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Abstract
Eradication of human immunodeficiency virus (HIV) in 
infected individuals is currently not possible because 
of the presence of the persistent cellular reservoir of 
latent infection. The identification of HIV latency bio
markers and a better understanding of the molecular 
mechanisms contributing to regulation of HIV expression 
might provide essential tools to eliminate these latently 
infected cells. This review aims at summarizing gene 
expression profiling and systems biology applications 
to studies of HIV latency and eradication. Studies 
comparing gene expression in latently infected and 
uninfected cells identify candidate latency biomarkers 
and novel mechanisms of latency control. Studies that 
profiled gene expression changes induced by existing 
latency reversing agents (LRAs) highlight uniting themes 
driving HIV reactivation and novel mechanisms that 
contribute to regulation of HIV expression by different 
LRAs. Among the reviewed gene expression studies, 
the common approaches included identification of diffe
rentially expressed genes and gene functional category 
assessment. Integration of transcriptomic data with 
other biological data types is presently scarce, and the 
field would benefit from increased adoption of these met
hods in future studies. In addition, designing prospective 
studies that use the same methods of data acquisition 
and statistical analyses will facilitate a more reliable 
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identification of latency biomarkers using different model 
systems and the comparison of the effects of different 
LRAs on host factors with a role in HIV reactivation. 
The results from such studies would have the potential 
to significantly impact the process by which candidate 
drugs are selected and combined for future evaluations 
and advancement to clinical trials.

Key words: Gene expression; Microarrays; RNA-Seq; 
Systems biology; Human immunodeficiency virus; Viral 
latency; Disease eradication; Biomarkers; Molecular 
mechanisms; Latency reversing agents
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Core tip: Gene expression profiling and systems biology 
methods are reviewed with respect to their possible 
application in the field of human immunodeficiency virus 
(HIV) research. Studies profiling gene expression in 
latently infected and uninfected cells are summarized to 
illustrate application of these methods to identification 
of latency biomarkers and the molecular mechanisms 
contributing to regulation of HIV expression. Studies 
that measure changes in host and HIV gene expression 
upon treatment with latency reversing agents (LRAs) 
highlight uniting themes driving HIV reactivation and 
identify novel mechanisms of action of LRAs. The field 
will further benefit from increased adoption of systems 
biology methods in future studies.
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INTRODUCTION
In the present era of combination anti-retroviral therapy 
(cART), the persistence of cellular human immunode
ficiency virus (HIV) reservoir is considered to be the 
major barrier to a cure[1]. This cellular reservoir mainly 
consists of latently infected resting CD4+ T cells bea
ring HIV integrated provirus. It is highly stable[2-5] and 
inducible, necessitating life-long adherence to cART to 
prevent rebound of viremia. In a search for therapeutic 
strategies to eradicate this latent reservoir, mechanisms 
leading to latency have been extensively studied 
and include transcriptional and post-transcriptional 
blocks[1,6-14]. 

The main strategies directed toward a cure are 
reviewed elsewhere[6,7,9,12,15-17] and include the inactiv
ation of replication-competent virus and the elimination 
of latently infected cells. An essential milestone to HIV 
reservoir eradication is the identification of biomarkers 
of latently infected cells[18,19], so that these cells can be 

specifically targeted by immunotoxins[20]. Currently, the 
foremost strategy for elimination of latently infected 
cells is controlled virus reactivation in the presence of 
continuing cART (“shock and kill”)[21,22]. For this purpose, 
small molecule compound latency reversing agents 
(LRAs) are currently tested. The first LRAs used were 
histone deacetylase (HDAC) inhibitors (HDACi), which 
progressed to clinical trials[23-27] and demonstrated the 
ability to induce expression of HIV RNA. Unfortunately, 
none of the studies that followed the reservoir size post-
treatment reported a significant reduction[23,25,27]. The 
multiplicity of molecular mechanisms involved in lat
ency control suggests that a combination approach will 
likely be required to achieve the degree of reactivation 
necessary for the infected cell to be recognized by the 
immune system[28-30]. Indeed, some of the tested LRA 
combinations demonstrated synergy for HIV reactiv
ation[31-35].

Gene expression profiling techniques and systems 
biology applications may be extremely useful in the 
identification of biomarkers of latency, further delinea
ting mechanisms of regulation of HIV expression in 
a search for novel strategies of latency reversal, and 
for our understanding of the mechanisms of action of 
existing LRAs. Methods of analysis of gene expression 
data have been reviewed previously[36-40], including 
application of bioinformatics methods to HIV integration 
site analysis and the assessment of transcriptome and 
proteome changes induced in cells infected with HIV[41]. 
The present review provides a broader perspective on 
the use of gene expression profiling and systems biology 
applications in the field of HIV latency and eradication. 
Specifically, the objectives of the present review are: 
(1) to review the existing gene expression profiling 
and systems biology methods and their potential in the 
field of HIV research. We focus on the transcriptomic 
methods, and progress from simple approaches of 
differential gene expression to more complex types of 
analyses that integrate transcriptomic data with other 
biological data types, including proteomic analyses, 
integration site distribution, epigenetic modifications and 
transcription factor databases; and (2) to systematically 
demonstrate how methods of gene expression profiling 
and systems biology have been applied to answer 
specific questions in the fields of HIV latency and eradi­
cation. In this section we summarize specific findings 
that were obtained using gene expression profiling 
and systems biology methods, as described in existing 
literature.

GENE EXPRESSION PROFILING AND 
SYSTEMS BIOLOGY APPROACHES 
APPLIED IN THE FIELD OF HIV LATENCY 
AND ERADICATION 
In this section, we describe the major methods of gene 
expression analysis and systems biology approaches 
and outline specific questions that can be addressed in 
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the fields of HIV latency research and eradication using 
LRAs by each major type of application (Table 1). Where 
applicable, we highlight advantages and disadvantages 
of using individual methods over other methods for HIV 
latency related studies.

Differential gene expression
This basic analysis, common in all gene expression 
studies (Figure 1), aims at identifying genes that are 
expressed at different levels among the conditions 

tested. Gene expression can be compared in latently 
infected and uninfected cells to identify biomarkers 
of latency, and between cells treated with LRAs and 
untreated cells to identify genes that are responsive to 
LRA treatment. 

