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Abstract  

Objectives: Dyslipidemia represents a major health issue in psychiatry. We determined 

whether weighted polygenic risk scores (wPRS) combining multiple Single Nucleotide 

Polymorphisms (SNPs) associated with lipid levels in the general population are 

associated with lipid levels (high density lipoproteins (HDL), low density lipoproteins 

(LDL), total cholesterol (TC) and triglycerides (TG)) and/or dyslipidemia in patients 

receiving weight gain-inducing psychotropic drugs. We also determined whether 

genetics improve the predictive power of dyslipidemia. Methods: The influence of wPRS 

on lipid levels was firstly assessed in a discovery psychiatric sample (n=324) and was 

then tested for replication in an independent psychiatric sample (n=148). The 

contribution of genetic markers to predict dyslipidemia was evaluated in the combined 

psychiatric sample. Results: wPRS were significantly associated with the four lipid traits 

in the discovery (p≤0.02) and in the replication sample (p≤0.03). Patients whose wPRS 

was higher than the median wPRS had significantly higher LDL, TC and TG levels 

(0.20, 0.32 and 0.26 mmol/l; p≤0.004) and significantly lower HDL levels (0.13 mmol/l; 

p<0.0001) compared to others. Adding wPRS to clinical data significantly improved 

dyslipidemia prediction of HDL (p=0.03) and a trend for improvement was observed for 

the prediction of TC dyslipidemia (p=0.08). Conclusions: Population-based wPRS have 

thus significant effects on lipid levels in the psychiatric population. As genetics improved 

the predictive power of dyslipidemia development, only 24 patients should be genotyped 

in order to prevent the development of one case of HDL hypocholesterolemia. If 

confirmed by further prospective investigations, the present results could be used for 

individualizing psychotropic treatment. 
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Introduction 

Cardiovascular diseases have become a major public health burden, its prevalence 

increasing considerably over the last decades [1,2]. Dyslipidemia, in particular abnormal 

plasma levels of circulating lipoproteins, is a clinical condition contributing to the 

development of atherosclerosis and cardiovascular diseases, e.g. coronary artery 

diseases, strokes and peripheral artery diseases [3-8]. In addition to being influenced by 

environmental factors such as diet, lifestyle and other environmental factors, plasma 

lipid levels are determined by the genetic background as well [9]. While several forms of 

monogenic dyslipidemia associated with critical lipid level changes have been 

described, the most prevalent form of dyslipidemia has polygenic causes, resulting from 

the combination of many common, rare and copy number genetic variants  with a 

substantial contribution of environmental factors [9]. 

In the psychiatric population, the use of psychotropic medications such as 

antipsychotics (most atypical but also some typical), mood stabilizers (e.g. lithium and 

valproate) and some antidepressants (e.g. mirtazapine) worsens patient metabolic 

condition (e.g. weight gain and/or alteration of lipid and glucose metabolism) [10,11]. 

Dyslipidemia, defined as high total-cholesterol and/or LDL-cholesterol and/or triglyceride 

and/or low HDL-cholesterol levels, constitutes a considerable risk factor for 

cardiovascular diseases in the psychiatric population as its prevalence was shown to 

raise as high as 60% [12]. Some factors were associated with psychotropic drug-

induced metabolic complications, including female sex, low baseline BMI, young age or 

non-white ethnicities [13]. Additionally, many genetic susceptibilities as variations in 
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pharmacodynamic receptors or in energy homeostasis regulating genes were 

associated with metabolic side effects [14-18]. For instance, previous studies 

demonstrated the influence of 5HT2C serotonin and H1 histamine receptors on weight 

gain induced by psychotropic drugs [19,20]. Although mechanisms underlying 

psychotropic-induced dyslipidemia are only partially understood, recent studies 

suggested a role of the sterol regulatory element-binding protein (SREBP) pathway [21]. 

Thus, olanzapine, clozapine and risperidone were shown to promote the up-regulation 

of SREBP leading to enhanced lipid and cholesterol synthesis in mice [22,23].   

