

McFadden, D. (1981), Econometric Models of Probabilistic Choice, in ‘Structural Analysis
of Discrete Data with Econometric Applications’, The MIT Press, chapter 5.

Mimra, W. & Wambach, A. (2010), A Game-Theoretic Foundation for the Wilson Equilib-
rium in Competitive Insurance Markets with Adverse Selection. CESifo Working Paper
No. 3412.

Moreno-Codina, J. & Gomez-Alvado, F. (2008), ‘Price optimisation for profit and growth’,
Towers Perrin Emphasis 4, 18–21.

Onn, K. P. & Mercer, A. (1998), ‘The direct marketing of insurance’, European Journal of
Operational Research 109(3), 541–549.

Osborne, M. & Rubinstein, A. (2006), A Course in Game Theory, Massachusetts Institute
of Technology.

Picard, P. (2009), Participating insurance contracts and the Rothschild-Stiglitz equilibrium
puzzle. working paper, Ecole Polytechnique.

Polborn, M. K. (1998), ‘A model of an oligopoly in an insurance market’, The Geneva Paper
on Risk and Insurance Theory 23(1), 41–48.

Powers, M. R. & Shubik, M. (1998), ‘On the tradeoff between the law of large numbers and
oligopoly in insurance’, Insurance: Mathematics and Economics 23(2), 141–156.

Powers, M. R. & Shubik, M. (2006), ‘A “square- root rule” for reinsurance’, Cowles Foun-
dation Discussion Paper No. 1521. .

R Core Team (2012), R: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Austria.
URL: http://www.R-project.org

Rees, R., Gravelle, H. & Wambach, A. (1999), ‘Regulation of insurance markets’, The Geneva
Paper on Risk and Insurance Theory 24(1), 55–68.

Rosen, J. B. (1965), ‘Existence and Uniqueness of Equilibrium Points for Concave N-person
Games’, Econometrica 33(3), 520–534.

Rothschild, M. & Stiglitz, J. E. (1976), ‘Equilibrium in competitive insurance markets: An
essay on the economics of imperfect information’, The Quarterly Journal of Economics
90(4), 630–649.

Smith, K., Willis, R. & Brooks, M. (2000), ‘An analysis of customer retention and insurance
claim patterns using data mining: a case study’, The Journal of the Operational Research
Society 51(5), 532–541.

Takagoshi, N. & Matsubayahi, N. (2013), ‘Customization competition between branded
firms: continuous extension of product line from core product’, European Journal of Op-
erational Research 225(2), 337–352.



A DETAILS ON THE SOLVENCY CONSTRAINT FUNCTION 21

Taylor, G. C. (1986), ‘Underwriting strategy in a competitive insurance environment’, In-
surance: Mathematics and Economics 5(1), 59–77.

Taylor, G. C. (1987), ‘Expenses and underwriting strategy in competition’, Insurance: Math-
ematics and Economics 6(4), 275–287.

Teugels, J. & Sundt, B. (2004), Encyclopedia of Actuarial Science, Vol. 1, John Wiley &
Sons.

Wambach, A. (2000), ‘Introducing heterogeneity in the Rothschild-Stiglitz model’, Journal
of Risk and Insurance 67(4), 579–591.

Weiss, M. A. (2007), ‘Underwriting cycles: a synthesis and further directions’, Journal of
Insurance Issues 30(1), 31–45.

Yu, Y., Huang, G. & Liang, L. (2009), ‘Stackelberg game-theoretic model for optimizing
advertising, pricing and inventory policies in vendor managed inventory production supply
chains’, Computers & Industrial Engineering 57(1), 368–382.

Zorich, V. (2000), Mathematical Analysis I, Vol. 1, Universitext, Springer.

A Details on the Solvency constraint function

Currently, European insurers report their solvency margin in the Solvency I framework,
based on the maximum of a percentage of gross written premium and aggregate claim mean.
According to Derien (2010), a non-life insurer computes its solvency margin as

SM = max(18%×GWP, 26%× AC)×max(50%,AC net of reins/AC gross of reins),

where GWP denotes the gross written premium and AC the aggregate claim mean∗. Dis-
carding reinsurance, the Solvency I framework leads to a solvency margin

SM = max(9%×GWP, 13%× AC).

This approach is not really satisfactory, as it does not take into account the risk volality of
underwritten business. Since 2005, actuaries are well busy with the upcoming Solvency II
framework. In this new framework, the quantitative part leads to the computation of two
capital values, both based on the difference between a certain quantile and the mean of the
aggregate loss distribution. The solvency capital requirement (SCR) is based on the 99.5%-
quantile, whereas the minimum capital requirement (MCR) is based on the 85%-quantile.

