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Summary 

Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which 

has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. 

Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly 

known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic 

resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these 

pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge 

about the interaction of these particular bacteria with insects could lead to the development of novel 

biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, 

evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was 

outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors 

contributing to the entomopathogenicity of the bacteria. 

In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence 

microscopy using reporter strains of Pseudomonas protegens CHA0 that express a fusion between the 

insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to 

express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory 

media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. 

The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and 

shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is 

therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host-

specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of 

the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by 

induction upon perceiving an insect-specific signal molecule. 

In the second part of this thesis, mutant strains were generated that lack factors previously shown to be 

important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested 

that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly 

contribute to virulence of P. protegens CHA0. The genetic basis of O-antigen biosynthesis in plant-beneficial 

pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between 

lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. 

Specific O side chains of LPS were found to be vital for strain CHA0 to successfully infect insects by ingestion 

or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally 

resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial 

compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 

4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, 
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O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense 

mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several 

pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHA0. No 

evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. 

However, the sensor kinase PhoQ was required for full virulence of strain CHA0 suggesting that it 

additionally regulates the expression of virulence factors in this bacterium. 

The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect 

pathogens and give some insights into how these microbes evolved to survive within and eventually kill the 

insect host. Results however also point out that more in-depth research is needed to know how exactly 

these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical 

barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the 

bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. 

The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for 

their future application in agriculture to protect plants not only against plant diseases but also against insect 

pests. 
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Résumé 

Les bactéries du genre Pseudomonas ont la capacité étonnante de s’adapter à différents habitats et d’y 

survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d’interagir avec 

différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées 

de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. 

Elles sont capables d’induire la résistance systémique des plantes, d’induire leur croissance et de contrer des 

phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d’infecter et 

de tuer certaines espèces d’insectes. Approfondir les connaissances sur l’interaction de ces bactéries avec les 

insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. 

Le but de cette thèse est donc de mieux comprendre la base moléculaire, l’évolution et la régulation de la 

pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été 

orienté sur l’étude de la production de la toxine insecticide appelée Fit et sur l’indentification d’autres 

facteurs de virulence participant à la toxicité de la bactérie envers les insectes. 

Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par 

microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui 

expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la 

toxine. Celle-ci a été détectée uniquement dans l’hémolymphe des insectes et pas sur les racines des 

plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l’hôte. 

L’activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l’histidine kinase 

FitF, essentielle pour un contrôle précis de l’expression et possédant un domaine "senseur" similaire à celui 

de la kinase DctB qui régule l’absorption de carbone chez les Protéobactéries. Il est donc probable que, 

durant l’évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à 

une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l’expression de 

la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu’induite par la perception 

d’un signal d’insecte spécifique. 

Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants 

identifiés dans des pathogènes connus ont été générées, dans le but d’identifier ceux avec une virulence 

envers les insectes atténuée. Les résultats ont suggéré que l’antigène O du lipopolysaccharide (LPS) et le 

système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. 

protegens CHA0. La base génétique de la biosynthèse de l’antigène O dans les Pseudomonas plante-

bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les 

lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l’évolution 

de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des 

insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec 
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une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La 

protection contre ce composé antimicrobien particulier dépend de la présence de l’antigène O et de la 

modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens 

cationiques jouent un rôle important dans le système immunitaire des insectes, l’antigène O pourrait être 

important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l’hôte. Le 

système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, 

a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l’instant, il n’y a pas 

d’évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les 

insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce 

qui suggère qu’il régule aussi l’expression des facteurs de virulence de cette bactérie. 

Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de 

véritables pathogènes d’insectes et donnent quelques indices sur l’évolution de ces microbes pour survivre 

dans l’insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu’une recherche plus 

approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou 

surmonter la réponse immunitaire de l’hôte et de briser les barrières physiques pour envahir l’insecte lors 

d’une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté 

bactérien de l’interaction hôte-microbe, mais aussi étudier l’infection du point de vue de l’hôte. Les 

connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent 

un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les 

maladies, mais aussi contre les insectes ravageurs. 
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CHAPTER 1 

General Introduction and Thesis Outline 
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Insect pests and available control measures 

With the world population still experiencing continuous growth, an immediate priority of agriculture is to 

increase crop production to assure food security while becoming more sustainable (Gatehouse et al., 2011). 

One way to do so is by improving the management of pests. Weeds, plant pathogens and certain animal 

species are considered to be the major pests of economic significance and together they are estimated to 

reduce the world’s annual crop yield by approximately 30-40 per cent (Oerke, 2006). Due to their incredible 

diversity and adaptability, insects are probably the single most challenging pest to control in agriculture 

worldwide. Insects do not only cause major damage to agricultural crops as pests, but are also vectors of 

diseases. Since the introduction of synthetic insecticides, their application has made a major contribution to 

improve food production, but it was also soon discovered to be problematic in many ways. The rapid 

appearance of resistance to insecticides is a major concern in pest management. Today insect pest species of 

economic importance as pests that are resistant to more than 30 different chemical insecticides are no 

longer a rarity (Arthropod Pesticide Resistance Database, Michigan State University). Moreover, chemical 

insecticides are troublesome because of their potentially nocuous effects on the environment and public 

health (Heckel, 2012). 

After decades of intensive pesticide application, it has become evident that there is no silver bullet solution 

to the control of pests in sustainable agriculture. The integration of many different, complementary 

approaches of chemical and biological control methods to solve the diverse and challenging problems with 

pests is the basic idea behind integrated pest management (IPM) programs (van den Bosch and Stern, 1962). 

Since its inception, IPM has become an increasingly important and popular toolbox-like approach to protect 

plants in agriculture against weeds, pathogens and animal pests (Oerke, 2006). Its tactics are designed to 

decrease the amount of chemical pesticides applied through careful forecasting or even to replace them by 

biological alternatives. The two main alternatives to synthetic insecticides are the exploitation of 

semiochemicals (like pheromones) to change the behavior of insects or the use of biological control agents 

(parasites, predators, and pathogens) to reduce the pest population size (Bale et al., 2008). IPM-based 

systems are becoming progressively more popular due to the increased public awareness of the above 

mentioned problematic effects of synthetic pesticides and interest in the development of alternative 

approaches for plant pest control. Microbial products that are based on insecticidal microorganisms for 

biological pest management strategies are receiving particular attention. 

Bacillus thuringiensis (Bt) is a Gram-positive, spore-forming soil bacterium and the insecticidal organism 

which is dominating the market for products for microbial control of insects (Bravo et al., 2011; Sanahuja et 

al., 2011). The reason for its success is the production of pore-forming δ-endotoxins, namely Cry and Cyt 

proteins (Crickmore et al., 1998; 2013). These so-called crystal proteins are produced during sporulation and 

show potent and specific insecticidal activity. Once proteolytically activated, the Cry and Cyt proteins act in 
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the midgut of insects as pore-forming toxins via binding to specific receptors or directly to membrane lipids, 

respectively (Bravo et al., 2007; Vachon et al., 2012). In addition to the well-known crystal toxins, Bt 

produces an array of additional virulence factors that contribute to the insecticidal activity of this bacterium 

(Nielsen-LeRoux et al., 2012). Bt is typically applied as topical sprays and has several advantages over 

conventional chemical insecticides. The bacterium’s pathogenic activity is specific towards a narrow range of 

insect species and its application is considered to be environmentally sound and harmless to humans and 

other mammals. However, the use of Bt as a biological control agent has some limitations. The bacterium 

shows low environmental persistence after topical application, mainly because it is sensitive to solar 

irradiation as well as to the chemical environment on plant leaves, and is not a competitive plant colonizer 

(Bizzarri and Bishop, 2008; Raymond et al., 2010). Therefore, and because the susceptible stages of the pest 

insects are during the early instar larvae, Bt provides only short-term crop protection in the field and 

requires precise application practices (Bravo et al., 2011). The recent discovery that at least some Bt strains 

are capable of colonizing crop plants as endophytes and as such translocate throughout the plant (Monnerat 

et al., 2009) may open up an avenue for new Bt application strategies. 

To overcome the problem of the low persistence of Bt on plants, genetically modified (GM) crops that 

express variants of the Cry toxins have been developed and successfully commercialized. Planting of GM 

crops reduced the amount of pesticides applied by 8.9% in the period from 1996 to 2011 (James, 2012) and 

is a component of IPM strategies due to its compatibility with biological control methods (Bale et al., 2008). 

However, the major drawback of this new biotechnology has been the development of resistance against the 

Cry toxins by pests (Bravo et al., 2011). Due to the relatively simple mode of action of Cry toxins and the 

absence of complementary virulence factors normally found in the complete microorganism, resistance is 

much more probable to develop towards the insect toxin in the GM plants than to the entire microorganism 

(Cory and Franklin, 2012). Infections by microbial pathogens are complex and likely to require more diverse 

polygenic resistance mechanisms in pest insects. In addition, there are public concerns about transgenic 

crops regarding their impact on biodiversity and the consumer’s health and the possible dependency of 

farmers on seed companies. Especially in Europe, the public acceptance for GM crops is currently fairly low 

for these reasons. 

Belowground pest insects are especially difficult to control, because they are hidden in the soil and therefore 

hard to detect and to get access to. Although root herbivory can cause significant damage to crops, even 

leading to a sudden collapse of the plant population, there is still a considerable lack of research data about 

root feeders and their impact on plants (Hunter, 2001; Blossey and Hunt-Joshi, 2003). For instance, the 

Western corn rootworm Diabrotica virgifera virgifera is a significant economic pest insect of maize in the 

United States and in Europe and acquired the nickname “billion dollar bug”, not without reason (Gray et al., 

2009). Even if this troublesome insect species has been the subject of many scientific studies, this root 

feeder remains challenging to control because of its cryptic lifestyle, the adaptation to crop rotation and the 
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development of resistance to certain insecticides. While the use of chemical pesticides for pest management 

in soils is extremely restricted, microbial control is a promising approach to address problems with soil-

dwelling insects due to the more favorable environmental conditions for microbes in contrast to 

aboveground habitats (e.g., absence of ultraviolet radiation and lower risk of desiccation in the soil). Species 

of Photorhabdus and Xenorhabdus, bacteria which are living in symbiosis with entomopathogenic 

nematodes, are used in agriculture as soil-applied insecticides (Lacey and Georgis, 2012). However, contrarily 

to Bt, they currently only play a minor role on the market for microbial insecticides. Commercial products for 

pest control are based on formulations of entomopathogenic nematodes of the genera Heterorhabditis and 

Steinernema with select strains of Photorhabdus and Xenorhabdus (Ehlers, 2001). Preparations of 

Heterorhabditis and Steinernema vectoring the entomopathogenic bacteria have been applied with varying 

success to control larval forms of some of the most notorious soil pest insects, including the black cutworm 

Agrotis ipsilon of the order Lepidoptera, Diabrotica spp. and Diaprepes sp. and Otiorhynchus sp. root weevils 

of the Coleoptera, and the cabbage root fly Delia radicum and fungus gnats (Sciaridae) of the Dipterae 

(Denno et al., 2008; Lacey and Shapiro-Ilan, 2008; Degenhardt et al., 2009; Toepfer et al., 2010; Campos-

Herrera et al., 2012; Shapiro-Ilan and Gaugler, 2013). The two nematodes have also been used in 

combination with the entomopathogenic fungus Metarhizium and Bt maize to improve root protection from 

damage caused by Diabrotica spp. (Petzold-Maxwell et al., 2013). 

Photorhabdus and Xenorhabdus are fascinating entomopathogenic bacteria and they have been studied 

extensively for their insect pathogenicity and mutualistic interaction with nematodes, as well as for their 

production of an array of protein toxins and toxic secondary metabolites with insecticidal potential (ffrench-

Constant et al., 2007; Herbert and Goodrich-Blair, 2007; Bode, 2009; Waterfield et al., 2009; Nielsen-LeRoux 

et al., 2012). They provide a rich source of novel insecticidal toxins for crop protection, as it will be 

exemplified later in this chapter. There have been efforts to isolate new strains of these entomopathogens 

to mine for novel antimicrobial and insecticidal compounds (Thanwisai et al., 2012), and to create insect-

resistant plants using toxins from Photorhabdus luminescens (Liu et al., 2003). In contrast to Bt, which relies 

on the oral route of infection in order to kill the insect host, Photorhabdus and Xenorhabdus species are 

“delivered” directly into the insect hemocoel by their nematode vectors, which then invade the insects 

either via penetration of the cuticle or through natural openings. As a result, this infection strategy makes 

the bacteria dependent on their nematode symbiont, which in turn makes applications of these 

microorganisms for insect pest management in the soil much more complex than it would be in the case of a 

free-living, entomopathogenic rhizobacterium. 

Certain root-associated bacteria of the genus Pseudomonas could constitute a promising alternative to the 

above-mentioned two groups of commercialized entomopathogens, in particular when addressing the 

notorious problem of soil-dwelling pests. As described in more detail below, these well-known rhizobacteria 

are capable of protecting plant roots against fungal and oomycete pathogens and simultaneously show 
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potent oral insecticidal activity (Fig. 1A). Some of these bacterial strains are already successfully used as 

antifungal biocontrol agents in agriculture (Berg, 2009). Therefore, these root-associated bacteria could be 

exploited for the development of novel microbial products which would protect plant roots simultaneously 

against phytopathogens and herbivorous insects and could become an important element of IPM. 

 

Interaction of beneficial pseudomonads with plants and phytopathogens: cooperation, 

competition, and antagonism 

The genus Pseudomonas makes up a remarkably ubiquitous and diverse group of microorganisms. These 

Gram-negative bacteria are highly adaptive and can use a wide variety of compounds as an energy source, 

and as a result, there is practically no place on earth where they cannot be found (Wu et al., 2010; Silby et 

al., 2011). The environmental niches that they colonize range from oil-spilled seawater (Viggor et al., 2013) 

to soil (Weller et al., 2002), plant surfaces (Hirano and Upper, 2000; Loper et al., 2012) and insect guts 

(Vodovar et al., 2005). Some of them live a life as saprophytes, while some are plant pathogens or 

opportunistic human pathogens, and yet others entertain commensal or almost mutualistic relationships 

with plants. The latter are in most cases root-colonizing members of the Pseudomonas fluorescens group 

according to Mulet and colleagues (Mulet et al., 2010; 2012b), and include amongst others the species P. 

fluorescens, P. protegens and P. chlororaphis. Among them, plant-beneficial pseudomonads are well known 

for their multiple skills that enable them to not only survive and compete in the rhizosphere, which is an 

ecological hot spot attracting many different kinds of organisms, but also to undergo intimate interactions 

with the plant itself (Fig. 1A; Lugtenberg and Kamilova, 2009; Hol et al., 2013). To this effect, the root-

colonizing pseudomonads first became renowned thanks to the ability of some strains to protect plants 

against the attack by some of the most notorious soil-borne fungal and oomycete pathogens, including 

Gaeumannomyces, Thielaviopsis, Rhizoctonia, Fusarium oxysporum, and Pythium sp. (Table 1; Cook et al., 

1995; Haas and Défago, 2005; Mercado-Blanco and Bakker, 2007).  

The mechanisms by which pseudomonads suppress plant diseases have been studied for many years. These 

bacteria are excellent root colonizers and compete effectively with pathogens for rhizosphere niches and 

macro- and micronutrients (Mercado-Blanco and Bakker, 2007; Lugtenberg and Kamilova, 2009). Notably, 

pseudomonads produce high affinity iron-chelators (so-called siderophores such as pyoverdines and 

pyochelins) by which they sequester iron, which is in limited supply in soil, and render it unavailable for the 

pathogens (Table 1; Keel et al., 1989; Loper and Buyer, 1991; Cornelis, 2010; Youard et al., 2011). Probably 

the most potent mechanism by which pseudomonads can suppress soilborne pathogens is antibiosis (Haas 

and Keel, 2003). Many disease-suppressive strains produce one, two or even an entire cocktail of secondary 

metabolites with potent antifungal activity by which they can ward off plant pathogens. Phenazines, 2,4-

diacetylphloroglucinol (DAPG), pyoluteorin, pyrrolnitrin, hydrogen cyanide (HCN), and cyclic lipopeptides are 
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metabolites with a documented role in disease suppression (Table 1; Haas and Keel, 2003; de Werra et al., 

2008; Gross and Loper, 2009; Mentel et al., 2009; Raaijmakers et al., 2010; Rochat et al., 2010; Jousset et al., 

2011). The pseudomonads use several of these compounds also for self-defense against predatory protozoa 

and nematodes (Bjørnlund et al., 2009; Jousset et al., 2009; Raaijmakers and Mazzola, 2012). Most 

remarkably, root-inhabiting pseudomonads producing DAPG, phenazines or cyclic lipopeptides are key 

components of soils that are naturally suppressive to specific soil-borne diseases such as take-all of wheat, 

black root of tobacco, and Rhizoctonia root rot of sugar beet (Weller et al., 2002; Défago and Haas, 2005; 

Mazurier et al., 2009; Mendes et al., 2011; Almario et al., 2013). 
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Figure 1: Certain plant root-associated Pseudomonas bacteria exhibit insect pathogenicity as an additional trait to the well-studied 

biocontrol activity against phytopathogens (see text for more details). (A) The most important interactions of these plant-beneficial 

pseudomonads (in green) include cooperation with the plant host (growth promotion and induction of systemic resistance) and 

competition with and antagonism of soil-borne phytopathogens. In addition, they show insecticidal activity and can use insects as 

vectors for dispersal. (B) Certain strains of P. protegens and P. chlororaphis are capable of infecting and efficiently killing insect larvae 

after oral uptake. P. protegens strain CHA0 (here tagged with GFP for microscopical visualization) typically forms microcolonies on 

roots (1) of various plant species (here tomato). Following ingestion by herbivorous insects, the entomopathogenic P. protegens 

strain is able to colonize the midgut (2) of pest insect larvae (here the large cabbage white Pieris brassicae), possibly by competing 

with the intestinal microbiota. By a so far unknown mechanism CHA0 cells then cross the intestinal epithelial barrier and invade the 

hemocoel within less than one day after oral infection (3). Once in this body compartment, the bacteria proliferate, resist uptake and 

elimination by hemocytes and cause disease (4). Bars represent 10 µm. 

 

Several root-associated Pseudomonas strains are able to reduce plant diseases not only by directly 

antagonizing pathogens but also indirectly by activating plant defenses (Table 1). The beneficial effects of 

induced systemic resistance (ISR) triggered by root-colonizing pseudomonads in mono- and dicotyledonous 

plants against plant pests caused by fungal, oomycete, bacterial and viral pathogens, and also by herbivorous 

insects are extensively documented (Maurhofer et al., 1994; Bakker et al., 2007; De Vleesschauer and Höfte, 

2009; van de Mortel et al., 2012; Zamioudis and Pieterse, 2012; Balmer et al., 2013). Nevertheless, 

pseudomonads sometimes can also negatively interfere with plant defenses against insects or with the 

attraction of parasitoids of leaf-feeding insects (Pineda et al., 2012; 2013). A number of bacterial 

determinants eliciting ISR have been identified, including iron-chelators such as pyoverdines and pyochelins, 

and antimicrobials such as DAPG, phenazines and lipopeptides (Table 1; Bakker et al., 2007; De Vleesschauer 

and Höfte, 2009). Most pseudomonads that are capable of inducing systemic resistance do this by priming 

plants in a way which leads to an accelerated, mostly jasmonate-signaling dependent response upon 

pathogen or insect attack (Prime-A-Plant Group, 2006; Bakker et al., 2007; De Vleesschauer and Höfte, 

2009). 

There are two main strategies by which we can exploit these pseudomonads with their astonishing 

repertoire of plant-beneficial activities for improving crop performance and crop health. The first is to adapt 

cropping systems in a way that attracts the beneficial rhizobacteria, fosters their populations and stimulates 

their activity (Janvier et al., 2007; Berendsen et al., 2012). This may be achieved in numerous ways, e.g. by 

adapting tillage or crop rotation practices, by soil amendments such as quality composts or by the use of 

inter- or covercrops (Mazzola, 2004; Janvier et al., 2007). The second strategy is to apply Pseudomonas-

based biopesticides either as a seed treatment, soil drench or foliar spray. Several products based on plant-

beneficial pseudomonads for use in integrated biological control have been commercialized mainly for the 

US market, including AtEze (P. chlororaphis) with activity against Pythium, Rhizoctonia, and Fusarium root 

diseases of vegetables and ornamentals in greenhouses, BlightBan A506 (P. fluorescens) used against fire 

blight on apple and pear, and Bio-Save 10 LP/11 LP (Pseudomonas syringae) used for the control of post-
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harvest diseases of fruits and potato (Fravel, 2005). In several European countries, two formulations based 

on P. chlororaphis, i.e. Cedomon and Cerall, are sold as a seed treatment against seed-borne diseases of 

cereals (Mark et al., 2006) and the Pseudomonas-based product Proradix (Buddrus-Schiemann et al., 2010) 

was recently placed on the market for use as a potato tuber treatment against diseases caused by 

Rhizoctonia, Phytophthora, Streptomyces and Erwinia. Considerations for the selection, production, delivery, 

field testing, and registration of Pseudomonas and other biocontrol agents for commercial purposes have 

been reviewed elsewhere (Walsh et al., 2001; Fravel, 2005; Mark et al., 2006; Berg, 2009; Höfte and Altier, 

2010). 

 

Table 1: Prominent root-associated Pseudomonas fluorescens group strains with biocontrol activity against plant diseases and 
effectors contributing to pathogen suppression. 
 
Straina Target soil-borne // leaf 

pathogensb 
Pathogen 
suppression 
mechanismsc 

Effectors (antibiotics / 
biosurfactants // siderophores)d 

Referencese 

Pseudomonas protegens 
CHA0 Thielaviopsis, Pythium, 

Gaeumannomyces, 
Rhizoctonia, Fusarium // 
Hyaloperonospora, TNV 

Antibiosis, ISR DAPG, pyrrolnitrin, pyoluteorin, 
HCN / orfamide // pyoverdine, 
enantiopyochelin 

Haas and Keel (2003); 
Défago and Haas (2005); 
Youard et al. (2011) 

Pf-5 Pythium, Rhizoctonia, 
Drechslera, Sclerotinia // 
Pst 

Antibiosis, ISR DAPG, pyrrolnitrin, pyoluteorin, 
HCN, rhizoxins / orfamide // 
pyoverdine, enantiopyochelin  

Gross and Loper (2009); 
Loper et al. (2012); Weller 
et al. (2012) 

Pseudomonas chlororaphis 
30-84 Gaeumannomyces Antibiosis Phenazines, pyrrolnitrin, HCN // 

pyoverdine 
Pierson and Pierson 
(2010); Loper et al. (2012) 

O6 // Phytophthora, 
Corynespora, 
Pectobacterium 

Antibiosis, ISR Phenazines, pyrrolnitrin, HCN // 
pyoverdine 

De Vleesschauer and 
Höfte (2009); Park et al. 
(2011); Loper et al. (2012) 

PCL1391 Fusarium Antibiosis Phenazines, HCN // pyoverdine Chin-A-Woeng et al. 
(2001); Ruffner (2013) 

Pseudomonas fluorescens 
2-79 Gaeumannomyces Antibiosis Phenazine // pyoverdine Weller (2007); Mavrodi et 

al. (2010) 
DR54 Pythium, Rhizoctonia Antibiosis / Viscosinamide // pyoverdine Nielsen and Sørensen 

(2003) 
F113 Pythium, Fusarium, 

Pectobacterium 
Antibiosis DAPG, HCN // pyoverdine Redondo-Nieto et al. 

(2013) 
Pf29A Gaeumannomyces Alteration of 

fungal 
pathogenesis 

ND Daval et al. (2011); 
Marchi et al. (2013) 

Q2-87 Gaeumannomyces // Pst Antibiosis, ISR DAPG, HCN // pyoverdine Loper et al. (2012); Weller 
et al. (2012) 

SBW25 Pythium ND / Viscosin // pyoverdine Loper et al. (2012); Trippe 
et al. (2013) 

SS101 Pythium // Phytophthora, 
Pst 

ISR / Massetolide // pyoverdine Loper et al. (2012); van 
de Mortel et al. (2012) 

WCS374 Fusarium // 
Magnaporthe, Pst 

ISR // Pyoverdine, pseudomonine Bakker et al. (2007); De 
Vleesschauer and Höfte 
(2009) 

WCS417 Fusarium // Alternaria, 
Hyaloperonospora, 
Botrytis, Pst 

ISR ND Bakker et al. (2007); Van 
der Ent et al. (2008) 

aStrains belonging to the P. fluorescens group according to Mulet et al. (2010; 2012b). 
bPst, Pseudomonas syringae pv. tomato; TNV, tobacco necrosis virus. 
cISR, induced systemic resistance. ND, not determined. 
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dMajor effectors with antimicrobial, biosurfactant, metal-chelating and/or plant defense-inducing properties produced by the 
respective strain. DAPG, 2,4-diacetylphloroglucinol; HCN, hydrogen cyanide. 
eReferences from which further information on the strains can be accessed. 
 

Insecticidal activity in plant-beneficial P. fluorescens group bacteria: occurrence and 

molecular basis 

Until very recently, insecticidal activities in the P. fluorescens group had only been sparsely documented 

(Table 2). Notably, strains of P. fluorescens were reported to exhibit insecticidal activity towards agricultural 

pest insects such as aphids (Hashimoto, 2002), phytophagous ladybird beetles (Otsu et al., 2004), and 

termites (Devi and Kothamasi, 2009). In the same vein, a bioformulation of a combination of two P. 

fluorescens strains was demonstrated to simultaneously reduce the incidence of a herbivorous insect (the 

rice leafroller Cnaphalocrocis medinalis) and a phytopathogenic fungus (Rhizoctonia solani) in rice under 

greenhouse and field conditions (Commare et al., 2002; Karthiba et al., 2010). Furthermore, a number of P. 

fluorescens strains were found to be capable of either killing the common fruit fly Drosophila melanogaster 

or of causing morphological defects to the widely used laboratory insect (de Lima Pimenta et al., 2003; 

Olcott et al., 2010). Although in some cases protein extracts (Prabakaran et al., 2002) or metabolites of P. 

fluorescens group strains, such as HCN (Devi and Kothamasi, 2009) and the lipopeptides viscosin (Hashimoto, 

2002) and orfamide (Yang et al., 2013), were shown to have insecticidal properties, the molecular basis and 

regulation of the insecticidal activity in these bacteria remains obscure. 

 

Table 2: Insecticidal activity in Pseudomonas species and currently known effectors and regulatory mechanisms involved in insect 
virulence. 
 

Bacterial straina Target insect Application of 
bacteria / bacterial 
productb 

Effector / regulatory 
mechanism involved in 
insect virulencec 

Reference 

Pseudomonas protegens 
CHA0 Galleria mellonella, 

Manduca sexta 
Injection Fit toxin (similar to Mcf 

toxin of Photorhabdus) 
Péchy-Tarr et al. (2008; 2013) 

 
Spodoptera littoralis Feeding (D, L) Fit toxin, GacA (global 

regulator of virulence and 
biocontrol) 

Ruffner et al. (2013) 

 
Heliothis virescens, 
Plutella xylostella 

Feeding (L) ND Ruffner et al. (2013) 

 
Odontotermes obesus Contact (live cells) HCN (biocide) Devi and Kothamasi (2009) 

Pf-5 G. mellonella,      M. 
sexta 

Injection Fit toxin Péchy-Tarr et al. (2008) 

 Drosophila 
melanogaster 

Feeding (D) GacA Olcott et al. (2010) 

F6  Myzus persicae Contact (purified 
metabolite) 

Orfamide (biosurfactant) Jang et al. (2013) 

Pseudomonas chlororaphis 
30-84 G. mellonella Injection ND Ruffner (2013) 
PCL1391 S. littoralis Feeding (D, L) Fit toxin Ruffner et al. (2013) 
 H. virescens,         P. 

xylostella 
Feeding (L) ND Ruffner et al. (2013) 

ST-1 Bombyx mori Injection ND Tao et al. (2011) 
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Pseudomonas fluorescens 
AH1, FP7 and Pf1 Cnaphalocrocis 

medinalis 
Feeding (L) ND Commare et al. (2002); 

Karthiba et al. (2010) 
HS870031 Myzus persicae, Aphis 

gossypii, Aulacorthum 
solani 

Contact (purified 
metabolite) 

Viscosin (biosurfactant) Hashimoto (2002) 

KPM-018P Epilachna 
vigintioctopunctata 

Feeding (oral 
injection, L) 

ND Otsu et al. (2004) 

MF37 D. melanogaster Pricking Adherence factors (LPS, 
OMP) 

de Lima Pimenta et al. (2003) 

NN, Biotype C Apis mellifera Feeding (D) ND Horn and Eberspächer (1976) 
NN Formica paralugubris Contact (live cells) ND Chapuisat et al. (2007) 
SBW25 D. melanogaster Feeding (D) ND Olcott et al. (2010) 
Pseudomonas taiwanensis 
TKU015 D. melanogaster Feeding (purified 

toxin) 
TccC-like toxin (similar to 
Photorhabdus toxin 
complex component TccC) 

Liu et al. (2010) 

Pseudomonas sp. 
EP-3 M. persicae  Contact (purified 

metabolite) 
Rhamnolipid (biosurfactant) Kim et al. (2011) 

ICTB-745 Rhyzopertha 
dominica 

Contact (purified 
metabolites) 

Rhamnolipids, PCA 
(antibiotic) 

Kamal et al. (2012) 

Pseudomonas entomophila 
L48 D. melanogaster Feeding (D) Monalysin (pore-forming 

toxin), AprA (metallo-
protease), GacA, Pvf 
(signalling system), AlgR 
(regulator) 

Vodovar et al. (2005; 2006); 
Liehl et al. (2006); Vallet-Gely 
et al. (2010b); Opota et al. 
(2011) 

 
G. mellonella Force feeding of live 

cells 
GacA Fedhila et al. (2010) 

Pseudomonas syringae 
B728a Acyrthosiphon pisum Feeding (D, L) FliL (flagellum formation 

and motility) 
Stavrinides et al. (2009) 

Pseudomonas aeruginosa 
CHA D. melanogaster Pricking T3SS and effectors (ExoS) Fauvarque et al. (2002); Avet-

Rochex et al. (2005) 
PA14 G. mellonella Injection T3SS and effectors (ExoT, 

ExoU) 
Miyata et al. (2003) 

 D. melanogaster Feeding (D) Quorum sensing (RhlR) Limmer et al. (2011) 
PAO1 D. melanogaster Injection HCN Broderick et al. (2008) 
 B. mori  Injection Superoxide dismutase 

(SodM, SodB), exotoxin A, 
GacA 

Chieda et al. (2005; 2011); 
Iiyama et al. (2007) 

 B. mori Midgut injection ExoS, pyoverdine (iron 
chelator) 

Okuda et al. (2010) 

 D. melanogaster Feeding (D) Quorum sensing (QscR), 
stringent response 
(ppGpp), control of biofilm 
formation 

Chugani et al. (2001); 
Mulcahy et al. (2011); Vogt et 
al. (2011); de Bentzmann et 
al. (2012) 

 Pieris rapae Feeding (D) Quorum sensing (LasI, RhlI) Borlee et al. (2008) 
NN Melanoplus bivittatus Injection, Feeding (L) ND Bucher and Stephens (1957); 

Stephens (1958) 
aNN, not named. 
bInjection, bacterial cell suspension injected into the hemocoel if not mentioned otherwise. Feeding, oral administration of a bacterial 
cell suspension with artificial diet (D) or applied to plant leaves (L); Contact, bacterial cells or products sprayed on or put otherwise in 
contact with insect surface. 
cND, not determined; HCN, hydrogen cyanide; LPS, lipopolysaccharide; OMP, outer membrane protein; PCA, phenazine-1-carboxylic 
acid; T3SS, type III secretion system. 
 

The genome sequencing of the root-colonizing biocontrol agent P. fluorescens strain Pf-5 (now called P. 

protegens Pf-5; Ramette et al., 2011) published by Paulsen et al. (2005) and of the closely related P. 
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fluorescens strain CHA0 (recently renamed P. protegens CHA0) (NCBI Database Bioproject PRJNA78307) and 

their analysis revealed astonishing results which opened a new door to future studies on plant-associated 

pseudomonads. After more than twenty years of research on the biocontrol properties of P. fluorescens 

group strains it came as a surprise that some of these bacteria do not only harbor numerous genes for the 

biosynthesis of antifungal metabolites, including DAPG, pyoluteorin, HCN, and pyrrolnitrin (see Table 1), in 

their genomes, but also possess a gene which codes for a protein that is similar to the potent insect toxin 

Mcf1 of the entomopathogen P. luminescens (Péchy-Tarr et al., 2008). 

Mcf1 was discovered in a screening of a P. luminescens W14 cosmid library aiming at the identification of 

new insecticidal proteins and metabolites in this entomopathogenic bacterium (Daborn et al., 2002). A single 

gene which was called makes caterpillars floppy (mcf) made the E. coli cells expressing it capable of surviving 

within and killing larvae of the tobacco hornworm Manduca sexta upon injection into the hemocoel. When 

expressed heterologously in E. coli, Mcf1 was shown to cause hemocytes and midgut epithelial cells to 

undergo programmed cell death. The disintegration of the midgut caused by Mcf1 was proposed to 

contribute to the “floppy” phenotype of insects infected with P. luminescens, thereby giving the name to the 

newly discovered toxin. The pro-apoptotic action of Mcf1 was attributed to the predicted Bcl2-homology 3-

like (BH3-like) domain at the N-terminus of the protein. The BH3 domain is a well-studied and important 

peptide motif of proteins making up part of the pro-apoptotic signal-transduction cascades in animal cells 

(Cory and Adams, 2002). Mcf1 has been shown to also trigger apoptosis in mammalian cells and the N-

terminal part of the toxin containing the BH3-like domain was sufficient for the observed toxicity (Dowling et 

al., 2004). The potent insect toxin seems to hijack the apoptosis cascades of the cells of the innate immune 

system and thereby to contribute to the immune suppressive activity of P. luminescens. 

An exciting feature of the mcf1-related gene of P. fluorescens group strains Pf-5 and CHA0 is that, in contrast 

to mcf1, it is part of an eight-gene cluster (Péchy-Tarr et al., 2008). The cluster was termed fit for P. 

fluorescens insecticidal toxin. The gene fitD, which codes for the actual insect toxin with a molecular weight 

of 327 kDa, is flanked by four genes (fitABC-E) predicted to encode a type I secretion system and three genes 

(fitFGH) coding for regulatory proteins. The toxin gene is co-transcribed with the genes encoding the 

proteins for the putative secretion system, thereby suggesting that the toxin may be transported across the 

bacterial cell wall via this type I secretion system (Péchy-Tarr et al., 2013). While the transport of the Fit 

toxin still remains to be investigated, the roles and importance of the individual regulatory proteins of the Fit 

cluster have been elucidated and are described in more detail below. Because the putative BH3-like domain 

of Mcf1 is also conserved in the Fit toxin, it is imaginable that FitD induces apoptosis in insect cells as well. 

So far the Fit toxin gene has been detected in the genomes of only a narrow group of plant-associated 

pseudomonads, namely in isolates of P. protegens and P. chlororaphis (Table 2; Loper et al., 2012; Ruffner et 

al., 2013; Shen et al., 2013). Strains of these two bacterial species generally showed a high toxicity towards 

larvae of lepidopteran insects. The P. protegens strains CHA0 and Pf-5 were lethal to larvae of M. sexta and 
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the greater wax moth Galleria mellonella upon injection of very low doses into the hemocoel of these insects 

(Péchy-Tarr et al., 2008). The Fit toxin thereby significantly contributed to the insecticidal activity of these 

microorganisms. Furthermore, as with Mcf1, heterologous expression of the Fit toxin in E. coli resulted in the 

capacity of the bacterium to kill the insect host upon injection. 

P. protegens strain CHA0 and P. chlororaphis strain PCL1391 were later also shown to display potent oral 

insecticidal activity in feeding assays with artificial diet or leaves treated with the bacteria (Table 2; Ruffner 

et al., 2013). When bacterial suspensions containing low cell concentrations were sprayed on plant leaves, 

both strains efficiently killed larvae of several agriculturally important lepidopteran pest insects, notably the 

African cotton leafworm Spodoptera littoralis, the tobacco budworm Heliothis virescens and the 

diamondback moth Plutella xylostella that fed on the leaves. The Fit toxin was found to substantially 

contribute to the oral insecticidal activity of the two model strains. In contrast, a related but naturally Fit-

deficient P. fluorescens group strain displayed almost no oral toxicity in the same assay (Ruffner et al., 2013). 

Thus the presence of the Fit toxin gene in plant-colonizing pseudomonads seems to correlate well with high 

toxicity of these strains towards insects. This and observations with additional strains suggest that the gene 

could potentially be used as a suitable molecular marker for insecticidal activity in fluorescent 

pseudomonads (Ruffner et al., 2009; Ruffner, 2013). In addition to the Fit toxin, traits regulated by the 

GacS/GacA two-component system, which is known to control pathogenic and beneficial activities in 

pseudomonads (Haas and Keel, 2003; Lapouge et al., 2008), contribute significantly to the oral insecticidal 

activity of P. protegens CHA0 (Ruffner et al., 2013). Additional toxicity assays suggest specificity in the 

insecticidal spectrum of P. protegens CHA0. In particular, during a quest for potential side effects of the 

pseudomonad towards beneficial insects, the Fit toxin producers were found to exhibit no oral toxicity 

towards an ecologically and economically important pollinator, the large earth bumblebee Bombus terrestris 

(Ruffner, 2013). 

The potential of these plant root-associated pseudomonads as entomopathogenic microorganisms can be 

demonstrated impressively by feeding Chinese cabbage leaves containing drops of a suspension of GFP-

tagged P. protegens CHA0 to larvae of the large cabbage white Pieris brassicae. The bacteria seem to be 

capable of colonizing the insect gut and subsequently translocating into the hemocoel by so far unknown 

means, where they replicate and cause disease (Fig. 1B). The invasion of the insect blood system within a 

short time period of less than one day after oral uptake of the microorganisms strongly suggests that these 

bacteria should be considered as true insect pathogens. 

The deletion of the Fit toxin gene in the chromosomes of P. protegens or P. chlororaphis strains is not 

sufficient to render them non-toxic to insects (Péchy-Tarr et al., 2008; 2013; Ruffner et al., 2013). This 

suggests that additional virulence factors are waiting to be discovered in these insecticidal pseudomonads. 

Candidate virulence factors that could play a role in insect pathogenicity in some of these strains are the so-

called toxin complexes (Tc). Tc, which were first identified in P. luminescens, are large multimeric insecticidal 
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protein complexes displayed on the surface of these bacteria (Bowen et al., 1998; ffrench-Constant et al., 

2007). Although the exact mode of action of these orally active toxins is still not fully resolved, recent studies 

provide evidence that some Tc subunits function as a molecular syringe allowing membrane translocation of 

functional Tc components that induce actin clustering and death in target cells (Lang et al., 2010; 

Gatsogiannis et al., 2013). Tc components have also been investigated as alternatives to the Bt toxins for the 

development of transgenic crops (Liu et al., 2003). Tc-related gene clusters occur in many other bacteria that 

interact with insects, including Xenorhabdus nematophila, Yersinia pestis, Yersinia entomophaga, Serratia 

entomophila, and Bt (Hurst et al., 2000; Waterfield et al., 2001; Blackburn et al., 2011; Landesberg et al., 

2011; Spinner et al., 2012). Remarkably, Tc-related genes can also be found in certain strains of P. 

chlororaphis and P. fluorescens (Loper et al., 2012) and their role in insect pathogenicity should thus be 

investigated in future studies. In pseudomonads, a role for a Tc-related gene so far has only been 

demonstrated for tccC from Pseudomonas taiwanensis of which the purified product caused substantial 

mortality when fed to larvae of Drosophila (Liu et al., 2010). 

 

Molecular basis of insect interaction in prominent pathogenic pseudomonads 

Several observations suggest that natural interactions of pseudomonads with insects are most likely more 

widespread than recognized so far. First, members of the genus Pseudomonas make commonly part of 

microbial communities of various insect species. Indeed, using culture-dependent and -independent 

approaches, pseudomonads were identified as common inhabitants of the intestinal tract or otherwise 

associated with field-collected or laboratory-raised larvae, pupae and adults of representatives of the major 

insect orders. Examples include Anopheles, Aedes and Culex mosquitos, the Drosophila fruit fly, and the 

Hessian fly Mayetiola destructor in the order Diptera (Corby-Harris et al., 2007; Bansal et al., 2011; Osei-Poku 

et al., 2012), S. littoralis, the cotton bollworm Helicoverpa armigera, and the gypsy moth Lymantria dispar in 

the Lepidoptera (Broderick et al., 2004; Tang et al., 2012), the wireworm Limonius canus, the forest 

cockchafer Melolontha hippocastani, and Periplaneta and Blattella cockroaches in the Coleoptera (Lacey et 

al., 2007; Saitou et al., 2009; Arias-Cordero et al., 2012), Camponotus ants and several bee species in the 

Hymenoptera (Mohr and Tebbe, 2006; Li et al. 2012), and the leafhopper Homalodisca vitripennis and 

several aphids in the Hemiptera (Hashimoto et al., 2002; Lacava et al., 2007). Many of these insects feed on 

roots or aboveground parts of plants or spend a part of their life cycle in aquatic habitats, i.e. in 

environments that are typically colonized by pseudomonads. It is therefore likely that pseudomonads are 

commonly acquired by insects via ingestion or contact. These highly versatile bacteria then may be very well 

adapted to live inside or otherwise associated with their arthropod host, exploiting it as a shelter, vector or 

food source. 
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Second, the genomes of many Pseudomonas strains contain genetic loci with predicted function in insect 

interaction and insect toxicity. These loci are related to genes encoding known insect virulence determinants 

in the entomopathogens Photorhabdus and Xenorhabdus, namely the Mcf toxins, the Tc toxin complexes, 

the XaxAB cytolysin, and several lytic enzymes (ffrench-Constant et al., 2007; Vigneux et al., 2007; Lindeberg 

et al., 2008; Stavrinides et al., 2009; Silby et al., 2011; Loper et al., 2012). To date, the function of most of 

these loci in pseudomonads remains nebulous. A clear role in insect toxicity so far has only been established 

for the Mcf homologue Fit (see above). 

Third, following oral infection several Pseudomonas species are capable not only of colonizing insects but 

also of exhibiting significant pathogenicity towards insects. Besides the above-described plant-beneficial P. 

protegens and P. chlororaphis of the P. fluorescens group (Mulet et al., 2012b), currently only three 

pathogenic species are known to be capable of efficiently killing insects, (i) the entomopathogen 

Pseudomonas entomophila, (ii) the opportunistic human pathogen Pseudomonas aeruginosa, and (iii) the 

plant pathogen Pseudomonas syringae. Studies of the interactions of the three pathogens with insect hosts 

have significantly advanced our understanding of the molecular mechanisms involved in bacterial invasion of 

insects, escape from the insect immune response, gut and hemocoel colonization, and insect toxicity. They 

have also provided first insights into the ecology of vectoring of pseudomonads by insects. Studies on these 

pathogens can thus provide a valuable source of inspiration for future work on interactions of plant-

beneficial pseudomonads with insects. 

The entomopathogen P. entomophila is a bacterium that naturally infects Drosophila and originally was 

isolated from a fruit fly in Guadeloupe. The species which affiliates with the Pseudomonas putida 

phylogenetic group (Loper et al., 2012; Mulet et al., 2012a; 2012b) is also pathogenic towards lepidopteran 

insects (Vallet-Gely et al., 2008; Fedhila et al., 2010). Following oral infection, this bacterium is capable of 

persisting in the gut of Drosophila, inducing local and systemic immune responses and, at high doses, of 

killing the insect, and thus constitutes an exciting model for studies into virulence and host immune defense 

mechanisms (Vodovar et al., 2005; Vallet-Gely et al., 2008; 2010b). P. entomophila virulence is multi-factorial 

and depends on the GacS/GacA two-component system (Vodovar et al., 2005; Liehl et al., 2006). A second 

global regulatory system involving a yet unidentified signal molecule synthesized by the Pvf proteins 

contributes to control of P. entomophila virulence and immune response induction independently of 

GacS/GacA (Vallet-Gely et al., 2010b). Two important virulence factors have been identified in the 

entomopathogen. One is the Gac controlled metalloprotease AprA which counteracts the local immune 

response in the Drosophila gut via degradation of antimicrobial peptides (AMP) produced by the insect (Liehl 

et al., 2006). The other is a Gac and Pvf controlled pore-forming protein toxin termed Monalysin which 

contributes to the massive damage to the fly gut caused by P. entomophila in a mechanism involving 

suppression of immune and repair programs in the intestinal tract (Opota et al., 2011; Chakrabarti et al., 

2012). However, both AprA and Monalysin deficient mutants (but not gacA mutants) retain some degree of 
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insect toxicity pointing to the existence of additional virulence factors. The genomic sequence of P. 

entomophila reveals a number of loci that encode potential candidate virulence factors, e.g., Tc-related 

toxins, HCN, hemolysins, and lipopetides (Vodovar et al., 2006), which await to be explored. One of these 

factors, a lipopeptide with a role in hemolytic activity, was recently determined not to be required for 

virulence in Drosophila (Vallet-Gely et al., 2010a). 

P. aeruginosa is an opportunistic human pathogen (Gellatly and Hancock, 2013) and several strains are 

capable of infecting mammalian, invertebrate (nematodes and insects) and plant hosts, and these multihost 

interactions can be used to unravel conserved and variable virulence strategies of the bacterium (Mahajan-

Miklos et al., 2000; Hendrickson et al., 2001; Kim et al., 2008). In general, the capability of P. aeruginosa to 

infect and kill insects was not used to investigate insect pathogenicity of the bacterium per se but rather to 

profit of convenient infection models for exploring the molecular basis of virulence of the human pathogen, 

even more as insects rely on innate defense mechanisms resembling those in mammalian hosts to fight 

microbial infections (Vallet-Gely et al., 2008). The entomopathogenic potential of the species was recognized 

already in reports dating back to the early last century (Bacot, 1911; Cameron, 1934; Bucher and Stephens, 

1957; Angus, 1965). For instance, a P. aeruginosa isolate was reported to be responsible for a disease in 

laboratory rearings of grasshoppers (Bucher and Stephens, 1957). The authors demonstrated that the 

disease can be produced artificially by injecting the isolate into the hemocoel (LD50 of 10-20 cells per insect) 

or by feeding the insects with the bacterium (LD50 of about 104 cells per insect). A follow-up study then 

provided evidence for the passage of small numbers of the P. aeruginosa isolate from the gut into the 

hemocoel (Stephens, 1958). A field experiment with the isolate to control grasshoppers was not successful 

(Baird, 1958; Angus, 1965). 

A majority of recent studies on P. aeruginosa insect virulence rely on variations of two Drosophila infection 

models, i.e. the fly nicking and fly feeding models thought to reflect acute or chronic infections, respectively 

(Sibley et al., 2008; Apidianakis and Rahme, 2009). In the nicking model rapid killing within 1 to 2 days after 

pricking flies with a needle dipped into a bacterial culture is observed, whereas the feeding model allows to 

monitor an extended infection process of 1 to 2 weeks after ingestion of a high concentration of bacteria by 

the flies. Using these models, considerable strain variation in virulence of P. aeruginosa to Drosophila was 

observed (Lutter et al. 2012) coinciding with similar observations for P. fluorescens group bacteria (Olcott et 

al., 2010). The variations in the pathogenicity are likely to mirror differences in the genomic equipage with 

relevant virulence genes and in the regulation of these genes in the different strains. Virulence gene 

expression by P. aeruginosa in the Drosophila intestinal tract and as a consequence insect pathogenicity is 

also influenced by other microorganisms present in the gut (Sibley et al., 2008). 