To obtain gene expression data, two primary te
chnologies are available: Microarrays and RNA-Seq. 
The majority of the published studies in the HIV latency 
field utilized microarrays, which is a well-developed 
technology with a fully established data analysis 
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Method Applications to discovery of latency biomarkers and 
mechanisms of regulation of HIV expression

Applications to studying the LRA mechanisms of action 
and evaluating combination therapies

Differential gene expression Identification of latency biomarkers Identification of genes responsive to LRA treatment
GO term/pathway enrichment (1) Focusing study efforts upon gene groups of interest (e.g., 

membrane proteins as biomarkers)
(1) Elucidation of mechanisms of action of LRAs

(2) Identification of the mechanisms behind gene expression 
alterations

(2) Selection of gene targets for combination therapy 
based on gene function in enriched pathway

(3) Delineating the molecular mechanisms contributing to 
latency control

Network-based analysis Identification of major regulators involved in HIV latency 
control, which may be only slightly dysregulated but 
significantly affect downstream molecules and pathways

(1) Elucidation of mechanisms of action of LRAs; 
(2) Prioritization of targets for combination therapies 
based upon type of connectivity (include if it regulates 
HIV-related processes; exclude if it regulates general 
intracellular processes)

Consolidating gene expression 
with other biological data 
(proteome, integration sites, 
chromatin features, etc.)

(1) Identification of latency biomarkers with transient RNA, 
but stable protein expression; 

(1) Identification of post-transcriptional mechanisms of 
action of LRAs; 

(2) Identification of mechanisms of latency control by 
correlating chromatin features to gene expression

(2) Assessment of chromatin features of genes and HIV 
integration sites responsive to LRA treatment

HIV expression and transcript 
type

Potential biomarker of latency Assessment of the effectiveness of LRAs for HIV 
reactivation

Table 1  Methods of gene expression profiling and systems biology and their applications in the field of human immunodeficiency 
virus latency and eradication

LRA: Latency reversing agent; GO: Gene ontology; HIV: Human immunodeficiency virus.
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Figure 1  Summary of methods used across gene expression profiling studies in the field of human immunodeficiency virus latency and eradication. 
Identification of DEGs and functional analysis of GO terms and pathways enriched for DEGs are the methods that are most commonly used across studies. Network-
based analyses are used in a subset of studies; while methods that consolidate host gene expression with other data types (e.g., proteomics or HIV expression data) 
are scarce. DEGs: Differentially expressed genes; GO: Gene ontology; HIV: Human immunodeficiency virus.
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used method to identify GO terms and pathways that 
are enriched for DEGs[45-47]. Among these, ToppGene[47] 
has several advantages, including a user-friendly 
interface, allowing multiple input codes for genes, and 
performing both GO term and pathway enrichment 
analyses. Many similar functions are available in the 
DAVID Bioinformatics Resources tool[46]. GoSeq tool 
was developed specifically for RNA-Seq data and 
quantifies gene length bias present in the data[48]. In 
cases when an intervention significantly alters the 
expression of an extremely large number of genes, 
as may be the case for some LRAs, GSEA approaches 
may not work as most categories are enriched. An 
alternative method, Functional Analysis of Individual 
Microarray Expression[49] utilizes an exponentially 
decreasing weighted expression to generate a score 
for each GO category or pathway in both experimental 
and control conditions. A t-test, or other statistical test 
can be then performed to determine if the scores are 
significantly different. One drawback of this method is 
the importance placed upon highly expressed genes. 
However, lowly expressed genes may play other roles 
through post-translational modifications or hub roles 
which are not detected by this method or differential 
expression methods in general. To address these issues, 
network analysis techniques are extremely useful.

Network-based gene expression analyses 
These tools, used in about half of the studies in the 
field of HIV latency (Figure 1), are designed to iden
tify key functional regulators among DEGs, and to 
evaluate gene network differences among experimental 
conditions. In the network-based analyses, the function 
of a single gene may be elucidated through a “guilt by 
association” approach. High connectivity between a 
known and unknown gene may shed light upon their 
function. Additionally, a group of highly connected genes 
may indicate that a biologically relevant pathway is at 
work in the altered state. These pathways or networks 
of genes can be tested for differential expression 
without the high type 1 error rate, which is common 
when testing many thousands of individual genes. 
Heavily connected genes whose importance may have 
been missed in a standard differential expression test 
would show up in a network method as a hub (highly 
connected) gene. In this way, additional genes with a 
role in latency control or reactivation may be identified, 
which would be missed in other types of analysis. 
Finally, genes may be selected as therapeutic targets 
based on the network analysis, if they are connected 
to other factors with roles in HIV latency control. Con
versely, if a gene is connected to genes that encode 
proteins with broad cellular functions, it may be selected 
against as side effects from a therapeutic intervention 
would be expected.

One well-developed network analysis tool is Weig
hted Gene Co-expression Network Analysis (WGCNA)[50]. 
In this method, the connectivity between genes is 
determined by correlating the expression of these genes 

pipeline. However, because microarrays use specific 
oligonucleotide probes, the detection is limited to only 
known genes. In addition, most of the microarray 
platforms are species-specific, which does not allow 
for simultaneous detection of host and pathogenic 
RNAs present in a sample. With advances in RNA-
Seq technology and per sample cost reduction, gene 
expression profiling by RNA-Seq is more increasingly 
used. RNA-Seq allows measuring viral and cellular 
transcripts concomitantly in the same sample[42]. Other 
benefits of using RNA-Seq include increased sensi–
tivity towards rare transcripts (as may be the case 
for HIV transcripts in latent state); detection of novel 
splice variants; and the wide dynamic range (reviewed 
in[43]). Numerous methods exist to analyze microarray 
(reviewed in[36,37,44]) and RNA-Seq datasets (reviewed 
in[38,39]), including methods of data processing, normaliza
tion and identification of differentially expressed genes 
(DEGs).

While methods of identification of DEGs are relatively 
straightforward, their application to mechanistic studies 
is limited. First, these methods usually generate far 
more DEGs that can be meaningfully discussed due to 
the lack of existing knowledge of their role in regulation 
of HIV expression. The second major issue in such 
studies is multiple comparisons. As more genes are 
included in either microarrays or RNA-Seq studies, the 
threshold for differential expression becomes much 
harder to reach due to the increased chance of type 
1 error. Finally, a third issue arises with regards to the 
ranking of importance for genes which are differentially 
expressed. These can be ranked based upon fold change 
or a ranking system based upon prior knowledge of the 
gene. However, a gene product which is an important 
player of a pathway may not be well characterized, 
nor be heavily dysregulated, but may still cause large 
downstream changes.