With the rapid emergence of genome-wide association studies (GWAS), many genetic 

variants in association with metabolic phenotypes were discovered in the last decade 

[24-26]. Two recent GWAS meta-analyses from the Global Lipids Genetics Consortium 

and the Engage Consortium were conducted to reveal associations between abnormal 

lipid levels and single nucleotide polymorphisms (SNPs) in the general population 

[27,28]. When considered individually, these genetic variants have shown minor effects 

on lipid phenotypes. As an alternative method of testing individual SNP effect, 

integrating data from numerous SNPs in the construction of a polygenic risk score 

(PRS) allows to better integrate the global information of these numerous little effects 

[29], with small effects increasing the consistency and power to determine genetic risk 

in polygenic diseases such as dyslipidemia [30]. While several PRS were determined as 

significant predictors of obesity, diabetes and dyslipidemia [31-33], associations 

between PRS and dyslipidemia among the psychiatric population have never been 

established.  
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The aim of the present study was to investigate whether PRS combining multiple risk-

associated SNPs from two lipid meta-analyses were associated with dyslipidemia-

related traits (high-density lipoproteins (HDL), low-density lipoproteins (LDL), total 

cholesterol (TC) and triglycerides (TG)) in patients from Lausanne University Hospital 

receiving psychotropic drugs known to induce worsening of metabolic parameters. 

Furthermore, the predictive power of models containing only clinical data was compared 

to models including both clinical and genetic data to examine whether models including 

genetics could be useful enough to be applied in clinical settings.  

Material and methods 

Psychiatric samples 

A prospective cohort study approved by the local ethics committee is ongoing in 

Lausanne Psychiatric University Hospital since 2007. In total, 472 patients of European 

ancestry who started treatment with atypical antipsychotics (amisulpride, aripiprazole, 

clozapine, olanzapine, quetiapine, paliperidone, risperidone), mood stabilizers (lithium, 

valproate) or/and antidepressants (mirtazapine) were included in the present analysis. 

Patients without available prospective lipid values were excluded from the analyses. 

Further description of the psychiatric samples was published elsewhere [15] and in 

supplementary materials. All individuals or their legal representatives signed a written 

informed consent for genetic analyses. Low HDL-cholesterol, high LDL-cholesterol, high 

triglyceride and high total cholesterol levels were defined by HDL hypocholesterolemia 

(<1 mmol/l), LDL hypercholesterolemia (≥3 mmol/l), hypertriglyceridemia (≥2 mmol/l) 

and hypercholesterolemia (≥ 5 mmol/l), respectively, and/or by the prescription of a 

lipid-lowering agent [34], according to ESH/ESC guidelines [35]. 
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The discovery sample consisted of 332 patients from the above described cohort with 

psychotropic treatments starting between 2007 and 31st of December, 2010. The 

replication sample was composed of 140 patients of the same cohort with treatments 

starting between 1st of January 2011 and 2014. Only patients of European ancestry 

were included in the analysis. More details in supplementary materials. 

SNP selection, genotyping and construction of the PRS 

SNP selection 

A meta-analysis of 60 studies was performed by The Global Lipids Genetics Consortium 

with data from 188'577 individuals of European, East Asian, South Asian, and African 

ancestry using both GWAS and MetaboChip array genotyping data (Willer et al) [28]. In 

addition, a second meta-analysis was conducted by the Engage Consortium with a set 

of 62'166 individuals of European ancestry from 22 GWAS (Surakka et al) [27]. Both 

population-based samples were used to select genetic variants associated with lipid 

levels. In the present study, β-coefficients (i.e. allele effects) were used to assign 

weights to each variant for the calculation of PRS in the psychiatric samples. More 

details in supplementary materials. S1 Figure describes SNP selection (more details in 

supplementary materials). 

 

Genotyping 

CardioMetabochip genotyping of European ancestry patients from the Lausanne 

Psychiatric University Hospital study was performed using the Illumina 200K 

CardioMetabochip (Illumina, San Diego, CA) at the iGE3 genomics platform of the 
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University of Geneva (http://www.ige3.unige.ch/genomics-platform.php). More details in 

supplementary materials.  

Construction of the PRSs 

One PRS was calculated by taking into account SNPs from each GWAS meta-analysis 

(i.e. PRSWiller and PRSSurakka) in association with each lipid phenotype, namely HDL, 

LDL, TC and TG. In addition, according to their respective inclusion criteria (S1 Figure), 

one PRS was calculated for each lipid phenotype by considering SNPs from both meta-

analyses (i.e. PRScombined; n=73, 60, 72 and 47 SNPs for HDL, LDL, TC and TG, 

respectively). More details in supplementary materials.  