As for P. entomophila, P. aeruginosa virulence towards Drosophila is multifactorial. Following ingestion, P. 

aeruginosa is able to colonize various parts of the Drosophila intestinal tract, counteract the insect immune 

defense, cross the intestinal barrier, and proliferate in the hemolymph (Sibley et al., 2008; Limmer et al., 
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2011; Mulcahy et al., 2011). Global regulatory mechanisms involved in virulence control such as quorum 

sensing (QS) and the ppGpp-mediated stringent response are essential for the infection process (Chugani et 

al., 2001; Limmer et al., 2011; Vogt et al., 2011). The importance of QS signaling in the insect gut is 

highlighted in another feeding model involving the small cabbage white Pieris rapae in which interruption of 

QS signaling by mutation or by a chemical inhibitor reduced the virulence of P. aeruginosa (Borlee et al., 

2008). In a recent study, P. aeruginosa was found to be capable of establishing a biofilm infection in the 

Drosophila crop following ingestion, thereby inducing an AMP immune response in the fly (Mulcahy et al., 

2011). Remarkably, a mutant defective in biofilm formation had an improved capacity to cross the intestinal 

barrier and to disseminate into the hemolymph and was more virulent than the wild-type parent (Mulcahy 

et al., 2011). By contrast, hyperbiofilm strains were markedly less virulent to flies, an observation that was 

confirmed by another study (de Bentzmann et al., 2012) and is in accordance with the common association 

of biofilm formation with chronic infection in P. aeruginosa (Gellatly and Hancock, 2013) and other bacterial 

pathogens. 

Multiple virulence traits of P. aeruginosa have a role in the acute infection model of Drosophila (Kim et al., 

2008), including the capacity to suppress the insect’s AMP defense response (Apidianakis et al., 2005), HCN 

production (Broderick et al., 2008) and delivery of type III secretion system (T3SS) effectors (Fauvarque et al., 

2002; Avet-Rochex et al., 2005). The variety of virulence factors contributing to acute infection is further 

highlighted by studies involving the silkworm Bombyx mori and the Galleria waxmoth, two widely used 

lepidopteran model insects. The global regulator GacA (Chieda et al., 2005), the ADP-ribosylating exotoxin A 

(Chieda et al., 2011), and superoxide dismutases (Iiyama et al., 2007), but not pyocyanin (Chieda et al., 2008) 

contribute to injectable activity of P. aeruginosa in the silkworm model. Several T3SS effectors including ExoT 

are important for virulence in the Galleria injection model (Miyata et al., 2003). A T3SS effector (ExoS) is also 

required for virulence and translocation of P. aeruginosa from the midgut to the hemolymph in the Bombyx 

model (Okuda et al., 2010). 

P. syringae is an important member of the phyllosphere bacterial community and well known for its plant 

pathogenic, ice-nucleating and epiphytic activities (Hirano and Upper, 2000). However, possible activities of 

P. syringae in interactions with insects so far have attracted only little attention. Interestingly, a recent study 

suggests that at least some P. syringae strains may exhibit significant insecticidal activity (Stavrinides et al., 

2009). In the study, the bean pathogen P. syringae pv. syringae B728a was found to kill the pea aphid 

Acyrthosiphon pisum within less than two days when fed to the insect in artificial diet. By contrast, the 

tomato pathogen P. syringae pv. tomato DC3000 did not harm the aphid even though cell densities of the 

strain in infected insects raised to higher levels than those of strain B728a. In another study, P. syringae pv. 

mori did not survive in the intestinal tract of Bombyx mori larvae fed an artificial diet containing the 

phytopathogen (Watanabe et al., 1998). This may suggest that, as with strains of the P. fluorescens and P. 

aeruginosa groups, the capacity for potent insect pathogenicity is associated only with certain P. syringae 
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pathovars or strains and as such depends on the genomic background of the respective strain. The molecular 

basis of aphid toxicity of P. syringae pv. syringae B728a is unclear. Similarly to many other P. syringae strains, 

the genome of B728a harbors sequences related to those encoding the Photorhabdus Tc toxin complexes 

(Lindeberg et al., 2008). However, these were not required for virulence of P. syringae B728a in the aphid 

model (Stavrinides et al., 2009). 

The work of Stavrinides and colleagues puts forward another interesting aspect of Pseudomonas-insect 

associations. They show that following natural infection of pea aphids by P. syringae present on leaves, the 

bacteria multiply inside the insect host and then can be spread at high cell concentrations onto fresh leaf 

surfaces in the honeydew deposited by the aphids (Stavrinides et al., 2009; Nadarasah and Stavrinides, 

2011). Only very few other reports provide experimental evidence for insect vectoring of pseudomonads. For 

instance, the root-associated bacterium P. chlororaphis was demonstrated to be transmitted between corn 

plants by the Southern corn rootworm Diabrotica undecimpunctata howardi feeding on roots colonized by 

the bacterium (Snyder et al., 1998). In other reports, P. fluorescens strains were found to persist in the gut of 

the Colorado potato beetle Leptinotarsa decemlineata fed with the bacteria in laboratory experiments or 

prior to overwintering in the field (Castrillo et al., 2000a; 2000b). The ice-nucleation active bacteria markedly 

increased the supercooling point of the insects, leading the authors to speculate on a possibility for the 

biological control of the freeze-intolerant pest insects by reducing the survival of overwintering populations 

with a Pseudomonas treatment. Finally, insects may also be considered as potential vectors for the dispersal 

of biocontrol pseudomonads. This is documented by field experiments in which honeybees were successfully 

used to disseminate P. fluorescens strain A506, a biocontrol agent of fire blight and the active ingredient of 

the commercial product BlightBan A506, to pear and apple blossoms (Johnson et al., 1993). Together, all 

these studies illustrate that insects may not only constitute alternatives hosts for pseudomonads but also 

may serve as vectors and shelters for their survival and multiplication. 

 

Potential of pseudomonads for the control of root-feeding pest insects 

As it was illustrated earlier in this chapter, natural isolates of P. protegens and P. chlororaphis possess 

multiple activities that are beneficial to the plant in terms of growth and protection against various pests. 

These include antagonism of soil-borne phytopathogens, plant growth promotion, induction of systemic 

resistance, and insect pathogenicity (Fig. 1). It is therefore that these bacteria have a high potential as plant 

protection products. Because they can promote the growth of plants and protect plant roots against several 

pests simultaneously, Pseudomonas-based formulations may become products of high profit potential 

(Chandler et al., 2011). While plant root-associated pseudomonads have been successfully used for the 

formulation of commercial fungicides (Fravel, 2005; Berg, 2009), no insecticidal products with Pseudomonas 

strains as active ingredient currently exist on the market for biopesticides. 
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The way to a product based on root-associated pseudomonads for efficient plant protection against insects 

and phytopathogenic fungi obviously is not free of obstacles. Pseudomonads are known to be challenging 

microorganisms when it comes to formulation (Walsh et al., 2001). The survival of the bacteria during the 

manufacturing process and long-term storage is a critical issue. Furthermore, Pseudomonas-based products 

were reported to exhibit inconsistency under field conditions and they have raised some concerns of the 

general public about biosafety because this bacterial genus includes opportunistic human pathogens such as 

P. aeruginosa. As with every new biopesticide, the expensive and time-consuming registration procedure is a 

major hurdle for the successful application of a biocontrol agent (Bale et al., 2008). Nevertheless, the few 

strains of the P. fluorescens group which are approved in many countries for their use as fungicides in 

agriculture already went through the evaluation of environmental risks and the registration procedure. The 

products passed all tests on biosafety and efficacy, and these bacterial strains should therefore be studied 

for their effects on insects to possibly extend their application range in the future by modifying their 

formulations. 

Novel Pseudomonas strains can also readily be isolated from various insect species. An obvious approach to 

discover strains with entomopathogenic potential could therefore be the isolation of pseudomonads from 

the respective target organism. During the selection of strains for a new plant protection product the 

efficacy of the bacterium as an insecticidal organism, the persistence and competition on plant roots, and 

the resistance during the formulation process should be considered (Walsh et al., 2001). Moreover, a 

detailed risk analysis needs to be performed to ensure that the bacterial strains have no deleterious effects 

on human health and on the environment. This requires amongst others more research on the molecular 

basis and regulation of insecticidal activity in these root-associated pseudomonads. The importance of such 

investigations is impressively illustrated by the above described discovery of the sophisticated regulatory 

switch allowing P. protegens to launch Fit toxin expression specifically in an insect host while arresting 

production of the insecticidal factor on roots (Péchy-Tarr et al., 2013), thus procuring a natural containment 

mechanism for biocontrol. The collaboration of the scientific community with commercial companies may 

then be the key to the development and commercialization of new biopesticides based on 

entomopathogenic, root-associated Pseudomonas strains, just like the development of products such as 

Proradix, Cedomon and Cerall already has demonstrated (Johnsson et al., 1998; Buddrus-Schiemann et al., 

2010). 

Microbial control agents are considered environmentally friendly and harmless to mammals, making them 

ideal components of IPM systems. Commercial insecticides based on entomopathogenic bacteria are mostly 

applied as inundative releases for short-term pest control when insect populations have already reached a 

certain threshold (Lacey et al., 2001). Many strains of the P. fluorescens group are well adapted to the life on 

plant roots and show environmental persistence. These microbes are very competitive and aggressive root 

colonizers (Lugtenberg and Kamilova, 2009), and would thus ideally be applied as inoculations for long-term 
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control before pest insects pose a problem to the particular plant population. As for the commercially 

available Pseudomonas-based biofungicides, it could be possible to apply entomopathogenic strains of P. 

protegens and P. chlororaphis as seed coatings for inoculative releases and thereby use these 

microorganisms in a preventative manner. Because plant-associated pseudomonads are already successfully 

used as biological fungicides in agriculture, insecticidal products for crop protection with entomopathogenic 

Pseudomonas bacteria as active ingredient could fit well into integrated systems. They would extend the 

existing toolbox for IPM and help to optimize the protection of plants against pest insects that feed on roots 

during at least a part of their life cycle and remain a challenging problem in many agricultural systems. As 

mentioned before, formulations with plant-beneficial pseudomonads possessing insecticidal activity could 

potentially be developed to provide products to the farmers that may permit long-term control of root-

feeding insects and soil-borne phytopathogens simultaneously in an IPM framework. Future research should 

investigate the interaction of these pseudomonads with other IPM components. Combinations with other 

biocontrol agents such as entomopathogenic fungi or nematodes or further IPM tactics could show a 

synergistic effect on the suppression of plant pests (Lacey et al., 2001; Lacey and Shapiro, 2008; Karthiba et 

al., 2010; Hol et al., 2013). 

The analysis and comparison of whole genome sequences in order to find candidate genes or gene clusters 

contributing to the insecticidal activity is a powerful approach to discover novel virulence factors and to 

extend the knowledge about these bacteria. It is further important to learn from existing data on other 

entomopathogenic bacteria to get a better understanding of the relevant virulence factors and their 

regulation, the mechanisms of colonization and invasion, and other functions required for insect 

pathogenicity of the plant-beneficial Pseudomonas strains. This includes in particular research on 

Photorhabdus/Xenorhabdus and pathogenic Pseudomonas species, but also studies about less known 

bacteria capable of killing insects, e.g. the aphid-infecting plant pathogen Dickeya dadantii (Costechareyre et 

al., 2013), could be inspiring for future investigations. Moreover, it is fundamental to carry out future 

research related to the control of soil-dwelling pest insects by beneficial root-associated pseudomonads 

under (near) natural conditions. This implies investigations into the interactions of these biocontrol bacteria 

with the natural microbiota of the insect gut just as the assessment of the efficacy of killing of insects under 

field conditions. Such approaches may help lessen known problems of inconsistency of Pseudomonas-based 

products in the field from the beginning. 

We think that the current knowledge about the insect pathogenicity of certain root-associated 

pseudomonads and the powerful tools that are available for further investigations into this exciting feature 

are promising and a motivation for the development and application of microbial pesticides based on well-

selected strains of these bacteria for a better management of root-feeding pest insects in the near future. 
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Research objectives and thesis outline 

Even though previous investigations could demonstrate that strains of P. protegens and P. chlororaphis 

display insecticidal activity and identified the Fit toxin as a potent effector (Péchy-Tarr et al., 2008; Ruffner et 

al., 2013), there was only little knowledge about the evolution, molecular basis and regulation of their 

entomopathogenicity at the time this thesis project was started. 

While the Fit toxin was shown to play an important role in CHA0 and PCL1391 during insect infection, it was 

unclear under which conditions the insecticidal protein is produced by P. protegens and by which regulators 

and signals its expression is controlled. Although there was evidence that the LysR-type regulator FitG and 

the response regulator FitH are important for induction and repression of toxin production (Péchy-Tarr et al., 

2013), respectively, it remained unclear which factors and signals control the expression of the Fit toxin 

upstream of the two known regulatory proteins. 

 

The first part of this thesis was thus focused on answering remaining questions concerning the regulation of 

Fit toxin expression in vitro and in vivo using P. protegens CHA0 as a model. 

• In chapter 2, a fluorescence microscopy-based approach using reporter strains expressing a 

FitD-mCherry fusion protein was chosen to investigate under which conditions the Fit toxin is 

actually produced in P. protegens CHA0. This led to the discovery that the bacterium 

produces the insecticidal toxin only when infecting insects but not when colonizing roots or 

growing in standard growth media. Studies on the host range of strain CHA0 in addition 

suggest that this microbe is able to infect mainly larvae of lepidopteran insects. 

• In chapter 3, the question about the role of the sensor kinase FitF, which is encoded at the 

fit locus right next to fitH and fitG, was addressed using similar techniques as in the previous 

chapter. The sensor protein was discovered to be required for the observed host-specific 

activation of the expression of the Fit toxin via FitG and FitH and it evolved most likely by 

recruiting a sensory domain from a ubiquitous regulatory protein, which controls the uptake 

of C4-dicarboxylates in Proteobacteria, via domain shuffling. 

~ ~ ~ 

The Fit toxin seems to be a contributory and not a requisite virulence factor, because a ΔfitD mutant is still 

able to kill insect larvae, although with a certain delay compared to the wild type (Péchy-Tarr et al., 2008; 

Ruffner et al., 2013). Therefore, there must be additional traits that are essential for or contribute to the 

capability of P. protegens and P. chlororaphis strains to colonize insects and cause disease. As suggested 

before, reports about the molecular basis of pathogenicity in well-characterized pathogenic bacteria could 
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provide a valuable source of inspiration for unraveling the underlying mechanisms of interactions of plant-

beneficial pseudomonads with insects. 

The second part of this thesis therefore aimed at identifying additional virulence factors and regulators in P. 

protegens CHA0 and P. chlororaphis PCL1391 by screening and characterizing determinants known to be 

important in pathogenic bacteria for infection of their hosts. 

• The goal of chapter 4 was to create a list of candidate virulence factors and regulators, 

specifically knock out relevant genes in P. protegens CHA0 or P. chlororaphis PCL1391, and 

screen the generated mutant strains in a G. mellonella injection assay for reduced virulence. 

Genes whose inactivation caused a delayed insect mortality in the screening encoded an O-

antigen glycosyltransferase, the sensor kinase of the two-component regulatory system 

PhoP-PhoQ and the transcriptional regulator FleQ. 

• Chapter 5 investigated the genetic basis of O-antigen biosynthesis and its biological role by 

using a combined bioinformatic, genetic and molecular approach and aimed at confirming 

that O-polysaccharides are important for insect pathogenicity. The experiments that were 

carried out uncovered for the first time the genetics of O-antigen biosynthesis in plant-

beneficial pseudomonads and showed that a particular type of O-antigen is indeed vital for 

these bacteria to infect and kill insects. Additional results further indicate that this surface 

constituent is important for the bacteria to survive the defense responses of the innate 

immune system, in particular as a protection against host antimicrobial peptides. 

• In chapter 6, the main interest was to identify and characterize the role of the PhoP-PhoQ 

system. The presented data demonstrate that the two-component system is conserved in 

insect-pathogenic pseudomonads and that the sensor protein PhoQ is important for full 

virulence. Modification of lipid A, which is probably directly controlled by the response 

regulator PhoP, however does not seem to play an important role during systemic infection 

of insects. The lack of knowledge on how these pseudomonads deal with the insect immune 

system to successfully infect the host and cause disease makes it difficult to interpret some 

of the results from chapter 5 and 6. 

• The general discussion in chapter 7 thus gives some ideas and suggestions on how we can 

get a better understanding of how plant-beneficial pseudomonads with entomopathogenic 

properties interact with the insect immune system. 
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Abstract 

Pseudomonas protegens is a plant-associated bacterium that is not only able to promote plant growth and 

efficiently protect roots from attack by fungal phytopathogens but also to turn into an insect pathogen. The 

microorganism is capable of killing certain pest insects upon oral infection. The bacterium is therefore a 

promising candidate for the formulation of novel biopesticides which are on the rise as viable alternatives to 

harmful chemical insecticides. The major goal of our work is to understand the molecular mechanisms that 

allow P. protegens and related bacteria to detect, to survive within and to kill the insect host. The 

entomopathogenic activity of P. protegens relies in part on the production of an insecticidal toxin termed Fit. 

In this study, we discovered that the pseudomonad produces the Fit toxin in the insect host, but not on plant 

roots and in standard batch cultures, indicating that its expression is host-dependent. Fit toxin production 

does not seem to be induced by specific insect-derived signal molecules as hypothesized previously but to 

depend on multiple factors. Amongst others, magnesium seems to play a role in the activation of the toxin in 

P. protegens during insect interaction. In contrast, the two-component regulatory system GacS-GacA, which 

positively regulates the production of most antifungal secondary metabolites necessary for the bacterium’s 

biocontrol properties, most likely represses Fit toxin expression during insect interaction. Our results suggest 

that P. protegens is killing mainly larvae of lepidopteran insect species and that the expression of the Fit 

toxin has been optimized for infection of those insects. This study sets out a rationale for considering and 

investigating the use of plant-beneficial pseudomonads with insecticidal properties as biopesticides to 

protect not only roots but also aboveground plant parts against herbivorous pest insects. 

 

  



 Host-dependent activation of insect toxin expression in Pseudomonas protegens 

35 

Introduction 

Insects are a class of animals which are highly diverse and represent more than half of all living species 

described today. While we depend on some of them, like, for example, insect species serving as pollinators 

of plants, we encounter challenging situations when insect outbreaks endanger our crops as pests or vectors 

of diseases. Insects are especially difficult to control when they are feeding on belowground plant parts. In 

addition, the application of synthetic insecticides is notoriously problematic because of potentially nocuous 

effects on the environment and public health. Namely, these chemicals cause environmental pollution, their 

production and application as sprays require fossil fuels, and they undermine sustainable pest management 

by showing nontarget effects on natural enemies of herbivores and increasing pesticide use due to the 

reduced effectiveness on resistant pests [1]. It has further been reported that children show unique 

susceptibilities to the potential toxicity of pesticides that they encounter daily [2]. As a result, there is an 

increasing interest worldwide to replace chemical pesticides by microbial products that are based on 

entomopathogenic microorganisms for biological pest management strategies. In recent years it has become 

evident that certain plant root-associated bacteria of the genus Pseudomonas display insect pathogenicity in 

addition to their already well-known biocontrol properties that help them to efficiently protect plants 

against fungal and oomycete phytopathogens [3-5]. These microorganisms have been studied for decades 

because of their ability to promote plant growth and to suppress plant diseases [6]. They contribute to the 

natural disease suppressiveness of certain soils by producing and secreting a cocktail of antifungal secondary 

metabolites, such as acylphloroglucinols, hydrogen cyanide, phenazines, and lipopeptides [7]. Several 

Pseudomonas strains are registered and available for the protection of plants from phytopathogenic fungi in 

the field [8]. Pseudomonas protegens strain CHA0, used as a model strain in this study, is one of the best 

investigated representatives of plant growth-promoting rhizobacteria and was shown to be capable of killing 

certain insect larvae upon oral administration or injection of low doses of bacterial cells [4-6,9]. The 

observed insecticidal activity of P. protegens CHA0 can partially be attributed to the presence of a gene (fitD) 

which codes for a large insecticidal protein toxin (termed Fit) and is located on a genomic island on the 

chromosome (Figure 1). The fitD gene is flanked by seven genes encoding a putative type I secretion system 

and three regulatory proteins. FitD is similar to Mcf1, an insect toxin produced by the entomopathogenic 

nematode symbiont Photorhabdus luminescens [10]. Mcf1 was reported to induce programmed cell death 

(apoptosis) in insect cells of the midgut epithelium and to paralyze and destroy insect hemocytes [10,11]. 

Since FitD is very similar to Mcf1 in terms of sequence identity, the Fit toxin might demonstrate a similar 

mode of action. The Fit toxin gene does not only occur in P. protegens but also in Pseudomonas chlororaphis 

and strains that phylogenetically cluster between these two bacterial species [4]. All strains that possess the 

Fit toxin also seem to be able to kill larvae of certain insect species when taken up orally ([4], P. Flury, in 

preparation). 
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Figure 1: The Fit insect toxin cluster of Pseudomonas protegens CHA0. Genes encoding a putative type I secretion system are 

highlighted in green and the three regulatory genes in blue. The actual protein toxin is encoded by fitD (in red) which is transcribed 

as a part of the fitABCDE operon under the control of the PfitA promoter. OMP, outer membrane protein. 

 

Studies on the transcription of the eight genes in the fit gene cluster using quantitative reverse-transcription 

PCR (qRT-PCR) and Northern blot analysis suggested that the toxin gene and the genes coding for the 

putative type I secretion system form an operon (fitABCDE) [9]. The genes fitG and fitH are co-transcribed as 

well, while fitF is transcribed separately. Both, overexpression of fitG (a LysR-type regulator expressing gene) 

and the deletion of fitH (coding for a putative response regulator) resulted in a significant increase in the 

expression of the Fit toxin in CHA0 [9]. This strongly indicated that FitG is the activator and FitH the repressor 

in this local regulatory system. Although the third regulatory protein FitF (a hybrid histidine kinase-response 

regulator) was predicted to be the sensory protein of the Fit regulation system, no phenotype regarding 

toxin expression was observed when fitF was overexpressed or deleted in the chromosome of strain CHA0. 

 

Application of these insect-pathogenic pseudomonads as biological pesticides in the future requires a good 

understanding of the underlying molecular mechanisms and regulation of insecticidal activity in these 

bacteria. It further needs knowledge about the host range of these entomopathogenic microorganisms. This 

study hence aimed at assessing the host range of P. protegens CHA0 and investigating the conditions under 

which the Fit toxin is produced in this model strain. We discovered that the Fit toxin is only expressed in P. 

protegens CHA0 during interaction with insects, but not when colonizing plant roots and growing in standard 

batch cultures. Additional results suggest that the P. protegens strain is capable of killing mainly larvae of 

leaf-feeding lepidopteran insects, while most other insect species tested seem to be immune to infection by 

this bacterial strain. 

 

Results 

Assessing the host range of Pseudomonas protegens CHA0 

The capacity of P. protegens CHA0 to kill different insect species was investigated by performing a variety of 

biotoxicity assays (Table 1). Oral insecticidal activity in this bacterial strain was mostly restricted to 

lepidopteran species. Outside of the Lepidoptera, CHA0 has so far only been observed to be able to 
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efficiently kill pea aphids when taken up orally. Interestingly, the P. protegens strain does not seem to be 

lethal to all lepidopteran species upon oral administration. In this particular insect order, mortality after oral 

infection by CHA0 was only observed in the leaf-feeding species tested. The soil-dwelling pest insects Agrotis 

ipsilon and Agrotis segetum were completely resistant to CHA0 when fed with bacteria-containing artificial 

diet or feeding on bean plants inoculated with the entomopathogen. Young larvae of Galleria mellonella, an 

insect species which is a pest of beehives and a popular model for systemic infection of insects in 

laboratories, were resistant to CHA0 upon ingestion. 

 

Table 1: Assessment of the host range of Pseudomonas protegens CHA0. If not otherwise stated, larvae of the respective insect 

species were used for the toxicity assays. 

Insect order and species Systemic toxicity Oral toxicity 

Lepidoptera   

 Spodoptera littoralis (African cotton  
 leafworm) 

Yes Yes (artificial diet, leaves) [4] 

 Pieris brassicae (cabbage white) ND Yes (artificial diet, leaves) 

 Plutella xylostella (diamondback moth) ND Yes (artificial diet, leaves) [4] 

 Heliothis virescens (tobacco budworm) ND Yes (leaves) [4] 

 Manduca sexta (tobacco hornworm) Yes [3] NA 

 Agrotis ipsilon (black cutworm) ND No (artificial diet, bean plants) 

 Agrotis segetum (turnip moth) ND No (artificial diet) 

 Galleria mellonella (greater wax moth) Yes [3] No (artificial diet) 

Hemiptera   

 Acyrthosiphon pisum (pea aphid) ND Yes (artificial diet) 

Coleoptera   

 Tenebrio molitor (mealworm) Yes No (on oat bran) 

 Melolontha melolontha (European cockchafer) ND No (contact assay) [12] 

Hymenoptera   

 Linepithema humile (Argentine ant) A ND No (in sugar water) 

 Bombus terrestris (bumblebee) A ND No (artificial diet) [12] 

Diptera   

 Aedes aegypti (yellow fever mosquito) ND No (contact assay) [13] 

 Drosophila melanogaster Oregon ND No (artificial diet) [14] 

Orthoptera   

 Schistocerca gregaria (desert locust) A ND No (on oat bran) 

ND, not determined; A, adults. 
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Quantification of single cell fluorescence intensities by epifluorescence microscopy 

The Fit toxin contributes to the capability of P. protegens CHA0 to kill lepidopteran insects [3,4]. In order to 

study the expression and regulation of the insecticidal toxin in live bacteria at the single cell level by 

epifluorescence microscopy, we previously constructed reporter strains by replacing the native 

chromosomal fitD gene with a fitD-mcherry fusion gene [9]. This has allowed monitoring the expression of 

mCherry-tagged Fit toxin under the control of the natural promoter(s) in different genetic backgrounds. To 

obtain quantitative data using these reporter bacteria, protocols for the semi-automatic quantification of 

fluorescence intensities of Pseudomonas bacteria in different in vitro and in vivo systems were developed in 

this study. Briefly, in this method, samples of bacterial cultures were taken, the bacteria were immobilized 

on agarose patches and phase contrast and fluorescence images were taken with an epifluorescence 

microscope. Single cells on micrographs were automatically identified in ImageJ using either the phase 

contrast (for in vitro assays) or the fluorescence images (for in vivo assays). The fluorescence intensity of 

each identified cell in the respective fluorescence channel was then recorded automatically, which can result 

in data about thousands of bacterial cells per population. 

This newly developed method was used to quantify the expression of the FitD-mCherry reporter in LB 

medium in different genetic backgrounds of P. protegens CHA0 (Figure 2). It confirmed that FitG is an 

activator and FitH a repressor of Fit toxin expression in this bacterium. Additionally, it gave a quantitative 

impression of how the expression levels varied within a given population and between genotypes, which is 

harder to appreciate in the corresponding micrographs (Figure 2A), and showed that, statistically, CHA0 did 

not express its insecticidal toxin in the common laboratory growth medium (Figure 2B). 
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Figure 2: Visualization and quantification of Fit toxin production in single cells of Pseudomonas protegens CHA0 by fluorescence 

microscopy. (A) Visualization of Fit insect toxin expression in single cells of P. protegens CHA0 and isogenic mutants grown in batch 

culture. Cells of the wild type (CHA1163), the ΔfitH deletion mutant (CHA1175) and the fitG overexpressing (fitG++) mutant 

(CHA5010; Ptac/lacIq-fitG; IPTG-induced), all equipped for expression of a chromosomally encoded FitD-mCherry fusion protein, were 

harvested from late exponential growth-phase cultures in LB medium and analyzed by fluorescence microscopy. Left panels 

correspond to DIC micrographs, middle panels to DsRed micrographs, and right panels to merge pictures of DIC and DsRed 

micrographs. Scale bars, 10 mm. (B) Red fluorescence intensities (arbitrary units) of individual cells of the respective strains 

measured in the DsRed channel (n = 1535–2015 cells per strain). Negative control, CHA0. Positive control, CHA0-mche (wild type 

expressing a constitutive mCherry tag). Exposure time: 2 s, except for the positive control (0.5 s). Treatments labelled with a different 

letter are significantly different (p-value < 0.05) according to Wilcoxon-Mann-Whitney’s test with Bonferroni correction for multiple 

testing. The experiment was repeated and similar results were obtained. 

 
The Fit toxin is expressed in insect hemolymph but not on plant roots 

The FitD-mCherry reporter strains, equipped with a constitutive green fluorescent protein (GFP) tag, and the 

fluorescence microscopy-based quantification method were used to investigate whether the Fit toxin was 

expressed during insect infection. When injected into last-instar larvae of G. mellonella and re-isolated from 

hemolymph about 20 h later, most of the wild-type FitD-mCherry reporter bacteria (CHA1176) were red 

fluorescent (Figure 3). The ΔfitH reporter strain CHA1178, which was used as a positive control, was similarly 

red fluorescent while the negative control (CHA0-gfp2) did not display any red fluorescence. Quantification 

of FitD-mCherry expression in these bacterial cells indicated that the wild type expressed fitD at a similar 

level as the ΔfitH mutant strain (Figure 3B). These findings strongly suggest that, in contrast to LB, P. 

protegens CHA0 expresses its Fit toxin in insect hemolymph. 
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The same reporter strains were grown on roots of cucumber plants to study whether the Fit toxin is also 

produced during plant colonization. In contrast to some cells of the ΔfitH reporter strain, none of the FitD-

mCherry reporter bacteria with the wild-type genetic background showed any detectable red fluorescence 

(Figure 4). Quantification did not reveal any significant difference in red fluorescence intensities between the 

wild-type reporter bacteria and the negative control strain (Figure 4B). This indicates that the Fit toxin is not 

produced in P. protegens CHA0 when the microorganism grows on cucumber roots. Altogether, the results 

suggest that Fit toxin production is only activated in strain CHA0 in insect hemolymph and is therefore host-

dependent. 
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Figure 3: Fit toxin expression in Pseudomonas protegens CHA0 is induced in insect hemolymph of Galleria mellonella. (A) 

Visualization of Fit insect toxin expression by Pseudomonas protegens wild type CHA0 and the ∆fitH mutant in the hemolymph of 

larvae of Galleria mellonella. Toxin expression was monitored by fluorescence microscopy analysis of single cells of GFP-tagged 

derivatives of the strains expressing a chromosomally encoded FitD-mCherry fusion protein, i.e. strains CHA1176 and CHA1178, 

respectively. Strain CHA0-gfp2 expressing only the GFP tag served as a negative control. Scale bar, 10 µm. (B) Red fluorescence 

intensities quantified for individual cells of the respective strains in hemolymph recovered 24 h post bacterial injection (n = 71 to 158 

cells per strain). Cells were selected using the GFP channel images. Treatments labelled with a different letter are significantly 

different (p-value ≤ 0.01) according to Wilcoxon-Mann-Whitney’s test with Bonferroni correction for multiple testing. The 

experiment was repeated with similar results. 
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Figure 4: Expression of fitD in Pseudomonas protegens CHA0 is repressed during root colonization. (A) Monitoring of Fit insect toxin 

expression by P. protegens wild type CHA0 and the ∆fitH mutant on roots of cucumber plants. Toxin expression was studied by 

fluorescence microscopy analysis of single cells of GFP-tagged derivatives of the strains equipped for expression of a chromosomally 

encoded FitD-mCherry fusion protein, i.e. strains CHA1176 and CHA1178, respectively. Strain CHA0-gfp2 expressing only the GFP tag 

served as a negative control. Scale bar, 10 µm. (B) Red fluorescence intensities quantified for individual cells of the respective strains 

in root washes recovered four days post bacterial inoculation (n = 98 to 279 cells per strain). Cells were selected using the GFP 

channel images. Treatments labelled with a different letter are significantly different (p-value < 0.05) according to Wilcoxon-Mann-

Whitney’s test with Bonferroni correction for multiple testing. The experiment was repeated with similar results. 
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Regulation of Fit toxin expression by environmental conditions and a global regulatory 

system 

As it will be discussed in more detail in Chapter 3, the Fit toxin was also discovered to be highly expressed in 

Grace’s Insect Medium (GIM), a lepidopteran insect hemolymph-mimicking medium [15], and to a lower 

extent in M9 minimal medium. This made it possible to study the regulation of the insecticidal toxin in vitro 

under different growth conditions, which has proven to be more convenient and reproducible than 

performing similar experiments in vivo in insect larvae. 

The initial model which was used to describe the host-dependent activation of Fit toxin production in P. 

protegens CHA0 included insect-derived signal molecules that induce the expression of fitD during insect 

infection via the regulatory system composed of FitF, FitH and FitG [9]. It was thus hypothesized that GIM 

contains such signal molecules and that they could be identified by removing or replacing components of the 

medium. M9 minimal medium was used as a base medium to test different components of GIM in order to 

identify the proposed signal molecule(s). Although P. protegens CHA0 did not grow as well as in GIM or LB, 

the strain expressed FitD-mCherry relatively well in a defined medium termed GM9, which contained high 

concentrations of magnesium chloride and sucrose in addition to the classical components of the M9 

medium and a low phosphate content to avoid precipitation of the salts (Figure 5A). In addition, removing or 

exchanging components of the GM9 medium did not abrogate the expression of FitD-mCherry in the wild-

type reporter strain (Figure 5 and data not shown). These observations suggest that no particular molecule is 

essential for the expression of fitD in CHA0 and that a signal in the sense of a specific insect-derived 

molecule does not exist. 

Varying the concentration of salt in the medium, in particular that of magnesium, seemed to significantly 

change the expression level of fitD in the wild-type FitD-mCherry reporter strain of CHA0 (Figure 5B). The 

expression of the Fit toxin increased with increasing concentrations of magnesium and was optimal at 

concentrations above 40 mM (Figure 5C). Importantly, the effect was not caused by increased osmolarity, 

since changing the concentration of sucrose in the medium did not affect the expression of FitD-mCherry 

(Figure 5D). This indicated that high salt concentrations might be an important factor for optimal Fit toxin 

production in P. protegens CHA0. However, these results have to be interpreted carefully since modification 

of the media in some cases also affected the growth rate of the bacteria which might have changed the 

expression of fitD indirectly as well. 
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Figure 5: Fit toxin expression in Pseudomonas protegens CHA0 is modulated by the surrounding salt concentration. The FitD-

mCherry reporter strain CHA1163 was grown in different media for 24 h at 25°C and 180 rpm and single cell fluorescence intensities 

were quantified by fluorescence microscopy. Shown are means and standard deviations of averages of single cell fluorescence 

intensities (arbitrary units) from three independent cultures (except for C, which shows means of single cell fluorescence from one 

single culture). (A) Expression of FitD-mCherry by CHA0 in LB, GM9 and GIM. (B) Production of FitD-mCherry in GM9 or GM9 plus 30 

mM MgCl2, 30 mM CaCl2 or 60 mM NaCl. Treatments labelled with different letters are significantly different (p-value < 0.05; one-

way ANOVA with a Tukey's HSD post hoc test). (C) Expression of FitD-mCherry in GM9 supplemented with different concentrations of 

MgCl2. (D) Expression of FitD-mCherry by CHA0 in M9 minimal medium with or without 27 g/L sucrose. All experiments were 

repeated with similar results. 

 

While other factors tested, such as osmolarity, iron availability, carbon source, nitrogen availability, and pH, 

did not seem to significantly affect the production of the Fit toxin (data not shown), results indicated that 

the expression of fitD is highly temperature dependent (Figure 6A). Toxin expression was optimal at a 

temperature between 20 and 25°C and sharply decreased at temperatures above 25°C. 
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Global regulatory systems could also influence the expression of fitD. The best-characterized two-

component regulatory system in plant-beneficial pseudomonads, GacS-GacA [6,16], repressed the 

production of the insecticidal toxin in CHA0 (Figure 6B). In a gacA mutant of CHA0, the level of FitD-mCherry 

expression in single cells was highly increased in the stationary phase compared to the wild type when the 

bacteria were grown in GIM. 

In summary, all the above mentioned findings indicate that there are no specific insect-derived signal 

molecules necessary to induce expression of the Fit toxin in P. protegens CHA0. On the contrary, several 

factors seem to modulate the level of toxin production in this bacterium without being essential for fitD 

expression.  

 

 

Figure 6: High temperatures and the two-component regulatory system GacS-GacA repress the expression of the Fit toxin in 

Pseudomonas protegens CHA0. (A) The FitD-mCherry reporter strain CHA1163 was grown for 24 h to stationary phase in GIM at five 

different temperatures. Shown are means of single cell fluorescence intensities (arbitrary units) from one single bacterial culture 

determined by fluorescence microscopy. (B) The CHA0 wild type (in blue) and gacA mutant strain (in red) expressing the FitD-

mCherry reporter (CHA1163 and CHA1169, respectively) were grown in GIM at 25°C and 180 rpm. Samples were taken at different 

time points and red fluorescence intensities of single cells were quantified by fluorescence microscopy. Shown are means from a 

single culture per strain. The optical density at 600 nm of the wild-type culture is shown in gray (the growth of the mutant was 

similar). Both experiments were repeated with similar results. 

 

Discussion 

In this study, we found evidence that P. protegens CHA0 is mainly lethal to insect species of the order 

Lepidoptera, while most other species tested were resistant to this insect pathogen upon oral 

administration. While all lepidopteran species feeding on above-ground parts of plants were susceptible, two 

soil-dwelling species of the genus Agrotis were resistant to this rhizobacterium. This result asks for 
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considering the use of entomopathogenic pseudomonads for the control of above-ground insect pests. 

Saprophytic fluorescent Pseudomonas strains were isolated from the phyllosphere [17-19] and others 

successfully applied as foliar sprays to protect plants against fungal infection [20,21]. Meena et al. even 

claimed to have observed phyllosphere colonization after inoculation of groundnut seeds with P. fluorescens 

Pf1 and reported that this bacterium is a good leaf colonizer [20]. Additionally, the insect-pathogenic P. 

protegens Pf-5, a close relative of strain CHA0, was shown to survive on apple and pear leaves for over one 

week in the field [22]. Interestingly, leaf colonizing pseudomonads (Pseudomonas syringae) were previously 

suggested to have adapted to insects to use them as secondary hosts for bacterial proliferation and 

vectoring [23]. In the future, it should therefore be investigated whether and to which extent plants can be 

protected against leaf-feeding insects under lab conditions and on the field by foliar application of P. 

protegens or P. chlororaphis strains. In the same vein, it could further make sense to screen leaf isolates for 

plant-beneficial pseudomonads with insecticidal properties to obtain bacterial strains that are well adapted 

to the life on plant leaves. 

We discovered that production of the Fit toxin in P. protegens CHA0 is specifically induced upon infection of 

the insect host, whereas it is not detectable on plant roots or in standard batch culture. Tight regulation may 

indicate that insect toxin production is very costly to the bacterium and is only activated when needed, i.e. 

to contribute to insect killing. The observed specific activation of the toxin in insects may provide a certain 

containment for future biocontrol applications. 

We chose a highly sensitive approach to visualize and quantify Fit insect toxin expression in single live P. 

protegens cells, using fluorescence microscopy in combination with reporter strains expressing a full-length 

FitD-mCherry fusion protein. The Fit toxin is one of only a few bacterial toxins that have been visualized in 

this way; another example is the cholera toxin labelled with GFP or mRFP [24]. Furthermore, only a limited 

number of insect toxins have been visualized during interaction with the insect host so far, i.e. besides the Bt 

Cry and Cyt toxins [25], in particular the P. luminescens Mcf and Tc toxins and a Cyt toxin homologue 

produced by Dickeya dadantii which were detected with specific antibodies or following labelling with 

fluorescent dyes [11,26,27].  

To our best knowledge, the present study is the very first to quantify expression of a bacterial insect toxin 

directly in individual live cells during host interaction. Other studies have quantified in vivo insect toxin 

expression (i.e., Tc and Mcf toxins in Photorhabdus) indirectly by RT-qPCR and Western blotting [28], or by 

using fluorescent reporters fused to promoters of the toxin genes [29]. Besides its usefulness for direct in 

vivo monitoring, our fluorescence microscopy approach has the advantage of being very sensitive, allowing 

to detect and quantify even very low fluorescence levels emitted by the fusion protein, which is a clear plus 

over the FACS-based single cell monitoring approach that our group used previously for following expression 

of P. protegens antifungal genes on roots [30]. Moreover, by fluorescence tagging the Fit toxin at its native 

genomic locus, control by the natural promoter(s) and regulators can be studied without bias [31]. 
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We first hypothesized that particular insect-derived signal molecules exist that lead to the observed 

activation of Fit toxin expression in insect hemolymph. The search for these molecules however did not 

reveal any specific compound whose presence in GIM would solely explain the activation of Fit production in 

this growth medium. In contrast, the level of toxin expression seems to depend on multiple factors. Based on 

the obtained results, it can alternatively be hypothesized that expression of fitD is activated in insect 

hemolymph and GIM because of the lack of inhibiting molecules and that the level of induction depends on 

certain environmental conditions, such as high ionic strength. It can be speculated that certain plant-derived 

molecules act as inhibitors of Fit toxin expression. Alternatively, the signal molecules that were proposed to 

be recognized by the sensor kinase FitF and lead to the activation of Fit toxin production could also be 

produced by the bacteria themselves under hemolymph-like growth conditions. 

Interestingly, results of this study point to an optimization of Fit toxin production in P. protegens for specific 

expression in herbivorous insects. Toxin production seemed to be optimal when the magnesium 

concentration was similar to those found in hemolymph of phytophagous insect species [32-34]. 

Additionally, the level of Fit production in GIM, which mimics the conditions of Spodoptera hemolymph, 

could not be further increased by modifying the insect medium (data not shown). Virulence determinants of 

human pathogenic bacteria are often fully expressed at body temperature [35], i.e. close to the temperature 

of optimal growth of these bacteria. In contrast, P. protegens CHA0 expresses its insecticidal toxin optimally 

at temperatures around 20 to 25°C, which is closer to temperatures found in the natural habitat of these 

microbes and probably ideal for insect infection. 

Our group has previously shown that FitG and FitH tightly control the expression of fitD in P. protegens CHA0 

[9]. Besides these local regulatory proteins, global regulatory systems might also influence the production of 

Fit toxin in this bacterium. Here, we show that the well-studied two-component regulatory system GacS-

GacA, which positively regulates the production of secondary metabolites with antifungal activities during 

root colonization [36,37], most likely represses Fit toxin production in P. protegens in hemolymph. 

Repression of fitD expression by GacS-GacA can however not explain why P. protegens CHA0 does not 

produce FitD in standard batch cultures, since a gacA mutant expressed FitD-mCherry at only very low levels 

in LB (data not shown). 

Our novel reporter approach opens possibilities for studying the regulation of toxin expression during insect 

infection in real time and for answering remaining questions. The developed tools and protocols were for 

example employed to address the role of the sensor histidine kinase FitF in Fit toxin regulation. As it will be 

described in details in chapter 3, upon activation, FitF most likely phosphorylates FitH which subsequently 

leads to an activation of toxin production via FitG. In the future, the FitD-mCherry reporter fusion could be 

helpful to study which global regulatory proteins and signals, besides GacS-GacA, influence the host-

dependent control of Fit toxin expression in P. protegens CHA0. Good candidates are known global 

regulators like PhoP-PhoQ, FleQ, the H-NS-like proteins MvaT and MvaV, sigma factors, and second 
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messenger molecules such as cyclic di-GMP [38-41]. In P. chlororaphis, it would further be interesting to 

investigate whether quorum sensing systems influence the expression of fitD. 

Now that we know under which conditions P. protegens CHA0 activates the production of its insecticidal 

toxin, it should be studied how the Fit toxin is transported and whether it is post-translationally modified. 

Although we found indications that genes coding for a type I secretion system are co-transcribed with fitD 

[9], we have no experimental evidence that the transport system is actually involved in the export of the Fit 

toxin. It further remains unclear what the exact mode of action of the Fit toxin is and how specific it is. 

Our research demonstrates that plant-beneficial pseudomonads with insecticidal activities are promising 

candidates for the development of novel biopesticides. Efficiency in killing and resistance to stress are 

however critical points for a successful application of entomopathogenic bacteria. For plant protection, it will 

thus be important to study how efficient these insect-pathogenic pseudomonads can kill pest insects in the 

field - in the rhizosphere and in the phyllosphere - and to develop appropriate formulations based on well-

selected isolates. 

 

 

Material and Methods 

Bacterial strains, media and culture conditions 

All strains used in this study are listed in Table 2. Bacteria were routinely cultured at 25°C in LB (LB Broth 

Miller, BD Difco), or in nutrient yeast broth (NYB) or on nutrient agar (NA) [42]. When appropriate, growth 

media were supplemented with ampicillin (100 µg/ml), chloramphenicol (10 µg/ml), kanamycin (25 µg/ml), 

gentamicin (10 µg/ml), or tetracycline (125 µg/ml). 

For Fit toxin expression studies, the following media were used. LB; sterile-filtered Grace’s Insect Medium 

(GIM) (G9771, with L-glutamine, without sodium bicarbonate, adjusted to pH 5.5 with sodium bicarbonate) 

(Sigma-Aldrich); M9 minimal medium [43] with 10 mM L-malate; and GM9 (23 mM MgCl2 x 6 H2O, 12 mM 

KH2PO4, 9 mM NaCl, 80 mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2, 134 µM EDTA, 31 µM FeCl3 × 6 H2O, 6.2 µM 

ZnCl2, 760 nM CuCl2 × 2 H2O, 420 nM CoCl2 × 2 H2O, 1.62 µM H3BO3, 81 nM MnCl2 × 4 H2O, 5 mM L-malate, 

0.5 mM fumarate, 0.5 mM succinate, 3.9 mM D-glucose, 2.2 mM D-fructose,  1 mM glycine, 1 mM alanine, 

79 mM sucrose, pH 5.5 - 6). 
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Table 2: Bacterial strains used in this study 

Strain Genotype, phenotype or relevant characteristics Reference or 
source 

Pseudomonas protegens   
 CHA0 Wild type [44] 
 CHA0-gfp2 CHA0::attTn7-gfp2; Gmr [9] 
 CHA0-mche CHA0::attTn7-mcherry; Gmr [30] 
 CHA1158-gfp2 ΔfitH::attTn7-gfp2; ΔfitH mutant of CHA0 with a constitutive GFP cell tag; Gmr [9] 
 CHA1163 CHA0::fitD-mcherry; CHA0 derivative expressing a C-terminal FitD-mCherry 

fusion protein 
[9] 

 CHA1169 CHA1163::gacA; gacA mutant expressing a C-terminal FitD-mCherry fusion 
protein; Kmr 

M. Péchy-Tarr, 
unpublished 

 CHA1175 CHA1158::fitD-mcherry; ΔfitH mutant expressing a C-terminal FitD-mCherry 
fusion protein 

[9] 

 CHA1176 CHA1163::attTn7-gfp2; Gmr [9] 
 CHA1178 CHA1175::attTn7-gfp2; Gmr [9] 
 CHA5010 CHA0::attTn7-Ptac/lacIq-fitG::fitD-mcherry; Ptac/lacIq-fitG derivative of CHA0 

expressing a C-terminal FitD-mCherry fusion protein; Gmr 
[9] 

 

Biotoxicity assays 

For all assays, bacterial suspensions of P. protegens CHA0 were prepared by growing the strain overnight in 

10 ml LB at 25°C and 180 rpm, washing the cells once in 0.9% NaCl solution and adjusting the optical density 

at 600 nm (OD600) to 2 with saline solution, if not otherwise stated. 

For the assay with L. humile, equal volumes of the bacterial suspension and a saturated household sugar 

solution were mixed and aliquots of 200 µl were added as drops to boxes containing 15 ants each. After an 

incubation of 24 h another 50 µl of the same suspension was added to each group of animals. Survival of the 

ants was monitored over 3 days at room temperature. The experiment was performed in triplicates and 

water was used as a negative control. 

The ability of CHA0 to kill larvae of S. littoralis was assessed on artificial diet as described before [4]. For P. 

brassicae, aliquots of 40 µl and 10 µl of a bacterial suspension were spotted in six-well plates on pieces of 

leaves of Brassica napa (Chinese cabbage) or artificial diet, which was used before for Spodoptera, 

respectively. Individual L3 larvae were added to the wells and incubated for several days at room 

temperature. Saline solution served as a negative control. 

For feeding assay with T. molitor, aliquots of 100 µl of a suspension of CHA0 cells were mixed in small Petri 

dishes with approximately 20 oat brans. Ten larvae of T. molitor were added per dish and incubated for 

several days at room temperature. The assay with adults of S. gregaria was performed analogously. For 

injection assays with T. molitor larvae, a bacterial suspension at an OD600 of 1 was diluted 1,000-times in 

saline solution and aliquots of 2.5 µl were injected into the forth last segment of the larvae. The experiment 

was performed with 18 larvae per treatment and with NaCl solution as a negative control. 