Functional analyses to identify gene ontology terms and 
pathways enriched for DEGs
These frequently used methods (Figure 1) are designed 
to identify groups of genes sharing a common functional 
category or purpose that is significantly altered by 
gene dysregulation. Functional gene annotation may 
be useful for biomarker discovery to identify genes that 
encode membrane proteins. These proteins represent 
more feasible targets for antibody-bound immunotoxins 
as compared to intracellular proteins. Mainly, though, 
gene ontology (GO) term and pathway enrichment 
analysis is used to identify the mechanisms behind 
gene expression alterations in latency and during LRA 
treatment. Finally, specific pathways may be identified 
for targeting in combinatorial reactivation strategies, 
based on enrichment for DEGs.

There are numerous databases of annotated GO 
terms and pathways, and methods to analyze these 
functional categories, many of which are publicly av
ailable tools (reviewed in[40]). Gene set enrichment 
analysis (GSEA) approaches are the most commonly 
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across samples, independent of known protein-protein 
and protein-DNA interactions. First, an adjacency matrix 
is constructed based on correlations between each 
gene pair, followed by creating a topological overlay 
map (TOM) that utilize information not only from the 
direct interaction between two genes, but also their 
neighboring nodes. Once this TOM is created, genes 
may be subdivided into highly connected groups or 
modules. The eigengene of this module represents the 
mathematically optimal summary of the expression 
profiles of all genes within the module as determined 
by their expression variation across samples. This 
eigengene may then be correlated to any trait of interest, 
such as the expression of specific HIV transcripts, or 
the degree of HIV reactivation upon treatment with 
LRAs. Genes with unknown function may be explored 
through both the behavior of the module as a whole and 
within the module itself (peripheral gene or a primary 
hub gene). Highly connected genes often represent key 
players in pathways and shed light upon the mechanistic 
differences between the two conditions being compared, 
such as uninfected CD4+ T-cells vs HIV-infected CD4+ 
T cells. Another network-based method, the “Active 
modules” algorithm[51], utilizes a different approach to 
network analysis by determining which portions of the 
network contain an unexpectedly high occurrence of 
genes with significant changes in expression. In contrast 
with WGCNA, the “active modules” algorithm utilizes 
protein interaction data from available databases, which 
allows incorporating information about the host and HIV 
interactions[51]. Available software packages for network 
analysis usually use literature curated protein-protein 
and protein-DNA interactions databases, but do not take 
into account enrichment of specific clusters for DEGs 
(e.g., Metacore, Ingenuity, iRefWeb). A major advantage 
of utilizing known interactions is independence from 
differential expression (i.e., all known protein-protein 
and protein-DNA interactions will be displayed for each 
DEG). A drawback of literature-based networks is the 
dependency on the accuracy of annotated sources and 
the robustness of the algorithms for network generation.

Integrating gene expression with other types of 
biological data
Methods of transcriptomics are well-developed and 
capture the majority of annotated genes. However, 
previous studies have shown that the transcriptome only 
partially correlates with the proteome[52-54]; therefore, 
assessment of gene expression at the functional (pro
tein) level may be necessary to validate the role of 
specific genes in HIV latency control and reactivation. 
In addition, proteomics methods identify the effects 
that are not reflected or captured at the RNA level; 
for example, due to an increase of translation from 
existing messenger RNA[55], or because of the transient 
RNA expression. Thus, proteome profiling may be 
used to identify latency biomarkers that are stably 
expressed at the protein level. In addition, profiling 
of post-transcriptional effects of LRAs is beneficial to 

capture those effects that would be missed if only the 
transcriptome profiling were performed. Analysis of 
the proteome may thus shed light on the mechanisms 
by which LRAs regulate gene expression[56], including, 
possibly, transcriptional activation of HIV.

Other biological data types may be integrated with 
gene expression profiling data to further understand the 
mechanisms of HIV latency and reactivation. The activity 
of the HIV promoter may depend on the characteristics 
of the site of proviral integration[57]. Chromatin features 
surrounding an integration site may contribute to the 
levels of HIV transcription, including histone acetylation 
and methylation, and DNA methylation. For example, 
latent inducible proviruses have a tendency to be inte
grated into highly expressed genes, gene deserts, or 
alphoid repeats[58]. The transcription level of nearby 
genes as well as viral genome orientation may influence 
transcription of viral genes by RNA interference mec
hanisms[59-61]. However, to date, no clear feature of 
integration sites could be identified when comparing 5 
different models of HIV latency[62]. Integration of HIV 
into specific genes, such as genes associated with cell 
cycle, may provide advantage to the maintenance of 
the latent reservoir through clonal expansion[63].

Depending on the type of data, different modeling 
methods may be used. The study described below was 
done with cancer cell lines; however, their method of 
integrating datasets would be applicable for many types 
of HIV latency related data. The aims of the study were 
to determine how DNA methylation in different genomic 
regions contribute to gene expression in cancer cell 
lines, and whether methylation of transcription factor 
binding sites impact transcription factor recruitment 
and therefore gene expression[64]. Gene expression 
was measured by Affymetrix microarrays, and DNA 
methylation by methyl-CpG binding domain-based 
capture (MbDCap)-Seq[65]. Pearson correlation analysis 
and decision tree learning were used to determine the 
effect of methylation in various genomic regions (promo
ters, first and second exons, and first introns) on the 
breast cancer subtype differential gene expression. To 
determine the role of methylation in transcription factor 
binding, cell line-specific consensus sequences were 
generated by assembling reads that mapped to the 
significantly hypermethylated regions and then matching 
these sequences to candidate transcription factors using 
the TRANSFAC package[66]. Similar approaches can be 
used to determine the role of chromatin features such 
as DNA methylation, as well as histone acetylation and 
methylation, in regulation of the expression levels of 
genes that control HIV latency, in the latent state and 
during reactivation using LRAs.