Statistical analyses  

For the assessment of the influence of genetic parameters on dyslipidemia among 

psychiatric patients throughout the psychotropic treatment duration, generalized additive 

mixed models (GAMM) were used, adjusting for covariates possibly associated with 

lipid parameters, i.e. BMI, age, sex, smoking status and psychotropic drug class. 

GAMMs were implemented using the mgcv and the nlme packages in R (settings were 

fixed at package defaults) [36], in which parameter uncertainties (confidence intervals 

and p-values) were computed using up to 100’000 bootstrap replicates with 

replacement, performed on patient level. The explained variance of wPRS on the four 

lipid variables was calculated by running GAMM with and without polygenic scores. All 

the statistical analyses were performed using Stata 14 (StataCorp, College Station TX, 

USA) and R version 3.2.3 software. P-values ≤ 0.05 of these two-sided models were 

considered as statistically significant. 
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Receiver Operating Characteristic (ROC) curves were used to compare the predictive 

power of models including only clinical data with models containing both clinical and 

genetic data using pROC and predictABEL R packages [37,38]. More details about 

AUC construction and interpretation are available in supplementary material.  

Evaluation of pharmacogenetic screening benefit 

The clinical value of pharmacogenetic testing could be assessed by calculating the 

number needed to genotype (NNG). NNG defines the number of patients who would 

need to be genotyped in order to prevent dyslipidemia for one patient under 

psychotropic treatment [39]. Sensitivity for the calculation of the NNG was chosen 

according to best threshold coordinates for specificity and sensitivity of the ROC curve 

including genetics and clinical data.  

Results 

Characteristics of psychiatric samples  

Demographic and clinical characteristics of the discovery (n=332), replication (n=140) 

and combined sample (n=472) are presented in S1 Table. The combined sample 

included individuals of European ancestry with a median age of 48 years (ranging from 

12 to 97 years), of whom 53%, 24%, 50% and 17% had TC, HDL, LDL and TG 

dyslipidemia at baseline, respectively. Psychotic disorders (F20: schizophrenia; F21: 

schizotypal disorder; F22: delusional disorder; F23: brief psychotic disorder; F24: 

shared psychotic disorder; F28: other psychotic disorder not due to a substance or 

known physiological condition; F29: unspecified psychosis not due to a substance or 

known physiological condition) were the most frequent diagnosis (33%), quetiapine was 
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the most frequently prescribed psychotropic drug (34%), 35% of patients were smokers 

and 44% were men. There was no significant difference of demographic nor of clinical 

characteristics between the two psychiatric samples, except lower baseline levels of TC 

and LDL in the discovery sample compared to the replication sample (4.7 mmol/l versus 

5.2 mmol/l; p=0.002 and 2.6 mmol/l versus 3.0 mmol/l; p=0.005, respectively). Between 

baseline and current psychotropic treatment, the incidence of dyslipidemia (i.e. 

abnormal lipid levels or treated dyslipidemia) development under the current 

psychotropic treatment reached 8.6%, 6%, 5.8% and 10.7% for TC, HDL, LDL and TG, 

respectively. S2-S6 Figures show the evolution of lipid levels during psychotropic 

treatment stratified by covariates taken into account in GAMM analyses, i.e. BMI, age, 

sex, smoking status and psychotropic drug class. More details are available in 

supplementary material. 

Influence of PRS on lipid phenotype worsening during psychotropic treatment  

SNPs considered for the construction of the wPRS for each lipid trait and each meta-

analysis (from Global Lipids Genetics Consortium and from Engage Consortium, 

namely wPRSWiller and wPRSSurakka, respectively) are listed in S2-S13 Tables. In the 

discovery sample, wPRSWiller and wPRSSurakka calculated for each phenotype were 

significantly associated with HDL, LDL, TC and TG (p≤0.02) (S14 Table). In the 

discovery sample, wPRScombined were also significantly associated with lipid levels 

(p≤0.01) and replicated in the independent psychiatric replication sample (p≤0.01) 

(Table 1). In the combined psychiatric sample using wPRScombined, each additional risk 

allele significantly increased LDL, TC and TG by 0.03, 0.04 and 0.04 mmol/l and 

decreased HDL by 0.02 mmol/l, respectively (Table 1; p<0.001, p<0.00001, p<0.0001 
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and p<0.00001, respectively). Since analyses on wPRScombined in the combined 

psychiatric sample showed significant associations and because estimates between the 

discovery and replication psychiatric samples were almost similar, further analyses were 

conducted using only wPRScombined in the combined psychiatric sample. Details for 

further analyses are available in supplementary material (S7-S16 Figures, S15 Table). 