For G. mellonella feeding assays, aliquots of 20 µl of a bacterial suspension were pipetted onto artificial diet 

(for approx. 100 g: 13 g/L flour, 10 g/L maize flour (polenta), 13 g/L wheat bran, 10 g/L milk powder, 5 g/L 
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Bacto™ Yeast Extract, 25 g/L honey, 20 ml glycerol, 7 ml distilled H2O; sterilized by incubating twice for 1 h at 

80°C), which was modified after [45], in Petri dishes. Twenty young larvae of G. mellonella were added per 

dish and incubated at room temperature for 7 days. 

For A. ipsilon, aliquots of 10 µl of a bacterial suspension at an OD600 of 3 were pipetted onto artificial bean 

diet (for approx. 500 ml: 2 ml olive oil, 56 g finely grounded Borlotti beans, 13 g Bacto™ Yeast Extract, 20 g 

oat bran, 1 tab of Sanatogen® GOLD Vitamins, 8 g Bacto™ Agar, 400 ml distilled H2O; incubated twice 1h at 

80°C for sterilization), modified after [46], in Petri dishes. Saline solution was used as a negative control. 

Eight L3 larvae were added to each dish (2 Petri dishes per treatment) and incubated for 5 days at room 

temperature. Additionally, 15 A. ipsilon larvae were put into pots with Borlotti bean plants which were 

inoculated with 2 ml of bacterial suspensions 5 days before. Survival of the larvae was monitored for 5 days 

at room temperature. For A. segetum, the assay was performed in triplicates as described for A. ipsilon with 

the bean diet, but with 5 larvae per treatment and higher doses of CHA0 (20 µl of bacterial suspension at an 

OD600 of 10). 

In order to assess the toxicity of CHA0 to A. pisum, a bacterial suspension at an OD600 of 1 was diluted 104-

times in AP3 medium, which is a standard diet used for aphid bioassays [47]. Nymphs of A. pisum reared on 

Vicia faba (broad bean) were transferred to small Petri dishes (10 individuals per dish), which were then 

sealed with Parafilm® (stretched at least twice for a very thin layer). Aliquots of 50 µl of the diluted bacterial 

suspension were pipetted on top of the paraffin film and a second Parafilm® layer was placed on top of it. 

The nymphs were feeding on the artificial diet enclosed in these Parafilm® sachets through the thin 

membrane. The dishes were incubated 3 days in a growth chamber set to 80% relative humidity for 16 h with 

light (160 μE/m2/s) at 22°C, followed by an 8-h dark period at 18°C. Survival was monitored every day. 

 

Visualization and quantification of Fit toxin expression in batch cultures 

Expression of the FitD-mCherry fusion by derivatives of P. protegens CHA0 (i.e., CHA1163, CHA1175, and 

CHA5010) in batch culture was monitored by fluorescence microscopy. Strains CHA0 and CHA0-mche were 

included as negative and positive controls, respectively. Bacteria were grown for 24 h at 30°C in 10 ml LB 

contained in 50-ml Erlenmeyer flasks with agitation at 180 rpm. Immediately prior to microscopy, cells were 

harvested by centrifugation, washed twice in 0.9% NaCl solution and immobilized on pads composed of 1% 

agarose. Bacterial cells were visualized with an Axio Imager.M1 microscope (Carl Zeiss MicroImaging GmbH, 

Jena, Germany) equipped with a Plan-Apochromat 100X/1.40 oil differential interference contrast (DIC) 

objective and a Cascade:1K EMCCD camera (Photometrics, Tucson, AZ, USA). Image processing (and false-

coloring) was performed using Metamorph 7.5 (Universal Imaging, Downingtown, PA) and Adobe Photoshop 

CS2 (Adobe Systems). Cells were observed with the DIC and DsRed channels set at an exposure time of 80 ms 

and 2 s, respectively. For quantification of FitD-mCherry expression in individual cells, phase contrast 
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pictures taken with a Plan-Apochromat 100X/1.45 oil Ph3 objective were processed with ImageJ (Rasband, 

W.S., ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA; http://imagej.nih.gov/ij/, 1997-

2011). A macro was used to delimit cells on the Ph3 image and to measure the mean fluorescence intensity 

(grey value) of each selected cell on the corresponding DsRed image. Images of at least 10 separate views 

were analyzed for each strain. Cells were monitored at an exposure time of 2 s and 70 ms for the DsRed and 

Ph3 channels, respectively. 

For the comparison of Fit toxin expression under different growth conditions, CHA1163 was grown for 24 h 

in 10 ml of the respective medium in 50-ml Erlenmeyer flasks at 25°C and 180 rpm. Quantification of red 

fluorescence intensities was performed as described above. Wild type CHA0 grown in the same media served 

as a negative control. A similar assay was performed to study the expression of the Fit toxin in GIM at 

different incubation temperatures. 

For monitoring the expression of FitD-mCherry in the wild-type and gacA mutant background of CHA0, 20 ml 

of GIM contained in 100-ml Erlenmeyer flasks were inoculated with 200 µl of a bacterial suspension of 

CHA1163 or CHA1169 at an OD600 of 2. The bacterial cultures were incubated at 25°C and 180 rpm and 

samples were taken at different time points for quantification of red fluorescence intensities by fluorescence 

microscopy as described above. 

 

Visualization and quantification of Fit toxin expression in insects and on plant roots 

For microscopic observations of Fit toxin expression in insects, Galleria larvae were injected with 2 × 103 cells 

of reporter strains expressing the FitD-mCherry protein fusion and a GFP tag (i.e., CHA1176, CHA1178) or the 

GFP tag alone (i.e., CHA0-gfp2, CHA1158-gfp2). After incubation for 24 h, larvae were shock frozen in liquid 

nitrogen. For observation of bacteria in hemolymph, frozen larvae were broken apart. Each fracture surface 

was gently pressed for 2 min against a 1% agarose pad placed on a microscope slide to extract and fix the 

hemolymph. To visualize FitD-mCherry and GFP tag expression by bacteria, the same fluorescence 

microscopy equipment as described above was used, with exposure times set at 80 ms for DIC, 8 s for DsRed, 

and 300 ms for GFP. 

For quantification of FitD-mCherry expression in individual bacterial cells, hemolymph collected from frozen 

larvae was diluted 20 times with ice-cold, sterile 0.9% NaCl solution and filtered through a 5-µm filter 

(Sartorius Minisart, Göttingen, Germany). Cells recovered in the subsequent centrifugation step were 

washed three times and fixed on 1% agarose pads. Bacteria were monitored with the Ph3 objective at 

following exposure times: Ph3, 70 ms; DsRed, 4 s; and GFP, 300 ms. Using an ImageJ macro, P. protegens 

cells were automatically identified and delimited on the GFP image based on the fluorescence of their GFP 

tag. Individual selected cells were then analyzed for mean fluorescence intensity (grey value) on the 

corresponding DsRed image to calculate FitD-mCherry expression levels. The average background DsRed 
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fluorescence of images was used to correct the measured single cell fluorescence values. At least 10 images 

were analyzed per strain. 

To investigate Fit toxin expression by P. protegens on roots, GFP-tagged CHA0 derivatives expressing the 

FitD-mCherry protein fusion (CHA1176, CHA1178) were monitored in a hydroponic plant assay system. 

Variants expressing either the FitD-mCherry fusion alone (CHA1163, CHA1175) or the GFP tag alone (CHA0-

gfp2, CHA1158-gfp2) or left unlabelled (CHA0) were included as controls. For the assay, three sterile-grown, 

60-h-old cucumber seedlings (Cucumis sativus cv. Chinese Snake) [48] were transferred to a cyg seed 

germination pouch (18 cm high by 16.5 cm wide; Mega International, West St. Paul, MN, U.S.A.) containing a 

paper wick moistened with 15 ml of sterile distilled water [30]. Growth pouches were wrapped in aluminium 

foil to protect roots from light and were placed in a growth chamber set to 80% relative humidity for 16 h 

with light (160 μE/m2/s) at 22°C, followed by an 8-h dark period at 18°C. After incubation for three days, 

each seedling was inoculated with 1 ml of a suspension containing 108 washed cells prepared from 

exponential-growth-phase LB cultures of the P. protegens reporter strains. After incubation for another 

three to five days, fractions of the upper, middle and lower parts of the roots from each growth pouch were 

carefully harvested, cut into small pieces, placed on 1% agarose pads and fixed with 1% (vol/vol) 

formaldehyde solution. Visualization by fluorescence microscopy was performed with Ph3 (70 ms), GFP (300 

ms) and DsRed (4 s) channels. For quantification of average FitD-mCherry expression levels in individual 

bacterial cells, the remaining roots from the same growth pouch were placed into a 50-ml Falcon tube 

containing 10 ml of autoclaved water with 1% of formaldehyde solution. Tubes were vigorously agitated at 

300 rpm for 20 min to remove adhering bacteria from the roots. Cells were harvested by centrifugation, 

fixed on 1% agarose pads and monitored by fluorescence microscopy. Images recorded on the Ph3, GFP and 

DsRed channels were processed with ImageJ using the same approach and settings as described above for 

quantification of bacterial fluorescence in insects. 

 

Statistical analysis 

Statistical analysis of experiments was performed with R version 2.13.1 (http://www.r-project.org) by 

Wilcoxon-Mann-Whitney’s test with Bonferroni correction for multiple testing or one-way analysis of 

variance (ANOVA) with Tukey's HSD test for post-hoc comparisons. 
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Abstract 

Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic 

lifestyle, but it is not understood how the organism switches between the two states. Here we focus on 

understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect 

the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on 

roots. By using quantitative single cell microscopy and mutant analysis we provide evidence that the sensor 

histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and 

bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating 

carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain 

shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that indeed it is 

functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive 

modifications of the recruited sensor domain were critical for the microorganism to express its potent insect 

toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could 

explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study 

establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial 

pathogenicity. 

 

Author Summary 

Pseudomonas bacteria are well-known for their capability of adapting to different environments which 

enables them to interact with various host organisms. Pseudomonas protegens is a plant-associated 

biocontrol bacterium with lifestyles that are of interest for agricultural applications, among them one as a 

competitive root colonizer protecting plants against pathogenic fungi and the other as an insect pathogen 

invading and killing insect species of importance as pests in agriculture. We recently discovered that P. 

protegens produces a potent insecticidal toxin only during infection of insects but not when growing on plant 

roots. Since sensor proteins enable bacteria to sense and respond to changing environments and are 

important for pathogen-host interactions, we investigated whether a specific sensory protein could explain 

our observation. We found that this particular protein tightly controls toxin production and during its 

evolution has recruited a common sensor domain from a regulatory protein involved in control of nutrient 

uptake. This so-called domain shuffling event was important for the ability of P. protegens to produce its 

insecticidal toxin only when it infects insects. Our study provides a prime example of how a sensory system 

can evolve and contribute to the evolution of bacterial pathogenicity. 
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Introduction 

Pseudomonas protegens is a beneficial root-associated bacterium of the Pseudomonas fluorescens group 

that is able to promote the growth of crop plants and to efficiently protect their roots against fungal and 

oomycete phytopathogens [1,2]. P. protegens can also turn into an insect pathogen [3-5]. The bacterium 

produces a potent insecticidal toxin termed Fit (for P. fluorescens insecticidal toxin) which is required for its 

capacity to efficiently kill larvae of important agricultural pest insects upon oral or systemic infection [5,6]. 

The gene encoding the Fit protein toxin is part of an eight-gene cluster which comprises also genes coding 

for a type I secretion system and three regulatory proteins (Figure S1 and [6,7]). Expression of the 

insecticidal toxin is activated during infection of the insect host, but not on plant roots or in standard 

laboratory media [7]. We recently demonstrated that toxin expression is tightly controlled by two regulators, 

named FitG (an activator) and FitH (a repressor) [7]. The third regulatory protein encoded in the Fit cluster is 

named FitF and codes for a putative sensor histidine kinase-response regulator hybrid protein. We 

hypothesize that FitF is responsible for the detection of the host environment and for activating insecticidal 

toxin production via FitH and FitG specifically upon infection of the insect host (Figure S1). 

Sensor proteins enable bacteria to sense the environment they live in and to adapt their behavior 

accordingly, which is particularly relevant for pathogen-host interactions [8-10]. The number of sensor 

protein types is particularly high in bacteria such as pseudomonads that inhabit diverse and changing 

environments [11,12]. An important category of sensor proteins is that of the two-component regulatory 

systems, which couple extracellular stimuli to adaptive responses. A typical two-component system consists 

of a membrane-bound sensor histidine kinase, which perceives a stimulus, and a cytosolic response 

regulator, which transduces the signal into an output, such as altering specific gene expression. Signal 

transduction is achieved by phosphotransfer reactions between the sensor kinase and the response 

regulator. In some cases, like in the so-called phosphorelay system, the sensor histidine kinase is a hybrid 

response regulator protein undergoing multiple intramolecular phosphotransfer reactions, before finally 

activating a separate response regulator protein [13,14]. 

Sensor and signal transduction proteins usually show a modular organization of conserved domains [14], 

which can be highly variable in their order and topological organization [8]. Not surprisingly, therefore, it has 

been proposed that the modularity of two-component systems enables rapid evolution and generation of 

new functional properties. Gene duplication and domain shuffling are considered to be driving mechanisms 

for the formation of new two-component systems in bacteria [10,12]. More than 70% of estimated recently 

duplicated histidine kinases have input domains different from those of their closest paralogs, suggesting 

frequent domain shuffling events [10]. It was proposed that by shuffling of the sensor domain recently 

duplicated histidine kinases gained new sensing specificity and thus might have enabled the bacteria to 

respond to a broader range of environmental changes [12]. 
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The major goal of our work is to understand the molecular mechanisms that allow P. protegens and related 

bacteria to survive within and to kill the insect host. Of particular interest for the underlying work was the 

question as to how insect pathogenicity may have evolved and has been selected for. Because sensory 

systems are essential for niche adaptation, we felt that an evolutionary analysis of the chemosensory 

systems enabling insect recognition in P. protegens and in particular of the Fit system would be fundamental 

to the understanding of host adaptation. 

Here we thus report the detailed regulation of Fit toxin expression and in particular describe the role of the 

hybrid sensor kinase protein FitF. We noticed that the periplasmic region of FitF is strikingly similar to the 

sensor domain of the histidine kinase DctB, which regulates the uptake of C4-dicarboxylates in 

Proteobacteria [15]. The crystal structures of DctB of Vibrio cholerae and Sinorhizobium meliloti have been 

solved [16,17] and show an inserted repeat of a Per-Arnt-Sim (PAS)-like fold (PASp) in the periplasmic 

sensory domain, which was later termed the PhoQ/DcuS/CitA (PDC) domain [18]. PAS domains are 

universally distributed among all kingdoms of life, are the most frequent type of signal sensors in bacteria, 

can fulfill several functions and can bind chemically diverse small-molecule ligands [9,19-21]. The membrane 

distal PASp domain of DctB binds C4-dicarboxylates such as malate, fumarate and succinate [15]. 

We present several lines of evidence illustrating that the periplasmic sensory domain of FitF evolved from a 

common ancestor with DctB, enabling P. protegens to survive and switch on toxin expression only in the 

insect host. By expressing a chimeric DctB-FitF protein in P. protegens and thereby testing the proposed 

domain shuffling event, we show that the DctB sensor domain is effectively suitable to drive the expression 

of the insecticidal toxin in a similar way as wild-type FitF. We found that the periplasmic sensor region of FitF 

possesses an important and conserved peptide motif and demonstrate by site-directed mutagenesis that, as 

for DctB, it is essential for the function of the histidine kinase. Bioinformatic analyses further support that 

the specific tandem PASp domain probably served as a sensory module for numerous proteins in P. 

protegens and other bacterial species, highlighting its importance, mobility and evolutionary plasticity. Our 

work reveals how the FitF sensor kinase could have evolved into a crucial virulence gene expression 

regulator, and has contributed to the ability of P. protegens to exploit a new ecological niche by recruiting a 

functional domain from an ancestor of sensor proteins involved in the regulation of the primary metabolism. 

In addition, our evolutionary analysis of the Fit regulatory system could provide a unique model system to 

study the hypothesis of domain shuffling in sensor protein evolution, which so far had been postulated 

mainly on the basis of bioinformatic analysis of proteins [10,22] and construction of artificial chimeric 

proteins [23-25]. 
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Results 

FitF is essential for Fit toxin expression in the insect host 

The fit locus (EU400157) of P. protegens comprises three genes (fitF, fitG, and fitH) that code for regulatory 

proteins (Figure S1). We previously demonstrated that expression of the insecticidal Fit toxin can be 

activated in strain CHA0 in Lysogeny Broth (LB) by overexpression of fitG or deletion of fitH, thus identifying 

the encoded proteins as an activator and repressor of insect toxin expression, respectively [7]. The third 

gene fitF, which was predicted to code for a sensor histidine kinase-response regulator hybrid protein (Figure 

1A), was hypothesized to function as a detector of the insect environment and a regulator of Fit toxin 

production [7]. 

To demonstrate that FitF is necessary for Fit toxin production, we used reporter strains of P. protegens CHA0 

in which the full-length fitD gene was translationally fused at its native locus to mcherry by markerless gene 

replacement [7]. Epifluorescence microscopy confirmed that FitD-mCherry was visibly expressed in P. 

protegens CHA0 cells during infection of larvae of the greater wax moth Galleria mellonella, but was absent 

when fitF was inactivated by an in-frame deletion (Figure 1B). Also, the virulence of the CHA0 fitF deletion 

mutant in a Galleria injection assay was statistically significantly decreased compared to the wild type and 

was similar to a fitD deletion mutant (Fit toxin-deficient) (Figure 1C). These results demonstrate that FitF is 

essential for the activation of Fit toxin expression by P. protegens CHA0 in the insect host. 
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Figure 1. The hybrid sensor kinase FitF is essential for Fit toxin expression. (A) Domain topology of FitF and FitH and putative signal 

transduction pathways (blue arrays) and phosphotransfer reactions (black arrows) between domains and proteins predicted by NCBI 

Conserved Domain Search [42] and SMART [43]. The conserved amino acid residues predicted by NCBI Conserved Domain Search to 

be phosphorylated or to be important for signal recognition are indicated with their respective amino acid positions. Hpt, 

phosphotransfer domain; PASc, cytoplasmic Per-Arnt-Sim (PAS) domain; PASp, periplasmic PAS domain; REC, receiver domain; TM, 

transmembrane region. (B) Epifluorescence microscopy of hemolymph extracts from larvae of G. mellonella infected with FitD-

mCherry reporter strains with the wild-type (CHA1176) and ΔfitF mutant (CHA1174-gfp2) background for 24 h. The injected strains 

harbor a constitutive GFP cell tag for identification, expression of FitD-mCherry can be seen in the DsRed channel. Strain CHA0-gfp2 

was used as a negative control. Bars represent 10 µm, micrographs are false-colored. The experiment was repeated twice with 

similar results. (C) Systemic virulence assay with injection of wild-type (in black, CHA0) and isogenic mutants (ΔfitF in red, CHA1154; 

ΔfitD in blue, CHA1151) of P. protegens CHA0 into last instar larvae of G. mellonella. Saline solution served as a negative control (in 

gray). Significant differences between the different treatments are indicated with *** (p-value < 0.0001; Log-rank test). The 

experiment was repeated twice with similar results. 

 

Activation of Fit toxin expression in an insect-mimicking medium 

Although FitD-mCherry was readily expressed during infection of larvae, it was hardly detectable when P. 

protegens CHA0 was growing in standard bacterial culture media such as LB or Brain Heart Infusion (BHI) 

(Figure 2A). Fit toxin production was strongly induced when the bacteria were grown in Grace’s Insect 

Medium (GIM), with on average 60-fold higher red fluorescence levels of individual cells than in LB. GIM, 



 Evolution of a sensor protein by domain shuffling 

63 

which is a defined medium rich in amino acids and C4-dicarboxylates, is widely used for insect cell cultures 

and reflects closely the composition of Lepidopteran hemolymph [26]. In GIM, wild-type bacteria expressed 

the Fit toxin mostly at the end of exponential growth but no longer produced it in stationary phase (Figure 

S2A). Compared to LB, FitD-mCherry expression was also significantly higher in M9 minimal medium 

supplemented with L-malate as sole carbon source, but not in fetal bovine serum or in marine broth, 

although both media provide conditions similar to insect hemolymph (Figure 2A). Interestingly, FitD-mCherry 

production was significantly lower in M9 or GIM supplemented with plant root extracts (Figure 2B). Also 

more than 20% (v/v) of LB mixed in with GIM abolished FitD-mCherry expression (data not shown). Altering 

pH in M9 medium did not impede FitD-mCherry expression (data not shown). 

Expression levels of the FitD-mCherry fusion protein in GIM were similar in the P. protegens wild type and in 

a fitH deletion mutant, which constitutively expresses the toxin (Figure S3). Furthermore, deletion of fitF 

abolished the expression of FitD-mCherry in GIM (Figure 2C), but could be fully rescued by complementation 

of the mutant strain by insertion of a single copy of the fitF gene into the chromosome (Figure 2C). 

Interestingly, the fitF deletion mutant of strain CHA0 could also be fully complemented with the homologue 

fitF from P. chlororaphis strain PCL1391 (Figure 2C), even though P. chlororaphis FitF is predicted to harbor 

two cytoplasmic PAS domains instead of one for FitF from P. protegens [4,5,27]. Results of FitD-mCherry 

expression were confirmed by assaying the activity of the PfitA promoter, which drives the expression of toxin 

and type I transporter genes [7], using a GFP-based transcriptional reporter fusion (Figure S2B). 

Using a hemolymph-mimicking medium, we were thus able to confirm the essential role of FitF in regulation 

of insect toxin production in a controlled and reproducible manner in an ex vivo environment. 

 



CHAPTER 3 

64 

 

Figure 2. Expression of the Fit insect toxin can be induced in an insect hemolymph-mimicking medium (GIM). (A) The FitD-mCherry 

reporter strain of P. protegens CHA0 (CHA1163) was grown in different media and red fluorescence intensities of single cells were 

quantified by epifluorescence microscopy in the exponential (8 h post inoculation) and stationary (24 h post inoculation) growth 

phase. Results are the mean and standard deviation of population averages of single cell fluorescence intensities from three 

independent cultures (n = on average approx. 3200 cells per treatment and time point). Treatments labeled with a different letter 

are significantly different (p-values < 0.0001; two-way ANOVA with Tukey's HSD test for post-hoc comparisons). The experiment was 

performed three times with similar results. (B) Quantification of the expression of FitD-mCherry in the wild-type background of CHA0 
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(CHA1163) in GIM and M9 L-malate with or without root extracts from field-grown wheat (n = on average approx. 2600 cells per 

treatment and time point). Characters indicate significant differences between the treatments (p-values < 0.05; two-way ANOVA 

with Tukey's HSD test for post-hoc comparisons). The experiment was repeated twice with similar results. (C) Quantification of the 

expression of FitD-mCherry in the wild-type (CHA1163) and ΔfitF deletion mutant (CHA1174) background of strain CHA0 grown in 

GIM for 24 h at 25°C (n = 2768−3239 cells per strain). Re-introducing a single copy of fitF from CHA0 (CHA5066) or PCL1391 

(CHA5073) in the bacterial chromosome rescued the expression of FitD-mCherry. Means labeled with a different letter are 

significantly different (p-value < 0.05; one-way ANOVA with Tukey's HSD test for post-hoc comparisons). The experiment was 

performed three times with similar results.  

 

FitF has a periplasmic region homologous to the C4-dicarboxylate-sensing PASp domains 

of DctB 

FitF is predicted to possess two transmembrane domains, a periplasmic sensor domain, a cytoplasmic PAS 

domain, a histidine kinase domain (comprising a conserved phosphoacceptor domain and an ATPase 

domain), a CheY-homologous receiver domain, and a phosphotransfer domain (Figure 1A). BLAST 

comparisons with the amino acid sequence of the periplasmic region of FitF (FitFp) of P. protegens CHA0 

indicated 54% amino acid sequence similarity (27% sequence identity) across the whole length to the double 

PASp domain of the C4-dicarboxylate sensor DctB (DctBp) of V. cholerae (Figure 3A). Phylogenetic analysis 

further indicated that FitFp homologues from various strains of P. protegens and P. chlororaphis group with 

DctBp homologues of different proteobacterial species, while the periplasmic regions of DctB-related CitA 

and DcuS proteins appear to be phylogenetically more distant (Figure 3B and Table S1). CLANS cluster 

analysis revealed similar results with FitFp clustering in close proximity to homologs of DctBp and CitA and 

DcuS clustering further away (Figure S4 and Table S1). We found a conserved “FRPYF” motif among the FitFp 

homologues (Figure 3A), which is similar to the previously reported signal molecule-binding "RXYF" motif in 

DctB homologues and other proteins with double-PASp domains [28,29]. Protein threading and modeling 

approaches predicted a similar secondary and tertiary structure for FitFp as DctBp (Figure 3C). This suggests 

that the FitFp and DctBp domains share a common ancestor. Concurrently, FitF and DctB display different 

domain topologies in their cytoplasmic portions, which is in contrast to the similarity in the periplasmic 

region of the proteins. 

By using in vivo site-directed mutagenesis, we replaced a number of residues in fitF and fitH and studied the 

effect on FitD-mCherry expression in P. protegens. Change of Arg141 and of Tyr143 in the RXYF motif of FitF 

to Ala following the mutagenesis of dctB described by Nan et al. [28], resulted in almost completely 

abolished FitD-mCherry production (Figure 3D). In contrast, change of Asp149 to Ala (used as an internal 

negative control) did not alter the expression of the insecticidal toxin. Changing Tyr143 to Phe reduced 

expression of FitD-mCherry by approximately 45%. Replacement of predicted conserved phosphorylation 

residues of the histidine kinase and receiver domains in FitF (H501 and D803) and FitH (D59) (Figure 1A) by 

alanine diminished the expression of FitD-mCherry (Figure 4). Together, these data demonstrate 
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conspicuous structural and functional relatedness between the periplasmic domain of FitF and the sensor 

domain of DctB, with a conserved peptide motif being crucial for activation of Fit toxin expression. 
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Figure 3. FitFp is homologous to the periplasmic DctB-like sensor domain. (A) Multiple sequence alignment of the periplasmic 

region of FitF and DctB homologs (selection). Amino acid residues that are identical to FitF are highlighted in yellow. Secondary 

structures of DctB were deduced from the corresponding crystal structures and are displayed on top (H, alpha helix; E, beta sheet; -, 

coil). Pa, P. aeruginosa PAO1; Pp, P. protegens CHA0; Pc, P. chlororaphis PCL1391; Sm, S. meliloti; Vc, V. cholerae. (B) Phylogenetic 

tree with sequences obtained from BLASTp searches using the periplasmic sequence of FitF of P. protegens CHA0 and of homologs of 

DctBp. MAFFT was used for sequence alignment and the Minimum Evolution method in MEGA [44] for inferring the evolutionary 

history of the proteins. The percentage of replicate trees in which the associated proteins clustered together in the bootstrap test 

(500 replicates) is shown next to the branches. Evolutionary distances, which were computed using the Poisson correction method, 

are drawn to scale and are in the units of the number of amino acid substitutions per site. The corresponding protein sequences can 

be found in File S1. The predicted domain topology of the entire proteins is depicted for groups of interest. Domains that are 

displayed in half do not exist in all proteins of the respective group. PhoQ was used as out group. (C) Tertiary structure prediction for 

P. protegens FitFp by Phyre2 in comparison with crystal structures of DctBp of V. cholerae (PDB code 3BY9) and S. meliloti (PDB code 

3E4O). Other modeling programs predicted highly similar structures (data not shown). (D) Site-directed mutagenesis of the native fitF 

gene in the FitD-mCherry reporter strain CHA1163. The sites of the mutated residues are depicted in panel A and Figure 1C. 

Microscopic quantification of the expression of FitD-mCherry in the wild-type and individual mutant backgrounds of CHA0 grown for 

24 h in GIM. Results are the mean and standard deviation of population averages of single cell fluorescence intensities from three 

independent cultures (n = on average approx. 2900 cells per strain). Characters indicate significant differences between the means 

(p-values < 0.01; one-way ANOVA with Tukey's HSD test for post-hoc comparisons). The experiment was performed three times with 

similar results. 

 

An artificial chimera of DctB and FitF is functional 

Because of the conspicuous similarity between the FitFp and DctBp domains, we hypothesized that perhaps 

the actual FitF protein might have been the result of a fusion of an ancestor DctBp domain into a FitF 

precursor. To simulate the proposed domain shuffling event and to test experimentally whether the sensor 

module of DctB is effectively suitable to regulate the expression of the Fit toxin, we created an artificial 

DctBp-FitFc chimera in which the periplasmic domain of DctB of P. protegens CHA0 was fused to the 

cytoplasmic portion of FitF (FitFc) (Figure 5A).  

 

 

Figure 4. Site-directed mutagenesis of fitF and fitH. Site-directed mutagenesis of the native fitF and fitH genes in the FitD-mCherry 

reporter strain CHA1163. Quantification of the expression of FitD-mCherry in the wild-type (CHA1163) and individual mutant 
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backgrounds of CHA0 (CHA5056, CHA5075, CHA1174, CHA5084, and CHA1175) grown for 24 h in GIM. Results are the mean and 

standard deviation of population averages of single cell fluorescence intensities from three independent cultures (n = on average 

approx. 2900 cells per strain). Characters indicate significant differences between the means (p-values < 0.001; one-way ANOVA with 

Tukey's HSD test for post-hoc comparisons). The experiment was repeated twice with similar results. 

 

Indeed, expression of the DctBp-FitFc chimeric protein in a ΔfitF mutant background of strain CHA0 led to 

FitD-mCherry production in GIM, but not in LB (Figure 5B). Still, FitD-mCherry expression was significantly 

higher in GIM in the ΔfitF mutant complemented with wild-type fitF than with the dctB’-‘fitF chimeric gene. 

Remarkably, however, FitD-mCherry production was activated in CHA0 expressing the DctBp-FitFc chimeric 

protein when the bacteria were growing on plant roots, while toxin production was completely off in 

bacteria expressing wild-type FitF (Figure 5C). Furthermore, bacteria with the DctBp-FitFc background 

produced FitD-mCherry at significantly higher levels in minimal medium with L-malate as sole carbon source 

than bacteria expressing wild-type FitF (Figure 5B). In a Galleria injection assay the DctBp-FitFc chimera fully 

complemented the fitF mutant (Figure 5D). These results thus indicate that the DctB sensor domain can 

replace the FitFp domain of FitF. Yet, this causes a shift in sensor protein sensitivity resulting in a loss of 

responsiveness in an insect environment and a gain of responsiveness in a root environment. 

A chimera of the more distantly related PASp sensor domain of CitA and FitFc was functional and even less 

responsive to the insect mimicking medium than the DctBp-FitFc chimera (Figure 5). 
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Figure 5. A DctBp-FitFc chimera regulates toxin expression similarly to wild-type FitF. (A) A chimeric protein of the cytoplasmic 

portion of FitF and the N-terminal part of DctB including its double-PASp sensor domain and the transmembrane regions was 

constructed by fusing the respective P. protegens CHA0 genes using the conserved DNA sequence coding for the second 

transmembrane region as a linker. A CitAp-FitFc chimera was constructed analogously using E. coli citA. (B) Expression of FitD-

mCherry in the ΔfitF reporter strain CHA1174 complemented with either wild-type fitF (CHA5066), the dctB’-‘fitF chimeric gene 

(CHA5093) or the citA’-‘fitF chimeric gene (CHA5151) in different media for 24 h. Results are the mean and standard deviation of 

population averages of single cell fluorescence intensities from three independent cultures (n = on average approx. 3590 cells per 

treatment). Characters indicate significant differences between the means (p-values < 0.05; one-way ANOVA with Tukey's HSD test 

for post-hoc comparisons). The experiment was performed three times with similar results. (C) Quantification by epifluorescence 
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microscopy of FitD-mCherry expression in reporter strains CHA5066, CHA5093, CHA5151, and CHA1175 (ΔfitH, positive control), all 

harboring the plasmid pPROBE-TT for GFP-tagging of the cells, grown for five days on roots of cucumber. Shown are means and 

standard deviations of population averages of single cell fluorescence intensities of bacteria isolated from six independent plants (n = 

on average approx. 1170 cells per strain). Characters indicate significant differences between the means (p-values < 0.05; one-way 

ANOVA with Tukey's HSD test for post-hoc comparisons). The experiment was repeated twice with similar results. (D) Galleria 

injection assay with wild-type (in black, CHA0) and isogenic mutants (ΔfitF in red, CHA1154; ΔfitD in blue, CHA1151; ΔfitF dctB’-‘fitF in 

green, CHA5150) of P. protegens CHA0 into last instar larvae of G. mellonella. Saline solution served as a negative control (in gray). 

Significant differences between the different treatments are indicated with *** (p-value < 0.0001; Log-rank test). The experiment 

was repeated twice with similar results. 

 

Activation of Fit toxin production is host-specific 

In order to investigate whether toxin production is not only host-dependent but also specific toward certain 

insect orders, the expression of FitD-mCherry by P. protegens CHA0 was studied in additional insect species. 

The expression of the Fit toxin was activated in the hemocoel of the African cotton leafworm Spodoptera 

littoralis (Lepidoptera) and the mealworm Tenebrio molitor (Coleoptera) (Figure 6A). In contrast to the ΔfitH 

mutant of strain CHA0, however, the insecticidal toxin was hardly produced in the phylogenetically distant 

pea aphid Acyrthosiphon pisum (Hemiptera) (Figure 6A). In addition, as already shown for cucumber [7], no 

toxin expression was detectable on roots of wheat and tomato (Figure 6B). Moreover, the presence of a 

phytopathogenic fungus (Fusarium oxysporum) on tomato roots did not activate Fit toxin production in the 

bacteria (Figure 6B). These results suggest that P. protegens CHA0 is capable of expressing its insecticidal 

toxin in a host-specific manner. 
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Figure 6. Fit toxin expression is controlled in a host-specific manner. The insectidical toxin is expressed by P. protegens CHA0 only in 

certain insect species and not on plant roots. (A) Epifluorescence microscopy of hemolymph isolated from S. littoralis, T. molitor and 

A. pisum infected with FitD-mCherry reporter strains with the wild-type (CHA1176) and ΔfitH mutant (CHA1178, positive control) 

background. The bacteria harbor a constitutive GFP cell tag for identification, expression of FitD-mCherry can be seen in the DsRed 

channel. Strain CHA0-gfp2 was used as a negative control. Bars represent 10 µm, micrographs are false-colored. The experiments 

were performed at least twice with similar results. (B) Epifluorescence microscopy of plant roots (or root washes) three to five days 

after the inoculation with the same reporter strains as in panel A, with or without co-inoculation with the phytopathogen Fusarium 

oxysporum f. sp. radicis-lycopersici. The experiments were performed twice with similar results. 
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Discussion 

Fit toxin production is dependent on the sensor kinase FitF 

Here we show that the histidine kinase FitF is responsible for activation of Fit toxin expression in P. 

protegens CHA0. We deleted fitF in the CHA0 genome and our results show unambiguously that FitF is 

essential for the induction of Fit toxin expression and for full virulence of the bacterial strain in the insect 

host (Figure 1 and Figure 2C). We assume that FitF is the primary sensor to signal P. protegens the 

appropriate conditions to start toxin expression, activating a phosphorelay from the histidine kinase to the 

receiver and phosphotransfer domain of FitF (Figure 1A). FitF then most likely inactivates FitH via 

phosphorylation of a conserved aspartate residue, since the substitution of this residue by alanine locked the 

protein in its repressing state (Figure 4). Inactivation of FitH might derepress FitG, which subsequently 

activates transcription of the fitABCDE operon (Figure S1). 

 

FitF acquired the mobile DctB-like sensor domain by domain shuffling 

The periplasmic region of FitF showed remarkable structural and functional similarity to the sensor domain 

of DctB (Figure 3 and Figure 5). In particular, a RXYF motif was found in FitFp and we could show by site-

directed mutation analysis that this conserved and known peptide motif is crucial for the activation of Fit 

toxin expression in P. protegens (Figure 3D). However, these two proteins differ substantially in their domain 

topologies in the cytoplasmic portion (Figure 3D). This suggested that an ancestor DctBp domain was 

acquired through shuffling in a precursor FitF. We present experimental and bioinformatic evidence that FitF 

most likely evolved via a fusion of two genes coding for a histidine kinase-response regulator hybrid protein 

and a duplicated DctB homolog (Figure 7). We noticed that DctB and FitF share a high degree of primary 

sequence identity in the second transmembrane region. It may therefore be possible that the fusion 

occurred via homologous recombination within the DNA sequence coding for the second transmembrane 

alpha helix. 

Despite limited primary sequence conservation between DctBp and FitFp, a constructed DctBp-FitFc chimera 

was functional and, most interestingly, induced Fit toxin production in P. protegens in the insect medium, 

although to significantly lower expression levels than wild-type FitF. This strongly suggests that the tandem 

PASp sensor of DctB is functionally analogous to that of FitF and may have been at the basis of sensor 

specificity acquisition by FitF. This experiment is limited by the fact that the chimeric protein was 

constructed using sequences of extant proteins as it is not possible to reconstruct the sensor protein as it 

was shortly after the proposed domain shuffling event. 
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Figure 7. Model for evolution of FitF via a domain shuffling event involving a DctB ancestor. The ancestor of the gene coding for the 

sensor kinase DctB was duplicated several times in various proteobacterial species. One dctB gene copy underwent a fusion with a 

gene encoding a histidine kinase-response regulator hybrid protein, possibly by homologous recombination via a conserved region 

coding for the second transmembrane region of the sensor proteins. This domain shuffling event resulted in the expression of a 

hybrid histidine kinase with a dual PASp domain architecture in the periplasmic portion. Selective pressure then led to adaptive 

modifications in the protein sequence and domain topology (i.e. insertion of a second PASc domain in P. chlororaphis). Domain 

shuffling and subsequent modifications during the evolution of FitF significantly contributed to the ability of P. protegens CHA0 to 

produce its insecticidal toxin in a host-specific manner and as a result to the evolution of insect pathogenicity in this biocontrol 

bacterium. Inhibition of FitF by plant-derived molecules may be a mechanism helping the bacterium to distinguish between the plant 

and insect host. The evolution of FitF may have taken place in bacterial species other than P. protegens, implying horizontal gene 

transfer. 



CHAPTER 3 

74 

Protein comparisons further suggested that similar double-PASp domains occur widely among prokaryotes 

and in a variety of modular proteins (Figure 3B and Figure S4). Domains homologous to DctBp cannot only be 

found in histidine kinases but also in cyclic di-GMP modulating proteins (Figure 3B and Figure S4). PAS 

domains are known to be the most frequent type of sensor domains in bacteria [9,20]. It is thus imaginable 

that such domains have been frequently interchanged and that such shuffling has been fundamental to 

evolution of FitF specificity. 

In contrast to DctB, FitF possesses a cytoplasmic PAS domain as a linker between the sensor and kinase 

domain (Figure 1). We noticed that DctB proteins with an inserted PASc domain also occur in certain 

Acidovorax species. Furthermore, the C4-dicarboxylate sensing DcuS and CitA proteins of Escherichia coli 

possess a DctB-like PASp sensor domain in the periplasmic portion and a PASc domain as a linker between 

the sensor and the histidine kinase domain [15,30]. These observations further support the notion that an 

ancestral DctB-like sensor domain served as an adaptable and mobile module for the evolution of diverse 

proteins, since it can be fused to a variety of other protein domains. This is further supported by our 

observation that a fusion of the periplasmic sensor domain of CitA to FitFc was functional (Figure 5). 

Domain shuffling may require gene duplication and recombination [12]. In this respect, it is interesting to 

note that like many Pseudomonas species, P. protegens encodes three paralogs of the dctB gene (Figure 3). 

The dctB paralogs are functionally different. One of them (DctB) is involved in regulation of the uptake of C4-

dicarboxylates (Figure S5 and [31]), whereas another (named MifS) was reported to be a regulator of biofilm 

formation in P. aeruginosa [32]. Pseudomonas fulva strain 12-X encodes four dctB paralogs (GeneBank 

CP002727), suggesting that duplications of dctB must have occurred frequently and could have been the 

basis for domain shuffling events in these bacteria. 

The molecular mechanism of domain shuffling in the bacterial kingdom is still unknown. However, it has 

been reported that hybrid sensor kinases as is FitF show particularly high levels of DNA polymorphism and 

fast evolutionary rates [33]. Moreover, they are thought to have mostly evolved by lateral recruitment of 

individual protein domains [19]. Therefore, not only lineage-specific expansion but also recombination with 

horizontally acquired sequences could have played a role in the evolution of FitF. The sensor protein could 

have evolved by shuffling of functional domains that originated from different bacterial species.  

 

Adaptive modifications to ensure host-specific expression of the insecticidal toxin 

We discovered that Fit toxin expression in P. protegens CHA0 can be highly induced independently of the 

host organism in an insect hemolymph-mimicking medium (Figure 2A). The physicochemical conditions given 

by the insect medium are thus sufficient for the observed activation of toxin production during infection of 

the insect host. Despite extensive testing (not shown), however, we currently do not know the precise 

chemical structure of the signaling compound(s) that trigger FitF activation. The fact that the DctBp-FitFc 



 Evolution of a sensor protein by domain shuffling 

75 

chimera controlled Fit toxin production similarly to wild-type FitF, suggests that the signal molecule may be 

similar to C4-dicarboxylates. However, the chimera seemed to respond differentially to changing 

environmental conditions (Figure 5B and C). In addition and in contrast to DctB [28], the conservative 

replacement of the important tyrosine residue Y143 by phenylalanine did not diminish Fit toxin expression in 

the insect medium (Figure 3D). Moreover, certain cells within the population of bacteria with the DctBp-FitFc 

chimera expressed the insect toxin on plant roots, which was not the case with bacteria expressing wild-type 

FitF (Figure 5C). These results indicate that the signal molecules recognized by FitFp are no longer (only) C4-

dicarboxylates. Molecules that bind to the sensor domain of FitF could be detected when solving the crystal 

structure of its periplasmic sensor domain in future studies, as it was demonstrated for several proteins with 

double-PASp sensor domains in the work of Zhang and Hendrickson [29]. 

Our findings suggest that even though a DctBp domain may have been at the basis of acquisition of FitF 

sensory capacity, further adaptive mutations occurred after the domain shuffling event, shifting the 

spectrum of recognized signals to ensure specificity of toxin production toward the insect environment. 

Indeed, we found indications that the Fit toxin is produced by wild type P. protegens CHA0 in a host-specific 

manner (Figure 6). 

 

Competitive inhibition by plant molecules as a mechanism for host recognition? 

Interestingly, FitD-mCherry expression by P. protegens diminished when induction media were 

supplemented with plant root extract (Figure 2B). We speculate that this may be the result of a competitive 

inhibition rather than of absence of inducer compounds, because the rest of the induction medium was kept 

the same. If FitF could be directly or indirectly inhibited by plant molecules, this would explain the observed 

loss in toxin expression on roots, and could form a mechanism for host (plant or insect) differentiation. 

Activation of toxin expression in the insect host via FitF would then be the result of absence of inhibiting 

plant-derived molecules and the simultaneous presence of specific activating signal molecules in insect 

hemolymph (Figure 7). Competitive interactions are known from studies on DctB, where it was reported that 

molecules structurally resembling C4-dicarboxylates (e.g. malonate) can bind to the membrane distal PASp 

domain of DctB but do not lead to an activation of the kinase by conformational change [17]. The possibility 

of competition between activating and inhibitory molecules for the signal binding pocket of DctB was not 

discussed so far, but would be an interesting aspect for future research on PAS sensor domains. 

Alternatively, the observed inhibition of toxin production on roots could be due to repression of FitF by 

another protein. In the case of DctB it was suggested that the activity of the sensor kinase can be controlled 

by the transporter DctA directly by protein-protein interaction [15]. The proposed inhibition of FitF could 

also be mediated indirectly through changes in the metabolism of the bacterium when growing on roots. 
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In summary, the present study provides evidence that a virulence-associated sensor histidine kinase, 

contributing to control the switch of the pseudomonad between a plant-beneficial and an insect pathogenic 

lifestyle, evolved by acquisition of a prominent sensory domain from a common ancestor of a protein, which 

regulates carbon uptake and primary carbon metabolism. This event was crucial for the ability of the 

microorganism to activate toxin expression in insects in a host-specific manner and thus to the adaptation of 

this bacterium to the insect environment. 

 

To our best knowledge, P. protegens at first is well adapted to the life on plant roots. The microorganism 

acquired and evolved virulence determinants, such as the fit cluster, and adapted to the insect environment, 

allowing it to survive within and to kill larvae of certain insect species. Since two-component signal 

transduction pathways are often involved in sensing and responding to changing environments, they have 

played a fundamental role in the adaptation of bacteria to a range of ecological niches [12]. P. protegens has 

the ability to tightly control Fit toxin production in a way that the toxin is only expressed during infection of 

certain insects but not on plant roots (Figure 6 and [7]). As we show here, FitF thereby plays an important 

role as a regulatory protein. We recently demonstrated that the Fit toxin is required for full virulence upon 

oral or systemic infection of insect larvae [5-7]. Therefore, the proposed domain shuffling event during the 

evolution of FitF has significantly contributed to the adaptation of this bacterium to a new niche and thus to 

the evolution of insect pathogenicity. 

With the existing molecular techniques, the provided reporter constructs, the possibility to induce the 

expression of the Fit toxin in vitro in an insect medium, and the current knowledge about the regulation of 

Fit toxin expression, the Fit regulatory system could serve as a prime example for future studies on domain 

shuffling and related molecular mechanisms driving the evolution of sensory systems involved in the 

regulation of bacterial virulence and on the evolution of pathogenesis in general. 

 

Material and Methods 

Bacterial strains, plasmids, media, and culture conditions 

All strains and plasmids used in this study are listed in Table S2. Bacteria were routinely cultured in LB (LB 

Broth Miller, BD Difco), or in nutrient yeast broth (NYB) or on nutrient agar (NA) [34]. E. coli cells were grown 

at 37°C while P. protegens was cultured at 25°C. When appropriate, growth media were supplemented with 

ampicillin (100 µg/ml), chloramphenicol (10 µg/ml), kanamycin (25 µg/ml), gentamicin (10 µg/ml), 

tetracycline (25 µg/ml or 125 µg/ml for E. coli and P. protegens, respectively), or isopropyl β-D-1-

thiogalactopyranoside (IPTG) (0.1 mM). 
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For Fit toxin expression studies, the following media were used. LB; Brain Heart Infusion (BHI) (BD Bacto); 

sterile-filtered Grace’s Insect Medium (GIM) (G9771, with L-glutamine, without sodium bicarbonate, 

adjusted to pH 5.5 with sodium bicarbonate) (Sigma-Aldrich); M9 minimal medium (50 mM Na2HPO4 × 2 H2O, 

22 mM KH2PO4, 9 mM NaCl, 19 mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2, 134 µM EDTA, 31 µM FeCl3 × 6 H2O, 

6.2 µM ZnCl2, 760 nM CuCl2 × 2 H2O, 420 nM CoCl2 × 2 H2O, 1.62 µM H3BO3, 81 nM MnCl2 × 4 H2O, pH 7) with 

10 mM L-malate, except for growth curve assays which were performed with 20 mM L-malate; sterile-

filtered Fetal Bovine Serum (Invitrogen Gibco); and Marine Broth 2216 (BD Difco). Cold root extracts were 

prepared by adding 4 g/L of washed and cut roots of field-grown wheat to M9 L-malate or GIM. The mixture 

was aggitated for 30 min at 300 rpm and room temperature and sterilized by using 5 µm and 0.45 µm filters. 

Dose-response assays were performed with LB, GIM and different ratios of LB and GIM. 

 

Recombinant DNA techniques 

DNA manipulations and PCRs were conducted according to standard protocols [34]. Genomic DNA was 

extracted using the Promega Wizard Genomic DNA Purification Kit. Plasmid DNA was routinely extracted and 

purified using the QIAprep Spin Miniprep Kit (Qiagen). Larger scale plasmid preparations were performed 

with the Genomed JETStar Plasmid Purification Midi Kit. DNA gel extractions were conducted using the 

MinElute Gel Extraction Kit and the QIAquick Gel Extraction Kit (Qiagen). DNA restriction and modification 

enzymes were from Promega and were used according to the manufacturer's recommendations. DNA 

enzyme reaction cleanups were performed using the QIAquick PCR Purification Kit (Qiagen). PCR was 

routinely conducted using the PrimeSTAR HS high-fidelity DNA polymerase kit (Takara Bio Inc.) for molecular 

cloning and the GoTaq DNA Polymerase kit (Promega) for analytic purposes according to the 

recommendations of the manufacturer. Primers used for this study were obtained from Microsynth AG 

(Balgach, Switzerland) and are listed in Table S3. DNA sequencing was conducted at GATC Biotech (Konstanz, 

Germany). Sequences were analyzed using the DNASTAR Lasergene software suite. 