Evaluating the levels of HIV RNA using RNA-Seq 
datasets
HIV full length unspliced (US) genomic RNA can be 
spliced into different mRNA species, 47 identified in 
an early study[67], and 78 more recently[68]. The major 
classes of transcripts constitute multiply spliced (MS) 
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transcripts that encode regulatory and accessory 
proteins Tat, Rev, and Nef; and singly spliced (SS) 
transcripts that encode one-exon Tat, Vpr, Vif, Vpu, 
and Env. The US transcripts encode Gag and Gag-
Pol polyproteins. In cell line models of latency (ACH-2 
and U1), MS and SS transcripts were detected at early 
stages of replication cycle, when little or no genomic (US) 
RNA was produced[69]. Both MS and US transcripts were 
detected at low levels in resting CD4+ T cells from the 
HIV-infected individuals, while the majority of detected 
transcripts represented abortive HIV transcripts lacking 
polyA tail[70]. As was suggested previously[71], HIV RNA 
itself may represent a biomarker of latency. While 
multiple assays have been developed to detect HIV RNA 
using PCR-based methods[72,73], they require design of 
specific primers to detect various forms of HIV RNA, 
and may be plagued by inability to detect HIV RNA 
in a subset of patients due to virus mutations. RNA-
Seq technology allows for concomitant detection and 
quantification of various HIV RNA species from the 
same samples as host transcripts, regardless of the viral 
sequence. Total HIV transcripts, including the abortive 
transcripts, can be measured by RNA-Seq using total 
RNA (ribo-depleted) libraries that capture non-poly
adenylated RNAs. 

RNA-Seq can also be used to evaluate induction 
of HIV expression using LRAs. In this case, libraries 
enriched for polyA (polyadenylated) RNAs would be a 
more appropriate choice, since induction of abortive 
transcripts or read-through transcripts from the neig
hboring genes is not relevant to the success of the 
“shock and kill” strategy, as no viral proteins will be 
produced. Specifically, induction of polyA US transcripts 
would need to be monitored, as it is indicative of 
productive infection (that will result in production of 
virions). Unfortunately, none of the existing RNA-Seq 
data analysis packages have reliable tools for precise 
splice variant measurement from standard RNA-Seq 
datasets (50-100 base pair reads), in particular, complex 
overlapping sequences as in the case of HIV[67]. Precise 
measurement of splice variants require longer read 
capacity (10 kb)[74]; otherwise, expression of the major 
splice variants, MS and SS, and the US genomic RNA 
can be only estimated. Mohammadi et al[42] developed a 
method that allows the approximation of the proportions 
of different HIV transcripts in the RNA-Seq data. The 
method is based on determining the number of reads 
that pass through the splice junctions D1 [directly after 
the long terminal repeat (LTR) region] and D4 (splice 
junction between Tat-Rev and Vpu) that define MS, 
SS, and US transcripts. If a read passes through the 
junction D1, then it belongs to the US transcript. Reads 
which align to the left of the D1 junction but are broken 
at D1 and align to another segment of the HIV genome 
correspond to reads from either SS or MS transcripts (SS 
+ MS). Reads overlapping the D4 junction correspond to 
reads from either US transcripts or SS transcripts (US + 
SS). Finally, reads which are broken at the D4 junction 
correspond to reads from MS transcripts. The SS read 

percentage is then estimated by subtracting the US and 
MS percentages from 100.

USING TRANSCRIPTOME PROFILING 
TO IDENTIFY BIOMARKERS OF HIV 
LATENCY 
A recent study[20] provided a proof of principle that 
immunotoxins can be used to target cells expressing a 
specific surface molecule; however, the choice of CCR5 
co-receptor resulted in killing of both HIV-infected and 
uninfected CCR5-expressing cells. This choice of tar
get would not be optimal for therapeutic applications, 
since CD4+ T cells are usually already compromised 
in HIV-infected individuals. Therefore, identification of 
a unique biomarker signature of latently infected cells 
is warranted to target these cells for eradication with 
high specificity. These biomarkers may have additional 
applications; for example, reliable quantification of 
latently infected cells in vivo to follow the size of the 
latent reservoir in patients post-treatment, and enrich
ment for latently infected cells for further studies.

The proof of principle that latently infected cells 
may have a distinct gene expression signature was 
provided in an early study comparing gene expression 
in resting CD4+ T cells from aviremic HIV-infected 
individuals and HIV seronegative donors as controls 
using microarrays[75]. Whilst less than 0.1% of cells 
from aviremic patients were latently HIV-infected (as 
determined by presence of HIV-1 proviral DNA), 165 
genes showed differential expression between CD4+ 
T cells from aviremic patients as compared to HIV-
seronegative donors. The limitations of this study were 
the low prevalence of latently infected cells and the 
confounding effect of antiretroviral therapy on gene 
expression. Later studies aimed at characterizing the 
gene expression profile of latently HIV-infected cells 
using chronically HIV-infected cell lines or in vitro infe
cted primary resting CD4+ T cells and reporter viruses, 
allowing for strategies to enrich or select for latently 
HIV-infected cells. 

Table 2 summarizes the four studies comparing gene 
expression in latently infected cells vs their uninfected 
counterparts. To estimate the proportions of latently 
infected cells present in each model, provirus expression 
is reactivated following establishment of latency, using 
strong agents that induce T cell activation, such as 
phorbol myristate acetate[18], anti-CD3/anti-CD28 + 
IL-2[42], or phytohemagglutinin and feeder peripheral 
blood mononuclear cells[76]. The percentage of uninfected 
cells may be estimated by subtracting the percentage of 
latently infected cells from the total (100%), assuming 
that all latent proviruses were induced. The percentage 
of cells expressing HIV Gag protein (p24+) or GFP 
reporter is also measured before the stimulation, to 
determine whether there is background expression of 
HIV in each latency model. These p24+ or GFP+ cells 
may represent productively infected cells present due 
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the leakiness of a model, or be reflective of the viral 
entry in the absence of de novo viral production. Of note, 

Krishnan and Zeichner[18] provided these estimates only 
for one of the cell lines studied, ACH-2. The proportions 
of each cell type need to be taken into account when 
evaluating the results from differential expression 
analysis.

Table 2 presents additional characteristics that 
differed among the studies, including cells that were 
used (proliferating cell lines, resting CD4+ T cells or 
total CD4+ T cells), the duration of time in culture and 
viruses used to infect the cells. Finally, gene expression 
profiling platforms and statistical approaches to analyze 
the data were also different. 

In order to assess whether biomarkers of latency can 
be reliably identified using gene expression profiling, 
we compared the DEG lists, where available (all studies 
except for Evans et al[76]). Krishnan and Zeichner[18] 
reported 32 genes that were consistently changed in 
latency in all three cell lines that were tested, and this 
list of DEGs was used. The number of DEGs from each 
study that participated in this analysis is indicated in 
Table 2 (bottom row). If consistent changes across 
model systems could be detected, these genes would 
represent strong latency biomarker candidates.