In accordance with previous results, significant differences of the four lipid phenotype 

levels were observed between percentile groups (p≤0.004) (Table 2; Figure 2). Thus, 

patients whose wPRS was lower than the median value of all patients had significantly 

lower levels of LDL, TC and TG (0.20 mmol/l [0.04-0.36]; 0.32 mmol/l [0.15-0.49]; 0.26 

mmol/l [0.13-0.38], respectively) and higher levels of HDL (0.13 mmol/l [0.07-0.19]) 

compared to the others. 

Predictive power of models containing clinical and genetic variables  

Predictive powers of models including genetics were not improved compared to models 

including only clinical variables for any of the four lipid traits, neither in the discovery 

sample (S17 Figure a) nor in the replication sample (S17 Figure b). In the combined 

sample (Figure 1), adding genetics to models did not increase AUC for 

hypertriglyceridemia (AUC = 0.75 versus 0.74; p=0.57) and for LDL-

hypercholesterolemia (AUC=0.68 versus 0.66; p=0.41). However, for HDL-

hypocholesterolemia, AUC was significantly increased when adding genetics to the 

clinical model (AUC = 0.76 versus 0.73; p=0.03) and for TC hypercholesterolemia, a 

trend of AUC increase was observed by adding genetics to the clinical model 

(AUC=0.73 versus 0.70; p=0.08). More details are available in S16 Table. Of note, as 

fasting TG levels may vary considerably following a high-fat diet, more stringent 
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analyses were also conducted considering hypertiglyceridemia only if patients had at 

least two abnormal TG values during the psychotropic treatment. This new criterion 

slightly improved AUC (0.82 versus 0.79; p=0.29) but did not reveal any significant AUC 

increase by adding genetics (data not shown). 

S17 Table displays interaction results between wPRS and age, sex and BMI on the four 

lipid phenotypes. A significant interaction was observed between wPRS and BMI on 

LDL (p=0.02), and between wPRS and sex on TC (p=0.04). Details of further analyses 

are available in supplementary materials (S18-S20 Figures, S18 Table). 

Explained variability 

In the combined psychiatric sample, total variability explained by GAMMs including 

clinical and genetic components reached 22.8%, 13.6%, 15.9% and 23.0% for HDL, 

LDL, TC and TG respectively (S19 Table). Interestingly, wPRS was among the 

variables having high impact on the total explained variability for each lipid trait. Indeed, 

genetics alone explained 4.3%, 3.4%, 3.3% and 4.8% of HDL, LDL, TC and TG 

variability, respectively. Further analyses showed that only a small fraction (i.e. 5%) of 

SNPs drove the total variability explained by genetics. Thus, SNPs whose beta values 

were higher than the percentile 95 of all beta values explained 3.5%, 3.1%, 2.5% and 

3.3% of the total lipid variability for HDL, LDL, TC and TG, respectively (S20 Table). 

Strikingly, the variability explained by genetics was drastically decreased (1.58%, 

0.04%, 1.15% and 2.61% of HDL, LDL, TC and TG respectively) when considering 

unweighted PRS (i.e. PRS with beta value of 1 for each individual SNPs (S20 Table), 

showing the importance to consider allele effects in a weighted approach.  SNPs whose 

beta values were higher than the percentile 95 of all beta values are lying in well-known 
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genes involved in the regulation of lipid homeostasis, as for instance in the lipoprotein 

lipase (LPL), in the low-density lipoprotein receptor (LDLR) or in the apolipoprotein E 

(APOE) (S21 Table).  

Number needed to genotype 

To detect whether genotyping would be useful as a routine test, the number needed to 

genotype for HDL was calculated (Table 3). In the combined psychiatric sample, 24 

patients would be needed to be genotyped to avoid HDL hypocholesterolemia for one 

patient. 

 

Discussion  

The present study shows that wPRS constructed with lipid-associated SNPs from 

population-based samples had a significant influence on HDL, LDL, TC and TG levels in 

the psychiatric population receiving psychotropic treatment inducing metabolic 

disturbances. Moreover, adding genetics to clinical models significantly improved HDL 

hypocholesterolemia prediction and a trend for improvement was observed for the 

prediction of TC dyslipidemia. 