 

In-frame deletion of fitF and integration of reporter constructs 

For the construction of the ΔfitF mutant CHA1154, a 2982-bp fragment was deleted in-frame in the fitF gene 

as follows. Using CHA0 DNA as a template, a 722-bp KpnI-EcoRI fragment encompassing the first 42 codons 

of fitF and the adjacent upstream region was amplified by PCR with primers PfitF1 and PfitF2 (Table S3). An 

884-bp EcoRI-XbaI fragment comprising the last 41 codons of fitF plus downstream region was amplified by 

PCR using primers PfitF3 and PfitF4. The fragments obtained were digested with KpnI and EcoRI and with 

EcoRI and XbaI, respectively, and cloned by triple ligation into pUK21 opened with KpnI and XbaI. The 1.6-kb 

KpnI-XbaI insert in the resulting plasmid was checked by sequencing, excised and cloned into the suicide 

plasmid pME3087 digested with the same enzymes, giving pME8256 (Table S2). The constructed 



CHAPTER 3 

78 

replacement vector was then used to delete fitF in P. protegens CHA0 by D-cycloserine counterselection as 

described before [35,36], resulting in strain CHA1154 (Table S2). The suicide plasmid pME8217 was used to 

replace the native fitD with the fitD-mcherry fusion in strain CHA1154 by homologous recombination, 

generating strain CHA1174 (Table S2). For insect assays, the strain CHA1174 additionally was marked with a 

constitutively expressed GFP tag using the Tn7 delivery vector pBKminiTn7-gfp2, producing CHA1174-gfp2 

(Table S2). 

 

In vivo site-directed mutagenesis of fitF and fitH 

For the mutagenesis of the periplasmic region of FitF, a region of fitF of 979 bp length encompassing the site 

of interest in the centre was amplified by PCR with CHA0 DNA using the primers fitF-mut1-hr-F and fitF-

mut1-hr-R (Table S3). The resulting fragment was digested with EcoRI and BamHI and ligated into the suicide 

vector pEMG [37] opened with the same enzymes. The insert of the resulting plasmid pME8271 was checked 

by DNA sequencing. To introduce mutations into the insert sequence of pME8271 to subsequently replace 

the single amino acid residues R141, Y143, and D149 of FitF, primer pairs fitF-R141A-F/ fitF-R141A-R, fitF-

Y143A-F/ fitF-Y143A-R, fitF-Y143F-F/ fitF-Y143F-R, and fitF-D149-F/fitF-D149-R (Table S3), respectively, were 

used to amplify the vector pME8271 by PCR. The template plasmids used for the PCR were degraded by DpnI 

for 1 h at 37°C and PCR-amplified vectors were obtained by electroporation of E. coli DH5α λpir cells with 

purified PCR reaction and selection for kanamycin resistance. The insert sequences of the resulting plasmids 

were controlled by DNA sequencing. 

For the replacement of H501 of FitF by alanine, a 489-bp fragment of the upstream region was amplified by 

PCR with primers fitF-mut2-hr-F and fitF-mut2-R using CHA0 DNA (Table S3). A 524-bp fragment of the 

downstream region was amplified by PCR using primers fitF-mut2-F and fitF-mut2-hr-R using CHA0 DNA as 

template. The two fragments were combined by overlap extension PCR using the primers fitF-mut2-hr-F and 

fitF-mut2-hr-R, creating a 984-bp KpnI-HindIII fragment. The PCR product was digested by KpnI and HindIII 

and ligated into the plasmid pUK21. The insert was checked by sequencing, excised by digestion with KpnI 

and BamHI and cloned into the suicide plasmid pEMG by ligation. The resulting plasmid pME8265 was then 

used to create strain CHA5056 (Table S2). 

An analogous approach (leaving out the cloning of the PCR fragment into the plasmid pUK21) was used to 

create the suicide vector for the replacement of D803 of FitF and D59 of FitH by alanine. For FitF(D803A) the 

primers fitF-REC-hr-F, fitF-REC-hr-R, fitF-D803A-F, and fitF-D803A-R were used to construct the suicide 

plasmid pME8302 and create strain CHA5075. For FitH(D59A) the primers fitH-REC-hr-F, fitH-REC-hr-R, fitH-

D59A-F, and fitH-D59A-R were used to construct the suicide plasmid pME8303 and generate strain CHA5084. 

Isogenic mutants of P. protegens strain CHA0 were constructed by allelic replacement using the I-SceI system 

with pEMG. The I-SceI system protocol described by Martinez-Garcia and de Lorenzo [37] was modified for P. 
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protegens for this study. Briefly, the pEMG suicide vector bearing sequences homologous to genomic 

counterparts was integrated into the chromosome of P. protegens via homologous recombination after 

delivery by electroporation of competent cells. Bacteria were selected for kanamycin resistance on agar 

plates and competent cells were transformed with the expression plasmid pSW-2 by electroporation. 

Bacterial cells were selected for gentamicin resistance on agar plates and grown overnight at 30°C in LB 

supplemented with 10 µg/ml gentamicin. Ten milliliter of fresh LB was inoculated with 2 ml of overnight 

culture, supplemented with 2 mM m-toluate and 10 µg/ml gentamicin and incubated for 7 h at 30°C to allow 

second homologous recombinations to occur. Bacterial cultures were diluted and plated on nutrient agar 

plates without antibiotics. Isolated colonies were screened for kanamycin sensitivity and mutants were 

identified by specific PCR and sequencing of the respective genomic region. 

 

In-frame deletion of dctB homologs 

Deletions of the three dctB homologs in P. protegens CHA0 were performed based on homologous 

recombinations using the suicide vector pEMG and the I-SceI system. 

For the construction of suicide vectors for in-frame gene deletions of CHA0 dctB (PFLCHA0_c03070), dctB2 

(PFLCHA0_c48560) and mifS (PFLCHA0_c47820), upstream and downstream regions of 500-600 bp length 

flanking the region to be deleted, encompassing the first five codons and the last 7-18 codons of the open 

reading frames, were amplified by PCR using the primers listed in Table S3. The resulting BamHI-HindIII 

fragments were digested with BamHI and HindIII and cloned by triple ligation into pEMG opened with 

BamHI. Correct insert sequences of the obtained plasmids pME8307, pME8308 and pME8309 for ΔdctB1, 

ΔdctB2 and ΔmifS, respectively, were confirmed by DNA sequencing (Table S2). The constructed suicide 

plasmids then served to construct strains CHA5085, CHA5090 and CHA5089, respectively, using the I-SceI 

system (Table S2). 

 

Inducible expression of fitF 

For complementation of the ΔfitF mutant of CHA0, the fitF genes of strains P. protegens CHA0 and P. 

chlororaphis PCL1391 were cloned under the control of the Ptac/lacIq promoter and introduced into the unique 

chromosomal Tn7 attachment site of strain CHA1174 using the mini-Tn7 delivery vector pME9411 as follows. 

Primers fitF-F-SD-new and fitF-R-HindIII were used to amplify the fitF gene of strain CHA0 by PCR. The 3.2-kb 

EcoRI-HindIII fragment was digested with EcoRI and HindIII and ligated into plasmid pME4510 opened with 

the same restriction enzymes. After blunt-ending the EcoRI restriction site, the fragment was ligated into 

pME9411 opened with SmaI and HindIII, to obtain pME8288, and the correct insertion was confirmed by 

sequencing. The pME9411 derivative and the Tn7 transposition helper plasmid pUX-BF13 were co-

electroporated into competent cells of the recipient strain CHA1174 to create strain CHA5066 (Table S2). 
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An analogous approach was taken to complement the ΔfitF mutant of CHA0 in trans with fitF of strain 

PCL1391 [5]. A 1188-bp EcoRI–BamHI fragment (primers PCL-fitF-F-SD and PCL-fitF-br-R), a 1704-bp BamHI–

StuI fragment (primers PCL-fitF-br-F and PCL-fitF-StuI-R), and a 957-bp StuI–HindIII fragment (primers PCL-

fitF-StuI-F and PCL-fitF-R) were amplified by PCR with the indicated primer pairs using chromosomal DNA 

from strain PCL1391. The individual fragments were digested with the respective restriction enzymes and 

ligated individually into plasmid pUK21 opened with the same enzymes. The inserts in the resulting plasmids 

were checked by sequencing. The insert fragments were excised from the plasmids with the respective 

enzymes and cloned by quadruple ligation into plasmid pME4510 opened with EcoRI and HindIII. After blunt-

ending the EcoRI restriction site, the fragment was ligated into pME9411 opened with SmaI and HindIII, and 

the correct insertion was confirmed by sequencing. The resulting mini-Tn7-Ptac/lacIq-fitF(PCL1391) delivery 

plasmid pME8295 then served to generate strain CHA5073 (Table S2). 

 

Construction of the dctB’-‘fitF and citA’-‘fitF chimeras 

Primers ME8300-F and ME8300-SpeI-R were used to amplify the lacIq gene and the IPTG-inducible promoter 

region of the plasmid pME6032 by PCR. The PCR product was purified, digested with NcoI and HindIII, and 

ligated into the vector pME6182 opened with the same enzymes. The insert in the resulting plasmid 

pME8300 was checked by DNA sequencing. 

Primers dctB-F-SpeI and dctB-R-overlap were used to amplify an 879-bp fragment of dctB using genomic 

DNA from strain CHA0. Primers fitFc-F and fitF-R-HindIII were used to amplify a 2271-bp fragment of fitF by 

PCR with CHA0 DNA. The two fragments were combined by overlap extension PCR using the primers dctB-F-

SpeI and fitF-R-HindIII, creating a 3.3-kb SpeI-HindIII fragment. The PCR product was digested by SpeI and 

HindIII and ligated into the plasmid pME8300. The insert of the resulting plasmid pME8317 was checked by 

DNA sequencing. The Ptac/lacIq-dctB‘-‘fitF construct was then integrated into the chromosome of the ΔfitF 

mutant of CHA1163 (CHA1174) using the mini-Tn7 delivery system, yielding strain CHA5093 (Table S2). 

Analogously, the citA’-‘fitF chimera was constructed with primer pairs citA-F-SpeI / citA-R-overlap and fitFc-

F2 / fitF-R-HindIII using genomic DNA from E. coli K-12 and P. protegens CHA0, respectively, as a template. 

The resulting plasmid pME8354 was used to create strain CHA5151 (Table S2). 

 

Quantification of Fit toxin expression in batch cultures using GFP reporters 

For assays with transcriptional reporter strains, GFP fluorescence was measured with a BMG FLUOstar 

Galaxy multidetection microplate reader as detailed previously [7,38]. 
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Quantification of Fit toxin expression in batch cultures by epifluorescence microscopy  

Bacterial strains were grown overnight in 10 ml of LB at 25°C and 180 rpm. Bacterial cells were washed once 

in 0.9% NaCl solution and the optical density at 600 nm was adjusted to 1, if not otherwise specified. Ten 

milliliters of the respective medium (LB, BHI, marine broth, FBS, M9 L-malate, or GIM) in 50-ml Erlenmeyer 

flasks was inoculated 1:100 with the bacterial suspension and incubated for 8 h (exponential growth phase) 

and 24 h (stationary growth phase) at 25°C and 180 rpm. Quantification of red fluorescence intensities of 

single cells by epifluorescence microscopy was performed as described previously [7]. Exposure times were 2 

sec for the DsRed channel and 80 msec for the Ph3 channel. The CHA0 wild-type strain was used to correct 

for autofluorescence of the bacterial cells. 

 

Bacterial infection of insects and monitoring of Fit toxin expression by epifluorescence 

microscopy 

Injection assays for virulence determination using last-instar larvae of G. mellonella (Reptile-food.ch GmbH, 

Dübendorf, Switzerland) were performed as described before [7]. For complementation assays, IPTG was 

added to the inoculi to a final concentration of 1 mM. Reporter strains of P. protegens CHA0 were in injected 

in and extracted from forth instar larvae of S. littoralis (Syngenta Crop Protection, Stein, Switzerland) and last 

instar larvae of T. molitor (The Animal House, Zuzwil, Switzerland) as described before for G. mellonella [7]. 

A. pisum (The Animal House) was infected with reporter strains of P. protegens CHA0 by placing 20 adult 

individuals in a small Petri dish on leaves of white beans (Phaseolus vulgaris) that contained drops of 

bacterial suspensions (at a concentration of 108 cfu per ml, 100 µl per dish). After three days of incubation at 

room temperature, adult aphids were shock frozen in liquid nitrogen, surface-sterilized with 70% ethanol for 

2 min and hemolymph was extracted by crushing them on microscope slides. Extracted hemolymph was 

fixed on 1% agarose pads placed on microscope slides and observed by epifluorescence microscopy as 

described previously [7]. 

 

Monitoring of Fit toxin expression on roots by epifluorescence microscopy 

Visualization of Fit toxin expression on tomato (Solanum lycopersicum cv. Marmande) and wheat (Triticum 

aestivum cv. Arina) roots was performed as described previously for cucumber [7]. Infection of tomato roots 

with the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici isolate Forl22 was done 

as detailed elsewhere [39]. Fit toxin expression on cucumber (Cucumis sativus cv. Chinese Snake) roots with 

the DctBp-FitFc chimera was studied as follows. Cucumber seedlings were grown axenically for three days at 

room temperature in the dark and inoculated with different reporter strains of P. protegens CHA0 by placing 

them for 30 min in bacterial suspension, which was prepared from an overnight culture in LB by washing 
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them once in saline solution and adjusting the optical density at 600 nm to 1. The seedlings were then placed 

into 50-ml tubes (three plants per tube) containing 35-ml of 0.35% (w/v) water agar supplemented with 0.1 

mM IPTG, 125 µg/ml tetracycline and 10 µg/ml gentamicin if necessary. The tubes were wrapped in 

aluminum foil for the lower part to protect roots from light and incubated in a growth chamber set to 80% 

relative humidity for 16 h with light (160 μE/m2/s) at 22°C, followed by an 8-h dark period at 18°C. After 

incubation for five days, roots were individually removed, cut into smaller pieces and placed into Eppendorf 

tubes containing 100 µl of saline solution supplemented with 0.1% Silwet L-77 for the isolation of the 

bacteria (GE Bayer Silicones Sàrl, Switzerland). The mixture was vigorously agitated for 2 min and 5 μl were 

used for epifluorescence microscopy as described above. Quantification of single cell fluorescence was 

performed by using the GFP (2 sec exposure time) and DsRed (2 sec exposure time) channels. 

 

Bioinformatics 

Homologs of the periplasmic domains of P. protegens FitF were identified from the NCBI nonredundant 

protein sequence database using PSI-BLAST and an E-value cutoff of 1e-12 [40]. Periplasmic regions of 

membrane-bound proteins were determined by predicting transmembrane regions using DAS [41] and 

PRED-TMR (http://athina.biol.uoa.gr/PRED-TMR/input.html). Functional domains of proteins were predicted 

using the NCBI Conserved Domain Search [42] and SMART [43] with default parameters. Multiple sequence 

alignments including sequences from reference proteins with known functions were performed with MAFFT 

version 7 (http://mafft.cbrc.jp/alignment/server) and phylogenetic analyses were conducted in MEGA5 using 

the Minimum Evolution method for inferring the evolutionary history [44]. Cluster analyses were performed 

with CLANS [45] as described earlier [46] using 2D clustering with default parameters. 

Secondary and tertiary structure predictions of the periplasmic region of FitF were performed using 

ESyPred3D [47], I-TASSER [48], LOMETS [49], Phyre2 [50], SABLE (http://sable.cchmc.org), and SWISS-MODEL 

[51] using default parameters and the crystal structure of the V. cholerae DctB sensor domain (3BY9) as 

template if required. Structure models were visualized using the Swiss-PdbViewer version 4.0.3 

(http://spdbv.vital-it.ch). 

 

Statistical analysis 

Significant differences between treatments or strains were calculated in R version 2.13.1 (http://www.r-

project.org) by one-way or two-way analysis of variance (ANOVA) with Tukey's HSD test for post-hoc 

comparisons. The Log-Rank test of the Survival package of R was used to calculate significant differences in 

insect toxicity between P. protegens CHA0 and isogenic mutant strains in the Galleria injection assay. 
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Figure S1. Model for the local regulation of Fit toxin expression in Pseudomonas protegens. The histidine kinase-response regulator 

hybrid FitF recognizes so far unknown signal molecules with its periplasmic sensor domain. During infection of the insect host, FitF 

undergoes a conformational change which autophosphorylates the histidine kinase. Subsequent phosphotransfer reactions lead to 

the inactivation of the repressor FitH by phosphorylation of a conserved aspartate residue by FitF. When FitH gets inactivated, the 

inducer FitG is released from repression and drives the transcription of the fitABCDE operon and thus activates the expression of the 

Fit toxin. 

 

 

Figure S2. Fit toxin expression over time in the insect medium. (A) Expression of FitD-mCherry over time in the wild-type 

background of strain CHA0 (CHA1163) grown in GIM (black circles). Bacterial growth (recorded as the optical density of the culture at 

600 nm) is displayed for the corresponding time points (gray diamonds). Shown are population averages from a single culture of 

CHA1163. (B) PfitA promoter activity in the wild-type strain of CHA0 (CHA0 pME8203) grown in LB (black diamonds) and GIM (gray 

squares) over time. Results are the mean and standard deviation of population averages from three independent cultures. RFU, 

relative fluorescence units. Both experiments were repeated at least twice with similar results. 
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Figure S3. Highly induced toxin expression in the insect medium. Fit toxin expression in the insect medium in the wild-type and fitH 

deletion mutant background of P. protegens CHA0. Shown are single cell fluorescence intensities of one single bacterial culture 

incubated for 24 h at 25°C (n = on average 960 cells per strain). 

 

 

 

 

Figure S4. Cluster analysis of proteins with sensor domains homologous to DctBp. CLANS cluster analysis of periplasmic sensor 

domains of FitF, DctB, and of proteins with sequence or structural homology to DctBp. Predicted domain topologies are shown for 

groups of interest. Domains that are displayed in half do not exist in all proteins of the respective group. Protein identifications and 

the corresponding sequences can be found in Table S1 and File S1, respectively. 
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Figure S5. Growth curves of wild-type CHA0 and isogenic dctB mutants. The wild-type (blue) and isogenic mutant strains (CHA5085, 

ΔdctB, in red; CHA5089, ΔmifS, in green; CHA5090, ΔdctB2, in purple) of P. protegens CHA0 were grown in M9 minimal medium with 

L-malate as sole carbon source and growth (optical density at 600 nm) was recorded over time. Shown are means and standard 

deviations of three independent cultures. In some instances, the standard deviation bars are smaller than the symbols used. The 

experiment was repeated twice with similar results. 

  

File S1. Protein sequences of periplasmic regions of proteins used in this study. 

The file can be obtained from the PLoS Pathogen website: 

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1003964.s006 

 

Table S1. Proteins used for phylogenetic and CLANS cluster analysis of FitFp. 

Group  Protein ID  Accession number 
 (protein name, locus tag) 

 Bacterial strain 

Acidovorax 24 ZP_09331456.1 Acidovorax sp. NO-1 

Acidovorax 29 YP_006855860.1 Acidovorax sp. KKS102 

Acidovorax 31 ZP_08946908.1 Acidovorax radicis N35 

Acidovorax 32 YP_002552439.1 Acidovorax ebreus TPSY 

Acidovorax 33 ZP_10391000.1 Acidovorax sp. CF316 

Acidovorax 34 ZP_04761532.1 Acidovorax delafieldii 2AN 

Acidovorax 36 ZP_08872608.1 Verminephrobacter aporrectodeae subsp. tuberculatae At4 

Acidovorax 38 YP_004235565.1 Acidovorax avenae subsp. avenae ATCC 19860 

Acidovorax 39 YP_970419.1 Acidovorax citrulli AAC00-1 

CitA/DcuS 44 WP_001423264 (DcuS) Escherichia coli 

CitA/DcuS 45 NP_388326 (DctS) Bacillus subtilis subsp. subtilis str. 168 

CitA/DcuS 46 NP_391030 (MalK) Bacillus subtilis 

CitA/DcuS 47 YP_002240511 (CitA) Klebsiella pneumonia 342 

CitA/DcuS 48 WP_001498225 (CitA) Escherichia coli 

CreC 0 WP_020233602 (CreC) Escherichia coli 

CreC 1 EGK28744.1 (CreC) Shigella flexneri K-218 

CreC 2 ZP_06542774.1 (CreC) Salmonella enterica subsp. enterica serovar Typhi str. AG3 

CreC 3 YP_002917719.1 (CreC) Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044 

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1003964.s006
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CreC 4 NP_249155 (CreC) Pseudomonas aeruginosa PAO1 

CreC 5 EKM28643.1 (CreC) Vibrio cholerae HENC-02 

DctB 6 NP_438064 (DctB) Sinorhizobium meliloti 1021 

DctB 7 NP_437406 Sinorhizobium meliloti 1021 

DctB 8 NP_231559 (DctB) Vibrio cholerae O1 biovar El Tor str. N16961 

DctB 9 NP_253852 (DctB, PA5165) Pseudomonas aeruginosa PAO1 

DctB 10 NP_254199 (MifS, PA5512) Pseudomonas aeruginosa PAO1 

DctB 11 NP_250027 (PA1336) Pseudomonas aeruginosa PAO1 

DctB 12 AGL82108 or YP_007997612 
(DctB, PFLCHA0_c03070) 

Pseudomonas protegens CHA0 

DctB 13 AGL86606 or YP_008002110 
(DctB2, PFLCHA0_c48560) 

Pseudomonas protegens CHA0 

DctB 14 AGL86532 or YP_008002036 
(MifS-like, PFLCHA0_c47820) 

Pseudomonas protegens CHA0 

DctB 42 YP_004482858.1 Marinomonas posidonica IVIA-Po-181 

DctB 43 ZP_12910956.1 Agrobacterium tumefaciens CCNWGS0286 

DctB 50 WP_008902769.1 Acidovorax sp. NO-1 

DctB 51 YP_002551517.1 Acidovorax ebreus TPSY 

DctB 52 ZP_08950390.1 Acidovorax radicis N35 

DctB 53 ZP_08946594.1 Acidovorax radicis N35 

DctB 54 ZP_10388110.1 Acidovorax sp. CF316 

DctB 55 ZP_10393609.1 Acidovorax sp. CF316 

DctB 57 YP_421020.1 Magnetospirillum magneticum AMB-1 

DctB 59 YP_001902255.1 Xanthomonas campestris pv. campestris str. B100 

DctB 65 WP_010466438.1 Acidovorax radicis 

DctB 66 WP_010459261.1 Acidovorax radicis 

DctB 68 YP_004232774.1 Acidovorax avenae subsp. avenae ATCC 19860 

DctB 69 YP_006856794.1 Acidovorax sp. KKS102 

FitF 15 ABY91232 (FitF) Pseudomonas protegens CHA0 

FitF 16 EJM00432 (FitF) Pseudomonas sp. GM17 

FitF 17 (FitF) Pseudomonas chlororaphis PCL1391 

FitF 18 (FitF) Pseudomonas sp. CMR12a 

FitF 19 EIM16861 (FitF) Pseudomonas chlororaphis O6 

FitF 20 EJL06947 (FitF) Pseudomonas chlororaphis subsp. aureofaciens 30-84 

Magnetospirillum 25 ZP_00207923.1 Magnetospirillum magnetotacticum MS-1 

Magnetospirillum 26 YP_422297.1 Magnetospirillum magneticum AMB-1 

Magnetospirillum 27 ZP_23007253.1 Magnetospirillum sp. SO-1 

Magnetospirillum 28 ZP_23002113.1 Magnetospirillum sp. SO-1 

Magnetospirillum 35 YP_423510.1 Magnetospirillum magneticum AMB-1 

PhoQ 70 NP_249871 (PA1180) Pseudomonas aeruginosa PAO1 

 

 

Table S2. Bacterial strains and plasmids used in this study. 

Strain or plasmid Genotype, phenotype or relevant characteristics Reference or 
source 

Pseudomonas protegens   
 CHA0 Wild type [1] 
 CHA0-gfp2 CHA0::attTn7-gfp2; Gmr [2] 
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 CHA1151 ΔfitD in-frame deletion mutant of CHA0 [3] 
 CHA1154 ΔfitF in-frame deletion mutant of CHA0 This study 
 CHA1163 CHA0::fitD-mcherry; CHA0 derivative expressing a C-terminal FitD–mCherry 

fusion protein 
[2] 

 CHA1174 CHA1154::fitD-mcherry This study 
 CHA1174-gfp2 CHA1174::attTn7-gfp2; Gmr This study 
 CHA1175 ΔfitH in-frame deletion mutant of CHA1163 [2] 
 CHA1176 CHA1163::attTn7-gfp2; Gmr [2] 
 CHA1178 CHA1175::attTn7-gfp2; Gmr [2] 
 CHA1185 CHA0::attTn7-Ptac/lacIq-fitG; inducible expression of fitG under the control of the 

Ptac/lacIq promoter in CHA0; Gmr 
[2] 

 CHA5056 
 

CHA1163 fitF(H501A); expression of FitF(H501A) in a FitD-mCherry 
reporter strain of CHA0 

This study 

 CHA5061 CHA1163 fitF(R141A); expression of FitF(R141A) in a FitD-mCherry 
reporter strain of CHA0 

This study 

 CHA5062 CHA1163 fitF(Y143F); expression of FitF(Y143F) in a FitD-mCherry 
reporter strain of CHA0 

This study 

 CHA5066 CHA1174::attTn7-Ptac/lacIq-fitF; inducible expression of fitF from CHA0 under the 
control of the Ptac/lacIq promoter in CHA1174; Gmr 

This study 

 CHA5070 CHA1163 fitF(D149A); expression of FitF(D149A) in a FitD-mCherry 
reporter strain of CHA0 

This study 

 CHA5071 CHA1163 fitF(Y143A); expression of FitF(Y143A) in a FitD-mCherry 
reporter strain of CHA0 

This study 

 CHA5073 CHA1174::attTn7-Ptac/lacIq-fitF; inducible expression of fitF from PCL1391 under 
the control of the Ptac/lacIq promoter in CHA1174; Gmr 

This study 

 CHA5075 CHA1163 fitF(D803A); expression of FitF(D803A) in a FitD-mCherry 
reporter strain of CHA0 

This study 

 CHA5084 CHA1163 fitH(D59A); expression of FitH(D59A) in a FitD-mCherry reporter 
strain of CHA0 

This study 

 CHA5085 ΔdctB (PFLCHA0_c03070) in-frame deletion mutant of CHA0 This study 
 CHA5089 ΔmifS (PFLCHA0_c47820) in-frame deletion mutant of CHA0 This study 
 CHA5090 ΔdctB2 (PFLCHA0_c48560) in-frame deletion mutant of CHA0 This study 
 CHA5093 CHA1174::attTn7-Ptac/lacIq-dctB’-‘fitF; inducible expression of a DctBp-FitFc 

chimeric protein under the control of the Ptac/lacIq promoter in CHA1174; Gmr 
This study 

 CHA5150 attTn7-Ptac/lacIq-dctB’-‘fitF; inducible expression of a DctBp-FitFc chimeric 
protein under the control of the Ptac/lacIq promoter in CHA0 wild type; Gmr 

This study 

 CHA5151 CHA1174::attTn7-Ptac/lacIq-citA’-‘fitF; inducible expression of a CitAp-FitFc 
chimeric protein under the control of the Ptac/lacIq promoter in CHA1174; Gmr 

This study 

   
Pseudomonas chlororaphis   
 PCL1391 Wild type [4] 
   
Escherichia coli strains   
 DH5α, DH5α λpir, HB101, K-12 Laboratory strains [5] 
   
Plasmids   
 pBK-miniTn7-gfp1 pUC19-based delivery plasmid for miniTn7-gfp1; mob+; Kmr, Cmr, Apr [6] 
 pBK-miniTn7-gfp2 pUC19-based delivery plasmid for miniTn7-gfp2; mob+; Gmr, Cmr, Apr [6] 
 pEMG pSEVA212S; oriR6K, lacZα MCS flanked by two I-SceI sites; Kmr, Apr [7] 
 pME497 Mobilizing plasmid; Apr [8] 
 pME3087 Suicide vector; ColE1 replicon; RK2-mob; Tcr [8] 
 pME4510 Broad host range promoter-probe plasmid vector for Gram-negative bacteria; 

Gmr 
[9] 

 pME6182 Carrier plasmid for Tn7 containing the mini Tn7-Gm transposon; Apr, Gmr [10] 



CHAPTER 3 

92 

 pME8203 pPROBE-TT with a fitA-gfp transcriptional fusion; Tcr [2] 
 pME8217 Suicide vector for 3’-tagging of fitD with mche in strain CHA0; Tcr [2] 
 pME8256 pME3087-ΔfitF; suicide plasmid for the in-frame deletion of fitF in CHA0; Tcr This study 
 pME8265 pEMG-fitF'(H501A); fragment of fitF containing the mutation for H501A in FitF; 

Kmr 
This study 

 pME8271 pEMG-fitFp-region; fragment of fitF for site-directed mutagenesis of the 
sensory domain of FitF; Kmr 

This study 

 pME8275 pEMG-fitF'(R141A); fragment of fitF containing the mutation for R141A in FitF; 
Kmr 

This study 

 pME8276 pEMG-fitF'(Y143F); fragment of fitF containing the mutation for Y143F in FitF; 
Kmr 

This study 

 pME8288 pME9411-Ptac/lacIq-fitF(CHA0); IPTG-inducible expression of fitF from CHA0; Gmr, 
Apr 

This study 

 pME8295 pME9411-Ptac/lacIq-fitF(PCL1391); IPTG-inducible expression of fitF from 
PCL1391; Gmr, Apr 

This study 

 pME8298 pEMG-fitF'(D149A); fragment of fitF containing the mutation for D149A in FitF; 
Kmr 

This study 

 pME8299 pEMG-fitF'(Y143A); fragment of fitF containing the mutation for Y143A in FitF; 
Kmr 

This study 

 pME8300 pME9411 optimized for cloning; Gmr, Apr This study 
 pME8302 pEMG-fitF'(D803A); fragment of fitF containing the mutation for D803A in FitF; 

Kmr 
This study 

 pME8303 pEMG-fitH'(D59A); fragment of fitH containing the mutation for D59A in FitH; 
Kmr 

This study 

 pME8307 
 

pEMG-ΔdctB1; suicide plasmid for the in-frame deletion of PFLCHA0_c03070 
(putative dctB) in CHA0; Kmr 

This study 

 pME8308 pEMG-ΔdctB2; suicide plasmid for the in-frame deletion of PFLCHA0_c48560 
(putative dctB2) in CHA0; Kmr 

This study 

 pME8309 pEMG-ΔmifS; suicide plasmid for the in-frame deletion of PFLCHA0_c47820 
(putative mifS) in CHA0; Kmr 

This study 

 pME8317 pME8300-Ptac/lacIq-dctB’-‘fitF; IPTG-inducible expression of a dctB’-‘fitF hybrid; 
Gmr, Apr 

This study 

 pME8354 pME8300-Ptac/lacIq-citA’-‘fitF; IPTG-inducible expression of a dctB’-‘fitF hybrid; 
Gmr, Apr 

This study 

 pME9411 Carrier plasmid for Tn7 derived from pME6182 and pME6032 for Ptac/lacIq 
controlled target gene expression; Gmr, Apr 

[2] 

 pPROBE-TT Promoter-probe vector based on eGFP; Tcr [11] 
 pSW-2 oriRK2, xylS, Pm::I-sceI; Gmr [7] 
 pUK21 Cloning vector; Kmr [12] 
 pUX-BF13 Helper plasmid encoding Tn7 transposition functions; R6K-replicon; Apr [13] 

Abbreviations: Apr, ampicillin; Cmr, chloramphenicol; Gmr, gentamicin; Kmr, kanamycin; and Tcr, tetracycline resistance, respectively. 

 

References: 

1. Stutz E, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of 
black root rot of tobacco. Phytopathology 76: 181–185. 

2. Péchy-Tarr M, Borel N, Kupferschmied P, Turner V, Binggeli O, et al. (2013) Control and host-dependent 
activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environ Microbiol 
15: 736-750. 

3. Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Keel C (2008) Molecular analysis of a novel gene cluster 
encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 
10: 2368-2386. 

4. Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGF, Schripsema J, et al. (1998) 
Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato 



 Evolution of a sensor protein by domain shuffling 

93 

root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11: 
1069-1077. 

5. Sambrook J, Russel DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor (New York): 
Cold Spring Harbor Laboratory Press. 

6. Koch B, Jensen LE, Nybroe O (2001) A panel of Tn7-based vectors for insertion of the gfp marker gene or 
for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol 
Methods 45: 187-195. 

7. Martinez-Garcia E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: 
analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 
13: 2702-2716. 

8. Voisard C, Bull C, Keel C, Laville J, Maurhofer M, et al. (1994) Biocontrol of root diseases by Pseudomonas 
fluorescens CHA0: current concepts and experimental approaches. In: O'Gara F, Dowling D, Boesten 
B, editors. Molecular ecology of rhizosphere microorganisms: biotechnology and the release of 
GMOs. Weinheim: VCH Publishers. pp. 67-89. 

9. Rist M, Kertesz MA (1998) Construction of improved plasmid vectors for promoter characterization in 
Pseudomonas aeruginosa and other Gram-negative bacteria. FEMS Microbiol Lett 169: 179-183. 

10. Péchy-Tarr M, Bottiglieri M, Mathys S, Lejbolle KB, Schnider-Keel U, et al. (2005) RpoN (sigma54) controls 
production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol 
Plant Microbe Interact 18: 260-272. 

11. Miller WG, Leveau JHJ, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe 
vectors. Mol Plant Microbe Interact 13: 1243-1250. 

12. Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA 
replication origins. Gene 100: 189-194. 

13. Bao Y, Lies DP, Fu H, Roberts GP (1991) An Improved Tn7-Based System for the Single-Copy Insertion of 
Cloned Genes into Chromosomes of Gram-Negative Bacteria. Gene 109: 167-168. 

 

Table S3. Primers used in this study. 

Name Sequence 5’ → 3’, restriction enzyme(s)1 Usage 

citA-F-SpeI GACTAGTATGTTGCAGCTTAACGAGAATAAAC citA’-‘fitF chimera 
citA-R-overlap CCCACAGCAACAGTAAGAACACCAGAATCCCTAACAGCACGAC citA’-‘fitF chimera 
dctB-F-SpeI GACTAGTATGACCCCACCCCTTCCCC, SpeI dctB’-‘fitF chimera 
dctB-R-overlap CCGCCCCACAGCAACAGTAACAGCACCAGCAGCGCGG dctB’-‘fitF chimera 
dctB1-1 CGGGATCCAACCCGCTGAGTGTCTAC, BamHI Deletion of PFLCHA0_c03070 

(dctB) 
dctB1-2 CCCAAGCTTAAGGGGTGGGGTCATGGAAAAG, HindIII Deletion of PFLCHA0_c03070 

(dctB) 
dctB1-3 CCCAAGCTTTCCGAGGACCGCGGGGT, HindIII Deletion of PFLCHA0_c03070 

(dctB) 
dctB1-4 CGGGATCCAGTTCCTGACGGTCGCTGAG, BamHI Deletion of PFLCHA0_c03070 

(dctB) 
dctB2-1 CGGGATCCGGAAGAGGCCACCAAGAAAGG, BamHI Deletion of PFLCHA0_c48560 

(dctB2) 
dctB2-2 CCCAAGCTTGGGGTCGCATTTCATCACAGAT, HindIII Deletion of PFLCHA0_c48560 

(dctB2) 
dctB2-3 CCCAAGCTTGCCTTTGTCCTCAGCTTGC, HindIII Deletion of PFLCHA0_c48560 

(dctB2) 
dctB2-4 CGGGATCCGCACGTTGGCCGAGGTATC, BamHI Deletion of PFLCHA0_c48560 

(dctB2) 
fitFc-F TTACTGTTGCTGTGGGGCGG dctB’-‘fitF chimera 
fitFc-F2 GTGTTCTTACTGTTGCTGTGGG citA’-‘fitF chimera 
fitF-D149-F CAAGGTGGCTCTCGCTGGCGGCAGCAG Site-dir. mutagenesis of fitF 
fitF-D149-R CTGCTGCCGCCAGCGAGAGCCACCTTG Site-dir. mutagenesis of fitF 
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fitF-D803A-F CGCTGTGCTGATGGCTTGTCAGATGCCG Site-dir. mutagenesis of fitF 
fitF-D803A-R CGGCATCTGACAAGCCATCAGCACAGCG Site-dir. mutagenesis of fitF 
fitF-F-SD-new GGAATTCAGGAGATATACCCTTGTACGGGTTATTGGACTTC, EcoRI Complementation of ΔfitF 
fitF-mut1-F GACTAGTGGCGCGGGCAAGGTGGCTCTCGATGGCGGC, SpeI Site-dir. mutagenesis of fitF 
fitF-mut1-hr-F GGAATTCCAGGAAATGCCTCGGACAAG, EcoRI Site-dir. mutagenesis of fitF 
fitF-mut1-hr-R CGGGATCCGGCAACAGCGTATCCAGGT, BamHI Site-dir. mutagenesis of fitF 
fitF-mut1-R GACTAGTGGCCACGTTCAGCCCCAGG, SpeI Site-dir. mutagenesis of fitF 
fitF-mut2-F CGACTGCATGTCCGCGGAGATCCGCACGC Site-dir. mutagenesis of fitF 
fitF-mut2-hr-F GGGGTACCAGATCGAGCAGAGCGAACAGC, KpnI Site-dir. mutagenesis of fitF 
fitF-mut2-hr-R CCCAAGCTTCGGCCTGGACAAAGACATTGA, HindIII Site-dir. mutagenesis of fitF 
fitF-mut2-R GCGTGCGGATCTCCGCGGACATGCAGTCG Site-dir. mutagenesis of fitF 
fitF-R-HindIII CCCAAGCTTCTAGCCCTGGAAGTCGACAAGCAGGT, HindIII dctB’-‘fitF and citA’-‘fitF chimera; 

complementation of ΔfitF 
fitF-R141A-F CTGAACGTGGCCTTCGCCCCCTACTTCAAGG Site-dir. mutagenesis of fitF 
fitF-R141A-R CCTTGAAGTAGGGGGCGAAGGCCACGTTCAG Site-dir. mutagenesis of fitF 
fitF-REC-hr-F GGAATTCGTATCGGTGTGTGCCTGGTG, EcoRI Site-dir. mutagenesis of fitF 
fitF-REC-hr-R CGGGATCCGCCTGTTCCTCCAGTTGTC, BamHI Site-dir. mutagenesis of fitF 
fitF-Y143A-F GCCTTCCGCCCCGCCTTCAAGGTGGC Site-dir. mutagenesis of fitF 
fitF-Y143A-R GCCACCTTGAAGGCGGGGCGGAAGGC Site-dir. mutagenesis of fitF 
fitF-Y143F-F GCCTTCCGCCCCTTCTTCAAGGTGGC Site-dir. mutagenesis of fitF 
fitF-Y143F-R GCCACCTTGAAGAAGGGGCGGAAGGC Site-dir. mutagenesis of fitF 
fitH-D59A-F CGGCATCAGGATGGCGAGAATGATCAGATC Site-dir. mutagenesis of fitH 
fitH-D59A-R GATCTGATCATTCTCGCCATCCTGATGCCG Site-dir. mutagenesis of fitH 
fitH-REC-hr-F GGAATTCGTGATTTTCCAGGCAAGGTTGAGG, EcoRI Site-dir. mutagenesis of fitH 
fitH-REC-hr-R CGGGATCCGACCCCGATGAGAATCTACCC, BamHI Site-dir. mutagenesis of fitH 
ME8300-F CATGCCATGGACTGAATCCGGTGAGAATGG, NcoI Cloning of pME8300 
ME8300-SpeI-R CCCAAGCTTGGGACTAGTTGTTTCCTGTGTGAAATTGTTATCC, HindIII, SpeI Cloning of pME8300 
mifS-1 CGGGATCCGACAAGTTCACCCGCCAGATC, BamHI Deletion of PFLCHA0_c47820 

(mifS) 
mifS-2 CCCAAGCTTAGAGATCTGGGCCATGAGTCG, HindIII Deletion of PFLCHA0_c47820 

(mifS) 
mifS-3 CCCAAGCTTAGCCTGCCCATCGACCTGG, HindIII Deletion of PFLCHA0_c47820 

(mifS) 
mifS-4 CGGGATCCGGCTGCCAGTTCCAGTACCT, BamHI Deletion of PFLCHA0_c47820 

(mifS) 
PCL-fitF-br-F CTGGGGATCGTCATCAACAACG Complementation of ΔfitF 
PCL-fitF-br-R GCCATTGCCAAAGGTCTGGTC Complementation of ΔfitF 
PCL-fitF-F-SD GGAATTCAGGAGATATACCCTTGCACAGGTTAACCCACTTC, EcoRI Complementation of ΔfitF 
PCL-fitF-R CCCAAGCTTCTAACCCTGGGCCGCGC, HindIII Complementation of ΔfitF 
PCL-fitF-StuI-F CTGAACCAGGATGTGTTGCAG Complementation of ΔfitF 
PCL-fitF-StuI-R CATCTGGCAATCCATCAGCAC Complementation of ΔfitF 
PfitF1 GGGGTACCAACAGCGATATCCGTGGCAATG, KpnI Deletion of fitF 
PfitF2 GGAATTCGTAGACGTCTTCGACTTGCACAC, EcoRI Deletion of fitF 
PfitF3 GGAATTCCTGGCGCTGATCGATGAACTGTA, EcoRI Deletion of fitF 
PfitF4 GCTCTAGATCCACCCGCACCATGAAGCTCA, XbaI Deletion of fitF 

1 Restriction sites are underlined 
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Abstract 

The molecular and genetic basis of pathogenicity has been well-studied in the clinically important human 

pathogen Pseudomonas aeruginosa and the agriculturally important plant pathogen Pseudomonas syringae. 

Here, we used this knowledge to detect homologs of virulence-related genes in model strains of 

Pseudomonas protegens and Pseudomonas chlororaphis, which are plant-beneficial rhizobacteria displaying 

insect pathogenicity, to identify novel factors that contribute to their ability to invade and kill pest insects. 

The list of candidate virulence determinants was narrowed down to genes that encode proteins that 

influence the decoration of the cell surface, the site where microbe-host interactions take place. Mutant 

strains in which these conserved genes were inactivated were generated and used to screen for attenuation 

in virulence upon injection into the greater wax moth, Galleria mellonella. The screening identified O-

antigen, the highly variable portion of lipopolysaccharide, as a prime candidate for a novel factor that 

contributes to virulence in these entomopathogenic pseudomonads. Mutation of wbpL, a gene that is most 

likely essential for the biosynthesis of O-antigen, rendered the P. protegens strain CHA0 virtually avirulent. 

The results of the screening additionally indicated that the two-component regulatory system PhoP-PhoQ 

and the transcriptional regulator FleQ are important for virulence in these bacteria as well. Since PhoP-PhoQ 

is generally known to regulate covalent modifications of lipid A, this study suggests that lipopolysaccharide 

plays a key role in the interaction of P. protegens and P. chlororaphis with their insect host and thus should 

be further characterized in these bacteria in future studies. 
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Introduction 

Definitions of pathogenicity, virulence and virulence factors 

Pathogenicity is a qualitative trait which is generally defined as the inherent capacity of a microorganism to 

cause disease or damage in a host [1]. Virulence, a quantitative trait, is difficult and complex to define but is 

generally accepted to represent the extent of the pathology caused by a particular microorganism. It can be 

described from a pathogen-centered or a host-centered perspective. From a pathogen-centered view, 

virulence factors can be defined as microbial products that permit a microorganism to cause disease, 

without being essential for viability [1]. Virulence, however, depends on the availability of a susceptible host, 

on the specific microorganism and the nature of its interaction with the host. Casadevall and Pirofski 

therefore suggested that host damage should be used to define the terms pathogenicity and virulence in a 

host-centered view, since damage is a central feature of infectious disease [1]. Thus, virulence factors can 

also be defined as components of a pathogen that damage the host and can include components essential 

for viability. 

Our research aims at identifying factors that significantly contribute to the insect pathogenicity of P. 

protegens and P. chlororaphis in addition to an already well-characterized insecticidal toxin termed Fit [2-5]. 

Our goal is to get a better understanding of how these bacteria infect and kill insects of agricultural 

importance as pests. For this purpose, we define virulence factors here in the classical sense as features that 

in some way contribute to the ability of these bacteria to kill insect larvae without being required for normal 

growth of these microorganisms in common laboratory media. 

 

Approaches to identification of pathogenicity factors 

Today’s genetic and bioinformatic tools allow the identification of virulence factors in a particular bacterial 

species in several different ways. Performing a whole-genome genetic screen can be a powerful approach to 

identify novel factors that significantly contribute to virulence in a chosen host organism or contribute to a 

specific property of the microorganism (such as biofilm formation or resistance to particular immune 

effectors) under in vitro conditions. Random transposon insertion mutagenesis can be used to conduct a 

loss-of-function screen [6-8]. To identify fitness determinants, the mutant library can be used as an inoculum 

to infect a model organism. Mutant cells that are less or no longer present at a defined time point after the 

infection can subsequently be identified for example via transposon sequencing [9]. Gain-of-function screens 

can be performed, for example, by heterologous expression of fragments of the microbe’s genome in 

Escherichia coli and test the bacterium’s increase in virulence, resistance, etc. [10,11]. Studying the 

differential expression of genes during host interaction can also be an approach to discover factors that 

might contribute to pathogenicity without necessarily increasing the fitness of the pathogen. This can be 
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done amongst others by performing RNA sequencing, microarray analysis, or promoter-trap studies [8,12-

14]. 

An alternative approach to find new virulence factors in a given bacterium is to do classical forward genetics 

combined with bioinformatic tools. Candidate genes can be found by searching for homologs of genes that 

are known to contribute to virulence in a well-studied pathogen. Since their functions are mostly already 

well-known and generally well conserved, one can predict and characterize their roles in virulence more 

easily than for genes identified in a genetic screen. After the identification of such genes and a thorough 

literature search, defined mutants are generated and their virulence is assessed in an infection model. 

Similarly, novel virulence factors can theoretically also be identified by comparing genome sequences from 

pathogenic and related, non-pathogenic strains [15]. Genes that are only present in virulent strains might be 

required for them to persist within and cause damage to the host organism. This approach is, however, 

limited by the fact that virulence in bacteria is both multifactorial and combinatorial [16]. Genes that are 

important for virulence do not have to be present in all virulent strains and, on the other hand, can also be 

present in genomes of non-pathogenic strains. 

 

In this study, we chose to identify novel virulence factors and regulators in P. protegens CHA0 and P. 

chlororaphis PCL1391 by searching for conserved genes known to be implicated in pathogenicity in other 

pseudomonads. At the current stage of our research it is the fastest, most cost-effective and probably the 

most promising way to find new key players in these entomopathogenic bacteria. 

 

Results 

Selection of candidate genes 

Major virulence factors of the Pseudomonas genus can be found, including references, in the Virulence 

Factor Database (VFDB; http://www.mgc.ac.cn/VFs/) [17] and are listed in Table 1. Sequences of related 

genes and proteins were used to identify homologs in P. chlororaphis PCL1391 and P. protegens CHA0 by 

performing BLAST searches and homology searches as described in the Material and Methods section. For 

comparison, homologs were additionally searched for in the non-insecticidal P. fluorescens F113. About one 

third of the major Pseudomonas virulence factors also seem to be present in the entomopathogens P. 

protegens and P. chlororaphis. Aside from being required for virulence, most of them are also important for 

non-pathogenic lifestyles [15,18,19] and therefore conserved in strains such as P. fluorescens F113 as well. 
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Table 1: Major virulence factors in Pseudomonas aeruginosa listed in the Virulence Factor Database1 and presence of homologs in 

selected species of the Pseudomonas fluorescens group. 