Figure 2 depicts the result of comparison of DEGs 
between latently infected and uninfected cells available 
from three published studies[18,19,42]. A total of 1094 DEGs 
were identified. Only one gene, LYN proto-oncogene, 
Src family tyrosine kinase (LYN), was dysregulated in 
latency in all three models. Not surprisingly, there were 
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Study characteristics Krishnan and Zeichner[18] Iglesias-Ussel et al [19] Mohammadi et al [42] Evans et al [76]

Cells used Cell lines ACH-2, A3.01, 
J1.1

Primary CD4+ T cells Primary CD4+ T cells co-cultured 
with feeder H80 human brain tumor 

cell line 

Primary resting CD4+ T cells 
co-cultured with dendritic 

cells
Virus used CXCR4 tropic HIV-1 LAV 

strain
CXCR4 tropic GFP reporter 
virus (GFP inserted in place 

of Nef)

CXCR4 tropic GFP reporter virus 
with mutations in Gag, Vif, Vpr, 

Vpu, Env and Nef

CCR5 tropic GFP reporter 
virus (GFP inserted into the 

Nef open reading frame)
Proportion of uninfected 
cells

≤ 1.1% 0% 8%-18% 99.7%

Proportion of GFP+ or 
p24+ cells

8.20% 8.15% Approximately 16% 0% (removed by sorting)

Proportion of latently 
infected cells

98.9% 100% Approximately 82%-92% Approximately 0.3%

Time of culture N/A (chronically 
infected)

20-22 d 13 wk 5 d

Experiment replicates 8 4 Not reported 4
Gene expression profiling 
platform

Microarrays (Hs. 
UniGem2) 

Microarrays (Agilent-012391 
Whole Human Genome 

Oligo Microarray G4112A)

RNA-Seq (polyA RNA library; 
Illumina HiSeq2000)

Microarrays (Illumina 
Human-Ref8)

Method to identify DEGs Parametric one-sample 
random variance t-test 
(BRB-Array Tools, P < 

0.001)

Linear modeling and using 
an empirical Bayes method 

with FDR correction (limma)

Generalized linear modeling (DESeq, 
FDR < 0.05)

Linear modeling and using 
an empirical Bayes method 

(limma, FDR < 0.05)

Databases used for 
functional analyses

NIH mAdb GO consortium; Reactome pathways Ver.40; IPA
MsigDb; MsigDb

KEGG pathways 
Total number of DEGs 32 875 227 Not reported

Table 2  Features of gene expression studies comparing latently infected vs  uninfected cells

CXCR4: Chemokine (C-X-C motif) receptor 4; LAV: Lymphadenopathy-associated virus; CCR5: Chemokine (C-C motif) receptor 5 (gene/pseudogene); 
GFP: Green fluorescent protein; polyA: Polyadenylated; DEGs: Differentially expressed genes; BRB: Biometric Research Branch; FDR: False discovery rate; 
NIH: National Institutes of Health; mAdb: Mad Bee; GO: Gene ontology; MsigDb: Molecular Signature database; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; IPA: Ingenuity Pathway Analysis; N/A: Not applicable.

Lglesias-Ussel et alKrishnan and Zeichner

CDC42
BNIP31
BTG3
RBM10

GNLY
ZNF683
CCL5
IKZF2
etc .

Mohammadi et al

34
(3.1%)

4
(0.4%)27

(2.5%)
836

(76.4%)

192
(17.6%)

LYN
0

(0.0%)

1
(0.1%)

Figure 2  Venn diagram depicting differentially expressed genes across 
three latency models. The overlapping genes were identified using the online 
tool Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html). Shown are the 
total number of differentially expressed genes and percent of total identified 
across all models[18,19,42]. For each overlap, gene symbols are listed. For the 
overlap between Iglesias-Ussel et al[19] and Mohammadi et al[42] studies, the four 
genes with the highest average absolute fold change are listed. 
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fewer similarities between the cell lines and each of the 
primary cell models. In addition to LYN, only four genes 
were in common between Krishnan and Zeichner[18] and 
Iglesias-Ussel et al[19] studies. More similarities were 
found when comparing the two studies that performed 
gene expression profiling using primary CD4+ T cells 
(Iglesias-Ussel et al[19] and Mohammadi et al[42]): 34 
genes were found in common, with the majority (29 
of 34) consistently up- or down- regulated in latency 
in both models. The remaining genes were unique for 
any given study (27 of 32, or 84% for Krishnan and 
Zeichner[18], 836 of 875, or 96% for Iglesias-Ussel et 
al[19], and 192 of 227, or 85% for Mohammadi et al[42]). 

This comparison indicated that despite the small 
proportion of overlapping genes between models, genes 
whose products may be able to differentiate between 
latently infected and uninfected cells can be identified 
using gene expression profiling, especially when com
paring models established in primary cells. However, 
these studies have several limitations that presently 
preclude from achieving a consensus on what genes 
may represent suitable biomarkers of latency. These 
limitations and potential solutions that may advance this 
field are summarized in Table 3. 

TRANSCRIPTOME PROFILING AND 
SYSTEMS BIOLOGY APPROACHES TO 
IDENTIFY MOLECULAR MECHANISMS 
OF REGULATION OF HIV EXPRESSION
Understanding the mechanisms of establishment and 
maintenance of HIV latency has greatly contributed 
to the development of strategies for eradication. It 
has become apparent that multiple cellular processes 
and pathways contribute to the control of HIV latency 
at both the transcriptional and post-transcriptional 
levels[1], suggesting that combination strategies will 
likely be needed to achieve eradication of the latent 
reservoir[28]. Block of viral transcription from the LTR 
is the most studied mechanism, which occurs through 
several proposed routes: Inhibition of transcription 
though histone and DNA modifications[77-79]; absence 
of necessary transcriptional activators and presence of 
transcriptional repressors in resting CD4+ T cells[80,81]; 

integration into inactive transcription sites[57]; or pre
mature termination of viral transcripts in the absence 
of Tat and Tat-associated host factors[82]. Another mech
anism suggests that latency may be maintained due to 
post-transcriptional blocks. HIV could be transcribed, 
but could fail to export MS HIV transcripts, contributing 
to non-productive infection in resting CD4+ T cells[83]. 
Finally, discoveries in the field of inhibitory micro 
RNAs (miRNAs) suggest a possibility of transcriptional 
inhibition of HIV by miRNAs encoded in HIV genome[84] 
and translational inhibition by host miRNAs[85].