Furthermore, if the solvency requirement is not fulfilled, in Solvency I, the regulator
response is immediate: depending on the insolvency severity, regulators can withdraw the

∗The percentages 18% and 26% are replaced respectively by 16% and 23% when the GWP exceeds 57.5
Meur or AC exceeds 40.3 Meur.
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authorisation to underwrite new business or even force the company to go run-off or to sell
part of its portfolio. In Solvency II, this happens only when the MCR level is not met. There
is a buffer between MCR and SCR where regulators impose some specific actions to help
returning to the SCR level.

In our game context, we want to avoid the simplistic Solvency I framework, but still want
to keep the tractablity for the SCR computation rule. We recall that the aggregate claim
amount is assumed to be a frequency – average severity model. Consider the aggregate claim
amount Sn =

∑n
i=1 Yi of n i.i.d. policies and denote by Q(n, q) its q-quantile function. We

approximate Q(n, q) by a bilinear function of n and
√
n as follows

Q(n, q) = E (Y )n+ kqσ(Y )
√
n, (12)

where the coefficient kq has to be determined and Y is the generic claim amount of a policy.
E (Y )n corresponds to the mean of Sn, while kqσ(Y )

√
n is related to the standard deviation

of Sn.

Three methods have been tested to compute the solvency coefficient kq: (i) a normal
approximation kNq = Φ−1(q), where Φ is the distribution function of the standard normal
distribution, (ii) a simulation procedure with sample size 105 to get kSq as the empirical
quantile and (iii) a Panjer recursion to compute the aggregate claim quantile kPq

∗. While the
normal approximation is based on the first two moments of the distribution only, simulation
and Panjer methods use assumptions on claim frequency and claim severity distributions,
see Section 2.2. We also need a policy number n. In Table 8, we report solvency coefficients
for n = 1000 policies.

prob q kNq kPq -PLN kPq -NBLN kSq -PLN kSq -NBLN

0.75 0.674 1.251 0.913 0.649 0.627
0.8 0.842 1.431 1.104 0.829 0.812
0.85 1.036 1.642 1.332 1.029 1.03
0.9 1.282 1.912 1.627 1.299 1.312
0.95 1.645 2.321 2.083 1.695 1.759
0.99 2.326 3.117 2.997 2.475 2.633
0.995 2.576 3.419 3.352 2.777 2.976

Table 8: Solvency coefficient k

Numerical experiments show that the normal approximation is less conservative for high
quantiles (i.e. kNq < kPq ) when the claim number follows a negative binomial distribution,
in contrast to the case of the Poisson distribution. Based on this study, we choose to
approximate quantiles at the level with coefficient k99.5 = 3.

∗See e.g. Theorem 12.4.3 of Bowers et al. (1997). Panjer recursion requires that the claim distribution is
discrete. So before using Panjer algorithm, we use a lower discretization of the lognormal claim distribution.
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B Computation details

The computation of Nash equilibria is based on a Karush-Kuhn-Tucker (KKT) reformula-
tion. We present briefly the problem reformulation and refer the interested readers to e.g.
Facchinei & Kanzow (2009) or Dutang (2012a). In our setting, we have I insurers and three
constraints for each of them. For each j of the I subproblems, the necessary KKT conditions
are

∇xjOj(x)−
∑

1≤m≤3

λjm∇xjg
m
j (xj) = 0,

0 ≤ λj ⊥ gj(xj) ≥ 0.

The inequality part is called the complementarity constraint. A sufficient condition for
a point satisfying the KKT conditions to be a generalized Nash equilibrium is that the
objective functions are pseudoconcave and a constraint qualification holds. We have seen
that objective functions are either strictly concave or pseudoconcave, whereas constraint
qualifications are always verified for linear constraints, or strictly monotone functions, see
Theorem 2 of Arrow & Enthoven (1961).

The reformulation proposed uses a complementarity function φ(a, b) to reformulate the
inequality constraints λj, gj(xj) ≥ 0 and λjTgj(xj) = 0. By definition, a complementarity
function is such that φ(a, b) = 0 is equivalent to a, b ≥ 0 and ab = 0. A typical example is
φ(a, b) = min(a, b) or φ(a, b) =

√
a2 + b2 − (a + b) called the Fischer-Burmeister function.

With this tool, the KKT condition can be rewritten as

∇xjLj(x, λ
j) = 0

φ.(λ
j, gj(xj)) = 0

,

where Lj is the Lagrangian function for the subproblem j and φ. denotes the component
wise version of φ. So, subproblem j reduces to solving a so-called nonsmooth equation.
In this paper, we use the Fischer-Burmeister complementarity function. This method is
implemented in the R package GNE of Dutang (2012b).