Category (according to 
the VFDB1) 

Factor(s) Presence of homologs of related genes  

  PCL1391 CHA0 F113 

Adherence Flagella Yes Yes Yes 
 LPS Yes Yes Yes 
 Type IV pili Partly2 Partly2 Yes 
Antiphagocytosis Alginate Yes Yes Yes 
Biosurfactants Rhamnolipid No3 No3 No3 
Iron uptake Pyochelin No Yes No 
 Pyoverdine Yes Yes Yes 
Pigments Pyocyanin No4 No4 No4 
Proteases AprA Yes Yes Yes 
 LasA No No No 
 LasB No No No 
Regulation Quorum sensing systems (las and rhl) (Yes)5 No (Yes)5 
Secretion HSI-1 (type VI secretion system) Yes Yes Yes 
 Type III secretion system No No No 
 xcp secretion system (type II secretion system) Yes No Yes 
Toxins ExoA No No No 
 ExoS No No No 
 ExoT No No No 
 ExoU No No No 
 ExoY No No No 
 PLC No No No 

1 From the Virulence Factor Database (VFDB; http://www.mgc.ac.cn/VFs/) [17], accessed on 23 March 2015. 
2 Several genes reported to be essential for type IV pili biogenesis in P. aeruginosa are absent in these strains (data not shown). 
3 Although these strains do not seem to synthesize rhamnolipid they might produce other types of biosurfactants. Many 

pseudomonads were reported to produce biosurfactants [20,21]. 
4 P. chlororaphis produces other types of phenazines [5,22]. P. fluorescens and P. protegens synthesize other compounds with 

antimicrobial activities [5]. 
5 Although no homologs of the P. aeruginosa las and rhl systems were detected, P. chlororaphis PCL1391 was previously reported to 

possess the quorum-sensing system PhzI/PhzR [23] and P. fluorescens F113 to make at least three different N-acylhomoserine 

lactones [24]. 

 

Feinbaum et al. screened a mutant library of P. aeruginosa PA14 for attenuation in a Caenorhabditis elegans 

model of infection and compared the discovered virulence factors with findings from similar studies using 

other animal models [6]. Only mutants that grew like the wild type in common laboratory medium were 

considered. Homology search conducted in this study revealed that many of the discovered genes are 

conserved in the selected P. fluorescens group strains (Table 2). The two-component system GacS-GacA has 

already been shown to also play an important role in virulence of P. protegens CHA0 in insects [3]. For the 

screening in this study, interesting candidates on the list include genes coding for the virulence regulator Vfr, 



CHAPTER 4 

100 

the alginate regulator KinB, the potassium sensor KdpD, the type VI secretion system, the type IV pili and the 

biosynthesis of O-antigen. 

 

Table 2: Virulence factors and regulators discovered previously in a screen for attenuation of P. aeruginosa PA14 in C. elegans1 and 

presence of homologs in P. protegens CHA0, P. chlororaphis PCL1391 and P. fluorescens F113. 

Factor / 
Regulator 

Protein name / function  Presence of homologs of related genes  

  PCL1391 CHA0 F113 

GacA Response regulator Yes Yes Yes 
Vfr Cyclic AMP receptor-like protein Yes Yes Yes 
PchH Putative ATP-binding component of ABC transporter 

(pyochelin cluster) 
No Yes No 

PA4005 Conserved hypothetical protein Yes Yes Yes 
PA14_27700 Putative transcriptional regulator No No No 
PepP Aminopeptidase P Yes Yes Yes 
PA4664 Putative methyl transferase Yes Yes Yes 
LysC Aspartate kinase alpha and beta chain Yes Yes Yes 
VqsR Transcriptional regulator, LuxR family No No No 
KinB Putative two-component sensor Yes Yes Yes 
PtsP Phosphoenolpyruvate-protein phosphotransferase Yes Yes Yes 
PA0745 Probable enoyl-CoA hydratase/isomerase No No No 
RhlR Acylhomoserine lactone dependent transcriptional regulator No No No 
PA2550 Putative acyl-CoA dehydrogenase Yes Yes Yes 
MinD Cell division inhibitor Yes Yes Yes 
PA1592 Conserved hypothetical protein No No Yes 
GlnK Nitrogen regulatory protein PII Yes Yes Yes 
AruD Succinylglutamate 5-semialdehyde dehydrogenase Yes Yes Yes 
GshA Glutamate-cysteine ligase Yes Yes Yes 
PA2015 Putative isovaleryl-CoA dehydrogenase Yes Yes Yes 
CspB Putative major cold shock protein No No No 
PrpC Citrate synthase 2 Yes Yes Yes 
GacS Sensor/response regulator hybrid Yes Yes Yes 
LasI Autoinducer synthesis protein No No No 
PchI Putative ATP-binding component of ABC transporter 

(pyochelin cluster) 
No No No 

AruG Arginine/ornithine succinyltransferase AII subunit Yes Yes Yes 
FabF1 Beta-ketoacyl-acyl carrier protein synthase II Yes Yes Yes 
ClpA ATP-dependent clp protease, ATP-binding subunit Yes Yes Yes 
AruB Succinylarginine dihydrolase Yes Yes Yes 
PA1766 Conserved hypothetical protein Yes Yes Yes 
PA1216 Conserved hypothetical protein No No No 
PqsE Quinolone signal response protein No No No 
KdpD Two-component sensor Yes Yes Yes 
PA1767 Putative membrane protein Yes Yes Yes 
PrpB Carboxyphosphonoenolpyruvate phosphonomutase Yes Yes Yes 
Fha2 Conserved hypothetical protein (type VI secretion system 

cluster) 
Yes No Yes 

GshB Glutathione synthetase Yes Yes Yes 
AruC N-succinylglutamate 5-semialdehyde dehydrogenase Yes Yes Yes 
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WbpL Putative glycosyltransferase L Yes Yes Yes 
PilF Type 4 fimbrial biogenesis protein Yes Yes Yes 
ORF_11 O-antigen synthesis No No Yes 

1 Table adapted from Feinbaum et al. (2012) [6]. The genes are listed in the order of decreasing importance for the virulence (based 

on their respective LT50 values) of PA14 in C. elegans. 

 

In order to reduce the number of candidate genes for the screening in this study, the search for novel factors 

contributing to insect pathogenicity of P. protegens (or P. chlororaphis) was focused on selected genes that 

putatively influence the surface decoration in this bacterium (Table 3). These included genes required for the 

biosynthesis of exopolysaccharides (alg and psl operon), flagella (fliC), pili (pil cluster, cupB cluster, and cupC 

cluster), and O-antigen (wbpL). The pgaABCD operon which is putatively responsible for the synthesis of 

poly-N-acetylglucosamine (PNAG) in these bacteria was added to the list of candidate genes. PNAG 

biosynthesis has not been demonstrated in pseudomonads to date, but this particular polysaccharide plays 

an important role in biofilm formation and contributes to virulence in several non-pseudomonad pathogens 

[7,25-27]. Genes necessary for the biosynthesis of Pel polysaccharide were not included in the screen 

because this putative virulence factor is being investigated by other members of the research group. The 

transcriptional regulator FleQ is one of the main regulators controlling the transition from a planktonic to a 

sessile lifestyle and might therefore also influence the pathogenicity of entomopathogenic pseudomonads 

by changing their surface properties [28-31]. The cyclases WspR and TpbB were chosen because their 

overexpression might allow forcing the bacteria to induce the production of exopolysaccharides and to 

switch to biofilm mode of growth [32-34]. Genes contributing to (arnA and pagL) or regulating (phoP-phoQ) 

the modification of lipid A were added as well since lipopolysaccharide (LPS) is a generally recognized 

virulence factor [35,36]. Because the type II secretion system could be necessary to export surface proteins, 

it was put on the list, too. Vfr was added to the candidate list because it seems to be a major virulence 

regulator in P. aeruginosa and P. syringae [6,37,38]. 
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Table 3: Candidate genes for the screening for attenuation in virulence in P. protegens. 

Category Gene (cluster) Putative function of the encoded protein References 

Exopolysaccharides alg cluster Synthesis of alginate; contribution to biofilm formation [39-42] 
 psl cluster Synthesis of Psl; contribution to biofilm formation [40-42] 
 pgaABCD Synthesis of poly-N- acetylglucosamine (PNAG) ; contribution to biofilm 

formation and to resistance to phagocytosis 
[25-27] 

 wspR Synthesis of c-di-GMP (cyclase); activation of exopolysaccharide 
synthesis 

[32,33] 

 tpbB Synthesis of c-di-GMP (cyclase) ; activation of exopolysaccharide 
synthesis; also termed YfiN 

[32,34] 

Lipopolysaccharide wbpL Initial glycosyltransferase essential for the synthesis of O-antigen; 
contributes to resistance to host immune reactions and evasion of 
recognition by the innate immunity  

[6,16,36] 

 pagL Lipid A 3-O-deacylase contributing to immune evasion [43,44] 
 arn cluster Aminoarabinose modification of lipid A; contributing to resistance to 

antimicrobial peptides 
[44] 

Adhesion / motility fliC Flagellin; essential for swimming and contributing to attachment; 
recognized by innate immunity 

[45] 

 pil cluster Type IV pili [46] 
 cupB cluster Fimbrial pili [47,48] 
 cupC cluster Fimbrial pili [47,48] 
Secretion hxc cluster Type II secretion system [49-52] 
Regulation fleQ c-di-GMP-dependent regulator controlling flagellar biogenesis and 

synthesis of exopolysaccharides 
[28-31] 

 phoP-phoQ Two-component regulatory system controlling lipid A modifications 
and virulence 

[53-55] 

 vfr cAMP-dependent virulence factor regulator [37,38,56] 

 

Screening for decreased biofilm formation and attenuation in virulence  

Mutant strains that were suspected to produce less exopolysaccharides or to be affected in their ability to 

adhere where first tested for their capability to form biofilms in a simple in vitro assay. The goal of this 

approach was to narrow down the list of candidate genes to a few interesting genes in order to facilitate the 

subsequent virulence screening. The transcriptional regulator FleQ was, however, the only factor on the 

candidate list that seemed to be required for normal biofilm formation under the conditions tested (Figure 

1A and B). Mutation of individual exopolysaccharide, pili and LPS biosynthesis genes (including pgaABCD and 

wbpL; data not shown) did not affect the ability of P. protegens CHA0 to form biofilms under in vitro 

conditions. The results indicate that CHA0 produces considerably more biofilm when grown in an insect-

mimicking medium than in a common laboratory medium (Figure 1B). Moreover, it was possible to obtain 

hyper-biofilms by overexpression of selected diguanylate cyclases (WspR and TpbB) in P. protegens CHA0 or 

P. chlororaphis PCL1391 (Figure 1C). These enzymes synthesize c-di-GMP which is a second messenger that 

mediates the transition from the motile planktonic to the sedentary biofilm-associated bacterial “lifestyle” 

[32]. PCL1391 cells overexpressing WspR only grew in biofilms and no longer as motile planktonic cells 

(Figure 1C and D). 
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Figure 1: Influence of mutation or overexpression of selected genes on biofilm formation in Pseudomonas protegens CHA0 and P. 

chlororaphis PCL1391. (A) P. protegens CHA0 wild-type and mutant strains (CHA5105, ΔfleQ; CHA5126, algD; CHA5127, pslA; 

CHA5128, fliC; CHA5129, arnA; CHA5130, cupB3; CHA5131, cupC3; CHA5133, ΔphoQ) were grown in 96-well plates in Grace’s Insect 

Medium for 24 hours without agitation. The biofilms were stained with crystal violet and the absorbance at 600 nm was measured 

and normalized with the optical density of the corresponding bacterial culture. Shown are means and standard deviations of eight 

independent cultures per strain. (B) The assay described in (A) was repeated with CHA0 and its isogenic ΔcupB (CHA5132) and ΔfleQ 

(CHA5105) mutant strains in GIM and Lysogeny Broth (LB). Only the fleQ deletion mutant was reduced in biofilm formation in GIM. 

(C) Overexpression of the diguanylate cyclase WspR (PCL-4) resulted in a strongly increased biofilm formation in P. chlororaphis 

PCL1391 in LB. The pellicle at the air-liquid interface was strong enough that the glass test tubes containing the bacterial culture 

could be turned upside-down. The corresponding CHA0 strain CHA5177 showed a similar phenotype. (D) Swimming assays were 

performed with wild-type and isogenic diguanylate-cyclase-overexpressing strains of P. protegens CHA0 (CHA5177 and CHA5178) 

and P. chlororaphis PCL1391 (PCL-4 and PCL-5) to assess whether these bacteria can be forced into sessile mode of growth 

(expression of wspR and tpbB was induced by adding IPTG to the soft agar). Strains overexpressing TpbB were unable to swim. 

 

Larvae of the greater wax moth, Galleria mellonella, were used as a systemic infection model to screen for 

mutants that are reduced in virulence. Interestingly, mutation of wbpL (CHA5156) rendered P. protegens 

CHA0 almost avirulent in this infection model (Figure 2A and B). While larvae treated with wild-type cells are 

generally dead within 30 hours after injection, most insects infected with the wbpL mutant were still alive 

three days post injection. WbpL is the initial glycosyltransferase in the biosynthesis of O-antigen in P. 

aeruginosa and required for full virulence of this opportunistic pathogen without being necessary for normal 

growth (Table 2) [6,36]. The screening further revealed that the PhoP-PhoQ two-component system, which 
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regulates lipid A modifications in diverse bacteria [53-55], might be an important virulence regulator in CHA0 

(Figure 2C). Deletion of fleQ also seemed to affect the bacterium’s ability to kill insect larvae (data not 

shown). In contrast, mutation of algD, pgaABCD, pilA, cupB, pagL, arnA, or hxcQ did not significantly 

decrease the systemic virulence of CHA0 in the chosen insect model (Figure 2A and data not shown). Due to 

time constraints, the fliC, cupC3, pslA, vfr, wspR, and tpbB mutant strains have not been tested for virulence 

to date. 

 

 
Figure 2: O-antigen and the PhoP-PhoQ regulatory system seem to be required for systemic virulence of Pseudomonas protegens 

CHA0. Low doses of P. protegens CHA0 or isogenic mutant strains (CHA5155, hxcQ; CHA5156, wbpL; CHA5157, ΔpagL) were injected 

into larvae of Galleria mellonella in order to assess whether selected genes play a role in virulence. Saline solution was used as a 

negative control. (A) The survival of the larvae was monitored over time. Larvae were considered dead when they did not respond to 

repeated stimulus. Strain CHA5156 was significantly less virulent than the wild type (*, p-value < 0.0001; Log-Rank test with Kaplan 

Meier estimations). (B) Pictures of larvae 48 hours after injection of either CHA0, CHA5156 (wbpL) or saline solution. While larvae 

infected with the wild type were dead and fully melanized (black color), the insects treated with the wbpL mutant were, as the 

negative control group, still alive and showed no signs of melanization. The assay was repeated with the wbpL mutant and gave 

similar results. (C) The same assay was performed with additional mutants of P. protegens CHA0, such as ΔphoP (CHA5134), ΔphoQ 

(CHA5133) and arnA (CHA5129). Strains marked with asterisks were significantly less virulent than the wild type (p-value < 0.001; 

Log-Rank test with Kaplan Meier estimations). 
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Discussion 

In the present study we aimed at identifying new factors that significantly contribute to insect pathogenicity 

of plant-beneficial pseudomonads with insecticidal activities. To this end, we collected information about the 

genetic basis of pathogenicity in the well-studied opportunistic pathogens P. aeruginosa and P. syringae and 

made use of this knowledge to identify a set of genes encoding putative virulence factors and regulators in P. 

protegens and P. chlororaphis. The subsequent targeted mutagenesis and virulence screening identified 

wbpL as the gene whose mutagenesis in P. protegens CHA0 resulted in the strongest attenuation in virulence 

in the chosen insect model. P. aeruginosa produces two forms of O-antigen [36]. A P. aeruginosa strain 

lacking wbpL produces LPS without the variable side chains, which strongly suggests that the wbpL-encoded 

glycosyltransferase is essential for the synthesis of both types of O-antigen. It is thus likely that the wbpL 

mutant of P. protegens CHA0 was almost avirulent because it lacked the protective O-antigen layer. Since 

neither the genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads nor the function of this 

variable LPS portion in insect pathogenicity has been investigated to date, this apparently important 

virulence factor should be studied in details in the future. 

The targeted screening performed in this study also suggested that FleQ and the PhoP-PhoQ regulatory 

system might be important for virulence of P. protegens and P. chlororaphis. PhoP-PhoQ is known to control 

modification of lipid A in response to limited extracellular magnesium and to contribute to virulence in 

several different pathogenic bacteria [53-55]. FleQ is regulating the biogenesis of flagella and the 

biosynthesis of exopolysaccharides in P. aeruginosa, and thereby contributes to the c-di-GMP-dependent 

switch between the sessile and the planktonic mode of growth [28-31]. Further experiments are necessary 

to confirm the roles of these regulators in virulence. 

Because of time reasons not all generated mutants could be tested in a Galleria virulence assay. Thus, 

further virulence factors could be detected by testing the remaining mutant strains and also by assessing the 

virulence of all constructed mutants in an oral infection assay. The pslA and vfr mutants are of particular 

interest. The psl gene cluster seems to be only present in insecticidal strains of the P. fluorescens group, 

suggesting that Psl is of relevance for the virulence of these bacteria in insects (Flury et al., manuscript in 

preparation). In P. aeruginosa, the exopolysaccharide plays an important role in surface attachment, biofilm 

formation and differentiation, and protection from innate immune effectors [40]. Vfr seems to play a key 

role in virulence of P. aeruginosa and P. syringae [6,37,38]. In the plant-pathogen, the regulator controls the 

expression of a wide range of virulence factors, including flagella-, pili- and iron uptake-related proteins, in a 

cAMP-dependent manner [37]. Vfr could thus be a vital virulence regulator in plant-beneficial 

pseudomonads as well. It would further be interesting to see if flagella are essential for killing larvae via the 

oral route of infection. It is possible that flagellar motility and chemotaxis are necessary for crossing the 

epithelial barrier to gain access to the hemocoel. The role of iron scavenging in insect pathogenicity could 
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also be interesting to study in entomopathogenic pseudomonads. P. protegens CHA0 synthesizes two types 

of siderophores, pyochelin and pyoverdine, which were both shown to play a role in virulence of P. 

aeruginosa [57]. 

Results of this study suggest that biofilm formation in P. protegens CHA0 is not dependent on the synthesis 

of one single exopolysaccharide, but multifactorial. c-di-GMP is employed in bacteria as a second messenger 

to upregulate the production of exopolysaccharides, such as Pel and PNAG, and to stop the biogenesis of 

flagella in order to switch to the “biofilm lifestyle” [32]. Overexpression of diguanylate cyclases, which 

synthesize c-di-GMP [32], could be used as an approach to induce the production of the diverse 

exopolysaccharides in wild-type and mutant strains of P. chlororaphis and P. protegens in order to better 

understand their contributions to biofilm formation. Because deletion of one exopolysaccharide gene cluster 

usually increases the expression of the remaining ones [58], it may be necessary to generate double and 

triple mutants to decipher whether individual (or combinations of) polysaccharides play a role in virulence. 

With the exception of pgaABCD, this study only considered genes from the Pseudomonas genus for the 

identification of new virulence factors in P. protegens and P. chlororaphis. The knowledge about factors 

contributing to virulence of other well-studied bacteria could, however, also aid extending the list of 

virulence factor candidates. For example, proteins that contribute to virulence in the entomopathogens 

Photorhabdus luminescens, Xenorhabdus nematophila, and Serratia marcescens might also be present and 

important in insect-pathogenic pseudomonads. The knowledge about the P. luminescens mcf1 gene, which 

codes for a potent insecticidal toxin [11], for instance led to the discovery of the Fit toxin in P. protegens [5]. 

 

This study successfully identified O-antigen as a potential novel virulence factor in insecticidal 

pseudomonads with plant-beneficial properties. Its results additionally suggest that the PhoP-PhoQ system 

and FleQ play a role as virulence regulators in these microbes. Several additional mutant strains generated in 

this study remain to be tested for attenuation in virulence. The results presented here thus may open new 

doors for future research on the insect pathogenicity of plant-associated pseudomonads. 

 

Material and Methods 

Bioinformatics 

Genes that are homologous (i.e., minimum 70% sequence identity over at least 70% of the coding sequence) 

to known virulence factors of the Pseudomonas genus were identified in P. protegens CHA0, P. chlororaphis 

PCL1391 and P. fluorescens F113 by performing nucleotide and protein BLAST searches locally or on the 

websites of the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) and the 
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Pseudomonas Genome Database (http://www.pseudomonas.com/), using sequences from P. aeruginosa 

PAO1 obtained from the Pseudomonas Genome Database. 

 

Bacterial strains, plasmids, media, and culture conditions 

All strains and plasmids used in this study are listed in Table 4. Bacterial strains were routinely maintained on 

nutrient agar (NA) plates or cultured in LB (LB Broth Miller, BD Difco) supplemented with appropriate 

antibiotics as needed. Pseudomonas strains were grown at 25°C while E. coli was cultured at 37°C. The 

following antibiotic concentrations were used: ampicillin, 100 µg/ml; chloramphenicol, 10 µg/ml; kanamycin, 

25 µg/ml for E. coli and P. protegens, 50 µg/ml for P. chlororaphis; gentamicin, 10 µg/ml for E. coli and P. 

protegens, 20 µg/ml for P. chlororaphis; and tetracycline, 25 µg/ml or 125 µg/ml for E. coli and 

Pseudomonas, respectively. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at a final concentration 

of 0.1 mM, if not otherwise stated. 

 

Table 4: Bacterial strains and plasmids used in this study. 

Strain Genotype, phenotype or relevant characteristics Reference or source 

Pseudomonas protegens   
 CHA0 Wild type [59] 
 CHA5105 CHA0 ΔfleQ (PFLCHA0_c16720) This study 
 CHA5119 CHA0 pilA::pEMG (PFLCHA0_c52590); Kmr This study 
 CHA5126 CHA0 algD::pEMG (PFLCHA0_c10440); Kmr This study 
 CHA5127 CHA0 pslA::pEMG (PFLCHA0_c42710); Kmr This study 
 CHA5128 CHA0 fliC::pEMG (PFLCHA0_c16670); Kmr This study 
 CHA5129 CHA0 arnA::pEMG (PFLCHA0_c30730); Kmr This study 
 CHA5130 CHA0 cupB3::pEMG (PFLCHA0_c15000); Kmr This study 
 CHA5131 CHA0 cupC3::pEMG (PFLCHA0_c39830); Kmr This study 
 CHA5132 CHA0 ΔcupB; deletion of the cupB gene cluster (PFLCHA0_c14980-

PFLCHA0_c15080) 
This study 

 CHA5133 CHA0 ΔphoQ (PFLCHA0_c45400) This study 
 CHA5134 CHA0 ΔphoP (PFLCHA0_c45410) This study 
 CHA5155 CHA0 hxcQ::pEMG (PFLCHA0_c28140); Kmr This study 
 CHA5156 CHA0 wbpL::pEMG (PFLCHA0_c43720); Kmr This study 
 CHA5157 CHA0 ΔpagL (PFLCHA0_c51150) This study 
 CHA5158 CHA0 ΔpgaABCD (PFLCHA0_c01630-01660) This study 
 CHA5177 CHA0 attTn7-Ptac/lacIq-wspR(PCL1391) (PCL1391_1037); Kmr, Gmr This study 
 CHA5178 CHA0 attTn7-Ptac/lacIq-tpbB(PCL1391) (PCL1391_662); Kmr, Gmr This study 
Pseudomonas chlororaphis   
 PCL1391 Wild type [60] 
 PCL-4 PCL1391 attTn7-Ptac/lacIq-wspR(PCL1391) (PCL1391_1037); Gmr This study 
 PCL-5 PCL1391 attTn7-Ptac/lacIq-tpbB(PCL1391) (PCL1391_662); Gmr This study 
 PCL-6 PCL1391 Δvfr (PCL1391_5348) This study 
Escherichia coli   
 DH5α, DH5α λpir Laboratory strains [61] 
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Plasmids   

pEMG pSEVA212S; oriR6K, lacZα MCS flanked by two I-SceI sites; Kmr [62] 
pME8300 Carrier plasmid for Tn7 for Ptac/lacIq controlled target gene expression; Gmr, Apr [63] 
pME8323 pEMG-ΔfleQ; suicide plasmid for the in-frame deletion of fleQ 

(PFLCHA0_c16720); Kmr 
This study 

pME8332 pEMG-pilA; suicide plasmid for the disruption of pilA (PFLCHA0_c52590); Kmr This study 
pME8336 pEMG-ΔcupB; suicide plasmid for the deletion of the cupB gene cluster 

(PFLCHA0_c14980-PFLCHA0_c15080); Kmr 
This study 

pME8337 pEMG-algD; suicide plasmid for the disruption of algD (PFLCHA0_c10440); Kmr This study 
pME8338 pEMG-pslA; suicide plasmid for the disruption of pslA (PFLCHA0_c42710); Kmr This study 
pME8339 pEMG-fliC; suicide plasmid for the disruption of fliC (PFLCHA0_c16670); Kmr This study 
pME8340 pEMG-arnA; suicide plasmid for the disruption of arnA (PFLCHA0_c30730); 

Kmr 
This study 

pME8341 pEMG-cupB3; suicide plasmid for the disruption of cupB3 (PFLCHA0_c15000); 
Kmr 

This study 

pME8342 pEMG-cupC3; suicide plasmid for the disruption of cupC3 (PFLCHA0_c39830); 
Kmr 

This study 

pME8357 pEMG-hxcQ; suicide plasmid for the disruption of hxcQ (PFLCHA0_c28140); 
Kmr 

This study 

pME8358 pEMG-ΔpagL; suicide plasmid for the in-frame deletion of pagL 
(PFLCHA0_c51150); Kmr 

This study 

pME8359 pEMG-wbpL; suicide plasmid for the disruption of wbpL (PFLCHA0_c43720); 
Kmr 

This study 

pME8360 pEMG-ΔpgaABCD; suicide plasmid for the deletion of the pga operon 
(PFLCHA0_c01630-01660); Kmr 

This study 

pME8386 pEMG-Δvfr(PCL1391); suicide plasmid for the in-frame deletion of PCL1391 vfr 
(PCL1391_5348); Kmr 

This study 

pME8390 pME8300-Ptac/lacIq-wspR(PCL1391); IPTG-inducible expression of PCL1391 wspR 
(PCL1391_1037); Gmr, Apr  

This study 

pME8391 pME8300-Ptac/lacIq-tpbB(PCL1391); IPTG-inducible expression of PCL1391 tpbB 
(PCL1391_662); Gmr, Apr 

This study 

pSW-2 oriRK2, xylS, Pm::I-sceI; Gmr [62] 
pUX-BF13 Helper plasmid encoding Tn7 transposition functions; R6K-replicon; Apr [64] 

Abbreviations: Apr, ampicillin; Cmr, chloramphenicol; Gmr, gentamicin; Kmr, kanamycin; and Tcr, tetracycline resistance, respectively. 

 

Recombinant DNA techniques 

DNA manipulations and PCRs were performed according to standard protocols [61]. Genomic DNA was 

extracted with the Promega Wizard Genomic DNA Purification Kit. Plasmid DNA preparations were 

performed using the QIAprep Spin Miniprep Kit (Qiagen) and the Genomed JETStar Plasmid Purification Midi 

Kit for small and large scale purifications, respectively. DNA gel extractions were conducted using the 

MinElute Gel Extraction Kit and the QIAquick Gel Extraction Kit (Qiagen). DNA restriction and modification 

enzymes were purchased from Promega and were used according to the manufacturer’s recommendations. 

DNA enzyme reaction cleanups were conducted using the QIAquick PCR Purification Kit (Qiagen). PCR for 

molecular cloning was conducted according to the recommendations of the manufacturer with the 

PrimeSTAR HS high-fidelity DNA polymerase kit (Takara Bio Inc.), while the DNA Polymerase kit (Promega) 

was used to perform PCRs for analytic purposes. The primers used in this study were synthesized by 
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Microsynth AG (Balgach, Switzerland) and are listed in Table 5. DNA sequencing was conducted at GATC 

Biotech (Konstanz, Germany) and obtained sequences were analyzed using the DNASTAR Lasergene software 

suite. 

 

Table 5: Primers used in this study. 

Name Sequence 5’ → 3’, restriction enzyme(s)1 Purpose 
algD-im-1 CGGGATCCGCGATCAAGGACTACGACT, BamHI Disruption of algD 
algD-im-2 GGAATTCTGCTGTCGTAGATGCTCAGG, EcoRI Disruption of algD 
arnA-im-1 CGGGATCCAACTGGGTGCTGGTCAAG, BamHI Disruption of arnA 
arnA-im-2 GGAATTCGTCCACCAGGCCCAGTTC, EcoRI Disruption of arnA 
cupB-del-1 CGGGATCCCCTTCTGCCGAACTGTTAGCG, BamHI Deletion of cupB 
cupB-del-2 CCCAAGCTTGGACAAGAGAGTCTTGCGTTTC, HindIII Deletion of cupB 
cupB-del-3 CCCAAGCTTGGTGTCAACCGGAAGAAGCTG, HindIII Deletion of cupB 
cupB-del-4 GGAATTCGAAAATCGAGCGTGACCATCTG, EcoRI Deletion of cupB 
cupB3-im-1 CGGGATCCAGCCGCTTTACCGTACCTTTTG, BamHI Disruption of cupB3 
cupB3-im-2 GGAATTCTGTAGCCCATGGCGAAGTTC, EcoRI Disruption of cupB3 
cupC3-im-1 CGGGATCCAGCGTTGACCAGAAGTCACC, BamHI Disruption of cupC3 
cupC3-im-2 GGAATTCGTAGTTGCCGACATCCTTGG, EcoRI Disruption of cupC3 
fleQ-1 CGGGATCCATTGAAGAAACCCGTGAGGC, BamHI Deletion of fleQ 
fleQ-2 CCCAAGCTTTAAAATCACCGCCAGGTCGCG, HindIII Deletion of fleQ 
fleQ-5 CCCAAGCTTTGACGCCGGTTTTTCAAGTCTTTG, HindIII Deletion of fleQ 
fleQ-6 GGAATTCATTTCATGGCCATCGTCTTCGCG, EcoRI Deletion of fleQ 
fliC-im-1 CGGGATCCTGAAGATCAACAGCGCAAAAG, BamHI Disruption of fliC 
fliC-im-2 GGAATTCAGCAGCGAAGTCGGTATCT, EcoRI Disruption of fliC 
hxcQ-im-1 GGAATTCGTGATCGAGAGCCTGATCGTC, EcoRI Disruption of hxcQ 
hxcQ-im-2 CGGGATCCGCTGCTGACCTCCTGGTAGA, BamHI Disruption of hxcQ 
pagL-del-1 CGGGATCCTTGCAGAGTGCCAAGTTC, BamHI Deletion of pagL 
pagL-del-2 CCCAAGCTTCAGTCGCTTCATCAGGAACATC, HindIII Deletion of pagL 
pagL-del-3 CCCAAGCTTATGCCGCTCTAAGGCCGCT, HindIII Deletion of pagL 
pagL-del-4 GGAATTCGGAGTGAGCTTTGCCTATG, EcoRI Deletion of pagL 
PCL.tpbB-expr-F GACTAGTATGAGCTTCTTCAAGTCGCCTG, SpeI Expression of PCL1391 tpbB 
PCL.tpbB-expr-R CCCAAGCTTGCAAGAAAGGTCGAGTCAGTG, HindIII Expression of PCL1391 tpbB 
PCL.vfr-del-1 GGAATTCGTGGATCTTGGTGAAGACCTTG, EcoRI Deletion of PCL1391 vfr 
PCL.vfr-del-2 GACTAGTGGTGACCGAGCCTTTGATGAT, SpeI Deletion of PCL1391 vfr 
PCL.vfr-del-3 GACTAGTGTATTCGGCACCCGTTAGAGC, SpeI Deletion of PCL1391 vfr 
PCL.vfr-del-4 CGGGATCCAGGATCTGCTCGCTCAGGTA, BamHI Deletion of PCL1391 vfr 
PCL.wspR-expr-F GACTAGTATGAATGATTTACAGCTCGACG, SpeI Expression of PCL1391 wspR 
PCL.wspR-expr-R CCCAAGCTTCACTCGATCCCCACCTGAT, HindIII Expression of PCL1391 wspR 
pga-del-1 CGGGATCCAAGCTGTCGCTGTCCAAG, BamHI Deletion of pgaABCD 
pga-del-2 CCCAAGCTTAGTGCGTTGCATTTCGTCAGC, HindIII Deletion of pgaABCD 
pga-del-3 CCCAAGCTTGGAGAAGATTGATTGCCCAGG, HindIII Deletion of pgaABCD 
pga-del-4 GGAATTCTCATCCCGAGCGTAGAGAG, EcoRI Deletion of pgaABCD 
phoP-del-1 GCGGATCCTGGCGAACTCAT, BamHI Deletion of CHA0 phoP 
phoP-del-2 GACTAGTAACGAGCGTTGCCGATGATTC, SpeI Deletion of CHA0 phoP 
phoP-del-3 GACTAGTCCAGGCAAAATTCGACATCTCC, SpeI Deletion of CHA0 phoP 
phoP-del-4 GGAATTCGATATGTTCCTGCCGGTGAC, EcoRI Deletion of CHA0 phoP 
phoQ-del-1 CGGGATCCTACGACCTGCTTTTCCCTTGC, BamHI Deletion of CHA0 phoQ 
phoQ-del-2 GACTAGTCACTTTCCGGCCCTGTAGG, SpeI Deletion of CHA0 phoQ 
phoQ-del-3 GACTAGTGCGCAGCGATCGAATCATCG, SpeI Deletion of CHA0 phoQ 
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phoQ-del-4 GGAATTCAGACGTTCCCGATCCTCATC, EcoRI Deletion of CHA0 phoQ 
pilA-im-1 CGGGATCCAGGGTCAGGGTCTTGTTCAG, BamHI Disruption of pilA 
pilA-im-1 CGGGATCCAATCCGGTTTTACCCTGATCG, BamHI Disruption of pilA 
pslA-im-1 CGGGATCCACAACCGCATCACCGAAGTC, BamHI Disruption of pslA 
pslA-im-2 GGAATTCGTACTCCTTGACCGCCTCTTC, EcoRI Disruption of pslA 
wbpL-im-1 CGGGATCCGCTCGCTGGAGATTATTG, BamHI Disruption of wbpL 
wbpL-im-2 GGAATTCAGGGCAAGCAAACCAAGAAC, EcoRI Disruption of wbpL 

1 Restriction sites are underlined 

 

Construction of in-frame deletion mutants 

In-frame deletions of selected genes and gene clusters in P. protegens CHA0 and P. chlororaphis PCL1391 

were performed based on homologous recombinations using the suicide vector pEMG and the I-SceI system 

[62]. For the construction of the suicide vectors (Table 4), upstream and downstream regions of 500–600 bp 

length flanking the region to be deleted were amplified by PCR using the “del” primer pairs listed in Table 5 

and chromosomal DNA from strains CHA0 or PCL1391 as DNA templates. Purified PCR products were 

digested using the corresponding restriction enzymes (indicated in Table 5) and subsequently cloned into the 

suicide vector pEMG via triple ligation. Correct insert sequences of the resulting plasmids were confirmed via 

DNA sequencing. The obtained suicide vectors then served to construct strains CHA5105, CHA5132, 

CHA5133, CHA5134, CHA5157, CHA5158, and PCL-6 (Table 4) using the I-SceI system as described previously 

[63]. 

 

Construction of gene disruption mutants 

For a more rapid generation of mutant strains, selected genes of P. protegens CHA0 were mutated by 

sequence-specific insertion of pEMG-based suicide vectors via homologous recombination, which led to the 

disruption of the coding sequences (CDS). Suicide vectors were constructed by PCR amplification of 

approximately 500-bp regions in the middle of the genes of interest, using the “im” primer pairs listed in 

Table 5 and chromosomal DNA from strain CHA0. The purified PCR products were digested with BamHI and 

EcoRI (in case of pilA only with BamHI) and cloned by ligation into pEMG opened with the same restriction 

enzymes. The insert sequences of the constructed vectors were verified by DNA sequencing and the 

plasmids were integrated into the CHA0 chromosome by transformation of the bacterium via 

electroporation, resulting in strains CHA5119, CHA5126, CHA5127, CHA5128, CHA5129, CHA5130, CHA5131, 

CHA5155, and CHA5156 (Table 4). 

 

Overexpression of diguanylate cyclases 

To increase the levels of c-di-GMP within the bacterial cells, the diguanylate cyclase-encoding genes wspR 

and tpbB of P. chlororaphis PCL1391 were cloned into the vector pME8300 under the control of the IPTG-
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inducible Ptac promoter and integrated into the chromosome at the Tn7 attachment locus as described in the 

following. The CDS of the wspR and tpbB genes were amplified by PCR using the primer pairs PCL.wspR-expr-

F/PCL.wspR-expr-R and PCL.tpbB-expr-F/PCL.tpbB-expr-R, respectively, and chromosomal DNA from strain 

PCL1391. The purified PCR products were digested with SpeI and HindIII and cloned into pME8300 opened 

with the same restriction enzymes. The correct insert sequences of the newly created vectors pME8390 and 

pME8391 (Table 4) were verified by DNA sequencing. The two plasmids were subsequently used for the 

transformation of competent cells by co-electroporation with the helper plasmid pUX-BF13 to generate 

strains CHA5177, CHA5178, PCL-4, and PCL-5 (Table 4). 

 

Virulence, biofilm formation and motility assays 

Injection assays for virulence determination using last-instar larvae of G. mellonella (Entomos AG, 

Grossdietwil, Switzerland) were performed as described before [4]. 

For quantitative studies of the biofilm formation of selected strains, 200 µl of Grace’s Insect Medium (GIM, 

Sigma) or LB in a 96-well microplate (Greiner Bio-One, Kremsmünster, Austria) were inoculated 1:100 with 

bacterial suspension and incubated at 25°C for 24 h without agitation. The cell density at 600 nm was 

measured with a FLUOstar multidetection microplate reader (BMG Labtech GmbH, Offenburg, Germany). 

The supernatant was then removed and the plate was washed once with saline solution for 5 min at room 

temperature with agitation (500 rpm). The liquid was removed and 200 μl of a 0.1% crystal violet solution 

per well was added in order to stain the biofilm. The microplate was incubated for 15 min at room 

temperature without shaking and then washed three times with bi-distilled water. Two hundred microliters 

of ethanol were added into each well and the plate was incubated at room temperature for 15 min with 

shaking. The absorbance at 600 nm was determined using the FLUOstar multidetection microplate reader. 

For qualitative studies of the biofilm formation, 3 ml of LB (supplemented with IPTG, if indicated) contained 

in glass test tubes were inoculated 1:100 with bacterial suspension. Pellicle formation at the air-liquid 

interface was observed after incubation without agitation at room temperature for at least 24 h. 

For studying the motility of selected mutant strains, 5 µl of bacterial suspension at an OD600 of 1 was spotted 

in the middle of an LB swimming agar plate (25 g/L Bacto LB broth (Difco), 2 g/L agar agar (SERVA)). The 

plates were incubated at room temperature for 16 hours. 

 

Statistical analysis 

Statistical analysis of Galleria virulence assays was performed in RStudio version 0.98.1091 

(http://www.rstudio.com/). The Log-Rank test of the survival package of R was used to calculate significant 

differences in survival between treatments with the wild-type and isogenic mutant strains. 
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Abstract 

Some plant-beneficial Pseudomonas species display insect pathogenicity in addition to their ability of 

protecting roots from phytopathogenic fungi and oomycetes. Although the bacterial surface is the site where 

direct microbe-host interactions take place, its characteristics have barely been studied in these 

pseudomonads. Lipopolysaccharide (LPS) is the major constituent of the outer membrane of Gram-negative 

bacteria and generally consists of lipid A, core oligosaccharide and the distal and variable O-antigenic 

polysaccharide (O-PS, O-antigen). The O-PS moiety of LPS is an important virulence factor in many 

pathogenic bacteria, since it was suggested to play a role in host colonization and in evasion of or resistance 

to immune responses of the host organism. We explored the genetic basis of O-PS biosynthesis in recently 

sequenced, insect-pathogenic pseudomonads by a combined bioinformatic and genetic approach. Gene 

clusters that were identified as putative O-PS biosynthesis loci in these microorganisms were individually 

mutated in Pseudomonas chlororaphis PCL1391 and Pseudomonas protegens CHA0 and their involvement in 

LPS decoration was assessed by LPS extraction and detection. Insecticidal pseudomonads were found to 

produce at least two forms of O-antigen simultaneously. Reduction of existing O-PS gene clusters in some 

strains and their replacement with gene clusters acquired by horizontal gene transfer resulted in a great 

diversity of O-PS structures in these microbes, which might contribute to host adaptation. Mutant strains 

lacking O-antigens were significantly attenuated for virulence in Plutella xylostella feeding and Galleria 

mellonella injection assays, suggesting that these polysaccharides are vital for a successful oral and systemic 

infection of the insect host. Cationic antimicrobial peptides play a central role in the immune system of 

insects. We found that many insect-pathogenic Pseudomonas strains were highly resistant to a model 

antimicrobial peptide while non-insecticidal strains were susceptible. The potential of causing disease in 

insects might thus be correlated with the resistance to antimicrobial peptides in plant-beneficial 

pseudomonads. In the two model strains, high resistance to these antimicrobial compounds is dependent on 

the biosynthesis of the dominant form of O-PS in addition to modification of lipid A with aminoarabinose. 

This study provides the necessary basis for future research on the biological role, regulation and evolution of 

O-PS biosynthesis in plant-beneficial pseudomonads with insect-pathogenic properties and represents the 

first step in the investigation of how cell surface constituents modulate host interactions in these bacteria. 
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Introduction 

Root-associated pseudomonads with plant-beneficial and insect-pathogenic properties are promising 

biocontrol agents that can be exploited as an alternative to chemical control of phytopathogenic fungi and 

pest insects in crops [1,2]. Their role in protection of plants against pathogenic fungi and the underlying 

mechanisms have been studied in detail over decades [2], yet we still have only limited knowledge about the 

interaction of these microorganisms with their insect hosts. Insect-pathogenic Pseudomonas strains are able 

to infect and cause disease in certain insect species upon oral or systemic infection [1,3,4]. The host-specific 

production of an insecticidal toxin termed Fit in the insect hemolymph contributes significantly to the 

pathogenicity in these bacteria [3-5]. However, we do not know the mechanisms that enable them to 

successfully colonize and invade insects and that make the immune system of the host organism fail to clear 

the infection. 

 

The cell surface of Gram-negative bacteria consists largely of lipopolysaccharide (LPS), exopolysaccharides 

and some proteins and is the site where these microbes directly interact with their host organisms [6,7]. 

Despite their central role in host-microbe interactions, the genetic basis and composition of the cell surface 

constituents in plant-beneficial pseudomonads have rarely been investigated. LPS is the primary component 

of the outer membrane in Gram-negative bacteria [8-10]. It consists in general of three different regions: 

lipid A, core oligosaccharide and O-antigenic polysaccharide (O-PS, also termed O-antigen). LPS is anchored 

in the outer membrane by the lipid A moiety, a phosphoglycolipid which is essential for bacterial survival and 

growth and whose structure is highly conserved among species. The lipid A-core serves as an attachment site 

for the O-PS which consists of repeating units (O-units) of one to five sugar residues and is the exposed part 

of LPS. LPS is known as “smooth” when O-PS is attached to the lipid A-core and “rough” when uncapped. 

There is a large variety of monosaccharides that can be incorporated into O-units with different linkages, 

different stoichiometry and in different orders [11]. The sugar residues can further be modified, for example 

by methylation or acetylation, which gives rise to a tremendous diversity of O-PS structures in bacteria. 

The lipid A moiety of LPS strongly stimulates the innate immune system of mammals via pattern recognition 

receptors (PRRs) such as the Toll-like receptor 4 (TLR4) complex [9,10,12,13]. Its immunostimulatory 

properties can result in a massive release of proinflammatory mediators upon recognition and as a 

consequence is highly toxic to mammalian species [13]. LPS is thus also called endotoxin. In contrast, LPS 

does not seem to be an immunostimulatory component in insects [14]. Their immune system recognizes 

bacteria mostly by their peptidoglycan structures [14]. 

Since O-PS often constitutes the outermost part of a bacterial cell and thus is at the interface between the 

bacterium and its surrounding environment, the LPS side chains play an important role in microbe-host 

interactions and are under high selective pressure [11,14,15]. O-PS contributes to pathogenicity and is 
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generally associated with the ability of a bacterium to colonize a respective host organism and to bypass or 

overcome host defense mechanisms [8,11,15,16]. The highly variable side chains of LPS have been shown to 

contribute to resistance to killing by host-derived antimicrobial compounds such as antimicrobial peptides 

(AMPs) [17-19], and by the complement system in mammalian hosts [17,20]. They were further suggested to 

protect microorganisms against phagocytosis [21] and to be important for the optimal function and correct 

localization of other virulence factors [20,22]. In certain bacteria, O-PS also plays a role in colonization of 

host tissues [8,11,15,16]. It does so by functioning as an adherence factor and by contributing to biofilm 

formation. While being a virulence factor in pathogenic bacteria, O-antigen can be important for commensal 

and symbiotic bacteria as well. There are for example indications that it is involved in the molecular 

communication between such bacteria and plants [11,23,24]. 

In mammalian pathogens, O-PS can further modulate the recognition of LPS by the innate immune system 

and thereby influence how these bacteria are perceived by their host organisms [11,16]. Some O-antigen 

structures have been found to be very similar to polysaccharides of host tissues and were thus suggested to 

play a role in molecular mimicry [11,25]. In contrast, the O-PS can also constitute an Achilles’ heel for 

bacteria: they serve as receptors for bacteriophages [26] and bacteriocins [27]. 

 

 
Figure 1: Models for the three pathways involved in the biosynthesis and translocation of O-polysaccharide (O-PS). Repeating units 

for the biosynthesis of O-PS can be assembled and translocated across the inner membrane by three different pathways. The 

Wzx/Wzy-dependent and the ABC transporter-dependent pathways are widespread in bacteria and have in common that the so-

called O-units are synthesized in the cytoplasm by glycosyltransferases that use nucleotide sugars as donors and undecaprenyl 

diphosphate as a lipid carrier. In contrast to the ABC transporter-dependent pathway, the O-PS is assembled in the periplasm with 

the help of a polymerase in the Wzx/Wzy-dependent pathway. The rare synthase-dependent pathway has been reported only for a 

particular Salmonella enterica O-antigen. The figure was taken from [28]. 
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The assembly and translocation of most O-PS occur via Wzx/Wzy-dependent and ATP-binding cassette (ABC) 

transporter-dependent pathways while a third pathway, which is dependent on a specific synthase, is only 

rarely found in bacteria (Figure 1) [9,29-32]. The two prominent pathways have in common that 

undecaprenyl diphosphate (und-PP) is used as a lipid anchor for the synthesis of individual O-units or the 

entire O-PS at the cytoplasmic face of the inner membrane. Repeating units are assembled by glycosyl-

transferases which use nucleotide-activated sugars, synthesized by specific enzymes, as precursors (Figure 

1). Homopolymers (i.e., polysaccharides with a single monosaccharide component) are commonly 

synthesized via the ABC transporter-dependent pathway while heteropolymers are most often produced 

following the Wzx/Wzy-dependent pathway. In the latter pathway, individual und-PP-linked repeating units 

are transported across the inner membrane with the help of a flippase (Wzx) and are then assembled into O-

PS by a polymerase (Wzy) [9,30]. The chain length of the O-PS can be controlled via one or several co-

polymerases (Wzz). In the ABC transporter-pathway, the O-PS is completely synthesized in the cytoplasm 

and exported to the periplasm by an ABC transporter composed of the nucleotide-binding protein Wzt and 

the transmembrane protein Wzm [9,31]. Several mechanisms for chain length regulation are known for this 

pathway and seem to be species-dependent. The O-PS is then covalently linked to the lipid A-core in the 

periplasm by the O-antigen ligase WaaL, irrespective of the pathway it was assembled and translocated by. 

The LPS molecules are subsequently exported to the cell surface via a separate pathway. 

Interestingly, the two prominent O-PS assembly pathways resemble those involved in the biosynthesis of 

capsular polysaccharide in species of the Enterobacteriaceae, pointing to common evolutionary origins [33]. 

However, capsular polysaccharides are usually not attached to the lipid A-core and are translocated across 

the periplasm and outer membrane by distinct pathways. 