Gene expression profiling data can be used to 
identify gene categories that describe cellular processes 
and pathways, as well as key regulatory factors with 
a role in HIV latency control, thus contributing to our 
understanding of the mechanisms that regulate HIV 
expression. The same studies described in Table 2 
performed functional category analysis by identifying 
pathways and GO terms enriched for DEGs. Though 
these four studies utilized different cell types and 
viruses (Table 2), some uniting themes were observed 
in the mechanisms contributing to HIV latency control. 
We utilized the lists of GO terms and pathways that 
were reported in each of the four studies, to compare 
the gene categories dysregulated in different latency 
models. The reported terms were assigned to two 
major categories: Transcriptional regulation, including 
signaling pathways that regulate activity and localization 
of transcription factors, and functional categories related 
to RNA synthesis; and post-transcriptional regulation, 
both at the RNA and protein levels (Figure 3); terms 
that could not be assigned to these categories are not 
shown. Not surprisingly, the specific GO terms and 
pathways in each category were different between the 
studies, which was at least in part attributable to the 
usage of different annotated databases to obtain these 
terms (Table 2). However, terms associated with both 
transcriptional and post-transcriptional control of HIV 
latency were reported in more than one study. These 
GO terms and pathways comprise both well-established 
(e.g., NFκB signaling and transcriptional regulation[86,87]) 
and novel mechanisms of regulation of HIV expression 
(e.g., proteasome[18]). 

Network-based approaches can also be utilized to 
identify genes that may have a role in regulation of HIV 
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Limitations Solutions

Small percentage of latently infected cells Isolate latently infected cells using reporter system OR perform gene expression profiling on a 
single-cell level

Effect from the exposure to the virus without infection Use aldrithiol-2 inactivated virus[123] instead of mock-infection to compare to latently infected 
cell model

Identified differentially expressed genes are 
ubiquitously expressed on all CD4+ T cells

Identify a panel of biomarkers that best differentiates between latently infected and uninfected 
cells

Different models represent different aspects of latency 
establishment

Include additional models into analysis; use same statistical approaches to ensure differences 
in biomarkers are biological, not technical differences

Gene expression profiling can only identify candidate 
biomarkers

Perform experimental validation that latently infected cells can be detected using these 
biomarkers

Table 3  Limitations of the present studies that identify differentially expressed genes between latently infected and uninfected cells 
and possible solutions that may enable identification of solid candidate biomarkers of latency
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expression, despite not being detected as differentially 
expressed in latency. For example, tubulin alpha 3 
(TUBA3) was a well-connected gene in a network 
constructed by Bandyopadhyay et al[51] who utilized the 
Krishnan and Zeichner dataset[18]. TUBA3 was connected 
to both Tat and Rev in the network, suggesting a possi
ble yet unknown post-transcriptional role for this gene in 
regulation of HIV expression, one which would not have 
been detected in non-network-based approaches.

Taken together, functional studies using systems 
biology approaches to analyze host gene expression in 
the in vitro models of HIV latency suggest that mainten
ance of HIV quiescence in T cells involves basic cellular 
mechanisms beyond those traditionally implicated in 
transcriptional repression of the HIV-1 provirus.

TRANSCRIPTOME PROFILING AND 
SYSTEMS BIOLOGY APPROACHES TO 
IDENTIFY MOLECULAR MECHANISMS 
OF HIV REACTIVATION USING LRAS
HDACis have been the most studied LRAs, with a 
number of these compounds progressing to clinical 

trials[23-27]. The primary mechanism of action proposed 
for HIV reactivation using HDACis was histone acety
lation and chromatin decondensation, which provide 
a transcriptionally favorable environment[88]. However, 
the results from gene expression profiling studies 
following the discovery of anti-cancer properties of 
HDACis (reviewed in[89]) strongly suggest the existence 
of secondary mechanisms of action of HDACis beyond 
chromatin remodeling. In particular, despite chromatin 
decondensation, as many genes were downregulated 
by HDACis as were upregulated. Over the years, studies 
using HDACis demonstrated that transformed cells 
responded to treatment differently as compared to 
primary cells[90-93]. Therefore, gene expression profiling 
of HDACis using primary CD4+ T cells is more relevant 
for delineating the mechanisms driving HIV reactivation. 
Most of the gene expression studies using HDACis 
in primary cells up-to-date have utilized the HDACi 
vorinostat/suberoylanilide hydroxamic acid (SAHA), 
which was the first of the FDA-approved HDACis for 
treatment of cutaneous T cell lymphoma[94]. These 
studies are summarized in Table 4. In addition to SAHA, 
the effects on gene expression were profiled for another 
HDACi, valproic acid (VPA) in primary CD4+ T cells 
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Transcriptional
regulation

Post-transcriptional
regulation

Cytoplasm

Signaling pathways
   I-kappaB kinase, NF-kappaB cascade
   MAPK signaling pathway
   Cytokine signaling in immune system
   Sigaling by interleukins
   mTOR signaling
   Interferon signaling

Translation and metabolism
   Translation
   Post-translational protein modification
   tRNA metabolic process
   Ribosome biogenesis
   Proteasome

Nucleus

RNA synthesis regulation
   RNA polymerase
   Chromosome organization
   Gene expression

RNA processing
   RNA splicing
   Post-transcriptional regulation 
of gene expression
   Nucleocytoplasmic transport
   Nucleic acid transport
   RNA transport
   Spliceosomal assembly

Figure 3  Transcriptional and post-transcriptional mechanisms of regulation of human immunodeficiency virus expression. Pathway and GO term categories 
related to transcriptional and post-transcriptional regulation of HIV expression, identified in gene expression studies that compared latently infected and uninfected 
cells, are shown. Dark blue, Iglesias-Ussel et al[19]; Red, Mohammadi et al[42]; Brown, Evans et al[76]; Yellow, Krishnan and Zeichner[18]. GO: Gene ontology; HIV: Human 
immunodeficiency virus; mTOR: Mammalian target of rapamycin.
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from HIV-infected individuals. Treatment with either 
SAHA or VPA resulted in downregulation of V-Myc avian 
myelocytomatosis viral oncogene homolog (MYC)[95,96]. 
Among other LRA classes, the effects of alcohol de
hydrogenase inhibitor Disulfiram and protein kinase 
C (PKC) agonist Prostratin on host gene expression 
were assessed using primary CD4+ T cells[42,97], while 
the effects of a bromodomain inhibitor, JQ1, on gene 
expression were assessed in a cell line model of HIV 
latency (J-Lat 10.6 T cell line)[98] (see Table 5 for the 
summary of the studies). 