In the present psychiatric sample, dyslipidemia prevalence for TC, LDL, HDL and TG 

was higher than reported in the RAISE study (Recovery After an Initial Schizophrenia 

Episode) [12], possibly because of the shorter lifetime exposure to psychotropic 

treatment in the latter (less than 6 months) than in the present psychiatric sample 

(around 8 years). On the other hand, in accordance with the latter study [12], only a 

small proportion of patients (less than 7%) received lipid-lowering agent(s), 
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corresponding to 14 % of patients with hypercholesterolemia). Of note, a significant 

increase in the incidence of dyslipidemia was observed over time despite the worrisome 

prevalence already observed at baseline. This emphasizes the importance to 

prospectively monitor metabolic (including lipid) parameters during psychotropic 

treatment in each patient starting psychotropic medication [40]. Although most patients 

were not drug naive before starting the current psychotropic treatment, our results within 

this observational psychiatric sample reflected real medical conditions in clinical 

practice. In addition, the present psychiatric sample was clinically heterogeneous in 

terms of drug classes (i.e. antipsychotics, mood stabilizers and antidepressants) and of 

diagnoses (i.e. bipolar disorder, major depression and schizophrenia). However, 

diagnosis was not identified as a moderator of psychotropic drug–induced metabolic 

disturbances [41,42]. Moreover, although antipsychotic drugs are known to be 

associated with different degrees of weight gain, larger studies and meta-analyses are 

needed to determine how these drugs alter the lipid profile and whether their rank of 

risks is similar to weight gain. Thus, further studies are warranted to determine whether 

the alteration of the lipid profile depends on the drug class. On the other hand, the 

clinical heterogeneity of the present sample also constitutes a strength, reflecting real 

clinical conditions. 

To date, a large number of lipid-associated SNPs discovered among general population 

accounted for 6.6%, 5.7%, 8.2% and 5.0% for HDL, LDL, TC and TG respectively of the 

variance explained by wPRS [43]. Results obtained from our psychiatric samples 

showed a slightly smaller explained variability for lipid phenotypes (4.3%, 3.4%, 3.3% 

and 4.8% respectively).  As the explained variability by genetics was strongly decreased 
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in unweighted PRS, our results are in accordance with the importance of weighted 

approaches in PRS analyses. The difference between our results compared to 

population-based wPRS on lipids may be due to a lower number of patients in our 

psychiatric sample but also to the use of non-appropriate allele estimates. Thus, 

population-based estimates could either under- or over-represent the influence of some 

SNPs in the psychiatric population, which may flatten the explained variability. As a 

matter of fact, the psychiatric population displays a greater influence of some genetic 

variants on metabolic features than does the general population, possibly because of an 

intricate interaction between the psychiatric illness and metabolic regulation [16,44] as 

well as a higher prevalence of metabolic abnormalities in this specific population [45]. 

As a consequence, a wPRS constructed with estimates from psychiatric samples would 

be more pertinent and would certainly enhance the explained variability of genetics in 

this high-risk population. Of note, it is very likely that the consideration of additional 

genetic variants (e.g. SNPs associated with psychotropic drug-induced weight gain and 

metabolic abnormalities in genes such as FTO, LEP, LEPR or HTR2C [46,47]) in the 

wGRS may help to improve the predictive power of wGRS on dyslipidemia. 

Unfortunately, such promising variants could not be included in polygenic risk scores 

because no allele effect (β-coefficient from GWAS) for these SNPs was available in the 

literature. In addition, SNPs from candidate gene studies arose from heterogeneous 

studies in terms of drugs and of treatment durations, and these studies were limited by 

a lack of replication and a poor sample size.   Unfortunately, no GWAS on lipid traits has 

been yet performed neither in the drug-free psychiatric population nor in patients 

receiving psychotropic drugs inducing metabolic disturbances. Such studies and meta-
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analyses conducted on lipid levels would help to provide more accurate allelic 

estimates. In the present study, most of the lipid variance explained by genetics was 

driven by a very low number of SNPs with large effects, localized in well-known genes 

involved in lipid homeostasis and/or associated with cardiovascular risk [48]. Copy 

number variants, insertions or deletions, not taken into account in this study might 

further increase explained variability. Moreover, whether selecting more than one single 

SNP per gene would increase the explained variability remains unknown. Finally, the 

explained variability could be increased by adding new additional common variants 

(probably with modest effects), rare variants (probably with large effects), methylation 

profile as well as more clinical lipid-related characteristics.  