Genes for the biosynthesis of O-PS are generally organized as gene clusters and can typically be categorized 

into three groups: the nucleotide sugar pathway genes, sugar glycosyltransferase genes and O-PS processing 

genes [8,9]. The latter group comprises genes necessary for the transport, chain length determination and 

modification of O-PS. The presence of genes belonging to these different groups, a certain level of 

conservation of their nucleotide (and protein) sequences across species and their particular localization on 

the chromosome makes it possible to identify putative O-PS gene clusters in sequenced genomes. 
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Figure 2: Biosynthesis of O-antigen in Pseudomonas aeruginosa PAO1. The opportunistic human pathogen is known to express two 

distinct forms of O-PS. While the common polysaccharide antigen (CPA; formerly A band) is synthesized by the ABC transporter-

dependent pathway and consists of the monosaccharide D-rhamnose, the O-specific antigen (OSA; formerly B band) is produced via 

the Wzx/Wzy-dependent pathway and is a heteropolymer. Variations in chain lengths result in the typical LPS latter banding pattern 

observed on silver-stained polyacrylamide gels following SDS-PAGE. OSA and CPA are synthesized and exported by proteins encoded 

in two separate gene clusters in P. aeruginosa. The figure was adapted from [8]. 

 

The genetics of O-PS biosynthesis has been well studied in Pseudomonas aeruginosa (reviewed in [8]), which 

provides a prototype for the study of O-antigen biosynthesis in other pseudomonads (Figure 2). The 

opportunistic pathogen produces two distinct forms of O-antigen: a homopolymer composed of D-rhamnose 
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and termed common polysaccharide antigen (CPA; formerly A band) and a heteropolymer known as O-

specific antigen (OSA; formerly B band) [8,34]. CPA is assembled and transported in P. aeruginosa strains via 

an ABC transporter-dependent pathway. OSA is synthesized via a Wzx/Wzy-dependent pathway and its chain 

length is controlled by two co-polymerases (Wzz1 and Wzz2). Most genes for the biosynthesis of these two 

O-PS types were found to be located in two distinct gene clusters (Figure 2). Most species of Pseudomonas 

seem to possess the OSA gene cluster while only P. aeruginosa and certain P. fluorescens strains were 

reported to have the gene cluster for the biosynthesis of CPA [35]. The OSA gene cluster might be conserved 

across species because it contains the gene for the initial glycosyltransferase WbpL, which was shown to be 

essential for the synthesis of both CPA and OSA [36]. Mutation of wbpL significantly reduced the virulence of 

P. aeruginosa in several model organisms [37,38], indicating that O-PS is an important virulence factor in this 

bacterium as well. P. aeruginosa isolates from patients with cystic fibrosis were repeatedly reported to 

partially lack or be completely devoid of O-antigen [8,39,40]. As a consequence, these O-PS-deficient strains 

can no longer be bound by O-antigen-specific antibodies, are more inflammatory (due to better recognition 

of the lipid A part by the innate immune system) but are also less virulent. Several studies suggested that O-

PS are amongst others involved in immune evasion, resistance to complement-mediated killing, motility, and 

biofilm formation in this microorganism [8,41,42]. Resistance to AMPs has, however, not been directly linked 

to O-PS in pseudomonads to date, but mainly to modification of lipid A with aminoarabinose [43]. 

 

Protection of the cell envelope against attacks from AMPs might be critical for bacterial pathogenicity 

towards insects, as these animals massively produce such antimicrobial compounds for defense against 

invading microbes since they do not possess the complement system for clearing bacterial infections [14,44]. 

This prompted us to investigate whether AMP resistance is an intrinsic feature of insecticidal pseudomonads 

and whether it is associated with their ability to produce LPS with side chains. In the present study, we 

explored the genetic basis of O-PS biosynthesis in diverse P. fluorescens group strains. We discovered that 

many insect-pathogenic strains indeed are resistant to certain cationic AMPs and that this resistance is 

dependent on the presence of O-specific side chains on the surface of these bacteria. Loss of the ability to 

produce smooth LPS resulted in significantly attenuated virulence of a model strain in insect larvae, 

demonstrating the importance of O-PS biosynthesis for insect pathogenicity in these pseudomonads. 
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Results 

Identification of putative O-polysaccharide biosynthesis genes 

Genes encoding proteins that make part of the O-PS biosynthesis machinery (in particular 

glycosyltransferases, certain O-PS transporters and enzymes synthesizing sugar precursors) can often be 

detected in a given genome by BLAST searches and analysis of information from automatic and manual gene 

annotation. Because polysaccharide biosynthesis genes are mostly organized in gene clusters, in this study, 

the search for them in recently sequenced and publicly accessible genomes was focused on genomic regions 

where several of these genes were found in proximity. The search for putative O-PS genes was initially 

focused on the two model strains Pseudomonas chlororaphis PCL1391 (Flury et al., manuscript in 

preparation) and Pseudomonas protegens CHA0 [45]. A gene cluster flanked by the ihfB and comEA genes 

and similar to the OSA cluster of P. aeruginosa strains was identified in both PCL1391 (Figure 3) and CHA0 

(Figure 4). While in PCL1391 this gene cluster is organized similarly to the one in P. aeruginosa PAO1 

(including an additional putative chain-length regulator gene residing outside of the locus), it is remarkably 

reduced in CHA0 where only a few genes are present, a Wzy polymerase-encoding gene is absent and wzz is 

a pseudogene (Figure 4). In contrast to the P. protegens strain, PCL1391 furthermore possesses a gene 

cluster orthologous to the CPA cluster in PAO1 (Figure 3). The three genes rmd, gmd and wbpW which 

encode enzymes necessary for the biosynthesis of GDP-D-rhamnose in PAO1 [8] are however absent in 

PCL1391. For simplicity, the two newly identified gene clusters in PCL1391 and CHA0 are called OSA and CPA 

from here on, owing to their similarity with the P. aeruginosa O-antigen clusters. 
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Figure 3: Gene clusters predicted to be involved in the biosynthesis of O-PS in Pseudomonas chlororaphis PCL1391. Depicted are 

genes and gene clusters that were predicted to contribute to O-PS biosynthesis in strain PCL1391. Putative functions of encoded 

proteins or gene names are indicated above the corresponding genes, information about the locus tags are given below. Genes are 

drawn to scale and are color-coded according to the function of the proteins they code for: black, transport and polymerization; 

blue, glycosyltransferases; green, nucleotide sugar biosynthesis and modification of sugars; red, methylation; yellow, (de)acetylation; 

violet, chain length determination; white, flanking genes. Mutations that were introduced in specific genes and gene clusters in the 

present study are depicted below each cluster. 
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Figure 4: Gene clusters predicted to be involved in the biosynthesis of O-PS in Pseudomonas protegens CHA0. Depicted are genes 

and gene clusters that were predicted to contribute to O-PS biosynthesis in strain CHA0. Putative functions of encoded proteins or 

gene names are indicated above the corresponding genes, information about the locus tags are given below. Genes are drawn to 

scale and are color-coded according to the function of the proteins they code for: black, transport and polymerization; blue, 

glycosyltransferases; green, nucleotide sugar biosynthesis and modification of sugars; red, methylation; yellow, (de)acetylation; 

violet, chain length determination; gray, pseudogenes; light brown, transposition; white, flanking genes. Mutations that were 

introduced in specific genes and gene clusters in the present study are depicted below each cluster. 
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Three additional, so far uncharacterized gene clusters were found in CHA0 and termed O-PS biosynthesis 

cluster (OBC) 1, 2 and 3 (Figure 4). OBC1 and OBC3 contain genes that were predicted to code for ABC 

transporter proteins, suggesting an ABC-transporter-dependent biosynthesis of polysaccharides. In contrast, 

OBC2, which was also detected in the genome of PCL1391 (Figure 3), harbors genes that code for proteins 

with predicted functions similar to Wzx, Wzy and Wzz in PAO1, indicating the biosynthesis of polysaccharides 

via a Wzx/Wzy-dependent pathway (Figure 4). A closer analysis of the genetic organization and predictions 

of the function of the encoded proteins suggested that the OBC2 cluster allows for the biosynthesis of 

capsular polysaccharides. Capsules form protective structures on the surfaces of many bacteria [29,46], but 

have not been reported to be produced in pseudomonads before. Unlike O-PS they are not linked to the lipid 

A-core and are translocated to the cell surface by separate pathways. 

The WaaL-encoding genes (waaL) were identified by protein BLAST and protein sequence analysis in the LPS 

core biosynthesis loci of PCL1391 (29% amino acid sequence identity) and CHA0 (42% amino acid sequence 

identity) (Figure S1). It should be pointed out that, in strain CHA0, waaL seems to have undergone a fusion 

with a gene that is coding for a putative phosphotransferase and is orthologous (49% amino acid sequence 

identity) to PA4998 in PAO1, and thus most likely encodes an O-PS ligase fused to a kinase domain at its C-

terminus (Figure S1B). This gene fusion was observed for all P. protegens strains in this study and also in 

some additional P. fluorescens group lineages (data not shown). 

Since the biosynthesis of different polysaccharides in bacteria involves similar proteins [33], the screening for 

O-PS genes revealed genes for the production of oligosaccharides and polysaccharides other than O-antigen 

as well. It thus brought up gene clusters predicted to be responsible for flagellar glycosylation, the 

biosynthesis of the LPS core oligosaccharide and the production of the exopolysaccharides Psl, Pel and 

alginate (Table S1). Remarkably, also an operon (pgaABCD) that most probably encodes proteins for the 

biosynthesis of the exopolysaccharide poly-N-acetylglucosamine (PNAG) was detected in many strains of the 

P. fluorescens group (Table S1). PNAG is produced for example by Escherichia coli and Staphylococcus species 

for which it is an important colonization and immune evasion factor [47-49], but has not been identified in 

Pseudomonas species so far. 

 

Mutational analysis of O-PS biosynthesis 

Putative O-PS biosynthesis genes and gene clusters identified in strains PCL1391 and CHA0 were mutated 

individually as depicted in Figures 3 and 4. The resulting LPS banding patterns were studied by extraction, 

separation and detection of LPS on polyacrylamide gels (Figure 5). 
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Figure 5: Mutation of O-PS biosynthesis genes in Pseudomonas chlororaphis PCL1391 (A) and Pseudomonas protegens CHA0 (B). 

SDS-PAGE of LPS extracted from PCL1391, CHA0 and their isogenic mutant strains grown at 25°C to late exponential growth phase in 

Lysogeny Broth. LPS was made visible by silver staining. Molecular weights in kDa are depicted on the left of each gel and predicted 

compositions of LPS molecules on the right. 

 

P. chlororaphis PCL1391 displayed a complex LPS banding pattern with a modular length distribution (Figure 

5A). Under the chosen growth conditions, the wild-type strain produced LPS with three distinct modules of 

bands with high to very high molecular weights (25 to over 100 kDa; indicated with “long” and “very long” in 

Figure 5A) and additionally several low-molecular-weight bands (10 to approx. 20 kDa). Mutation of waaL 

(PCL-1) resulted in the loss of most bands, except for the one with the lowest molecular weight which most 
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probably corresponds to the uncapped lipid A-core moiety of LPS. Since WaaL is essential in most Gram-

negative bacteria to produce smooth LPS, this strongly indicated that bands visible above the lowest one on 

the gel corresponded to LPS molecules with covalently linked O-PS (or capsular polysaccharides). Re-

introduction of waaL in strain PCL-1 rescued all bands visible in the wild-type strain, indicating that there was 

no polar effect caused by disruption of waaL in PCL1391 (Figure S2). Disruption of wzx encoding the putative 

flippase in the OSA cluster resulted in a similar LPS phenotype as in the waaL mutant, with only weak bands 

remaining above the lipid A-core band on the gel. The deletion of the CPA cluster did not result in a 

significant change in the LPS banding pattern, except for a decreased intensity of some bands just below 25 

kDa. Extraction and visualization of LPS from the wild type and isogenic mutants grown at 30°C suggested 

that the CPA cluster significantly contributed to O-PS production at elevated temperatures by encoding 

proteins that are responsible for the biosynthesis of a wzx-independent form of O-PS in this strain (Figure 

S3). LPS banding patterns of the obc2 deletion mutant resembled those of the wild type, indicating that 

OBC2 is not essential for O-PS biosynthesis in PCL1391. Mutagenesis of waaL and genes of the OSA cluster 

(except for wzz1) in PCL1391 resulted in mutant strains with obvious growth defects, while deletion or 

disruption of other genes did not seem to alter the growth rate of the bacterium considerably (Figure S4). 

Additionally, several attempts to delete genes in the OSA cluster failed. All these findings suggest that the 

OSA gene cluster is the dominant O-PS biosynthesis cluster in PCL1391 under the conditions tested. 

Mutation of wzz1 or wzz2, which code for putative O-PS chain length regulators, led to the disappearance of 

the dominant module with high-molecular-weight bands and the two modules with very-high-molecular-

weight bands, respectively (Figure 5A). This result suggests that Wzz1 mediates the biosynthesis of long OSA-

type O-PS chains, while Wzz2 is essential for the production of very long O-PS chains. The wzz1 mutant of 

PCL1391 was further unable to swarm (Figure S4C), indicating that presence and correct modular size 

distribution of O-PS is essential for swarming motility. 

 

P. protegens CHA0 displayed an LPS banding pattern distinct from PCL1391 (Figure 5B). Separation of the 

extracted LPS on polyacrylamide gels and subsequent silver staining revealed a dominant low-molecular-

weight band between 10 and 15 kDa and a smear comprising molecules with high molecular weights of up to 

more than 100 kDa. The disruption of waaL and the deletion of wbpL, which encodes the putative initial 

glycosyltransferase essential for both types of O-PS in PAO1, both resulted in the loss of the high-molecular-

weight bands and in a shift of the low-molecular-weight band of several kDa. Complementation of the waaL 

and wbpL mutants rescued the production of wild-type O-PS (Figure S2). This suggests that the smear with 

the high-molecular-weight bands and the dominant low-molecular-weight band consisted of smooth LPS 

molecules with long and short O-PS, respectively. 

In-frame deletion of wzx encoding the putative flippase in CHA0 resulted in the shift of the low-molecular-

weight band observed before in the waaL and ΔwbpL mutants, but not in the disappearance of the LPS 
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molecules with the long O-PS. In contrast, partial deletion of the OBC3 cluster (Figure 4) led to the loss of the 

LPS form with long O-PS without causing a shift in the low-molecular-weight band (Figure 5B). Deletion of 

either OBC1 or OBC2 did not alter the LPS banding pattern observed on the gels, nor did the double 

mutation in CHA5165 (data not shown). This indicates that, although they seemed to be expressed (Figure 

S5) and might somehow modify O-PS, the OBC1 and OBC2 gene clusters are not essential for O-PS 

biosynthesis in strain CHA0. These observations together suggest that genes in the OBC3 cluster are essential 

for the synthesis of smooth LPS with long O-PS in P. protegens CHA0, while the remaining genes in the OSA 

cluster are necessary for the production of LPS molecules capped with (very) short O-PS. WbpL, which is the 

putative initial glycosyltransferase encoded in the OSA cluster, seems to be essential for the biosynthesis of 

both forms of O-PS in strain CHA0. Since no gene coding for a Wzy polymerase was found in CHA0, it is likely 

that the short O-PS form consists of only one O-PS repeating unit as it was reported for a wzy mutant of 

PAO1 [8]. 

 

Although having different genetic bases for the biosynthesis of polysaccharides, both P. chlororaphis 

PCL1391 and P. protegens CHA0 are capable of synthesizing two distinct forms of O-PS simultaneously. The 

strains might achieve this by employing two different biosynthesis pathways, i.e. a flippase-dependent (in 

the case of OSA) and an ABC-transporter-dependent (in case of CPA and OBC3), in parallel. In both strains, 

the OSA-type capped form of LPS seemed to dominate under the chosen growth conditions. 

 

Genetic diversity and evolution of O-PS biosynthesis 

The available genome sequences (Flury et al., manuscript in preparation) and the knowledge gained about 

the genetic basis of O-PS biosynthesis in strains PCL1391 and CHA0 made it possible to analyze the diversity 

of genes and gene clusters predicted to be involved in the production of O-PS in biocontrol pseudomonads 

with insecticidal activity. Analysis of banding patterns of LPS extracted from selected Pseudomonas strains 

indicated that they all produce smooth forms of LPS (Figure 6A). 

The presence and genetic composition of predicted O-PS biosynthesis gene clusters varied extensively 

among the insect-pathogenic Pseudomonas strains analyzed in this study (Figure 6B). Remarkably, only one 

strain (P. chlororaphis JF3835, isolated from fish [50]) in the focus of this study harbored the complete 

classical P. aeruginosa-type O-PS gene clusters. All other strains showed significant changes to the prototype 

of O-PS biosynthesis in pseudomonads. 

All P. protegens strains in this study were found to possess an OSA gene cluster that is significantly reduced 

compared to the classical OSA cluster of P. aeruginosa and certain P. chlororaphis strains (Figure 6B, Table 

S1). This genetic reduction was even more extensive in the P. protegens strains K94.41, PF and Pf-5 where 

the OSA cluster consists of only wbpL and the two flanking genes. A similarly reduced OSA cluster could also 
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be detected in P. chlororaphis strains LMG1245, YL-1 and O6 as well as in Pseudomonas sp. CMR5c. The 

genome analysis also revealed that P. protegens strains not only have a reduced OSA cluster but also entirely 

lack the CPA cluster which was present in all other pseudomonads in the focus of this study (Figure 6B, Table 

S1). 

 

Interestingly, all strains with a reduced OSA gene cluster were found to possess additional gene clusters 

(OBC3-7) harboring genes that are predicted to contribute to O-PS biosynthesis (Figures 6B and S6). 

Sequence comparisons using nucleotide BLAST suggested that these additional gene clusters (or at least 

parts of them) were acquired at one point by horizontal transfer across species and/or genus barriers, since 

orthologs of many genes of these clusters were absent in genomes of closely related Pseudomonas strains 

but detectable in polysaccharide biosynthesis clusters of various different bacterial species and genera 

(Figure S6). An example is the OBC3 gene cluster, which was found to be essential for the biosynthesis of 

long O-PS in CHA0 (Figure 5B). It was additionally identified in P. protegens PGNR1, BRIP, and Cab57 as well 

as in Pseudomonas sp. CMR5c (Figure 6B). The OBC3 cluster harbors several genes with relatively high 

sequence identities (67-75%) to genes of the O-PS biosynthesis locus of Rhizobium etli (Figures 7A and S6). 

Three of these genes encode enzymes (a GDP-mannose 4,6-dehydratase and a GDP-L-fucose synthase) and a 

glycosyltransferase (the fucosyltransferase WreE) that are sufficient for the synthesis of GDP-L-fucose from 

GDP-D-mannose and the covalent binding of the sugar to O-PS repeat units in R. etli CE3 ([51], Figure 7B). 

The homologous genes in CHA0 were at least 67% identical to the Rhizobia genes and seemed to be 

organized as an operon as well, indicating that CHA0 is capable of synthesizing GDP-L-fucose (Figure 7A). 

Deletion of fcl, which codes for a putative GDP-L-fucose synthase, in CHA0 (CHA5205) resulted in the loss of 

long O-PS (Figure 7C) as it was observed for the Δobc3 mutant before (Figure 5B). Re-introduction of fcl into 

the genome of CHA5205 rescued the biosynthesis of the long O-PS. Complementation of the same mutant 

strain with fcl from R. etli CE or E. coli K-12, which is able to synthesize GDP-L-fucose as well [52], similarly 

rescued the production of long O-PS, which, however, appeared to have lower molecular weights compared 

to the wild type. Nevertheless, it can be assumed that CHA0 fcl encodes a GDP-L-fucose synthase just as in R. 

etli and E. coli, since glycosyltransferases generally display strict substrate specificity [53]. It is therefore 

likely that an ancestor of P. protegens has acquired the ability to synthesize long O-PS containing fucose by 

horizontal transfer of genes from rhizobia. 
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Figure 6: Genetic and phenotypical diversity of O-PS biosynthesis in selected pseudomonads. (A) SDS-PAGE of LPS extracted from 

diverse Pseudomonas strains grown until late exponential growth phase in Lysogeny Broth (LB) at 25°C. Silver staining was used to 

visualize LPS on the gels. Molecular weights in kDa are indicated on the left of each gel. (B) Phylogeny of selected pseudomonads, 
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based on the full core genome (Flury et al., manuscript in preparation), and the presence of identified gene clusters predicted to 

contribute to the biosynthesis of O-PS in these strains. Gene clusters lacking functionally important genes (CPA: rmd, gmd and/or 

wbpW; OSA: wzz1, wzy; OBC1: genes encoding proteins for nucleotide sugar biosynthesis at the 5’ end) are depicted as “reduced” 

and the ones missing additional genes (OSA: wzx) are displayed as “strongly reduced”). Gene clusters that comprise genes coding for 

both ABC transporters and flippases are depicted as “extended”. No role in O-antigen biosynthesis was found for OBC1. Locus tags 

for all genes and gene clusters are listed in Table S1. 

 

Orthologs of genes of the OBC5 and OBC6 gene clusters were detected at the OSA locus (flanked by ihfB and 

comEA) of certain Pseudomonas strains (Figure S6 and data not shown). This suggests that the OBC5 and 

OBC6 gene clusters were originally residing within the OSA locus, encoding the proteins responsible for the 

biosynthesis of the major O-PS, in the donor bacteria before they were vertically acquired by ancestors of 

the respective P. protegens strains. Three genes of the OBC5 cluster (rfbF, rfbG and rfbH (Figure S6)) were 

similar (66% nucleotide sequence identity) to genes of the O-PS biosynthesis gene cluster rfb of Salmonella 

enterica subsp. enterica. They were predicted to code for enzymes that catalyze the production of CDP-D-

abequose, a nucleotide sugar used for the synthesis of O-PS in certain Salmonella serovars [54,55]. This 

indicates that, at one point, these sugar biosynthesis genes have been acquired horizontally by 

pseudomonads from enterobacteria. 

 

While one P. chlororaphis lineage appears to have lost functionally important genes of the OSA cluster, 

independent events in two other lineages of the same species seem to have led to the loss of genes in the 

CPA gene cluster necessary for the synthesis of GDP-rhamnose. Interestingly, strain 30-84 only lost the gene 

rmd, but still possesses the gmd and wbpW genes (data not shown), which pointed to a gradual loss of genes 

for GDP-rhamnose biosynthesis in P. chlororaphis. Since some indications were found in this study that 

PCL1391 is still able to synthesize O-PS with the remaining CPA cluster genes, it is likely that GDP-rhamnose 

was replaced by another nucleotide sugar for the synthesis of the CPA-type O-PS in P. chlororaphis strains 

with reduced CPA clusters. 

 

The OBC2 cluster, for which no obvious role in O-PS biosynthesis was observed in PCL1391 and CHA0, was 

found to be generally well conserved in strains of the P. fluorescens group in terms of presence and 

composition (Figure 6). The observed conservation indicated that OBC2 has an important biological function 

in these bacteria, but, compared to the CPA and OSA gene clusters, does not seem to be under high selective 

pressure. 
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Figure 7: Genes for the biosynthesis of GDP-fucose possibly have been acquired by horizontal gene transfer in Pseudomonas 

protegens. (A) Certain genes of the OBC3 locus of P. protegens CHA0 are homologous to genes of the O-antigen biosynthesis locus of 

Rhizobium etli CE3. Three genes of the OBC3 gene cluster show sequence identities of at least 67% to genes in R. etli CE3 necessary 

for the biosynthesis of L-fucose-containing O-antigen [51]. (B) GDP-L-fucose is synthesized in various bacteria by conversion of GDP-

D-mannose by a GDP-mannose dehydrogenase and a GDP-L-fucose synthase and can subsequently be used to assemble O-PS units 

[51,52]. (C) SDS-PAGE with LPS extracted from CHA0, its Δfcl mutant and complemented strains. Molecular weights are indicated on 

the left of the gel in kDa. Long O-PS were lost in the Δfcl mutant and (partly) rescued by complementation with fcl from CHA0, E. coli 

K-12 or R. etli CE3. 
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The OBC3-type O-polysaccharide acts as a bacteriophage receptor 

A lytic bacteriophage isolated from a culture of P. protegens CHA0 and named GP100 was found to have a 

deleterious impact on the survival and biocontrol activity of the bacterial host [56]. Because O-PS frequently 

serve as receptors for bacteriophages of Gram-negative bacteria [26], the ability of the phage GP100 to 

infect constructed O-PS mutants of P. protegens CHA0 was investigated. Deletion of fcl but not wzx rendered 

strain CHA0 resistant to infection by GP100 (Figure 8), indicating that the long O-PS synthesized by proteins 

encoded in the OBC3 gene cluster is the receptor for the bacteriophage. Complementation in cis with fcl 

from CHA0 or in trans with fcl from R. elti CE3 or E. coli K-12 restored the susceptibility of CHA0 to GP100 

(Figure 8). The observation that the bacteriophage was able to recognize and infect the Δfcl mutant 

complemented in trans further supports our hypothesis that CHA0 is capable of synthesizing GDP-L-fucose 

and that it incorporates this particular sugar into its long O-PS chains. 

It was reported that phage GP100 only infects a narrow range of P. fluorescens group strains [56], which can 

now be explained by the presence of the OBC3 cluster in only a limited number of Pseudomonas strains 

(Figure 6B). All strains possessing the OBC3 cluster available for testing in the laboratory were susceptible to 

infection by the bacteriophage, while P. protegens strains without it were resistant (Figure 8). 

 

 

Figure 8: The OBC3-type O-polysaccharide serves as a receptor for bacteriophage GP100. The susceptibility of CHA0, its isogenic 

mutant strains and various Pseudomonas strains to infection by GP100 was assessed by inoculation of a soft agar layer containing the 

pseudomonads with some microliters of bacteriophage suspension. A clear zone indicated lysis of the bacteria due to infection by 

GP100, while phage-resistant bacteria were able to grow in the presence of the bacteriophage. 
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O-polysaccharides contribute to insect pathogenicity of Pseudomonas protegens CHA0 

O-PS plays an important role as virulence factors in many pathogenic bacteria. Therefore, the contribution of 

these molecules to insect pathogenicity in P. protegens CHA0 and P. chlororaphis PCL1391 was investigated. 

To do so, mutant strains with no obvious growth defects (Figure S4) were selected for virulence and 

competition experiments. P. protegens CHA0 without O-PS (ΔwbpL, CHA5161) was strongly reduced in its 

ability to kill larvae of Galleria mellonella upon injection (Figure 9A). Complementation of the mutant strain 

(CHA5169) restored its insecticidal activity to wild-type level. Loss of the short and long O-PS (CHA5206 and 

CHA5205, respectively) both resulted in a significantly reduced virulence in strain CHA0, suggesting that both 

forms of O-PS contribute to the systemic virulence of the bacterium in G. mellonella. In contrast, mutation of 

wzz1 and wzz2 in P. chlororaphis PCL1391 did not cause a decrease in virulence in this infection model 

(Figure S7), indicating that regulation of O-PS chain lengths is not critical for virulence of PCL1391 during 

systemic infection of insects. The Δwzx and the ΔwbpL mutants of P. protegens CHA0 were also significantly 

less virulent than the wild type when orally administered to Plutella xylostella larvae (Figure 9B), indicating 

that in this bacterium the short O-antigen also contributes to insect pathogenicity via the oral route of 

infection. In contrast to the assay with G. mellonella, the wbpL deletion mutant was more virulent than the 

Δwzx mutant in this infection model. Moreover, the Δfcl mutant was as lethal as the wild type in P. xylostella, 

suggesting that the long O-PS is not important for pathogenicity in this insect species upon ingestion. 

For a competition assay, the mutant strains were tagged with mCherry and injected into G. mellonella as a 

1:1 mixture with the respective GFP-tagged wild-type bacteria. Lack of the short, long or both types of O-PS 

significantly reduced the competitiveness of mutants of strain CHA0 in the insect larvae (Figure 9C). 

Production of O-PS thus might be crucial for efficient colonization of the insect host by P. protegens during 

systemic infection. Isogenic mutants of PCL1391 lacking functional Wzz1 or Wzz2 were in contrast as 

competitive as the wild type (Figure 9C). Therefore, specific regulation of O-PS length did not seem to be 

essential for colonization of G. mellonella by P. chlororaphis upon injection. 
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Figure 9: O-polysaccharides contribute to insect pathogenicity in Pseudomonas protegens CHA0. (A) Virulence of mutant strains of 

CHA0 was determined by injection of a low number of bacterial cells into larvae of Galleria mellonella and monitoring the survival of 

the insects over time. Deletion of wbpL (in red, CHA5161), wzx (in green, CHA5206) or fcl (in violet, CHA5205) significantly reduced 

the mortality of the larvae (*, p-value < 0.001; Log-rank test), while the complemented ΔwbpL mutant (in blue, CHA5169) was as 

virulent as the wild type (in black, CHA0). Saline solution served as a negative control (in gray). The experiment was repeated once 

with similar results. (B) The virulence for selected mutants (CHA5161, in red; CHA5205, in violet; CHA5206, in green) and the wild-

type strain (in black) of P. protegens CHA0 upon oral infection was assessed using larvae of Plutella xylostella. The caterpillars were 

fed with bacteria-treated artificial diet and their survival was monitored over two days. Saline solution (in gray) and the gacA mutant 

of CHA0 (CHA89, in brown) served as a negative control. Treatments that were significantly different from the one with wild-type 

CHA0 are indicated with * (p-value < 0.005; Log-rank test). This experiment was repeated twice with similar results. (C) 

Competitiveness of mutant strains during insect infection was investigated by injecting equal numbers of fluorescently marked 

mutant and corresponding wild-type cells into larvae of G. mellonella and counting bacterial cells in hemolymph samples 20 to 24 

hours after the injection by epifluorescence microscopy. The competitive index indicates the ratio between the cell numbers of the 

mutant and the wild type, normalized by the ratio in the inoculum. Significant differences between the competing strains are 

indicated with * (p-value < 0.05; one-sample t test) and *** (p-value < 0.005; one-sample t test). The experiment was repeated twice 

with similar results. NS, not significant. 
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The same reporter bacteria were also used for an analogous competition assay on roots of cucumber plants. 

All mutant strains colonized the root tips as competitively as their respective wild types (Figure 10), 

suggesting that O-PS are not critical for colonization of plant roots under axenic conditions. Furthermore, 

loss of O-PS did not seem to markedly affect the motility and biofilm formation in CHA0 (Figure S4), nor its 

hemolytic activity and production of antifungal metabolites (data not shown). 

 

 

Figure 10: O-polysaccharide is not essential for colonization of plant roots by Pseudomonas protegens CHA0 under axenic 

conditions. Competitiveness of mutant strains during root colonization was studied by inoculation of cucumber plants with equal 

numbers of fluorescently marked mutant and corresponding wild-type cells and counting bacterial cells on root tips by 

epifluorescence microscopy 5 days after the inoculation. The competitive index indicates the ratio between the cell numbers of the 

mutant and the wild type, normalized by the ratio in the inoculum. No significant differences between the competing strains was 

observed (one-sample t test; α = 0.05). The experiment was repeated once with similar results. NS, not significant. 

 

The major O-polysaccharide contributes to antimicrobial peptide resistance 

Because O-PS were suggested to be important for resistance to cationic AMPs [17,18], selected 

Pseudomonas strains were tested for their susceptibility to polymyxin B (PMB). PMB is a bacterial cationic 

AMP with a mode of action similar to that of AMPs of higher organisms and is therefore commonly used as 

an inexpensive model AMP [57-59]. 

Remarkably, strains of P. protegens and Pseudomonas sp. CMR5c were highly resistant to PMB, with visible 

growth observed at a concentration of 250 µg/ml (Figure 11A). Most P. chlororaphis strains also displayed 

resistance to this cationic AMP, while the other pseudomonads tested were susceptible to PMB. Isogenic 

mutants of CHA0 incapable of synthesizing LPS capped with short O-PS were significantly less resistant to 

PMB than the wild type (Figure 11B): no survival at 100 µg/ml PMB was observed when wbpL, waaL, or wzx 

was mutated whereas complementations restored wild-type resistance levels. The presence of long O-PS 

however did not seem to be important for AMP resistance, since the Δfcl mutant was as resistant to PMB as 

the wild type. In contrast, mutation of arnA, required for the modification of lipid A with aminoarabinose, 
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resulted in a decreased level of polymyxin resistance resembling that of the Δwzx mutant of CHA0. A wbpL 

arnA double mutant (CHA5214) was completely sensitive to PMB, suggesting that lipid A modification with 

aminoarabinose and capping LPS with short O-PS contributed to PMB resistance independently. Similar 

results were obtained with colistin (data not shown), another polymyxin AMP. Moreover, the presence of O-

antigen seems to be essential for AMP resistance in P. chlororaphis PCL1391 as well (Figure S8). The length of 

the O side chains thereby seems to shape the degree of resistance to these antimicrobial compounds. 

Since lipid A modification with aminoarabinose in P. aeruginosa is known to be dependent in vitro on 

limitation of magnesium (Mg2+) in the growth medium [60], resistance of P. protegens CHA0 to PMB was also 

assessed in the presence of high concentrations (20 mM) of Mg2+. Although the bacterium became less 

resistant to the action of PMB with increasing Mg2+ concentrations, the survival of the remaining cells was 

still dependent on the function of both arnA and wbpL (Figure S9). This further suggests that P. protegens is 

resistant to AMPs even in the presence of the high concentrations of Mg2+ occurring in the hemolymph of 

insect larvae [61-63] and that it needs both mechanisms to protect itself against AMPs during insect 

infection. 
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Figure 11: Occurrence of high antimicrobial peptide resistance in insect-pathogenic pseudomonads and underlying mechanisms in 

Pseudomonas protegens CHA0. (A) The minimum inhibitory concentration (MIC) of polymyxin B (PMB) was determined for selected 

Pseudomonas strains by growing them for 24 hours in Lysogeny Broth in presence of different concentrations of the antimicrobial 

peptide (2, 10, 50, 100, or 250 µg/ml PMB). The MIC was defined as the concentration at which no visible growth of the bacteria was 

observed. For P. protegens strains CHA0, PGNR1, BRIB, K94.41, PF, Pf-5, and Pseudomons sp. CMR5c growth was observed even at 

the highest concentration tested. Strains that possess the fit gene cluster are efficiently killing lepidopteran insect larvae. The 

experiment was repeated twice with similar results. (B) Cell suspensions of P. protegens CHA0 and derivatives were serially diluted 

and aliquots were spotted on nutrient agar plates containing either 10 or 100 µg/ml PMB. Colonies were counted after incubating 

the plates for 24 hours. Colony numbers were normalized by the number of colonies in the control plates without PMB, in order to 

compare them between strains. Shown are means and standard deviations from three independent assays with similar results. 

Strains marked with different characters were significantly different from each other in respect to PMB resistance (p-value < 0.05; 

two-way ANOVA with transformed data). 
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O-polysaccharides are adaptable cell surface structures 

The genetics of O-PS biosynthesis in the two model strains CHA0 and PCL1391 was investigated under 

standard laboratory conditions. It has however been observed that bacteria change the composition and 

sizes of their O-PS according to the environment [11]. Therefore, this study also addressed the questions 

whether these pseudomonads are able to vary the sizes of their O-PS in response to different media and 

hosts. 

When strain PCL1391 was grown in Grace’s Insect Medium (GIM), which is a medium that mimics the 

physicochemical conditions found in lepidopteran insect larvae [5,64], its LPS banding pattern changed 

significantly compared to growth in Lysogeny Broth (LB) (Figure 12). The quantity of very long O-PS increased 

when PCL1391 was grown in GIM compared to LB. In CHA0, the production of the long and short O-PS 

observed in LB did not seem to change dramatically when the bacterium was grown in GIM, but some strong 

medium-size bands were visible on the gel (Figure 12A). Additional experiments are necessary to determine 

whether these bands consisted of further O-PS or of some other, LPS-unrelated polysaccharides. 

Green fluorescence protein (GFP)-based reporter plasmids were constructed (Table S2) to assess whether 

the changes in O-PS length in PCL1391 could have arisen from differential expression of Wzz1 and Wzz2. The 

expression of wzz2 and wzz1 in PCL1391 changed in response to different environments (Figure 12B). 

Compared to LB, the chain-length regulator Wzz2 was more expressed in GIM, while the expression of Wzz1 

slightly decreased. Based on the previous finding that in PCL1391 Wzz1 and Wzz2 are regulating the 

synthesis of long and very long O-PS, respectively (Figure 5A), it can be hypothesized that the observed 

increase of very long O-PS chains in GIM (Figure 12A) is due to an increased expression of wzz2. During an 

infection of G. mellonella larvae the expression level of wzz2 in PCL1391 was higher than on cucumber roots, 

suggesting that the O-PS length distribution of PCL1391 during insect infection is different from the length 

distribution during root colonization. These results suggest that the bacterium is able to adjust the length of 

the LPS glycan chains in response to different environments by differential expression of wzz1 and wzz2. 
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Figure 12: O-polysaccharides are adaptable cell surface structures. (A) SDS-PAGE with LPS extracted from Pseudomonas 

chlororaphis PCL1391 and Pseudomonas protegens CHA0 grown in Lysogeny Broth (LB) or Grace’s Insect Medium (GIM). 

Polysaccharides were detected by SDS-PAGE and by silver staining. Bands on the CHA0 gel that are visible in GIM but not in LB are 

probably exopolysaccharides and not O-polysaccharides. Molecular weights are indicated on the left of the gel in kDa. The 

experiment was repeated once with similar results. (B) Single cell fluorescence intensities of P. chlororaphis PCL1391 carrying 

reporter plasmids (pME8396 for wzz1 or pME11019 for wzz2) and grown in LB, GIM, insect larvae (Galleria mellonella) or on plant 

roots (cucumber) were determined by fluorescence microscopy. Shown are population means (LB and GIM) or means and standard 

deviations from three independent samples (cucumber and Galleria). Exposure times for bacteria carrying the wzz2 reporter plasmid 

were 10-times longer than for wzz1 to account for the difference in expression levels. 
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Discussion 

High diversity of O-antigen gene clusters in insect-pathogenic pseudomonads 

LPS O side chains are at the interface between the bacterial cell and the host organism and therefore play an 

important role in microbe-host interactions and are under high selective pressure [8-10,12,13,65]. Although 

the composition of these glycan chains was determined in some plant-beneficial pseudomonads [66-68], this 

study is the first to address the genetic basis and evolution of O-PS biosynthesis in these particular 

microorganisms. 

Identification of genes and gene clusters putatively contributing to O-PS biosynthesis in the model strains P. 

chlororaphis PCL1391 and P. protegens CHA0 and their mutagenesis revealed both similarities and 

differences in the genetic basis of O-PS biosynthesis in these two bacteria (Figure 13). Both strains produce 

two distinct forms of O-PS, which seems to be a characteristic of pseudomonads [35]. Our data indicate that 

in PCL1391 O-specific side chains of LPS are synthesized in a similar way as previously reported for P. 

aeruginosa PAO1 [8] (Figure 13A). As in the prominent human pathogen, the major O-PS type of PCL1391 is 

most probably produced via the Wzx/Wzy-dependent pathway by proteins encoded in the OSA gene cluster 

and its length is regulated by two chain length determination proteins. Additionally, although slightly 

reduced, a functional CPA gene cluster was found to be responsible for the biosynthesis of a minor form of 

O-PS in this strain under certain conditions. While the regulation of OSA chain lengths by Wzz1 and Wzz2 

was found to be important for the pathogenesis of P. aeruginosa [69], it did not seem to contribute to 

infection and killing of insect larvae by the P. chlororaphis strain in injection assays (Figures 9B and S7). 

However, a role of Wzz1 and Wzz2 in insect pathogenicity cannot be ruled out and needs to be addressed in 

future experiments, in particular by using an oral infection model. We for example observed that correct 

synthesis of OSA is essential for swarming motility in P. chlororaphis PCL1391. Because mutations in the OSA 

cluster of PCL1391 or the waaL gene negatively affected the growth rate of the bacterium, we did not 

investigate whether loss of O-antigen reduces the virulence of this particular pseudomonad. 
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Figure 13: Models for the LPS structures in two plant-beneficial pseudomonads with insecticidal activity. Pseudomonas 

chlororaphis PCL1391 (A) and Pseudomonas protegens CHA0 (B) both produce LPS with two distinct forms of O-PS. The major type of 

O-PS is probably a heteropolymer (in violet) and synthesized by proteins encoded in the OSA gene cluster via the Wzx/Wzy-

dependent pathway. In PCL1391, the chain lengths of this particular O-PS vary and are regulated by the chain length determination 

proteins Wzz1 and Wzz2. In CHA0, the major form of O-PS consists of a single repeating unit due to the lack of a polymerase. Both 
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strains produce a second, minor type of O-PS which is synthesized via the ATP-binding cassette (ABC) transporter-dependent 

pathway by proteins encoded in the CPA gene cluster in PCL1391 (in red) and the OBC3 gene cluster in CHA0 (in green). The CPA in 

PCL1391 is mainly produced at temperatures above 25°C and likely a homopolymer. In CHA0, most of the lipid A-core molecules are 

capped with O-PS while in PCL1391 also rough LPS (i.e. lipid A-core without O-PS) is produced and presented on the bacterial surface. 

 

In contrast to PCL1391 and PAO1, the genetic basis of O-PS biosynthesis in P. protegens strains is 

characterized by reduction and replacement of gene clusters during the evolution of this species (Figures 4 

and 6). The OSA gene cluster in P. protegens strains has been reduced to various degrees over time by loss of 

genes, including the wzy gene coding for the O-antigen polymerase. The lack of this polymerase most 

probably rendered P. protegens unable to synthesize OSA-type O-PS with more than one O-unit (Figure 13B). 

LPS capped with the resulting very short O-PS therefore structurally resembles the lipooligosaccharide of 

certain Gram-negative bacteria, such as Haemophilus and Neisseria species [70]. All P. protegens and P. 

chlororaphis strains that possess a reduced OSA gene cluster retain the same three genes: wbpL and its two 

flanking genes. These genes are most probably conserved because the bacteria absolutely need the initial 

glycosyltransferase WbpL to be able to synthesize O-PS. All P. protegens strains further lack the gene cluster 

for the biosynthesis of CPA, but possess additional gene clusters in return which enable them to synthesize 

O-PS with long sugar chains.  

 

Changing the O-PS structure for better adaptation? 

P. fluorescens group species other than P. protegens harbor OSA gene clusters with complex and diverse 

genetic compositions (data not shown). This particular locus therefore seems to be a hot spot for the 

acquisition of new genes in pseudomonads. High genetic diversity in the major O-PS gene cluster has been 

reported for other bacterial species such as P. aeruginosa and Salmonella enterica before [71-73]. Classically, 

this glycan diversity has been explained with the selective pressure exerted by host immunity, i.e. bacteria 

producing rare or novel types of O-antigen are more likely to avoid detection by the host immune system 

[74]. It is known that certain bacteria are mimicking surface structures of mammalian cells to better survive 

in the host by avoiding, reducing or manipulating host immunity [75]. Selection by the host immune system 

can however not explain why also non-pathogenic bacteria display high O-antigen diversity and it has 

become evident that also other factors contribute to the diversity of glycan structures in microorganisms. O-

PS can, amongst others, be important for bacterial competition. McCaughey et al. reported that rhamnose-

containing LPS molecules are the target of lectin-like bacteriocins from pseudomonads [27]. The reduction or 

loss of the CPA gene cluster thus could have rendered certain pseudomonads resistant to this kind of 

bacteriocins. It has further been suggested that infection by bacteriophages, which often use O-PS structures 

as receptors for cell entry, act as driving force [8,26]. Indeed, we discovered that the long O-PS synthesized 

by proteins encoded in the OBC3 gene cluster serve as a receptor for at least one type of phage (Figure 8). 
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Glycans can play an important role for long-term microbe-host interactions. Specific glycan structures might 

be important for shaping beneficial microbial communities on plant roots or in the intestines of animals [75]. 

Due to their short generation times and capability of exchanging genetic material across vast phylogenetic 

distances, microorganisms are able to quickly adapt to new environments and hosts. By lateral transfer of 

genes for the biosynthesis of O-PS bacteria can rapidly change the chemical composition of their surface 

decoration in response to a specific niche [75]. Bacteria that are able to change the chemical composition of 

their O-PS and as a consequence can better adapt to a particular environment thus might have a fitness 

advantage and are consequently selected for. The diversity of O-PS structures in biocontrol pseudomonads 

thus might reflect the adaptation to specific plant species or varieties and mediate strain-host specificity. 

 

Emergence of a novel mechanism for exchanging surface glycans? 

In the P. fluorescens group, reduction of the OSA gene cluster seems to have taken place uniquely in P. 

protegens and certain P. chlororaphis lineages (Figure 6; data not shown). The diversity of O-PS structures in 

these pseudomonads is no longer created by exchanging genes at the OSA locus, as it has been observed for 

other Pseudomonas bacteria [35,71], but by acquiring entire gene clusters via horizontal gene transfer at 

diverse chromosomal loci. Possession of additional O-PS gene clusters was not observed for P. fluorescens 

group species other than P. protegens and P. chlororaphis (data not shown; the OBC1 cluster was not found 

to contribute to the biosynthesis of O-PS). P. protegens strains are all very similar in terms of genome 

sequence (Flury et al., manuscript in preparation; [76]) and it is therefore striking that they display 

completely different glycan structures. Fast evolution of O-PS structures by acquisition of new O-PS genes 

outside of the OSA locus might represent a novel mechanism for rapidly changing the surface structure in 

pseudomonads. 

 

It is interesting to note that all strains that harbor reduced OSA clusters possess new O-PS gene clusters and 

that those seem to replace the biosynthesis of long O-antigen sugar chains. This strongly indicates that 

reduction of the major O-antigen gene cluster in these bacteria is directly linked to the acquisition of new O-

PS gene clusters. From our data, it is, however, impossible to deduce which of the two events happened first 

in these microbes. An advantage of reducing the OSA gene cluster instead of using it as a hot spot for lateral 

gene transfer might be that it restricts the dynamics at the OSA locus and that acquisition of genes at new 

loci can take place without changing the genetics of the major O-PS form. It thus enables P. protegens to 

change the long O-PS to adapt to different niches without affecting the biosynthesis of the OSA-type O-PS. 

This so far unappreciated mechanism might functionally disconnect the synthesis of the major form of O-PS, 

which has a kind of housekeeping function and is now buried instead of exposed, from the production of 
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minor types of O-PS with long sugar chains for host adaptation. It might accelerate the exchange of O-PS 

gene clusters and be the cause why we see so much diversity in phylogenetically closely related strains. 

Diversification of glycan structures might have allowed P. protegens to successfully adapt to plant and insect 

hosts as one single bacterial species. The acquisition of genes that direct the biosynthesis of diverse 

nucleotide sugars by horizontal gene transfer might have enabled it to incorporate sugars such as fucose or 

abequose into O-PS, as reported for rhizobia and enterobacteria [51], instead of the for pseudomonads 

common rhamnose. Interestingly, fucose is an important constituent of polysaccharides in animal guts and 

on plant roots [77]. This particular sugar is important for the interaction between the gut microbiota and the 

host organism [78]. Many pathogenic bacteria produce polysaccharides containing fucose residues [78,79] 

and plant-beneficial pseudomonads were reported to produce fucose-containing polysaccharides before 

[68,80]. Certain rhizobia also produce O-antigens that contain L-fucose and influence the symbiosis with the 

plant [51]. It can therefore be speculated that fucose-containing O-PS somehow contributes to either 

recognition of P. protegens by the plant host or to evasion of recognition of the microorganism by the insect 

immune system. The chemical composition and structure of the particular O-PS needs however to be 

determined in the future to have more evidence for the presence of fucose and to investigate the roles of 

the chemical structure of these O-specific side chains in the interaction of the bacterium with plant and 

insect hosts. 

 

It will be important to test the hypothesis of the proposed new mechanism for O-PS gene cluster exchange 

by performing experiments that allow following changes in O-PS gene clusters over long periods of time 

under different environmental conditions. In particular it would be interesting to inoculate different plant 

species in the field with these pseudomonads and analyze whether these bacteria effectively rapidly change 

their O-PS gene clusters in response to the plant host by re-isolation after several months or years. In case 

acquisition of new O-PS genes or gene clusters can be observed, whole genome sequencing would possibly 

give some valuable information about the underlying mechanisms of these changes. 