For all classes of compounds tested, Disulfiram 
appeared to induce minimal changes to host gene 
expression[42], while SAHA and Prostratin modulated 
thousands of genes[42,96,97,99,100]. Gene expression studies 
were able to identify novel mechanisms contributing to 
HIV reactivation out of latency by LRAs, besides their 
primary mechanisms of action. For example, in addition 
to chromatin decondensation, SAHA upregulated specific 
HIV transcriptional activators [e.g., immunity-related 
GTPase family, M (IRGM)[101], heat shock protein 70 
(HSP70, gene symbol HSPA2)[102,103] and lysine (K)-

May 25, 2016|Volume 6|Issue 2|WJCID|www.wjgnet.com

Study characteristics Beliakova-Bethell et al [96] Reardon et al [100] White et al [99] Mohammadi et al [42] Elliott et al [25]

Cells used Primary CD4+ T cells Primary CD4+ T cells Primary CD4+ T 
cells

In vitro primary CD4+ T 
cell latency model

Total blood from HIV-
infected individuals on cART

Concentration or dose 
of SAHA

0.34 μmol/L 0.34, 1, 3, 10 μmol/L 1 μmol/L 0.5 μmol/L 400 mg orally once daily

Time of treatment 24 h 24 h 24 h 8 h and 24 h 14 d (samples analyzed at 2, 
8 h; 1, 14 and 84 d)

Experiment replicates 9 6 6 Not reported 9
Gene expression 
profiling platform

Microarrays (Illumina HT12 
Beadchips version 3)

Microarrays 
(Illumina HT12 

Beadchips version 3)

Microarrays 
(Illumina HT12 

Beadchips version 3)

RNA-Seq (polyA 
RNA library; Illumina 

HiSeq2000)

Microarrays (Illumina 
Human HT12 version 4)

Methods to identify 
DEGs

Multivariate permutation 
test (BRB-Array tools)

Dose-response 
analysis using 

likelihood ratio 
test (Isogene) with 

Bonferroni correction 
(P < 0.05)

Linear modeling 
(limma, FDR P < 

0.05)

Generalized linear 
modeling (DESeq, FDR < 

0.05)

Linear modeling (limma, P < 
0.05)

Databases used for 
functional analyses

GO consortium, KEGG and 
Biocarta pathways (BRB-
Array Tools), MetaCore 

networks

GO consortium, 
KEGG and Biocarta 

pathways (BRB-
Array Tools), 

MetaCore networks

GO consortium, 
KEGG pathways 

(FAIME), MetaCore 
networks

Reactome pathways 
Ver.40; MsigDb

IPA, MsigDb

Total number of DEGs 1847 3477 2982 1289 Not reported

Table 4  Features of gene expression studies comparing suberoylanilide hydroxamic acid -treated and untreated primary cells

cART: Combination antiretroviral therapy; polyA: Polyadenylated; DEGs: Differentially expressed genes; BRB: Biometric Research Branch; FDR: False 
discovery rate; GO: Gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; MsigDb: Molecular Signature database; FAIME: Functional 
Analysis of Individual Microarray Expression; IPA: Ingenuity Pathway Analysis; HIV: Human immunodeficiency virus.

Study characteristics Jiang et al [95] Mohammadi et al [42] Sung and Rice[97] Banerjee et al [98]

Cells used Primary cells from HIV-infected 
individuals on cART

In vitro primary CD4+ T cell 
latency model

Primary resting CD4+ T cells J-Lat 10.6 T cell line

LRA (functional class) Valproic acid (HDACi) Disulfiram (alcohol 
dehydrogenase inhibitor)

Prostratin (PKC agonist) JQ1 (bromodomain inhibitor)

Concentration 1 mmol/L (+20 U/mL IL-2) 0.5 μmol/L 250 ng/mL 0.1 μmol/L, 1 μmol/L
Time of treatment 6 h 8 and 24 h 48 h 24 h
Experiment replicates 4 Not reported 3 Not reported
Gene expression profiling 
platform

Microarrays (Agilent) RNA-Seq (polyA RNA 
library; Illumina HiSeq2000)

Microarrays (Affymetrix 
Human Genome U133 Plus 

2.0)

Microarrays (Affymetrix ST 
1.0)

Methods to identify DEGs Rosetta Resolver system (P < 
0.01)

Generalized linear modeling 
(DESeq, FDR < 0.05)

t-test with FDR correction ANOVA (P < 1E-5)

Databases used for 
functional analyses

Not used Reactome pathways Ver.40; 
MsigDb

GO consortium, KEGG 
pathways

GO consortium

Total number of DEGs 199 (fold change > 3) 189 2514 (fold change > 1.5) Not reported

Table 5  Features of gene expression studies comparing cells treated with latency reversing agents of different functional classes and 
untreated cells

cART: Combination antiretroviral therapy; LRA: Latency reversing agent; HDACi: Histone deacetylase inhibitor; PCK: Protein kinase C; polyA: Polya
denylated; DEGs: Differentially expressed genes; FDR: False discovery rate; ANOVA: Analysis of variance; MsigDb: Molecular Signature database; GO: 
Gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; LRAs: Latency reversing agents.
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specific demethylase (KDM1A)[104]], and downregulated 
repressors [amino-terminal enhancer of split[105] and 
AT rich interactive domain 1B, SWI1-like (ARID1B, or 
BAF250)[106]][25,99,100] (Figure 4A). Sung and Rice[97] found 
that Prostratin upregulated HIV activator, tumor necrosis 

factor (ligand) superfamily, member 4 (TNFSF4)[107], and 
downregulated defensin alpha 1, which interferes with 
PKC signaling[108]. Among genes with a role in regulation 
of HIV expression that were modulated by JQ1, 
Banerjee et al[98] noted upregulation of activators REST 
coreceptor 1 (RCOR1)[104] and the class Ⅲ deacetylase 
sirtuin 1 (SIRT1)[109], and downregulation of repressor 
methyltransferases, protein arginine methyltransferase 6 
(PRMT6) and SET domain, bifurcated 1 (SETDB1)[110,111].