Several reports recently described the use of predictive models containing genetics in 

cardiovascular disease to prevent long-term health consequences [49-51]. Although 

wPRS were highly associated with lipid levels in the present study, models containing 

both clinical and genetic components in the discovery and replication samples did not 

show a significant increase in the power to predict lipid phenotypes compared to models 

containing clinical variables only. However, in the combined sample, AUCs were 

significantly increased for HDL and a trend of increase was observed for TC, suggesting 

that statistical power could be improved by increasing population samples. In addition, 

adding more dyslipidemia-associated genetic markers as well as covariate risk factors 

for dyslipidemia development could also improve the prediction. Of note, AUC for HDL 

model including both genetics and clinical variables in the combined sample was higher 

than 0.75 and sensitivity, specificity and accuracy were higher than 70%,  indicating that 

the prediction was informative and useful enough [52]. Based on the present results, 24 
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patients would be needed to be genotyped to avoid HDL hypocholesterolemia for one 

patient [53]. Thus, additional studies with larger sample sizes are needed to replicate 

the present findings and to identify new lipid-associated variants before the additive 

value of including genetic information in predictive models is transposable to routine 

clinical practice. In addition, larger studies are warranted to investigate the influence of 

wPRS on lipid levels in specific subgroups of patients (e.g. drug- and/or diagnosis-

stratified samples). 

Results of the present study should be considered with the following limitations. Firstly, 

the study was restricted to European patients, which impedes extrapolation to other 

ethnicities. Secondly, effects of environmental changes such as physical exercise or 

diet habits throughout the treatment, which could have influenced the evolution of lipid 

levels, were not taken into account. A strength of our study is the use of a weighted 

approach for the PRS. In addition, therapeutic drug monitoring was performed to 

ascertain compliance to exclude false negative, i.e. patients who did not develop 

dylipidemia because they did not take the drug, an important factor to consider in the 

psychiatric population. 

In conclusion, we showed an influence of PRS built from variants related to lipid traits in 

population-based samples on lipid levels in the psychiatric population. Moreover, adding 

genetic information to clinical variables may improve the prediction of HDL 

hypocholesterolemia in psychiatric patients treated with weight gain inducing 

psychotropic drugs. Forthcoming work is needed to examine whether predictive models 

are accurate and useful enough for the clinical purpose of individualizing psychiatric 

treatment. 
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Table 1. Association of wPRS groups (SNPs selected from both meta-analyses) with lipid traits in GAMM adjusted with 
age, sex, BMI, medication and smoking status in the discovery, replication and combined sample. 

 

 

CI: confidence interval. Caucasian patients taking lipid-lowering medication were excluded. Only fasting patients were included for 

TG analyses. Explained variability [%] refers to models including all variables. Estimates indicate the influence of each additional 

risk allele on lipid levels (in mmol/l). For instance, each additional risk allele significantly increases LDL by 0.03 mmol/l [0.01-0.05]. 

 

  Phenotype 
Number 

of 
SNPs 

Number  
of 

patients 

Estimate [95% CI] 
(mmol/l) 

Explained 
variability 

[%] 

Explained 
variability by PRS 

[%] 
p-value 

Discovery 
sample 

HDL 73 233 0.01 [0.01 - 0.02] 18.32 3.44 <0.001 
LDL 60 211 0.03 [0.01 - 0.05] 15.05 1.85 0.004 
TC 72 234 0.03 [0.02 - 0.05] 16.12 2.48 <0.001 
TG 47 213 0.05 [0.03 - 0.06] 25.08 5.25 <0.01 

Replication 
sample 

HDL 73 98 0.02 [0.01 - 0.03] 41.88 7.16 <0.01 
LDL 60 92 0.04 [0.02 - 0.07] 14.5 8.86 <0.001 
TC 72 102 0.06 [0.03 - 0.08] 17.53 6.63 <0.01 
TG 47 86 0.03 [0.00 - 0.06] 26.87 3.93 <0.01 

Combined 
sample 

HDL 73 331 0.02 [0.01 - 0.02] 22.79 4.33 <0.00001
LDL 60 303 0.03 [0.02 - 0.05] 13.61 3.4 <0.001 
TC 72 336 0.04 [0.02 - 0.06] 15.91 3.25 <0.00001
TG 47 299 0.04 [0.03 - 0.06] 24.97 4.86 <0.0001