 

OSA-capped LPS might protect pseudomonads against immune responses during insect 

infection 

O-antigen has been reported in several bacteria to be important for virulence in insects [18,81-83]. We 

found that in particular the very short OSA-type O-PS contributes to the ability of P. protegens CHA0 to cause 

disease in insect larvae (Figure 9). Our results indicate that the bacterium is less virulent when it lacks the O-

antigen possibly because it is less effective in bypassing or overcoming host defense mechanisms. The 

presence of O-PS on the cell surface likely renders the microbe more resistant to antimicrobial factors 

produced by the insects during systemic infection. There is little but increasing evidence that O-PS is 
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important in diverse bacteria for the resistance to AMPs [15,18,19] which play a central role in the immune 

system of insects [14,44]. We present evidence in this study that certain pseudomonads are naturally 

resistant against selected AMPs and that O-PS are crucial for resistance to attack by AMPs in both CHA0 and 

PCL1391 (Figures 11 and S8). In both strains we identified the OSA as the O-PS form responsible for the 

moderate to high resistance to PMB. It is possible that ligation of this kind of O-PS to the lipid A-core changes 

the overall charge of LPS molecules, which might confer resistance to AMP binding. Additionally, the 

frequency of O-PS-capped LPS seems to be very high in P. protegens strains and in Pseudomonas sp. CMR5c 

(Figure 5B and Figure 6), which might leave only very few LPS molecules uncapped on the cell surface and 

susceptible to binding by AMPs. In contrast, capping frequencies in P. aeruginosa were reported to be 

between 0.2 and 14% only [34]. Another explanation could be that OSA increases the resistance to AMPs 

indirectly, for example by acting as an anchor or stabilizer for proteases that neutralize AMPs such as AprA in 

Pseudomonas entomophila [84]. Although the exact mechanism remains unclear, the role of the short O-PS 

in hyper-resistance toward polymyxins suggests that the reduction of the OSA gene cluster somehow 

contributed to the development of high AMP resistance in P. protegens. 

Strains of P. protegens and P. chlororaphis were shown to be able to colonize and kill certain insect species 

upon oral or systemic infection, while other strains of the P. fluorescens group (with the exception of 

SBW25-like strains) do not seem to be pathogenic to insects ([4] and Flury et al., manuscript in preparation). 

In general, resistance to PMB thus seems to correlate with the potential of bacteria of the P. fluorescens 

group to cause disease in lepidopteran insects (Figure 11A). Interestingly, resistance to AMPs was recently 

proposed to be a common feature of the human gut microbiota [59]. PMB resistance (i.e. visible growth at a 

concentration of 10 µg/ml or beyond) could therefore be used as a quantitative marker for oral insect 

pathogenicity in plant-beneficial pseudomonads, in addition to the presence of fitD on their chromosomes 

[85]. However, the genetic and molecular basis of the discovered PMB resistance in insecticidal 

pseudomonads remains vague. Modification of lipid A with aminoarabinose seems to be essential for the 

high resistance to PMB in CHA0 in addition to the presence of OSA (Figure 11B). Lipid A modification was 

further reported to play a central role in PMB resistance in P. aeruginosa [9,43]. It thus should be 

investigated whether strains resistant to PMB display higher levels of lipid A modification than 

pseudomonads susceptible to PMB. 

This is the first report of hyper-resistance to polymyxins in pseudomonads. PMB and colistin are used in 

clinics to treat patients with Pseudomonas infections and considered as last-resort antibiotics [86,87]. Our 

results suggest that development of high resistance to these polymyxins could take place in P. aeruginosa as 

well, for example by modification of the OSA gene cluster, which likely would make such strains resistant to a 

broad range of AMPs. In the worst case, this event could also lead to cross-resistance to host AMPs [58]. 

 



 Genetic basis, evolution and biological roles of O-polysaccharides 

149 

It is possible that decreased AMP resistance is not the only reason why O-PS mutants of P. protegens CHA0 

are significantly reduced in virulence in insects. O-PS might contribute to CHA0 having an extremely tight and 

stable outer membrane which would confer a general resistance to immune defenses beyond AMPs. It is 

tempting to speculate that the presence of smooth LPS protects insect-pathogenic pseudomonads against 

reactive oxygen species and lysozymes, which are produced by insects as antimicrobials in addition to AMPs 

[14], as well. This should be tested by exposing wild-type and O-antigen mutant strains of P. protegens CHA0 

to compounds/proteins such as paraquat, hydrogen peroxide and chicken egg white lysozyme in assays 

similar to the ones described for AMPs. 

Phagocytic hemocytes are contributing to the clearance of bacterial infections in the hemolymph as well 

[14]. That O-PS can protect against phagocytosis has been shown in other bacteria [21,88,89]. We observed 

that CHA0 is resistant to phagocytosis by hemocytes and it is thinkable that O-antigen contributes to this 

resistance in this microorganism as well. This could be assessed by conducting an in vitro assay using cell 

cultures of phagocytic hemocytes and O-PS mutant strains equipped with GFP cell tags for microscopic 

observations. 

 

Possible directions for future research 

We found bioinformatic evidence that genes in the well-conserved OBC2 cluster could allow the synthesis of 

capsular polysaccharide in pseudomonads, which to our best knowledge has not been reported before. 

Previous studies have indicated that capsular polysaccharides cannot be detected by silver staining [90]. 

Detection and characterization of these polysaccharides could be achieved by using an alternative dye such 

as Alcian blue [91]. Since capsules are important virulence factors for many pathogenic bacteria [46,92] we 

will investigate in a future study when they are produced and whether they contribute to insect 

pathogenicity in P. protegens and P. chlororaphis. 

 

The observed changes in O-PS chain lengths (Figure 12) demonstrate that these polysaccharides are not rigid 

structures but are modified according to the surrounding conditions. Future research should address how 

LPS modifications are accomplished in the model strain PCL1391, i.e. which signals trigger these changes and 

what regulators control the modification of O-PS biosynthesis. It would further be important to study the 

composition and structure of the O-PS in different growth phases and under additional growth conditions 

(changes in pH, temperature, presence of AMPs, etc.). The GPF-based reporter strains created in this study 

could constitute valuable tools for such studies. 

 

The present study has created the base for further studies of the role, evolution and regulation of O-PS in 

insecticidal pseudomonads. The notion that O-PS contributes to the protection of bacteria against AMPs is 
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currently still underappreciated [43,58,86]. Our study demonstrates for the first time the importance of O-PS 

in the resistance of Pseudomonas species to AMPs and supports similar findings in other bacteria from 

previous studies [17-19]. In the future, the resistance of selected strains to concrete AMPs from lepidopteran 

insect species should be tested to further demonstrate the relevance of AMP resistance for insect infection. 

 

Our results presented in this study further point out that O-PS evolve rapidly in plant-beneficial 

pseudomonads and that this might be linked to host adaptation. This notion needs to be addressed in future 

studies as it possibly will have consequences for the successful application of these biocontrol bacteria for 

plant protection. In addition, we think that the high genetic diversity of polysaccharide biosynthesis in these 

pseudomonads and the many genome sequences that are available now make these bacteria an ideal model 

to study the evolution of genes implicated in the glycan decoration of bacterial surfaces. 

 

 

Material and Methods 

Bacterial strains, plasmids, media, and culture conditions 

All strains and plasmids used in this study are listed in Table S2. Bacterial strains were routinely maintained 

on nutrient agar (NA) plates or cultured in LB (BD Difco) supplemented with appropriate antibiotics as 

needed. Pseudomonas strains were grown at 25°C while E. coli was cultured at 37°C. The following antibiotic 

concentrations were used: ampicillin, 100 µg/ml; chloramphenicol, 10 µg/ml; kanamycin, 25 µg/ml for E. coli 

and P. protegens, 50 µg/ml for P. chlororaphis; gentamicin, 10 µg/ml for E. coli and P. protegens, 20 µg/ml 

for P. chlororaphis; and tetracycline, 25 µg/ml or 125 µg/ml for E. coli and Pseudomonas, respectively. 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at a final concentration of 0.1 mM, if not otherwise 

stated. 

 

Recombinant DNA techniques 

DNA manipulations and PCRs were performed according to standard protocols [93]. Genomic DNA was 

extracted with the Promega Wizard Genomic DNA Purification Kit. Plasmid DNA preparations were 

performed using the QIAprep Spin Miniprep Kit (Qiagen) and the Genomed JETStar Plasmid Purification Midi 

Kit for small and large scale purifications, respectively. DNA gel extractions were conducted using the 

MinElute Gel Extraction Kit and the QIAquick Gel Extraction Kit (Qiagen). DNA restriction and modification 

enzymes were purchased from Promega and were used according to the manufacturer’s recommendations. 

DNA enzyme reaction cleanups were conducted using the QIAquick PCR Purification Kit (Qiagen). PCR for 

molecular cloning was conducted according to the recommendations of the manufacturer with the 
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PrimeSTAR HS high-fidelity DNA polymerase kit (Takara Bio Inc.), while the DNA Polymerase kit (Promega) 

was used to perform PCRs for analytic purposes. The primers used in this study were synthesized by 

Microsynth AG (Balgach, Switzerland) and are listed in Table S3. DNA sequencing was conducted at GATC 

Biotech (Konstanz, Germany) and obtained sequences were analyzed using the DNASTAR Lasergene software 

suite. 

 

Construction of in-frame deletion mutants 

In-frame deletions of selected genes in P. protegens CHA0 and P. chlororaphis PCL1391 were performed 

based on homologous recombinations using the suicide vector pEMG and the I-SceI system [94]. For the 

construction of the suicide vectors (Table S2), upstream and downstream regions of 500–600 bp length 

flanking the region to be deleted were amplified by PCR using the primer pairs listed in Table S3 and 

chromosomal DNA from strains CHA0 or PCL1391 as DNA templates. Purified PCR products were digested 

using the corresponding restriction enzymes (indicated in Table S3) and subsequently cloned into the suicide 

vector pEMG via triple ligation. Correct insert sequences of the resulting plasmids were confirmed via DNA 

sequencing. The obtained suicide vectors then served to construct strains CHA5161, CHA5163, CHA5164, 

CHA5165, CHA5182, CHA5205, CHA5206, PCL-3, and PCL-12 (Table S2), respectively, using the I-SceI system 

as described previously [5]. 

 

Construction of gene disruption mutants 

In cases where genes or gene clusters could not be deleted using the method described above, selected 

genes were mutated by sequence-specific insertion of pEMG-based suicide vectors via homologous 

recombination, which led to the disruption of the coding sequences (CDSs). Suicide vectors were constructed 

by PCR amplification of approximately 500-bp regions in the middle of the genes of interest, using the primer 

pairs listed in Table S3 and chromosomal DNA from the respective bacterial strain. The resulting fragments 

were digested with BamHI and EcoRI and cloned into pEMG opened with the same restriction enzymes. The 

insert sequences of the constructed vectors were verified by DNA sequencing and the plasmids were 

integrated into the CHA0 or PCL1391 chromosome by transformation of the bacteria via electroporation. 

Correct insertion of the suicide vectors in the chromosomes was confirmed by conducting specific PCR using 

the “check” primers specified in Table S3. 

In order to introduce a frame shift in CHA0 waaL, two 350-bp fragments of the gene were amplified by PCR 

using primer pairs waaL-fs-1/waaL-fs-2 and waaL-fs-3/waaL-fs-4 and chromosomal DNA from CHA0. The 

obtained DNA fragments were digested with the corresponding restriction enzymes (Table S3) and cloned 

into pEMG opened with EcoRI and BamHI. The insert sequence of the resulting plasmid pME8383 was 

verified by DNA sequencing. The created vector was integrated into the chromosome of CHA0 by 
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electroporation of electrocompetent cells, resulting in strain CHA5174 (Table S2). Since several attempts to 

get frame shift mutants by selection for bacteria that underwent second homologous recombination failed, 

strain CHA5174 served as a gene disruption mutant for this study. 

 

Complementation of mutant strains 

For complementation of selected gene deletion and disruption mutants of CHA0 and PCL1391, the respective 

genes were cloned under the control of the Ptac/lacIq promoter and introduced into the unique chromosomal 

Tn7 attachment site of corresponding mutant strains using the mini-Tn7 delivery vector pME8300 [5] as 

follows. Primer pairs listed in Table S3 were used to amplify the CDS of selected genes of P. protegens CHA0, 

P. chlororaphis PCL1391, E. coli K-12, and R. etli CE3 by PCR using chromosomal DNA from the respective 

bacterial strains. Resulting PCR products were digested with the restriction enzymes indicated in Table S3 

and consequently cloned individually into pME8300 opened with the same enzymes. The sequences of the 

inserts in the resulting plasmids were verified by DNA sequencing. The pME8300 derivatives and the Tn7 

transposition helper plasmid pUX-BF13 were co-electroporated into competent cells of the respective 

mutant strains to create strains CHA5169, CHA5207, CHA5208, CHA5211, CHA5212, PCL-8, and PCL-14 (Table 

S2). 

Because the above described cloning strategy did not work for CHA0 wzx, CHA5206 was complemented as 

follows. A 3-kb region, comprising the CDS of wzx, the upstream-flanking gene and its native promoter, was 

amplified by PCR using the primer pair wzx-expr-F2/wzx-expr-R2 and chromosomal DNA from CHA0. The 

purified PCR product was digested with EcoRI and BamHI and subsequently ligated into pME4510 which was 

opened with the same restriction enzymes. The sequence of the insert of the resulting vector pME11024 

(Table S2) was verified by DNA sequencing and the plasmid was used to transform CHA5206 by 

electroporation. 

 

Bioinformatics 

Genes and gene clusters putatively involved in the biosynthesis of O-PS in P. protegens strains CHA0, Pf-5 

and Cab57 were identified by performing nucleotide (blastn) and protein BLAST on the NCBI website 

(http://blast.ncbi.nlm.nih.gov/) using sequences of genes and proteins (primarily glycosyltransferases, 

transporters, chain length regulators and the O-antigen ligase WaaL) reported to be important for the 

synthesis of O-PS in P. aeruginosa PAO1 [8]. Identification of such genes and gene clusters in a set of recently 

sequenced Pseudomonas strains (Flury et al., manuscript in preparation) and publicly available genome 

sequences was done similarly (with a minimum of 70% nucleotide sequence identity over 70% of the CDS) by 

using the information from gene annotation and pan-genome calculations in EDGAR [95], with standard 

settings as described in [96], and from their localization on the chromosomes in GenDB [97]. 
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Detected genes and gene clusters were further analyzed by predicting the function of the encoded proteins 

using the NCBI Conserved Domain Database (CDD) Search [98] and InterPro [99] with default parameters and 

by finding homologous/orthologous genes in P. aeruginosa PAO1 by performing BLAST searches against this 

particular bacterial strain ([100]; http://pseudomonas.com/blast.jsp;). The presence of orthologs of newly 

identified P. protegens gene clusters (or individual genes thereof) in other bacteria was analyzed by 

conducting blastn searches on the NCBI website. The blastn hits were sorted by coverage (descending order) 

and the first three hits for each cluster were analyzed in more detail (sequences with at least 60% nucleotide 

identity and 300 nucleotides length were considered). 

 

LPS extraction and visualization 

Extraction of LPS was performed as previously described by Davis and Goldberg [101] with the following 

modifications. If not otherwise stated, bacteria were sampled for LPS extraction after growing them for 16 h 

(i.e. to late exponential growth phase) in 10 ml of LB at 25°C and 180 rpm as 1.5-ml suspensions with an 

optical density at 600 nm (OD600) of 5. Because purification with phenol led to a loss of LPS with long O-PS in 

P. protegens, the samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) directly after the Proteinase K treatment. SDS-PAGE was performed with 15% acrylamide gels 

and the peqGOLD pre-stained Protein Marker V (PEQLAB Biotechnologie GmbH, Ehrlangen, Germany) was 

used as molecular mass standard. Silver staining of the gels was performed as described previously [102]. 

 

Growth curves, biofilm formation and motility 

Growth defects in constructed mutant strains were assessed by performing growth curve assays. Therefore, 

five glass test tubes per strain containing 3 ml of LB each were inoculated with aliquots of 60 µl of a bacterial 

suspension at an OD600 of 1. The OD600 of each culture incubated at 25°C and 180 rpm was monitored over 

time by spectrometry. 

For biofilm formation studies according to Coffey and Anderson [103], 200 µl of LB in a 96-well microplate 

(Greiner Bio-One, Kremsmünster, Austria) were inoculated 1:100 with bacterial suspension and incubated at 

25°C for 24 h without agitation. The cell density at 600 nm was measured with a FLUOstar multidetection 

microplate reader (BMG Labtech GmbH, Offenburg, Germany). The supernatant was then removed and the 

plate was washed once with saline solution for 5 min at room temperature with agitation (500 rpm). The 

liquid was removed and 200 μl of a 0.1% crystal violet solution per well was added in order to stain the 

biofilm. The microplate was incubated for 15 min at room temperature without shaking and then washed 

three times with bi-distilled water. Two hundred microliters of ethanol were added into each well and the 

plate was incubated at room temperature for 15 min with shaking. The absorbance at 600 nm was 

determined using the FLUOstar multidetection microplate reader. 
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For studying the motility, aliquots of 5 µl of bacterial suspension at an OD600 of 1 was spotted in the middle 

of swimming and swarming agar plates as described previously [104]. The plates were incubated overnight at 

room temperature and the diameter of each bacterial colony was determined. 

 

Hemolytic and antifungal activities 

Changes in hemolytic activity upon mutation of selected O-PS biosynthesis genes was assessed by spotting 5 

µl of bacterial suspension at an OD600 of 1 on sheep blood agar plates. Diameters of lysis zones were 

measured and compared between strains after incubating the plates for 2 days at 30°C. For analysis of fungal 

growth inhibition, 5 µl of bacterial suspension at an OD600 of 1 were spotted in a triangle form on a Malt 

Extract Agar (Oxoid) plate. With the aid of a cork borer, a piece of Malt Extract Agar containing Pythium 

ultimum was added to the middle of the plate, which was then incubated at 24°C for 24 h. Diameters of 

inhibitions zones were measured and compared between strains. 

 

Bacteriophage infection 

Bacteriophage GP100 was propagated in P. protegens CHA0 as described previously [56]. Infection of 

different Pseudomonas strains and isogenic mutants of CHA0 by this bacteriophage was assessed by a 

double layer assay. Briefly, 4 ml of liquid LB soft agar (5 g/L bacteriological agar (Oxoid)), containing IPTG if 

necessary, was mixed with 100 µl of bacterial suspension of a given strain that was grown overnight in 10 ml 

of LB at 25°C and 180 rpm, supplemented with antibiotics and IPTG if necessary, and poured onto a sterile 

NA plate. Seven microliters of a GP100 suspension (containing 3 x 107 plaque forming units/ml) was spotted 

on the solidified double layer. Plates were evaluated for lysis of bacteria after overnight incubation at room 

temperature. 

 

Galleria mellonella virulence and competition assays 

Injection assays for virulence determination using last-instar larvae of G. mellonella (Entomos AG, 

Grossdietwil, Switzerland) were performed as described before [105]. For the competition assay, O-PS 

mutant strains of CHA0 and PCL1391 were marked with a constitutively expressed mCherry tag using the Tn7 

delivery vector pME9407 as described previously [106] (Table S2). The PCL1391 wild-type strain was marked 

analogously with a constitutively expressed GFP tag using the plasmid pBK-miniTn7-gfp1 (Table S2). The 

resulting strains and the GFP-tagged CHA0 wild-type strain [105] were grown overnight in 10 ml of LB at 25°C 

and 180 rpm. The cells were washed once in 0.9% NaCl solution and the OD600 of the bacterial suspension 

was adjusted to 1. Each mCherry-tagged mutant strain was mixed 1:1 with the corresponding GFP-marked 

wild-type strain and the resulting suspension was diluted 200-times in saline solution. Aliquots of 5 µl were 

injected into the last left pro-leg of G. mellonella larvae. After incubation at room temperature for 
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approximately 22 h, hemolymph of the larvae was collected and visualized by fluorescence microscopy as 

described before [105]. Mutant and wild-type cells were counted using the DsRed and GFP channels, 

respectively. The competitive index was calculated by first normalizing the counts for the wild type and the 

mutant with the ratio observed in the undiluted inoculum (to correct for variation within the inocula) and 

then dividing the number of mutant cells by the number of wild-type cells. 

 

Plutella xylostella virulence assays 

To test the ability of selected O-PS mutant strains to kill insects upon ingestion, feeding assays using larvae of 

the diamond back moth P. xylostella as an oral infection model were performed. Briefly, bacterial strains 

were grown overnight at 24°C and 180 rpm in LB. The cells were washed with 0.9% NaCl solution and the 

OD600 of the bacterial suspension was adjusted to 0.5. Pellets of artificial insect diet (25 g Adapta Bio Dinkel, 

0.5 tab Santogen Gold-V.7, 7.75 g yeast extract, 3.75 g casamino acids, 0.125 g cholesterol, 0.25 mL maize 

germ oil, 250 mL dH2O, 3.75 g agar) with a diameter of 3 mm were placed individually in wells of 128-cell Bio-

Assay trays (Frontier Agricultural Sciences, Newark, USA) which were disinfected with 70% ethanol and 

equipped with filter papers beforehand. Ten microlitres of bacterial suspension were pipetted onto each 

food pellet. Sixty-four wells per treatment were prepared and saline solution was used as a negative control. 

Eggs of P. xylostella obtained from Syngenta Crop Protection (Stein, Switzerland) were hatched in a growth 

chamber set at 26°C with 60% relative humidity and 16 h of light (20 000 lux). The larvae were kept at 18°C in 

the dark for two days prior to experiment and then placed individually into the wells of the Bio-Assay trays 

containing the treated food pellets. The insects were incubated in the 26°C growth chamber and their 

survival was monitored for two days. Caterpillars that did not respond to repeated stimulus were scored as 

dead. To avoid drying-out of the food pellets, the filter papers were regularly wetted with 10 µl of sterile 

distilled H2O. 

  

Competitive root colonization 

The assay to assess the competitiveness of mutant strains on cucumber roots was performed as described 

previously [5] with modifications. Briefly, three-day-old cucumber (Cucumis sativus cv. Chinese Snake) 

seedlings were grown axenically in 50-ml tubes (three plants per tube) containing 35-ml of 0.35% (w/v) 

water agar. Tubes with seedlings were incubated for three days in a growth chamber set to 80% relative 

humidity and 16 h with light (160 mE/m2/s) at 22°C, followed by an 8-h dark period at 18°C. Fluorescently 

marked wild-type and mutant strains constructed for the competition assay with G. mellonella were grown 

as mentioned above, washed in saline solution and their OD600 was adjusted to 1. Each mutant strain was 

mixed 1:1 with its corresponding wild-type strain and each plant was inoculated at the stem base with 30 µl 

of the bacterial mixture. After another 5 days of incubation in the growth chamber, bacteria were isolated 
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from root tips and counted by fluorescence microscopy as described before [5]. The competitive index was 

calculated as mentioned above. 

 

Polymyxin resistance assays 

Minimum inhibitory concentrations (MICs) for polymyxin B were determined for selected Pseudomonas 

strains by assessing their growth in LB in the presence of different concentrations of the antimicrobial 

peptide. Glass test tubes containing 3 ml of LB supplemented with 2, 10, 50, 100, or 250 µg/ml of polymyxin 

B (Sigma) were inoculated with 30 µl of bacterial suspension at an OD600 of 1 prepared from bacterial 

cultures grown overnight in 10 ml of LB at 25°C and 180 rpm. The MIC for a given strain was defined as the 

concentration at which no visible growth was observable after 24 h of incubation at 25°C and 180 rpm. 

In order to investigate the percentage of cells in a population that survive and grow in the presence of a 

certain concentration of antimicrobial peptides, bacterial strains were grown on agar plates containing 

polymyxin B or colistin as an alternative polymyxin at two different concentrations. Therefore, bacterial 

suspension with an OD600 of 1 were prepared as described above and serially diluted to 10-4. Ten microliters 

of each diluted bacterial suspension were spotted on NA plates supplemented with 10 or 100 µg/ml of 

polymyxin B or colistin sulfate (Sigma). The same dilutions were also spotted on NA plates without 

polymyxins as a negative control. The plates were incubated for 24 h at 30°C and colony forming units (CFU) 

per 10 µl were calculated for each strain. The CFU counts were normalized with the numbers obtained from 

the negative controls to account for variations between bacterial samples. 

 

Expression studies 

Fragments of approximately 700 bp containing the putative promoter regions located upstream of the 

respective gene or gene cluster were amplified from chromosomal DNA of CHA0 or PCL1391 by PCR using 

the primer pairs indicated in Table S3. The DNA fragments obtained were digested with BamHI and EcoRI 

and cloned into the GFP-based promoter probe vector pPROBE-TT [107] opened with the same restriction 

enzymes. Insert sequences of the resulting plasmids were verified by DNA sequencing. Competent cells of 

CHA0 or PCL1391 and their isogenic mutants were subsequently transformed with the constructed vectors 

by electroporation to create reporter strains for expression studies. 

For expression assays in vitro, reporter bacteria were grown at 25°C and 180 rpm in 10 ml LB or Grace’s 

Insect Medium (GIM, Sigma) [5] contained in 50-ml Erlenmeyer flasks. Samples were taken at different time 

points and single cell fluorescence intensities were measured by fluorescence microscopy as described 

previously for the Fit toxin [5], using the GFP channel. 

For in vivo studies, the constructed reporter plasmids were used to transform CHA0 and PCL1391 strains 

which were previously marked with a constitutively expressed mCherry tag using the plasmid pME9407. To 
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study the expression of selected genes and gene clusters on roots, reporter strains were grown individually 

on cucumber roots analogous to the competitive root colonization assay described above. Bacteria were 

isolated and gene expression was determined by fluorescence microscopy as described before [5], using the 

DsRed channel for identification of the reporter bacteria and the GFP channel for quantification of 

fluorescence intensities. In order to investigate the expression of the O-PS biosynthesis genes and gene 

clusters during an infection of insects, reporter bacteria were grown and injected into larvae of G. mellonella 

as described previously for the virulence assay [105], but with higher cell densities (200-fold dilution of 

bacterial suspensions at an OD600 of 1). After an incubation of the larvae for 20 to 24 h at room temperature, 

hemolymph was obtained and analysed by fluorescence microscopy as described previously for the Fit toxin 

[105], using the DsRed channel for identification of the reporter bacteria and the GFP channel for 

quantification of fluorescence intensities. 

 

Statistical analysis 

Statistical analysis of experiments was performed in RStudio version 0.98.1091 (http://www.rstudio.com/). 

One-way or two-way analysis of variance (ANOVA) with Tukey's HSD test for post-hoc comparisons was 

performed when appropriate. The Log-Rank test of the survival package of R was used to calculate significant 

differences in insect toxicity between the wild type and isogenic mutant strains in the Galleria and Plutella 

virulence assay. One-sample t tests were performed with data from competition assays. 

 

Acknowledgements 

We would like to thank Dale Noel for providing us with R. etli strain CE3. 

 

  



CHAPTER 5 

158 

References 

1. Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated 
pseudomonads with insecticidal activities. Front Plant Sci 4: 287. 

2. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev 
Microbiol 3: 307-319. 

3. Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Keel C (2008) Molecular analysis of a novel gene cluster 
encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 
10: 2368-2386. 

4. Ruffner B, Péchy-Tarr M, Ryffel F, Hoegger P, Obrist C, et al. (2013) Oral insecticidal activity of plant-
associated pseudomonads. Environ Microbiol 15: 751-763. 

5. Kupferschmied P, Péchy-Tarr M, Imperiali N, Maurhofer M, Keel C (2014) Domain shuffling in a sensor 
protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas 
protegens. PLoS Pathog 10: e1003964. 

6. Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 
181: 4725-4733. 

7. Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface 
molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8: 171-184. 

8. Lam JS, Taylor VL, Islam ST, Hao Y, Kocincova D (2011) Genetic and functional diversity of Pseudomonas 
aeruginosa lipopolysaccharide. Front Microbiol 2: 118. 

9. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635-700. 
10. Trent MS, Stead CM, Tran AX, Hankins JV (2006) Diversity of endotoxin and its impact on pathogenesis. J 

Endotoxin Res 12: 205-223. 
11. Lerouge I, Vanderleyden J (2002) O-antigen structural variation: mechanisms and possible roles in 

animal/plant-microbe interactions. FEMS Microbiol Rev 26: 17-47. 
12. Erbs G, Newman MA (2012) The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial 

microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol Plant Pathol 13: 95-
104. 

13. Park BS, Lee JO (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45: 
e66. 

14. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25: 
697-743. 

15. Skurnik M, Bengoechea JA (2003) The biosynthesis and biological role of lipopolysaccharide O-antigens of 
pathogenic Yersiniae. Carbohydr Res 338: 2521-2529. 

16. Moran AP (2001) Molecular structure, biosynthesis, and pathogenic roles of lipopolysaccharides. In: 
Mobley HLT, Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and Genetics. Washington 
(DC). 

17. Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Kraiss A, et al. (2001) Characterization of Vibrio 
cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, 
and biofilm formation. Infect Immun 69: 435-445. 

18. Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, et al. (2007) A model of bacterial intestinal 
infections in Drosophila melanogaster. PLoS Pathog 3: e173. 

19. West NP, Sansonetti P, Mounier J, Exley RM, Parsot C, et al. (2005) Optimization of virulence functions 
through glucosylation of Shigella LPS. Science 307: 1313-1317. 

20. Hölzer SU, Schlumberger MC, Jäckel D, Hensel M (2009) Effect of the O-antigen length of 
lipopolysaccharide on the functions of Type III secretion systems in Salmonella enterica. Infect 
Immun 77: 5458-5470. 

21. Liang-Takasaki CJ, Makela PH, Leive L (1982) Phagocytosis of bacteria by macrophages: changing the 
carbohydrate of lipopolysaccharide alters interaction with complement and macrophages. J Immunol 
128: 1229-1235. 



 Genetic basis, evolution and biological roles of O-polysaccharides 

159 

22. Sandlin RC, Lampel KA, Keasler SP, Goldberg MB, Stolzer AL, et al. (1995) Avirulence of rough mutants of 
Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial 
outer membrane. Infect Immun 63: 229-237. 

23. van Loon LC, Bakker PA, van der Heijdt WH, Wendehenne D, Pugin A (2008) Early responses of tobacco 
suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant Microbe Interact 
21: 1609-1621. 

24. Leeman M, Vanpelt JA, Denouden FM, Heinsbroek M, Bakker PAHM, et al. (1995) Induction of systemic 
resistance against fusarium-wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. 
Phytopathology 85: 1021-1027. 

25. Appelmelk BJ, Monteiro MA, Martin SL, Moran AP, Vandenbrouck-Grauls CMJE (2000) Why Helicobacter 
pylori has Lewis antigens. Trends Microbiol 8: 565-570. 

26. Chaturongakul S, Ounjai P (2014) Phage-host interplay: examples from tailed phages and Gram-negative 
bacterial pathogens. Front Microbiol 5: 442. 

27. McCaughey LC, Grinter R, Josts I, Roszak AW, Waloen KI, et al. (2014) Lectin-like bacteriocins from 
Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor. PLoS 
Pathog 10: e1003898. 

28. Cuthbertson L, Kos V, Whitfield C (2010) ABC transporters involved in export of cell surface 
glycoconjugates. Microbiol Mol Biol Rev 74: 341-362. 

29. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 
83: 99-128. 

30. Kalynych S, Morona R, Cygler M (2014) Progress in understanding the assembly process of bacterial O-
antigen. FEMS Microbiol Rev 38: 1048-1065. 

31. Greenfield LK, Whitfield C (2012) Synthesis of lipopolysaccharide O-antigens by ABC transporter-
dependent pathways. Carbohydr Res 356: 12-24. 

32. Samuel G, Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar 
precursor synthesis and O-antigen assembly. Carbohydr Res 338: 2503-2519. 

33. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev 
Biochem 75: 39-68. 

34. Rocchetta HL, Burrows LL, Lam JS (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. 
Microbiol Mol Biol Rev 63: 523-553. 

35. Cunneen MM, Reeves PR (2011) Evolution of lipopolysaccharide biosynthesis genes. In: Knirel YA, 
Valvano MA, editors. Bacterial Lipopolysaccharides. Wien: Springer-Verlag. pp. 339-370. 

36. Rocchetta HL, Burrows LL, Pacan JC, Lam JS (1998) Three rhamnosyltransferases responsible for assembly 
of the A-band D-rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is 
required for the initiation of both A-band and B-band lipopolysaccharide synthesis. Mol Microbiol 
28: 1103-1119. 

37. Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A, et al. (2012) Genome-wide identification of 
Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. 
PLoS Pathog 8: e1002813. 

38. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, et al. (2006) Genomic analysis reveals that 
Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7: 10.1186/gb-2006-1187-1110-
r1190. 

39. Hancock RE, Mutharia LM, Chan L, Darveau RP, Speert DP, et al. (1983) Pseudomonas aeruginosa isolates 
from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in 
lipopolysaccharide O side chains. Infect Immun 42: 170-177. 

40. Lam MY, McGroarty EJ, Kropinski AM, MacDonald LA, Pedersen SS, et al. (1989) Occurrence of a common 
lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J Clin 
Microbiol 27: 962-967. 

41. Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of 
inflammation and target for effective immunity. Int J Med Microbiol 297: 277-295. 

42. Lau PC, Dutcher JR, Beveridge TJ, Lam JS (2009) Absolute quantitation of bacterial biofilm adhesion and 
viscoelasticity by microbead force spectroscopy. Biophys J 96: 2935-2948. 



CHAPTER 5 

160 

43. Fernandez L, Alvarez-Ortega C, Wiegand I, Olivares J, Kocincova D, et al. (2013) Characterization of the 
polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57: 110-119. 

44. Royet J, Dziarski R (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of 
antimicrobial defences. Nat Rev Microbiol 5: 264-277. 

45. Jousset A, Schuldes J, Keel C, Maurhofer M, Daniel R, et al. (2014) Full-Genome Sequence of the Plant 
Growth-Promoting Bacterium Pseudomonas protegens CHA0. Genome Announc 2. 

46. Willis LM, Whitfield C (2013) Structure, biosynthesis, and function of bacterial capsular polysaccharides 
synthesized by ABC transporter-dependent pathways. Carbohydr Res 378: 35-44. 

47. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, et al. (1996) The intercellular adhesin involved 
in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: 
purification and structural analysis. J Bacteriol 178: 175-183. 

48. Wang X, Preston JF, 3rd, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of 
a polysaccharide adhesin required for biofilm formation. J Bacteriol 186: 2724-2734. 

49. Kropec A, Maira-Litran T, Jefferson KK, Grout M, Cramton SE, et al. (2005) Poly-N-acetylglucosamine 
production in Staphylococcus aureus is essential for virulence in murine models of systemic 
infection. Infect Immun 73: 6868-6876. 

50. Gobeli S, Goldschmidt-Clermont E, Frey J, Burr SE (2009) Pseudomonas chlororaphis strain JF3835 
reduces mortality of juvenile perch, Perca fluviatilis L., caused by Aeromonas sobria. J Fish Dis 32: 
597-602. 

51. Ojeda KJ, Simonds L, Noel KD (2013) Roles of predicted glycosyltransferases in the biosynthesis of the 
Rhizobium etli CE3 O antigen. J Bacteriol 195: 1949-1958. 

52. Andrianopoulos K, Wang L, Reeves PR (1998) Identification of the fucose synthetase gene in the colanic 
acid gene cluster of Escherichia coli K-12. J Bacteriol 180: 998-1001. 

53. Rini J, Esko J, Varki A (2009) Glycosyltransferases and glycan-processing enzymes. In: Varki A, Cummings 
RD, Esko JD, Freeze HH, Stanley P et al., editors. Essentials of Glycobiology. 2nd ed. Cold Spring 
Harbor (NY). 

54. Koropatkin NM, Cleland WW, Holden HM (2005) Kinetic and structural analysis of alpha-D-Glucose-1-
phosphate cytidylyltransferase from Salmonella typhi. J Biol Chem 280: 10774-10780. 

55. Micoli F, Ravenscroft N, Cescutti P, Stefanetti G, Londero S, et al. (2014) Structural analysis of O-
polysaccharide chains extracted from different Salmonella Typhimurium strains. Carbohydr Res 385: 
1-8. 

56. Keel C, Ucurum Z, Michaux P, Adrian M, Haas D (2002) Deleterious impact of a virulent bacteriophage on 
survival and biocontrol activity of Pseudomonas fluorescens strain CHAO in natural soil. Mol Plant 
Microbe Interact 15: 567-576. 

57. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56: 395-
411. 

58. Anaya-López JL, López-Meza JE, Ochoa-Zarzosa A (2013) Bacterial resistance to cationic antimicrobial 
peptides. Crit Rev Microbiol 39: 180-195. 

59. Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, et al. (2015) Gut microbiota. Antimicrobial 
peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 
347: 170-175. 

60. McPhee JB, Lewenza S, Hancock RE (2003) Cationic antimicrobial peptides activate a two-component 
regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial 
peptides in Pseudomonas aeruginosa. Mol Microbiol 50: 205-217. 

61. Chapman RF (1998) Circulatory systems, blood and immune systems. In: Chapman RF, editor. The Insects: 
Structure and Function. Cambridge: Cambridge University Press. 

62. Pannabecker TL, Andrews F, Beyenbach KW (1992) A quantitative analysis of the osmolytes in the 
hemolymph of the larval gypsy moth, Lymantria dispar. J Insect Physiol 38: 823-830. 

63. Wyatt GR (1961) Biochemistry of insect hemolymph. Annu Rev Entomol 6: 75-102. 
64. Grace TD (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature 195: 788-

789. 



 Genetic basis, evolution and biological roles of O-polysaccharides 

161 

65. Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG (2004) Protozoan predation, diversifying selection, 
and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci U S A 101: 10644-10649. 

66. Pieretti G, Puopolo G, Carillo S, Zoina A, Lanzetta R, et al. (2011) Structural characterization of the O-
chain polysaccharide from an environmentally beneficial bacterium Pseudomonas chlororaphis 
subsp. aureofaciens strain M71. Carbohydr Res 346: 2705-2709. 

67. Veremeichenko SN, Zdorovenko GM (2004) [Structure and properties of the lipopolysaccharide of 
Pseudomonas fluorescens IMV 2366 (biovar III)]. Mikrobiologiia 73: 312-319. 

68. de Weger LA, van Loosdrecht MCM, Klaassen HE, Lugtenberg B (1989) Mutational changes in 
physicochemical cell-surface properties of plant-growth-stimulating Pseudomonas spp do not 
influence the attachment properties of the cells. J Bacteriol 171: 2756-2761. 

69. Kintz E, Scarff JM, DiGiandomenico A, Goldberg JB (2008) Lipopolysaccharide O-antigen chain length 
regulation in Pseudomonas aeruginosa serogroup O11 strain PA103. J Bacteriol 190: 2709-2716. 

70. Preston A, Mandrell RE, Gibson BW, Apicella MA (1996) The lipooligosaccharides of pathogenic gram-
negative bacteria. Crit Rev Microbiol 22: 139-180. 

71. Raymond CK, Sims EH, Kas A, Spencer DH, Kutyavin TV, et al. (2002) Genetic variation at the O-antigen 
biosynthetic locus in Pseudomonas aeruginosa. J Bacteriol 184: 3614-3622. 

72. Xiang SH, Haase AM, Reeves PR (1993) Variation of the rfb gene clusters in Salmonella enterica. J 
Bacteriol 175: 4877-4884. 

73. Popoff MY (2001) Antigenic Formulas of the Salmonella Serovars. Paris: Institut Pasteur. 
74. Reeves P (1995) Role of O-antigen variation in the immune response. Trends Microbiol 3: 381-386. 
75. Varki A, Freeze HH, Gagneux P (2009) Evolution of glycan diversity. In: Varki A, Cummings RD, Esko JD, 

editors. Essentials of Glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 
76. Takeuchi K, Noda N, Someya N (2014) Complete genome sequence of the biocontrol strain Pseudomonas 

protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PLoS ONE 9: 
e93683. 

77. Ma B, Simala-Grant JL, Taylor DE (2006) Fucosylation in prokaryotes and eukaryotes. Glycobiology 16: 
158R-184R. 

78. Wang G, Ge Z, Rasko DA, Taylor DE (2000) Lewis antigens in Helicobacter pylori: biosynthesis and phase 
variation. Mol Microbiol 36: 1187-1196. 

79. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8: 
578-592. 

80. Anderson AJ (1984) Differences between lipopolysaccharide compositions of plant pathogenic and 
saprophytic Pseudomonas species. Appl Environ Microbiol 48: 31-35. 

81. Noonin C, Jiravanichpaisal P, Soderhall I, Merino S, Tomas JM, et al. (2010) Melanization and 
pathogenicity in the insect, Tenebrio molitor, and the crustacean, Pacifastacus leniusculus, by 
Aeromonas hydrophila AH-3. PLoS ONE 5: e15728. 

82. Bender JK, Wille T, Blank K, Lange A, Gerlach RG (2013) LPS structure and PhoQ activity are important for 
Salmonella Typhimurium virulence in the Galleria mellonella infection model [corrected]. PLoS ONE 
8: e73287. 

83. Miyashita A, Iyoda S, Ishii K, Hamamoto H, Sekimizu K, et al. (2012) Lipopolysaccharide O-antigen of 
enterohemorrhagic Escherichia coli O157:H7 is required for killing both insects and mammals. FEMS 
Microbiol Lett 333: 59-68. 

84. Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against 
oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2: e56. 

85. Ruffner B (2013) Insecticidal activity in plant-beneficial pseudomonads: Molecular basis and ecological 
relevance. PhD thesis; ETH Zurich, Zurich, Switzerland. 

86. Olaitan AO, Morand S, Rolain JM (2014) Mechanisms of polymyxin resistance: acquired and intrinsic 
resistance in bacteria. Front Microbiol 5: 643. 

87. Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21: 449-465. 
88. March C, Cano V, Moranta D, Llobet E, Perez-Gutierrez C, et al. (2013) Role of bacterial surface structures 

on the interaction of Klebsiella pneumoniae with phagocytes. PLoS ONE 8: e56847. 



CHAPTER 5 

162 

89. Lindell K, Fahlgren A, Hjerde E, Willassen NP, Fallman M, et al. (2012) Lipopolysaccharide O-antigen 
prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss) skin epithelial 
cells. PLoS ONE 7: e37678. 

90. Preston MA, Penner JL (1987) Structural and antigenic properties of lipopolysaccharides from serotype 
reference strains of Campylobacter jejuni. Infect Immun 55: 1806-1812. 

91. Karlyshev AV, Wren BW (2001) Detection and initial characterization of novel capsular polysaccharide 
among diverse Campylobacter jejuni strains using alcian blue dye. J Clin Microbiol 39: 279-284. 

92. Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, et al. (2014) Masquerading microbial pathogens: 
capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol Rev 38: 660-697. 

93. Sambrook J, Russel DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor (New York): 
Cold Spring Harbor Laboratory Press. 

94. Martínez-García E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative 
bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ 
Microbiol 13: 2702-2716. 

95. Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, et al. (2009) EDGAR: a software framework for 
the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10: 154. 

96. Smits TH, Rezzonico F, Kamber T, Blom J, Goesmann A, et al. (2010) Complete genome sequence of the 
fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant 
Microbe Interact 23: 384-393. 

97. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, et al. (2003) GenDB--an open source genome 
annotation system for prokaryote genomes. Nucleic Acids Res 31: 2187-2195. 

98. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, et al. (2011) CDD: a Conserved Domain 
Database for the functional annotation of proteins. Nucleic Acids Res 39: D225-229. 

99. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, et al. (2014) The InterPro protein families 
database: the classification resource after 15 years. Nucleic Acids Res: 10.1093/nar/gku1243. 

100. Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, et al. (2011) Pseudomonas Genome Database: 
improved comparative analysis and population genomics capability for Pseudomonas genomes. 
Nucleic Acids Res 39: D596-600. 

101. Davis MR, Jr., Goldberg JB (2012) Purification and visualization of lipopolysaccharide from Gram-
negative bacteria by hot aqueous-phenol extraction. J Vis Exp 28: 10.3791/3916. 

102. Zhu ZX, Cong WT, Ni MW, Wang X, Ma WD, et al. (2012) An improved silver stain for the visualization of 
lipopolysaccharides on polyacrylamide gels. Electrophoresis 33: 1220-1223. 

103. Coffey BM, Anderson GG (2014) Biofilm formation in the 96-well microtiter plate. In: Filloux A, Ramos 
JL, editors. Pseudomonas Methods and Protocols. New York Heidelberg Dordrecht London: Springer. 
pp. 631-641. 

104. Péchy-Tarr M, Bottiglieri M, Mathys S, Lejbølle KB, Schnider-Keel U, et al. (2005) RpoN (σ54) controls 
production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol 
Plant Microbe Interact 18: 260-272. 

105. Péchy-Tarr M, Borel N, Kupferschmied P, Turner V, Binggeli O, et al. (2013) Control and host-dependent 
activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environ Microbiol 
15: 736-750. 

106. Rochat L, Péchy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters 
for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol 
pseudomonad on cereals with flow cytometry. Mol Plant Microbe Interact 23: 949-961. 

107. Miller WG, Leveau JHJ, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe 
vectors. Mol Plant Microbe Interact 13: 1243-1250. 

  



 Genetic basis, evolution and biological roles of O-polysaccharides 

163 

Supporting Information 

 
 

Figure S1: Identification of the waaL gene in Pseudomonas chlororaphis PCL1391 and Pseudomonas protegens CHA0. (A) Candidate 

genes for waaL were identified in strains PCL1391 and CHA0 by protein BLAST searches with the corresponding amino acid sequence 

from Pseudomonas aeruginosa PAO1. Shown are the genetic loci of the putative waaL genes. The candidate gene in strain CHA0 
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(PFLCHA0_c05350) seems to be the result of a fusion between the waaL gene and a gene coding for a phosphatase. (B) The proteins 

encoded by waaL in CHA0 and PCL1391 were predicted by InterPro protein sequence analysis to possess 12 transmembrane domains 

and a periplasmic loop like it has been shown for PAO1 WaaL by Islam et al. [1]. The WaaL protein in CHA0 is predicted to contain an 

additionally C-terminal kinase domain. 

 

 

Figure S2: Complementation of selected mutants of Pseudomonas chlororaphis PCL1391 and Pseudomonas protegens CHA0 

restored the expression of wild-type O-PS. SDS-PAGE of lipopolysaccharide (LPS) extracted from wild-type and selected mutant 

strains of P. chlororaphis PCL1391 and P. protegens CHA0 grown at 25°C to late exponential growth phase in Lysogeny Broth. LPS was 

made visible by silver staining. Molecular weights in kDa are depicted on the left of the gel. The experiment was repeated once with 

similar results. 
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Figure S3: Mutation of O-PS biosynthesis genes in Pseudomonas chlororaphis PCL1391. SDS-PAGE of lipopolysaccharide (LPS) 

extracted from PCL1391 and isogenic mutant strains grown at 30°C to late exponential growth phase in Lysogeny Broth. LPS was 

made visible by silver staining. Molecular weights in kDa are depicted on the left of the gel. The experiment was repeated once with 

similar results. 

 

 



CHAPTER 5 

166 

 
Figure S4: Characterization of constructed O-PS mutants. (A) Growth curves of Pseudomonas protegens CHA0, Pseudomonas 

chlororaphis PCL1391, and their isogenic O-polysaccharide (O-PS) mutants in Lysogeny Broth at 25°C. Shown are means and standard 

deviations of five independent cultures per bacterial strain. (B) Quantification of biofilm formation of the same strains in Grace’s 
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Insect Medium contained in 96-well microplates by performing crystal violet staining. Shown are mean values and standard 

deviations of the absorbance at 600 nm of eight wells per strain, corrected for differences in growth rate. The absorbance correlates 

with the amount of biofilm formed on the walls of the wells. (C) Swarming motility. Shown are means and standard deviations of the 

diameter of bacterial displacement of three replicates per strain. P. chlororaphis PCL-11 was observed to be immobile on this 

particular semi-solid medium. (D) Swimming motility. Shown are means and standard deviations of diameters of three replicates per 

strain. The swimming diameters for strains PCL-1 and PCL-9 might be smaller due to the lower growth rate of these strains. All 

experiments were repeated at least once with similar results. 