In addition to the effects of LRAs on gene expression 
that may promote HIV reactivation, possible inhibitory 
effects were also observed in gene expression studies 
that used SAHA and Prostratin-treated primary cells 
(Figure 4B). Genes encoding factors that activate HIV 
transcription, V-Ets avian erythroblastosis virus E26 
oncogene homolog 1(ETS1), CCAAT/enhancer bin
ding protein, Beta (CEBPB), and lymphoid enhancer-
binding factor 1 (LEF1)[112-114], were downregulated by 
SAHA in primary CD4+ T cells[100]. Enhancer of zeste 
2 polycomb repressive complex 2 subunit (EZH2), a 
methyltransferase implicated in HIV LTR silencing[115], 
was upregulated[100]. Genes encoding HIV transcrip
tional repressors YY1[116] and bromodomain protein 
containing 2 (BRD2)[117] were upregulated by SAHA in 
blood cells from HIV-infected individuals on cART[25]. 
Downregulation of ETS1 and LEF1 and upregulation of 
BRD2 were confirmed at the protein level in primary 
CD4+ T cells[99]. In addition, a network-based approach 
integrating transcriptomics and proteomics datasets 
highlighted upregulation of high mobility group AT-hook 
1[99], which represses HIV transcription by competing 
with Tat for TAR binding[118] and by recruiting inactive 
positive transcription elongation factor (p-TEFb) to the 
HIV LTR[119]. Possible inhibitory effects of Prostratin with 
respect to HIV reactivation identified by Sung and Rice[97] 
were upregulation of a repressor, HIV type Ⅰ enhancer 
binding protein 3[120], and downregulation of the three 
genes encoding S100 calcium-binding proteins (S100A8, 
S100A9, and S100A12), shown to enhance HIV-1 
transcription in a NFκB-dependent manner[121].

Finally, gene expression profiling studies using 
LRAs of different functional classes highlighted uniting 
themes driving HIV reactivation, such as importance 
of the components of p-TEFb complex (Figure 4C). 
Cyclin T1 (CycT1) was upregulated at the RNA level by 
JQ1[98]; both CycT1 and cyclin-dependent kinase 9 were 
upregulated at the protein level by Prostratin[97], while 
SAHA induced dissociation of p-TEFb from the inactive 
7SK RNA complex and facilitated its recruitment to the 
HIV LTR[122]. Though through different mechanisms, 
p-TEFb function appears to be enhanced via action of 
several classes of LRAs.

CONCLUSION AND PERSPECTIVES
This review discusses how methods of gene expression 
profiling and systems biology can be applied to add
ress specific questions in the field of HIV latency and 
eradication. It presents a systematic analysis of the 
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Figure 4  Main findings from gene expression studies using Latency 
reversing agents. A: Novel mechanisms of HIV reactivation besides primary 
mechanisms of action of LRAs. These include upregulation (red arrow) of HIV 
activators (red oval) and downregulation (blue arrow) of repressors (blue oval). 
Examples for LRAs from 3 functional classes (HDACi, SAHA; PKC agonist, 
Prostratin; and bromodomain inhibitor, JQ1) are listed; B: Effects of LRAs on 
host genes that are inhibitory for HIV reactivation. These include upregulation 
(red arrow) of HIV repressors (blue oval) and downregulation (blue arrow) of 
activators (red oval). Examples for LRAs from 2 functional classes (HDACi, 
SAHA; and PKC agonist, Prostratin) are shown; C: LRAs of different classes 
act on components of p-TEFb complex via different mechanisms, contributing 
to HIV reactivation. SAHA induced dissociation of p-TEFb from the inactive 
7SK RNA complex and facilitated its recruitment to the HIV LTR. Prostrain 
and JQ1 upregulated components of p-TEFb complex at the protein and RNA 
level, respectively (red arrows indicate upregulation). LRA: Latency reversing 
agent; HDACi: Histone deacetylase inhibitor; PKC: Protein kinase C; SAHA: 
Suberoylanilide hydroxamic acid; IGRM: Immunity-related GTPase family, M; 
HSPA2: Heat shock 70 kDA protein 2; KDM1A: Lysine (K)-specific demethylase; 
TNFSF4: Tumor necrosis factor (ligand) superfamily, member 4; RCOR1: REST 
coreceptor 1; SIRT1: Sirtuin 1; AES: Amino-terminal enhancer of split; ARID1B: 
AT rich interactive domain 1B, SWI1-like; DEFA1: Defensin alpha 1; PRMT6: 
Protein arginine methyltransferase 6; SETDB1: SET domain, bifurcated 1; 
ETS1: V-Ets avian erythroblastosis virus E26 oncogene homolog 1; LEF1: 
Lymphoid enhancer-binding factor 1; HMGA1: High mobility group AT-hook 1; 
HIVEP3: HIV type I enhancer binding protein 3; EZH2: Enhancer of zeste 2 
polycomb repressive complex 2 subunit; YY1: YY1 transcription factor; BRD2: 
Bromodomain protein containing 2; S100A8: S100 Calcium Binding Protein A8; 
S100A9: S100 Calcium Binding Protein A9; S100A12: S100 Calcium Binding 
Protein A12; CDK9: Cyclin-dependent kinase 9; P-TEFb: Positive transcription 
elongation factor; CycT1: Cyclin T1; Hexim-1: Hexamethylene Bis-Acetamide 
Inducible 1; LTR: Long terminal repeat; Tat: Transactivator of transcription.
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application of these methods to discover biomarkers 
of latency, identify molecular mechanisms of latency 
control and reactivation using LRAs. Identification of 
DEGs and functional category assessment are the most 
common methods currently used in the field (Figure 1). 
Network-based approaches are utilized in a subset of 
more recent studies. Advances in RNA-Seq technologies 
allow for integration of HIV expression analysis with 
the changes in expression of host genes in a single 
experiment. Integration of transcriptomic data with 
other biological data types in the field of HIV latency 
is presently scarce; and the field would benefit from 
increased adoption of these methods in future studies.

Gene expression analysis of latently infected and 
uninfected cells has been used to identify candidate 
biomarkers of latency and to delineate the molecular 
mechanisms that contribute to regulation of HIV expre
ssion. Studies comparing gene expression in HIV latency 
models to uninfected cells have several limitations that 
presently preclude from achieving a consensus on 
what genes may represent suitable biomarkers (Table 
3). Improved bioinformatics approaches (e.g., using 
the same methods of data acquisition and statistical 
analyses across models) and experimental validation 
of candidate biomarkers would be extremely useful 
in future studies to more reliably identify biomarkers 
of latency. Studies profiling gene expression changes 
induced by LRAs identified novel mechanisms of action 
of the LRAs and their inhibitory effects with respect to 
HIV reactivation out of latency, as well as highlighted 
uniting themes driving HIV reactivation. Using similar 
statistical approaches in prospective studies using LRAs 
would facilitate prediction of whether the inhibitory 
effects of different LRAs on HIV reactivation could be 
cancelled out in a combination strategy. The results from 
such studies would have the potential to significantly im­
pact the process by which candidate drugs are selected 
and combined for future evaluations and advancement 
to clinical trials.
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