Table 2. Association of wPRS groups (SNPs selected from both meta-analyses) with lipid traits in GAMM 
adjusted with age, sex, BMI, medication and smoking status in the combined sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CI: confidence interval. GAMM were performed with PRS as a categorical variable with two groups. wPRS <p50 = 

group of patients whose wPRS was lower than the median of all patients wPRS. wPRS ≥p50 = group of patients 

whose wPRS was higher or equal to the median of all patients wPRS. wPRS <p25 = group of patients whose wPRS 

was lower than the percentile 25 of all patients wPRS. wPRS >p75 = group of patients whose wPRS was higher than 

the percentile 75 of all patients wPRS. wPRS <p10 = group of patients whose wPRS was lower than the percentile 10 

of all patients wPRS. wPRS >p90 = group of patients whose wPRS was higher than the percentile 90 of all patients 

wPRS. Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG analyses. 

Estimates indicate the difference of lipid levels between wPRS percentile groups (i.e. between median percentile 

groups, between percentile 25 and percentile 75 groups or between percentile 10 and percentile 90 groups). 

 

  
Number 

of 
SNPs 

Number 
of 

patients 

wPRS 
groups 

Estimates  
[95% CI]  
(mmol/l) 

p-value 

HDL 73 

331 
wPRS <p50 0.13 [0.07-0.19] 

<0.0001 
wPRS ≥p50 ref 

167 
wPRS <p25 0.28 [0.19-0.36] 

<0.0001 
wPRS >p75 ref 

68 
wPRS <p10 0.35 [0.22-0.49] 

<0.0001 
wPRS >p90 ref 

LDL 60 

303 
wPRS <p50 ref 

0.004 
wPRS ≥p50 0.20 [0.04-0.36] 

158 
wPRS <p25 ref 

0.003 
wPRS >p75 0.31 [0.11-0.53] 

68 
wPRS <p10 ref 

0.0004 
wPRS >p90 0.63 [0.27-1.00] 

TC 72 

336 
wPRS <p50 ref 

<0.0001 
wPRS ≥p50 0.32 [0.15-0.49] 

171 
wPRS <p25 ref 

<0.0001 
wPRS >p75 0.50 [0.28-0.74] 

76 
wPRS <p10 ref 

0.0002 
wPRS >p90 0.66 [0.30-1.07] 

TG 47 

299 
wPRS <p50 ref 

<0.0001 
wPRS ≥p50 0.26 [0.13-0.38] 

146 
wPRS <p25 ref 

<0.0001 
wPRS >p75 0.47 [0.30-0.64] 

56 
wPRS <p10 ref 

0.002 
wPRS >p90 0.60 [0.19-0.91] 



 

Figure 2. Evolution of lipid variables during psychotropic treatment, according to extreme groups of PRS. 
10% PRS = PRS lower than the 10th percentile. 90% PRS = PRS higher than the 90th percentile. Median, 
interquartiles and number of observations are indicated for each box. Months were defined as: month [0]: day 0, 
month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 days. Patients taking lipid-
lowering medication were excluded. Only fasting patients were included for TG analyses. 

 

 



 

Figure 1: ROC curves for abnormal lipid levels in the combined sample, defined by abnormal levels and/or by 

the prescription of a lipid-lowering comedication. Solid curves correspond to the model including clinical and 

genetics components, whereas the dashed curves include only clinical values. Only fasting patients were included for 

TG analyses. Low HDL-cholesterol level, i.e. HDL hypocholesterolemia was defined as < 1 mmol/l and/or prescription 

of a lipid-lowering agent, high LDL-cholesterol level, i.e. LDL hypercholesterolemia was defined as ≥ 3 mmol/l and/or 

prescription of a lipid-lowering agent, high triglyceride level, i.e. hypertriglyceridemia was defined as ≥ 2 mmol/l and/or 

prescription of a lipid-lowering agent and high total cholesterol level, i.e. hypercholesterolemia was defined as ≥ 5 

mmol/l and/or prescription of a lipid-lowering agent [53], according to ESH/ESC guidelines [54]. 

 



Table 3: HDL dyslipidemia incidence and number needed to genotype for the discovery, replication and 
combined samples 

 

 

 

 

 

 

NNG calculations were done using sensitivity (reported in the present table) of the best threshold coordinates in each 
sample for HDL dyslipidemia development. 

 

  
Dyslipidemia 
incidence [%] 

Sensitivity  
Number needed  

to genotype 
(NNG) 

Discovery sample  7.1 0.63 22 
Replication sample 2.9 0.49 70 
Combined sample 6.0 0.70 24 