 

 

Figure S5: Genes in the OBC1 and OBC2 gene clusters of Pseudomonas protegens CHA0 seem to be expressed. P. protegens CHA0 

was equipped with a GFP-based reporter plasmid (pME8369 for obc1 or pME8370 for obc2) and grown in Lysogeny Broth (LB) or 

Grace’s Insect Medium (GIM) at 25°C. Samples were taken 8 hours (exponential phase) and 24 hours (stationary phase) after 

inoculation and fluorescence intensities of individual cells were quantified by fluorescence microscopy. Shown are population 

averages of single cell fluorescence intensities, corrected for background and autofluorescence of the bacteria. 
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Figure S6: Gene clusters predicted to be involved in the biosynthesis of O-PS in different Pseudomonas protegens strains and 

search for homology in other species. Depicted are newly identified genes and gene clusters that were predicted to contribute to O-

PS biosynthesis in different strains of Pseudomonas protegens. Putative functions of encoded proteins or gene names are indicated 

above the corresponding genes, information about the locus tags are given below. Genes are drawn to scale and are color-coded 

according to the function of the proteins they code for: black, transport and polymerization; blue, glycosyltransferases; green, 

nucleotide sugar biosynthesis and modification of sugars; red, methylation; yellow, (de)acetylation; violet, chain length 

determination; light blue, transcriptional regulation; gray, unknown function; light brown, transposition; white, flanking genes. The 

nucleotide sequences of the strains that are indicated in brackets were used to conduct blastn searches. The top three hits (bacterial 

strains, sorted by coverage in descending order) are shown below each cluster. Regions with at least 60% nucleotide identity and 300 

nucleotides length are indicated with red bars. The numbers above the red bars correspond to nucleotide sequence identities. 
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Genome accession numbers: Azoarcus sp, AM406670.1; Burkholderia gladioli, CP009323.1; Burkholderia vietnamiensis, CP000614.1; 

Oceanimonas sp., CP003171.1; Pseudomonas fluorescens PCL1751, CP010896.1; P. fluorescens PICF7, CP005975.1; P. fluorescens 

UK4, CP008896.1; Pseudomonas putida H8234, CP005976.1; P. putida NBRC 14164, AP013070.1; Pseudomonas simiae, CP007637.1; 

Rhizobium etli, CP000133.1; Variovorax paradoxus, CP001635.1. 

 

 
Figure S7: Regulation of O-PS chain length is not essential for virulence of Pseudomonas chlororaphis PCL13191 upon injection. 

Virulence of PCL1391 wild-type and mutant strains was determined by injection of low cell numbers into larvae of Galleria mellonella 

and monitoring the survival of the insects over time. Mutation of wzz1 (in green, PCL-11) and wzz2 (in red, PCL-13) did not 

significantly reduce the mortality of the larvae compared to the wild type (in violet) (p-value > 0.05; Log-rank test). Saline solution 

served as a negative control (in blue). 

 

 
Figure S8: Resistance of Pseudomonas chlororaphis PCL1391 to Polymyxin B depends on the presence of the OSA-type O-antigen. 

The minimum inhibitory concentration (MIC) of polymyxin B (PMB) was determined for P. chlororaphis PCL1391 and isogenic mutant 

strains (PCL-1, waaL; PCL-3, Δobc2; PCL-9, wzx; PCL-11, wzz1; PCL-12, Δcpa; and PCL-13, wzz2) by growing them in Lysogeny Broth in 

presence of different concentrations of the antimicrobial peptide (2, 10, 50, 100, or 250 µg/ml PMB). The MIC was defined as the 

concentration at which no visible growth of the bacteria was observed 24 hours after inoculation. The experiment was repeated once 

with similar results. 
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Figure S9: Resistance of Pseudomonas protegens CHA0 to polymyxin B depends on lipid A modification and presence of the short 

O-PS under high magnesium concentrations. P. protegens strains CHA0, CHA5129, and CHA5161 were grown overnight in Lysogeny 

Broth supplemented with 20 mM MgCl2. The cells were washed and aliquots of the suspensions were exposed to polymyxin B at a 

concentration of 10 µg/ml (in gray) or 100 µg/ml (in black) for three hours in saline solution. The bacterial suspensions were 

subsequently serially diluted and plated on Nutrient Agar plates to assess the number of cells that survived the treatment with the 

antimicrobial peptide. Shown are the numbers of colony forming units (CFUs) per 10 µl for each treatment, normalized by the value 

for the negative control (no polymyxin B, in white). 

 

Table S1: Polysaccharide biosynthesis gene clusters identified in selected Pseudomonas strains 

Strain Gene/gene cluster Locus tag(s) Remarks / description 

CHA0 OSA 43710-43770 Synthesis of very short O-antigen 
 OBC1 20730-20810 Unknown function 
 OBC2 31090-31240 Putative capsular polysaccharide (CPS) gene cluster 
 OBC3 19670-19810 Synthesis of long O-antigen 

 psl 42710-42820 Psl biosynthesis 

 pel 30140-30210 Pel biosynthesis 

 alg 10330-10440 Alginate biosynthesis 

 pga 01630-01660 PNAG biosynthesis 

Cab57 OSA 4407-4413 O-antigen synthesis (prediction) 
 OBC1 2048-2056 Unknown function 
 OBC2 3106-3121 Putative CPS gene cluster 
 OBC3 1981-1998 O-antigen synthesis (prediction) 

 psl 4306-4317 Psl biosynthesis 

 pel 3008-3015 Pel biosynthesis 

 alg 1051-1062 Alginate biosynthesis 

 pga 0165-0168 PNAG biosynthesis 

PGNR1 OSA 4406-4409 O-antigen synthesis (prediction) 
 OBC1 2119-2127 Unknown function 
 OBC2 3145-3160 Putative CPS gene cluster 
 OBC3 2007-2023 O-antigen synthesis (prediction) 
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 psl 4305-4316 Psl biosynthesis 

 pel 3052-3059 Pel biosynthesis 

 alg 1079-1090 Alginate biosynthesis 

 pga 222-225 PNAG biosynthesis 

BRIP OSA 4339-4342 O-antigen synthesis (prediction) 
 OBC1 2039-2047 Unknown function 
 OBC2 3076-3091 Putative CPS gene cluster 
 OBC3 1926-1942 O-antigen synthesis (prediction) 

 psl 4238-4249 Psl biosynthesis 

 pel 2984-2991 Pel biosynthesis 

 alg 970-981 Alginate biosynthesis 

 pga 113-116 PNAG biosynthesis 

Pf-5 OSA 4305-4307 O-antigen synthesis (prediction) 

 OBC1 2024-2032 Unknown function 

 OBC2 3078-3093 Putative CPS gene cluster 

 OBC4 5480-5496 O-antigen synthesis (prediction) 

 OBC5 5092-5107 O-antigen synthesis (prediction) 

 psl 4208-4219 Psl biosynthesis 

 pel 2971-2978 Pel biosynthesis 

 alg 1013-1024 Alginate biosynthesis 

 pga 0161-0164 PNAG biosynthesis 

PF OSA 4481-4483 O-antigen synthesis (prediction) 
 OBC1 2168-2176 Unknown function 
 OBC2 3230-3245 Putative CPS gene cluster 
 OBC4 5663-5680 O-antigen synthesis (prediction) 

 OBC5 5290-5303 O-antigen synthesis (prediction) 

 psl 4381-4392 Psl biosynthesis 

 pel 3124-3131 Pel biosynthesis 

 alg 1161-1172 Alginate biosynthesis 

 pga 312-315 PNAG biosynthesis 

K94.41 OSA 4400-4402 O-antigen synthesis (prediction) 

 OBC1 2013-2021 Unknown function 

 OBC2 3089-3104 Putative CPS gene cluster 

 OBC6 4616-4627 O-antigen synthesis (prediction) 

 psl 4299-4310 Psl biosynthesis 

 pel 3002-3009 Pel biosynthesis 

 alg 973-984 Alginate biosynthesis 

 pga 113-116 PNAG biosynthesis 

CMR5c OSA 2610-2612 O-antigen synthesis (prediction) 

 OBC1 6059-6065 Unknown function 

 OBC2 0652-0667 Putative CPS gene cluster 
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 OBC3-A 3747-3756 O-antigen synthesis (prediction) 

 OBC3-B 5999-6004 O-antigen synthesis (prediction) 
 OBC5 1744-1759 O-antigen synthesis (prediction) 
 psl 2510-2521 Psl biosynthesis 
 alg 3365-3376 Alginate biosynthesis 
 pga 2427-2430 PNAG biosynthesis 
PCL1391 CPA 5895-5904 Synthesis of O-antigen of medium length 
 OSA 4175-4191 Synthesis of O-antigen of various lengths 
 wzz2 3550 Chain length determination 
 OBC2 2810-2825 Putative CPS gene cluster 
 psl 5052-5063 Psl biosynthesis 
 alg 927-938 Alginate biosynthesis 
 pga 126-129 PNAG biosynthesis 
LMG1245 CPA 0135-0147 O-antigen synthesis (prediction) 
 OSA 4629-4632 O-antigen synthesis (prediction) 
 OBC2 3112-3127 Putative CPS gene cluster 
 OBC7 0185-0190 O-antigen synthesis (prediction) 
 psl 5501-5512 Psl biosynthesis 
 alg 1184-1195 Alginate biosynthesis 
 pga 0359-0362 PNAG biosynthesis 
30-84 CPA 5929-5941 O-antigen synthesis (prediction) 
 OSA 4169-4186 O-antigen synthesis (prediction) 
 wzz2 3541 Chain length regulation 
 psl 5061-5072 Psl biosynthesis 
 alg 1006-1017 Alginate biosynthesis 
 pga 0182-0185 PNAG biosynthesis 
LMG5004 CPA 5952-5964 O-antigen synthesis (prediction) 
 OSA 4268-4276 O-antigen synthesis (prediction) 
 psl 5111-5122 Psl biosynthesis 
 pel 3097-3104 Pel biosynthesis 
 alg 922-933 Alginate biosynthesis 
 pga 125-128 PNAG biosynthesis 
JF3835 CPA 180-192 O-antigen synthesis (prediction) 
 OSA 4713-4733 O-antigen synthesis (prediction) 
 wzz2 4044 Chain length regulation 
 OBC2 3184-3199 Putative CPS gene cluster 
 psl 5584-5595 Psl biosynthesis 
 alg 1229-1240 Alginate biosynthesis 
 pga 407-410 PNAG biosynthesis 
HT66 CPA 3323-3332 O-antigen synthesis (prediction) 
 OSA 1779-1795 O-antigen synthesis (prediction) 
 wzz2 696 Chain length regulation 
 OBC2 5341-5356 Putative CPS gene cluster 
 psl 3965-3976 Psl biosynthesis 
 alg 2808-2819 Alginate biosynthesis 
 pga 4843-4846 PNAG biosynthesis 
CD CPA 139-151 O-antigen synthesis (prediction) 
 OSA 4388-4402 O-antigen synthesis (prediction) 
 OBC2 3059-3074 Putative CPS gene cluster 
 psl 5266-5277 Psl biosynthesis 
 alg 1162-1173 Alginate biosynthesis 
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 pga 358-361 PNAG biosynthesis 
YL-1 CPA 6922-6934 O-antigen synthesis (prediction) 
 OSA 5232-5235 O-antigen synthesis (prediction) 
 OBC2 3883-3898 Putative CPS gene cluster 
 OBC7 6880-6884 O-antigen synthesis (prediction) 
 psl 6197-6186 Psl biosynthesis 
 alg 1987-1998 Alginate biosynthesis 
 pga 1149-1152 PNAG biosynthesis 
O6 CPA 6277-6289 O-antigen synthesis (prediction) 
 OSA 4422- 4425 O-antigen synthesis (prediction) 
 OBC2 3083-3098 Putative CPS gene cluster 
 OBC7 0005-0009 O-antigen synthesis (prediction) 
 psl 5328-5339 Psl biosynthesis 
 alg 1018-1029 Alginate biosynthesis 
 pga 0181-0184 PNAG biosynthesis 

 

Table S2: Bacterial strains and plasmids used in this study 

Strain or plasmid Genotype, phenotype or relevant characteristics Reference or 
source 

Pseudomonas protegens   
 BRIP Wild type [2] 
 CHA0 Wild type [3] 
 CHA0-gfp2 CHA0::attTn7-gfp2; Gmr [4] 
 CHA89 gacA::ΩKmr [5] 
 CHA5129 arnA::pEMG (PFLCHA0_c30730); Kmr This study 
 CHA5161 ΔwbpL (PFLCHA0_c43720) This study 
 CHA5161-mChe CHA5161::attTn7-mcherry; Gmr This study 
 CHA5163 Δobc1 This study 
 CHA5164 Δobc2 This study 
 CHA5165 Δobc1 Δobc2 This study 
 CHA5169 CHA5161::attTn7-Ptac/lacIq-wbpL(CHA0); Gmr This study 
 CHA5174 waaL::pEMG (PFLCHA0_c05350); Kmr This study 
 CHA5182 Δobc3 This study 
 CHA5205 Δfcl (PFLCHA0_19700) This study 
 CHA5205-mChe CHA5205::attTn7-mcherry; Gmr This study 
 CHA5206 Δwzx (PFLCHA0_43760) This study 
 CHA5206-mChe CHA5206::attTn7-mcherry; Gmr This study 
 CHA5207 CHA5174::attTn7-Ptac/lacIq-waaL(CHA0); Kmr, Gmr This study 
 CHA5208 CHA5205::attTn7-Ptac/lacIq-fcl(K-12); Gmr This study 
 CHA5211 CHA5205::attTn7-Ptac/lacIq-fcl(CE3); Gmr This study 
 CHA5212 CHA5205::attTn7-Ptac/lacIq-fcl(CHA0); Gmr This study 
 CHA5214 CHA5161 arnA::pEMG (PFLCHA0_c30730); Kmr This study 
 K94.41 Wild type [6] 
 PF Wild type [7] 
 Pf-5 Wild type [8] 
 PGNR1 Wild type [9] 
   
Pseudomonas chlororaphis   
 30-84 Wild type [10] 
 CD Wild type [2] 
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 HT66 Wild type [11] 
 JF3835 Wild type [12] 
 LMG1245 Wild type BCCM 
 LMG5004 Wild type BCCM 
 O6 Wild type [13] 
 PCL1391 Wild type [14] 
 PCL1391-gfp1 PCL1391::attTn7-gfp1; Kmr This study 
 PCL-1 waaL::pEMG (PCL1391_456); Kmr This study 
 PCL-3 Δobc2 This study 
 PCL-8 PCL-1:: attTn7-Ptac/lacIq-waaL(CHA0); Kmr Gmr This study 
 PCL-9 wzx::pEMG (PCL1391_4184); Kmr This study 
 PCL-11 wzz1::pEMG (PCL1391_4191); Kmr This study 
 PCL-11-mChe PCL-11::attTn7-mcherry; Gmr This study 
 PCL-12 Δcpa This study 
 PCL-13 wzz2::pEMG (PCL1391_3550); Kmr This study 
 PCL-13-mChe PCL-13::attTn7-mcherry; Gmr This study 
 PCL-14 PCL-1::attTn7-Ptac/lacIq-waaL(PCL1391); Kmr Gmr This study 
 YL-1 Wild type [15] 
   
Pseudomonas spp.   
 CMR5c Wild type [16] 
 P. aeruginosa PAO1 Wild type [17] 
 P. brassicacearum 
 TM1A3 

Wild type [18] 

 P. fluorescens 97-38 Wild type [18] 
 P. fluorescens F113 Wild type [19] 
 P. fluorescens Pf0-1 Wild type [20] 
 P. fluorescens Q12-87 Wild type [21] 
 P. fluorescens SBW25 Wild type [22] 
 P. fluorescens P3 Wild type [23] 
 P. kilonensis P12 Wild type [9] 
   
Escherichia coli   
 DH5α, DH5α λpir, 
 HB101, K-12 

Laboratory strains [24] 

   
Rhizobium etli   
 CE3 Wild type; Smr [25] 
   

Plasmids   

pBK-miniTn7-gfp1 pUC19-based delivery plasmid for miniTn7-gfp1; mob+; Kmr, Cmr, Apr [26] 
pEMG pSEVA212S; oriR6K, lacZα MCS flanked by two I-SceI sites; Kmr, Apr [27] 
pME497 Mobilizing plasmid; Apr [28] 
pME8300 Carrier plasmid for Tn7 for Ptac/lacIq controlled target gene expression; Gmr, Apr [29] 
pME4510 Broad host range promoter-probe plasmid vector for Gram-negative bacteria; 

Gmr 
[30] 

pME8362 pEMG-ΔwbpL(CHA0); suicide plasmid for the in-frame deletion of 
PFLCHA0_c43720 (wbpL) in CHA0; Kmr 

This study 

pME8366 pEMG-Δobc1(CHA0); suicide plasmid for the deletion of the OBC1 cluster in 
CHA0; Kmr 

This study 

pME8367 pEMG-Δobc2(CHA0); suicide plasmid for the deletion of the OBC2 cluster in 
CHA0; Kmr 

This study 
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pME8368 pME8300-Ptac/lacIq-waaL(CHA0); IPTG-inducible expression of CHA0 waaL 
(PFLCHA0_c05350); Gmr, Apr 

This study 

pME8369 pPROBE-TT-Pobc1(CHA0); Tcr This study 
pME8370 pPROBE-TT-Pobc2(CHA0); Tcr This study 
pME8378 pME8300-Ptac/lacIq-wbpL(CHA0); IPTG-inducible expression of CHA0 wbpL 

(PFLCHA0_ c43720); Gmr, Apr 
This study 

pME8379 pEMG-waaL(PCL1391); suicide plasmid for the disruption of PCL1391 waaL 
(PCL1391_456); Kmr 

This study 

pME8382 pME8300-Ptac/lacIq-waaL(PCL1391); IPTG-inducible expression of PCL1391 waaL 
(PCL1391_456); Gmr, Apr 

This study 

pME8383 pEMG-waaL(CHA0); suicide plasmid for the disruption of CHA0 waaL 
(PFLCHA0_c05350); Kmr 

This study 

pME8388 pEMG-Δobc2(PCL1391); suicide plasmid for the deletion of the OBC2 cluster in 
PCL1391; Kmr 

This study 

pME8393 pEMG-Δcpa(PCL1391); suicide plasmid for the deletion of the CPA cluster in 
PCL1391; Kmr 

This study 

pME8394 pEMG-Δobc3(CHA0); suicide plasmid for the deletion of the OBC3 cluster in 
CHA0; Kmr 

This study 

pME8396 pPROBE-TT-Pwzz1(PCL1391); Tcr This study 
pME8399 pEMG-wzx(PCL1391); suicide plasmid for the disruption of PCL1391 wzx 

(PCL1391_4184); Kmr 
This study 

pME11001 pEMG-wzz1(PCL1391); suicide plasmid for the disruption of PCL1391 wzz1 
(PCL1391_4191); Kmr 

This study 

pME11007 pEMG-Δfcl(CHA0); suicide plasmid for the in-frame deletion of 
PFLCHA0_c19700 (fcl) in CHA0; Kmr 

This study 

pME11009 pEMG-Δwzx(CHA0); suicide plasmid for the in-frame deletion of 
PFLCHA0_c43760 (wzx) in CHA0; Kmr 

This study 

pME11012 pEMG-wzz2(PCL1391); suicide plasmid for the disruption of PCL1391 wzz2 
(PCL1391_3550); Kmr 

This study 

pME11014 pME8300-Ptac/lacIq-fcl(K-12); IPTG-inducible expression of E. coli K-12 fcl 
(EO53_07645); Gmr, Apr 

This study 

pME11019 pPROBE-TT-Pwzz2(PCL1391); Tcr This study 
pME11021 pME8300-Ptac/lacIq-fcl(CE3); IPTG-inducible expression of R. etli CE3 fcl 

(RHE_CH00763); Gmr, Apr 
This study 

pME11022 pME8300-Ptac/lacIq-fcl(CHA0); IPTG-inducible expression of CHA0 fcl 
(PFLCHA0_19700); Gmr, Apr 

This study 

pME11024 pME4510-wzx-locus; expression of PFLCHA0_c43760 (wzx) under the control of 
its native promoter; Gmr 

This study 

pME9407 pUC19-based delivery plasmid for miniTn7-mcherry; mob+; Gmr, Cmr, Apr [31] 
pPROBE-TT Promoter-probe vector based on eGFP; Tcr [32] 
pSW-2 oriRK2, xylS, Pm::I-sceI; Gmr [27] 
pUX-BF13 Helper plasmid encoding Tn7 transposition functions; R6K-replicon; Apr [33] 

Abbreviations: Apr, ampicillin resistance; BCCM, Belgian Coordinated Collections of Microorganisms; Cmr, chloramphenicol 

resistance; Gmr, gentamicin resistance; Kmr, kanamycin resistance; Smr, streptomycin resistance; Tcr, tetracycline resistance. 

 

Table S3: Primers used in this study 

Name Sequence 5’ → 3’, restriction enzyme(s)1 Purpose 

arnA-im-1 CGGGATCCAACTGGGTGCTGGTCAAG, BamHI Disruption of CHA0 arnA 
arnA-im-2 GGAATTCGTCCACCAGGCCCAGTTC, EcoRI Disruption of CHA0 arnA 
CE3.fcl-expr-F GACTAGTATGGACAAGACATCGAAGATTTATG, SpeI Expression of CE3 fcl 
CE3.fcl-expr-R GACTAGTAAGCGGTTCGATCATGTTTCAG, SpeI Expression of CE3 fcl 
fcl-del-1 GGAATTCCCTTCGTCACTCGCAAGATTAC, EcoRI Deletion of CHA0 fcl 
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fcl-del-2 CCCAAGCTTGATCGCAGAGCCAGCCATAC, HindIII Deletion of CHA0 fcl 
fcl-del-3 CCCAAGCTTACGCAACTGCGTGAAGGTATAG, HindIII Deletion of CHA0 fcl 
fcl-del-4 CGGGATCCAGTCGCCACCAAAGATCGTAG, BamHI Deletion of CHA0 fcl 
fcl-expr-F GACTAGTGTGGATAAACGCGCCAAAATATAC, SpeI Expression of CHA0 fcl 
fcl-expr-R CCCAAGCTTCATTCAGTGGCGATCCAGAC, HindIII Expression of CHA0 fcl 
K12.fcl-expr-F GACTAGTGATCGCGCTGGAGTCATAAGC, SpeI Expression of K-12 fcl 
K12.fcl-expr-R CCCAAGCTTCATTACCCCCGAAAGCGGTC, HindIII Expression of K-12 fcl 
obc1-del-1 CGGGATCCGCATCCTCTTCAGCTTCGAC, BamHI Deletion of CHA0 obc1 
obc1-del-2 CCCAAGCTTGGTACTTCCGGTCAACTCC, HindIII Deletion of CHA0 obc1 
obc1-del-3 CCCAAGCTTGTCCTCTCCTGGAGCATCT, HindIII Deletion of CHA0 obc1 
obc1-del-4 GGAATTCCCCAATCATAGCCACTCAC, EcoRI Deletion of CHA0 obc1 
obc2-del-1 CGGAATTCATGGGCACGGATTGAGTAAGG, EcoRI Deletion of CHA0 obc2 
obc2-del-2 CCCAAGCTTGAGGGTGGTTCTCACCTTCT, HindIII Deletion of CHA0 obc2 
obc2-del-3 CCCAAGCTTATTGCCTACAGCGAGCTGTAA, HindIII Deletion of CHA0 obc2 
obc2-del-4 GGGATCCAACGAGCTGATTGCCGAATTG, BamHI Deletion of CHA0 obc2 
obc3-del-1 GGAATTCTGTTACCCTTCCCCCATACAG, EcoRI Deletion of CHA0 obc3 
obc3-del-2 GACTAGTACAGCAGCCTGGTTGGTAAG, SpeI Deletion of CHA0 obc3 
obc3-del-3 GACTAGTCCGCAAGAAGCATTGGTAATGG, SpeI Deletion of CHA0 obc3 
obc3-del-4 CGGGATCCGACCATGCCCAAGACATCAAG, BamHI Deletion of CHA0 obc3 
PCL.cpa-del-1 CGGAATTCGGTGATCAGGGTTGCTGAAG, EcoRI Deletion of PCL1391 cpa 
PCL.cpa-del-2 CCCAAGCTTCGAGTTGTTCACCGGTTTTCC, HindIII Deletion of PCL1391 cpa 
PCL.cpa-del-5 CCCAAGCTTCCACCGGTTTCTCCTACAG, HindIII Deletion of PCL1391 cpa 
PCL.cpa-del-6 GGGATCCAGACGATGGCGTAGCTCAGT, BamHI Deletion of PCL1391 cpa 
PCL.obc2-del-1 CGGAATTCCTTGGATGTCAGCGTTTTTGG, EcoRI Deletion of PCL1391 obc2 
PCL.obc2-del-2 CCCAAGCTTACAGCTCGCTCAACTGCTG, HindIII Deletion of PCL1391 obc2 
PCL.obc2-del-3 CCCAAGCTTCCATATCGACTCCCATCAGC, HindIII Deletion of PCL1391 obc2 
PCL.obc2-del-4 GGGATCCGATCGTCAGGGAAATATGGG, BamHI Deletion of PCL1391 obc2 
PCL.osa-P1-F CGGGATCCGCTTGGGCTGTTCAAAATCTCC, BamHI Reporter for PCL1391 wzz1 
PCL.osa-P1-R GGAATTCTCCTGCAGATCCACTTCCTC, EcoRI Reporter for PCL1391 wzz1 
PCL.Pwzz2-F CGGGATCCACTCCGCGAAAGGACTGGTC, BamHI Reporter for PCL1391 wzz2 
PCL.Pwzz2-R GGAATTCCAGAGTACAGCCAATTACCAGC, EcoRI Reporter for PCL1391 wzz2 
PCL.waaL-check-F GGGCCTGATCAGTCTGTTGT Disruption of PCL1391 waaL 
PCL.waaL-check-R TGATCGAACGAAAACCCTTCAG Disruption of PCL1391 waaL 
PCL.waaL-expr-F GACTAGTATGCAGGCCACACGTTGGG, SpeI Expression of PCL1391 waaL 
PCL.waaL-expr-R CCCAAGCTTGTCGAGCTCACTGTTTAGGAG, HindIII Expression of PCL1391 waaL 
PCL.waaL-im-1 GGAATTCCTGTTGTTTTTCCCGGTTTTCG, EcoRI Disruption of PCL1391 waaL 
PCL.waaL-im-2 CGGGATCCAACATCGCCAGTAGCAATG, BamHI Disruption of PCL1391 waaL 
PCL.wzx-check-1 CGGGTAGTCTAGGGATGCAA Disruption of PCL1391 wzx 
PCL.wzx-check-2 CAACATTGTTCCGCAAGAGAGC Disruption of PCL1391 wzx 
PCL.wzx-im-1 CGGGATCCTGGTCGTGCTCACCAACTTAC, BamHI Disruption of PCL1391 wzx 
PCL.wzx-im-2 CGGGATCCCAAGAACGAGGCTCAATATG, BamHI Disruption of PCL1391 wzx 
PCL.wzz2-check-1 GGTACGGCATGACAGGGTTA Disruption of PCL1391 wzz2 
PCL.wzz2-check-2 CTGCAGCTCCTTACCGATTTC Disruption of PCL1391 wzz2 
PCL.wzz2-im-1 GGAATTCGCTCGGAAGTCTACAAACTG, EcoRI Disruption of PCL1391 wzz2 
PCL.wzz2-im-2 CGGGATCCTTGCGCTGTTCTTTCAACTG, BamHI Disruption of PCL1391 wzz2 
PCL.wzz-check-1 AGTGGATCTGCAGGAGCTTG Disruption of PCL1391 wzz1 
PCL.wzz-check-2 GTAGCTCACGCAAACGATCAG Disruption of PCL1391 wzz1 
PCL.wzz-im-1 GGAATTCGTAGTGCCTCCGACACAAAAAG, EcoRI Disruption of PCL1391 wzz1 
PCL.wzz-im-2 CGGGATCCAATTTGCTGCTCGACGTTTCG, BamHI Disruption of PCL1391 wzz1 
Pobc1-F CGGGATCCGACCTGCTGGTGCTTTCCAT, BamHI Reporter for CHA0 obc1 
Pobc1-R GGAATTCGCCTATCACTTCGCGTTCGATC, EcoRI Reporter for CHA0 obc1 
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Pobc2-F CGGGATCCGAAAGTCCCGGTTGAAGTAG, BamHI Reporter for CHA0 obc2 
Pobc2-R GGAATTCGACTTCCAAGGGAACGACCT, EcoRI Reporter for CHA0 obc2 
waaL-expr-F GACTAGTATGCAACCCAATGCCCTTCAC, SpeI Expression of CHA0 waaL 
waaL-expr-R CCCAAGCTTCCCTGTGTAGCTGTCATGGA, HindIII Expression of CHA0 waaL 
waaL-fs-1 GGAATTCTGCCGATCGGTTATCTACTG, EcoRI Disruption of CHA0 waaL 
waaL-fs-2 CCCAAGCTTGAGAGCAACGATCGCAGCAC, HindIII Disruption of CHA0 waaL 
waaL-fs-3 CCCAAGCTTTCGCCTCGATCTTCAACCTG, HindIII Disruption of CHA0 waaL 
waaL-fs-4 CGGGATCCAGAAGCATCTGCGAGAAC, BamHI Disruption of CHA0 waaL 
wbpL-del-1 CGGGATCCGCCTTGCACGACCTTATTGTG, BamHI Deletion of CHA0 wbpL 
wbpL-del-2 GACTAGTCCAGTACACATGGCTCATACG, SpeI Deletion of CHA0 wbpL 
wbpL-del-3 GACTAGTGCAAGAGAGAACTGAGATGCG, SpeI Deletion of CHA0 wbpL 
wbpL-del-4 GGAATTCAGCGCCTGCTCCATAAATAG, EcoRI Deletion of CHA0 wbpL 
wbpL-expr-F GACTAGTATGAGCCATGTGTACTGGG, SpeI Expression of CHA0 wbpL 
wbpL-expr-R CCCAAGCTTCGCATCTCAGTTCTCTCTTGC, HindIII Expression of CHA0 wbpL 
wzx-del-1 GGAATTCGTCATTCGAGAGAAAGGGACGA, EcoRI Deletion of CHA0 wzx 
wzx-del-2 GACTAGTAGAGGCGACAGTTAAAGCAGC, SpeI Deletion of CHA0 wzx 
wzx-del-3 GACTAGTGTGGTTGCCGTATCAGGTTTT, SpeI Deletion of CHA0 wzx 
wzx-del-4 CGGGATCCACAGCCTTTCCTTCGGGAAT, BamHI Deletion of CHA0 wzx 
wzx-expr-F2 GGAATTCATCCTGATTGAGGTTCTCGTAG, EcoRI Expression of CHA0 wzx 
wzx-expr-R2 CGGGATCCCTCATGCAAACGAGAGTAC, BamHI Expression of CHA0 wzx 

1 Restriction sites are underlined 
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Protocols 

Whole cell LPS extraction 

 

Modified after Davis and Goldberg (2012) JOVE 

 

1. Overnight cultures of the bacterial strains (10 ml LB, 25°C and 180 rpm). 

2. Inoculation of 10 ml LB in a 50-ml Erlenmeyer flask with 100 µl bacterial culture and incubation for 16 
hours (overnight) at 25°C and 180 rpm. 

3. OD600 reading in a spectrophotometer (optionally wash the cells once with NaCl solution). 

4. Centrifuge 1.5 ml of bacterial suspension with an OD600 = 5 and remove the supernatant (pellet can be 
stored at -20°C at this point). 

5. Resuspend the pelleted bacteria in 100 μl of bi-distilled water (do not vortex!) and add 100 μl of 2x SDS-
buffer. (Ensure that the pellet is completely resuspended by pipetting the suspension up and down 
slowly. Do not vortex!) 

6. Boil the suspended bacteria in a water bath for 10 minutes. Allow the solution to cool at room 
temperature for some minutes. 

7. Add 5 μl of both DNase I and RNase solutions (10 mg/ml stocks). Incubate the samples at 37°C for 30 
minutes. 

8. Add 10 μl of Proteinase K solution (10 mg/ml stock). Incubate the samples at 56°C for at least 3 hours. 
(This step can be performed overnight, if there are time constraints.) 

 

Solutions and chemicals: 

- 2x SDS buffer: Make a 50 mL solution of 4% β-mercaptoethanol (BME), 4% SDS and 20% glycerol in 0.1 
M Tris-HCl, pH 6.8 (put the bottle on a shaker to dissolve the chemicals). Add a pinch of 
bromophenol blue to dye the solution. This can be stored at room temperature. 
 

- DNAse (10 mg/ml), RNAse (10 mg/ml), and Proteinase K (10 mg/ml) 
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Silver Staining of LPS Gels 

 

According to Zhu et al. 2012 

 

1. Perform SDS PAGE (let the samples migrate for about 2 hours at 150 V on a 15% minigel) 

2. Fixation: 10 min in 50 ml of fixation solution 

3. Washing: 2x 5 min in 50 ml deionized water 

4. Impregnation: 5 min in 50 ml of impregnation solution 

5. Washing: 2x 20 sec in deionized water 

6. Development: 5-8 min in 50-100 ml of freshly prepared (!!) development solution 

7. Stopping: 1 min in stopping solution and wash twice with distilled water 

 

Solutions (for two minigels): 

Fixation solution (100 ml): 0.7 g periodic acid (= iodic(VII) acid) 
30 ml ethanol 
10 ml acetic acid 
60 ml dH2O 
 

Impregnation solution (100 ml): 0.2 g silver nitrate 
100 ml dH2O 

 
Development solution (200 ml): 6 g sodium carbonate 
  0.04 g ascorbic acid 
  (add the water just after 0.08 g sodium thiosulfate 
   starting the staining!) 0.1 g sodium hydroxide (= 1 pellet) 
  200 ml dH2O 
 
Stopping solution (100 ml): 10 ml acetic acid 

90 ml dH2O 
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Identification and characterization of the 

virulence regulatory system PhoP-PhoQ in 

insect-pathogenic pseudomonads 
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Abstract 

Pseudomonads are fascinating bacteria with usually multiple lifestyles due to their ability to adapt to several 

different environments. Pseudomonas protegens and Pseudomonas chlororaphis are plant-protecting 

rhizobacteria which promote plant growth, compete with and inhibit phytopathogenic fungi by producing a 

cocktail of antifungal compounds, induce systemic resistance in their host plants, and display insect 

pathogenicity. To infect and kill insect larvae, these bacteria need to deal with the host’s immune system by 

evading detection, suppressing its defense reactions or being resistant to its antimicrobial responses. The 

two-component regulatory system PhoP-PhoQ is well-known to regulate resistance to antimicrobial peptides 

(AMPs), which kill invading microorganisms and are central to the insect innate immunity, and to contribute 

to virulence in pathogenic bacteria. In this study, we identified the PhoP-PhoQ system in P. protegens CHA0 

and P. chlororaphis PCL1391 and characterized its role in regulating AMP resistance genes and virulence. The 

sensor protein PhoQ was required for full virulence of P. protegens CHA0 in a systemic infection model and 

influenced the expression of an insecticidal toxin. Its cognate response regulator PhoP did not seem to be 

required for virulence but was essential for the strain’s intrinsic resistance toward the model AMP polymyxin 

B. The PhoP-PhoQ system controls the expression of the arn gene cluster, which is responsible for the 

addition of 4-aminoarabinose to lipid A and contributes significantly to AMP resistance in strain CHA0, in a 

magnesium-dependent manner. We additionally found first indications that the presence of AMPs can 

induce the expression of resistance genes in this bacterium. This study revealed that more knowledge about 

the interaction of entomopathogenic pseudomonads with the insect innate immunity is necessary in order 

to understand which strategies these bacteria evolved to evade or survive the host’s immune defenses and 

whether AMP resistance is required for their virulence. 
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Introduction 

Certain Pseudomonas species are of special interest for agriculture because they are able to promote plant 

growth and protect crop plants against diverse pests and diseases [1,2]. Strains of Pseudomonas protegens 

and Pseudomonas chlororaphis are insect pathogens in addition to being capable of protecting plants against 

phytopathogenic fungi and promoting plant growth [1-6]. Research on their insecticidal activities may lead to 

the development of novel biological insecticides based on selected Pseudomonas strains which could help to 

reduce the amount of harmful chemical pesticides used for crop protection [2]. The model bacteria P. 

protegens CHA0 and P. chlororaphis PCL1391 were shown to efficiently infect and kill larvae of several 

agriculturally important lepidopteran pest insects via the oral infection route [2,5]. Apart from an insecticidal 

toxin termed Fit [4,5] and the biosynthesis of lipopolysaccharide (LPS) O-antigen (Chapter 5), it is still unclear 

which additional features contribute to the insect pathogenicity in these rhizobacteria. Our research aims at 

a better understanding of how these pseudomonads are able to cause disease in insects. 

Bacteria that colonize and infect insects have to interact with the host’s immune defenses. To persist and 

establish residency within the host, they have to repress the immune responses, evade detection by the 

immune system and/or mediate resistance factors. The epithelial tissues constitute the first line of defense, 

termed epithelial immunity, and prevent microorganisms from invading the hemocoel by forming a physical 

barrier [7] (Figure 1). Gut epithelial cells synthesize certain antimicrobial peptides (AMPs), lytic proteins and 

reactive oxygen species (ROS) constitutively without any immune challenge [7,8]. The second line of defense 

is comprised of responses of the systemic immunity which can be divided into cellular and humoral reactions 

and are induced upon detection of invading microbes [7,9]. The cellular immunity is mediated mainly by 

hemocytes (blood cells), whose numbers increase during an infection, and consists of phagocytosis, 

nodulation and encapsulation. The hallmark of the humoral responses is the production and secretion of 

AMPs by the fat body (the equivalent of the vertebrate liver) and to a lower extent by hemocytes and 

epithelial cells. Additional reactions, such as melanization, contribute to responses of the innate immune 

system. Invading pseudomonads thus need to be resistant to phagocytosis and the action of defense 

molecules or to prevent the activation of these immune responses in order to survive within the 

hemolymph, once they crossed the epithelial barrier. 
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Figure 1: Insect immune defenses in response to bacterial infection. The local immunity constitutes the first line of defense against 

invading microbes, such as Gram-negative bacteria (in green). The peritrophic matrix and epithelial cells build a physical barrier 

against invading bacteria. Antimicrobial peptides (AMPs) and reactive oxygen species (ROS) are produced constitutively or upon 

detection of pathogenic bacteria and are secreted into the gut lumen. ROS are produced in insects mainly by the Nox and Duox 

enzymes. Recognition of invading bacteria via the Imd or other pathways results in a massive production of AMPs, which play a 

central role in systemic immunity, in the fat body. Bacterial infection can also be cleared by hemocytes, which amongst others 

phagocytize the pathogens, or via melanization catalyzed by phenoloxidases in the hemolymph. 

 

Insects synthesize a powerful array of AMPs which play a key role in insect immunity [7,10,11]. AMPs are 

typically small cationic peptides that kill and clear pathogens by inserting into and disrupting microbial 

membranes. Synthesis of AMPs is not restricted to insects; also plants, microorganisms and other animals 

including mammals are able to produce them. These antimicrobial compounds can display activity against 

bacteria, fungi, parasites and even enveloped viruses [12,13]. In insects, certain AMPs are produced 

constitutively whereas others are synthesized only upon detection of invading pathogens via Toll, Immune-

deficiency (Imd) and other signaling pathways [7]. While the Toll pathway is activated in response to 

infection with fungi or Gram-positive bacteria, the Imd pathway is mainly involved in the detection and 

clearing of Gram-negative bacteria [7]. 

Some entomopathogenic bacteria were found to interfere with the activation of these signaling pathways 

and thus repress the production of host AMPs. The nematode symbiont Xenorhabdus nematophila, for 

example, was reported to suppress the production of a particular AMP, cecropin, during systemic infection 

of the beet armyworm, Spodoptera exigua, via unknown mechanisms [14]. The same bacterial species was 

previously suggested to suppress the insect immune responses also directly by proteolytic inactivation of 

AMPs [15]. The insect-pathogenic Pseudomonas entomophila was suggested to similarly degrade AMPs in 
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the gut of Drosophila by expressing and secreting the protease AprA [16]. Because negatively charged 

surface phospholipids such as LPS in Gram-negative bacteria bind most AMPs, some species gain resistance 

by modifying the structure of the lipid A moiety in order to reduce the overall net negative charge of LPS 

[13,17]. This can be achieved by covalent addition of, for example, phosphoethanolamine or aminoarabinose 

(4-amino-4-deoxy-L-arabinose) to lipid A. 

 

 
Figure 2: Regulation of antimicrobial peptide (AMP) resistance by the PhoP-PhoQ and PmrA-PmrB two-component regulatory 

system in Pseudomonas aeruginosa. In response to magnesium limitation, the PhoP-PhoQ and PmrA-PmrB systems activate the 

expression of the arn operon in P. aeruginosa. The Arn proteins covalently add 4-aminoarabinose to the lipid A part of 

lipopolysaccharide. This reduces the overall negative charge of the outer membrane and thereby reduces the attraction of cationic 

AMPs, thus increases the resistance of P. aeruginosa to AMPs. The regulatory systems further autoregulate their expression and 

PhoP in addition activates the expression of the palmitoyltransferase PagP which also contributes to AMP resistance in this 

bacterium. It has been proposed that one or several so far unidentified regulatory systems induce the expression of the arn gene 

cluster in the host when AMPs are present. This figure was adapted from W.J. Gooderham and R.E.W. Hancock (2009) [18]. 

 

The PhoP-PhoQ two-component regulatory system was identified in many proteobacteria and generally 

regulates properties of the outer membrane barrier that increase bacterial resistance to AMPs and other 

responses of the innate immunity (Figure 2) [17,19-21]. In several pathogenic bacteria, including Salmonella 

enterica, Pseudomonas aeruginosa and Photorhabdus luminescens, it was additionally shown to be a major 

virulence regulator [19,22-24]. It consists of the inner membrane sensor kinase PhoQ and its cognate 
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response regulator PhoP [25,26], and responds to low concentrations of divalent cations, such as magnesium 

(Mg2+) (Figure 2). In the intracellular pathogen S. enterica, where the regulatory system was first described, 

deletion of either phoP or phoQ leads to reduced AMP resistance and to attenuation in virulence [19,21]. 

The PhoP-PhoQ system was demonstrated to be required for invasion of macrophages and intracellular 

survival in this bacterium. 

In P. aeruginosa, the two-component system PhoP-PhoQ seems to work in a slightly different way than 

canonical two-component regulatory systems. PhoQ was suggested to predominantly act as a phosphatase 

of PhoP in this opportunistic pathogen and therefore to mainly inactivate the response regulator [18,20]. The 

resistance to AMPs in this bacterium is mostly mediated through the addition of 4-aminoarabinose to lipid A 

via enzymes encoded in the arn operon (also referred to as pmr operon in certain species) [17,27,28]. When 

extracellular divalent cations are limited, PhoP is in its phosphorylated state (due to inactivity of PhoQ) and 

activates the transcription of the arn operon (Figure 2) [18]. Under Mg2+-replete conditions, PhoQ 

dephosphorylates its cognate response regulator and therefore represses the expression of the Arn proteins. 

As a consequence, deletion of phoQ highly increases the bacterium’s resistance to AMPs even when divalent 

cations are not limited, but at the same time reduces its virulence [20,24]. P. aeruginosa isolates from 

patients with cystic fibrosis were often found to show dysregulation of the PhoP-PhoQ system (often due to 

loss-of-function mutations in phoQ) and thus displayed high resistance to AMPs such as polymyxin B (PMB) 

due to constitutive modification of lipid A with 4-aminoarabinose [28,29]. The importance of PhoQ for the 

virulence of P. aeruginosa has been explained with the observation that the sensor protein regulates the 

expression of many genes outside the PhoP regulon [24]. Under Mg2+-replete conditions, PhoQ amongst 

others controls the expression of type II secretion genes, iron-scavenging-related genes, energy-metabolism-

related genes, and other global regulators, such as AlgR, independent of PhoP. The effect of PhoQ on 

virulence thus seems to be multifactorial. Mutation of phoQ in P. aeruginosa resulted in highly attenuated 

virulence in a rat model of chronic lung infection, reduced cytotoxicity toward human bronchial epithelial 

cells, reduced biofilm formation, and impairment in twitching motility [24]. 

In contrast to PhoQ, PhoP regulates the expression of only a very small set of genes in P. aeruginosa [24]. In 

addition to the arn operon, the transcriptional regulator directly controls the expression of the oprH-phoP-

phoQ operon and thereby autoregulates its expression (Figure 2) [30]. The outer membrane protein OprH is 

likely to interact directly with LPS and thereby contributes to AMP resistance in this pathogenic bacterium 

[31]. Additionally, PhoP also regulates the expression of PagP, which is responsible for the transfer of 

palmitate to lipid A and also contributes to resistance to AMPs, in a Mg2+-dependent manner [30,32]. 

However, PhoP-dependent lipid A modification does not seem to be required for full virulence in P. 

aeruginosa because the phoP mutant was as virulent and competitive as the wild type [24]. 

In addition to the PhoP-PhoQ system, protection through 4-aminoarabinose addition to lipid A is also 

controlled by the PmrA-PmrB two-component system in P. aeruginosa (Figure 2) [27,33]. It has been 
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suggested that additional regulatory systems induce the expression of the arn operon in the host in response 

to attacks by AMPs under Mg2+-replete conditions [18]. 

 

P. protegens and most P. chlororaphis strains seem to be intrinsically resistant to at least certain AMPs 

(Chapter 5). AMP resistance in these bacteria seems to depend on the presence of LPS O-antigen and 

modification of lipid A with 4-aminoarabinose, and is likely to contribute to their insect pathogenicity. The 

goals of this study were to identify the PhoP-PhoQ regulatory system in P. protegens CHA0 and P. 

chlororaphis PCL1391 and to investigate whether it regulates AMP resistance and virulence in these bacteria. 

 

Results 

Identification of the PhoP-PhoQ system and its role in antimicrobial peptide resistance 

The sequences of PhoP (PA1179) and PhoQ (PA1180) of P. aeruginosa PAO1 were used to identify candidates 

for functional orthologs in P. protegens CHA0 via BLAST searches. The putative phoQ gene 

(PFLCHA0_c45400; 75% nucleotide sequence identity to PAO1 phoQ) was predicted to code for a membrane-

bound histidine kinase with a periplasmic sensor domain and a HAMP linker domain (Figure 3A). The 

predicted phoP gene (PFLCHA0_c45410) most likely encodes a DNA-binding response regulator. The gene 

directly upstream showed sequence similarity to PAO1 oprH. 

Deletion of PFLCHA0_c45410 in CHA0 (CHA5134) resulted in the loss of the strain’s intrinsic resistance to 

PMB, similar to the arnA mutant strain CHA5129, irrespective of the Mg2+ availability (Figure 3B and C). 

Complementation of the mutation by re-introducing the wild-type phoP gene (CHA5153) into the 

chromosome restored the resistance to this AMP (Figure 3B), indicating that no polar effects were caused by 

the deletion of the gene. Under Mg2+-limited conditions, in-frame deletion of PFLCHA0_c45400 (CHA5133) 

led to a slight decrease in resistance to this AMP when at a low concentration (Figure 3B). In contrast, the 

mutation in this gene increased the strain’s resistance under high Mg2+ concentrations (Figure 3C). The 

sequence similarities to PAO1 PhoP and PhoQ and their role in PMB resistance strongly indicate that 

PFLCHA0_c45400 and PFLCHA0_c45410 code for PhoQ and PhoP in P. protegens CHA0, respectively. Since 

these genes are organized similarly to their orthologs in P. aeruginosa PAO1, it is likely that phoP and phoQ 

are co-transcribed in CHA0 with oprH and form a three-gene operon, too (Figure 3A). 

The deletion of phoP and phoQ did not seem to affect the growth rate of CHA0 in the absence of AMPs 

(Figure 3B and C). However, the induced expression of these genes at the Tn7 attachment locus, which might 

have resulted in an overexpression of phoP and phoQ, influenced the growth of this bacterium, indicating 

that high expression of genes under the control of this regulatory system might be costly to the microbe. 
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Figure 3: Identification of the PhoP-PhoQ regulatory system in Pseudomonas protegens CHA0. (A) Organization of the locus 

predicted to code for the PhoP-PhoQ two-component system in P. protegens CHA0. Based on findings from P. aeruginosa, the phoP-

phoQ genes are probably co-transcribed with oprH, which encodes an outer membrane protein, under the control of the PoprH 

promoter. An additional weak promoter (PphoP) directly upstream of phoP might ensure a basal expression level of the PhoP-PhoQ 

system. The predicted functional domains of the phoPQ-encoded proteins are depicted below. HAMP, alpha-helical linker domain; 

REC, receiver domain; TM, transmembrane domain. (B) CHA0 and its isogenic mutant strains CHA5129 (arnA), CHA5133 (ΔphoQ), 

CHA5134 (ΔphoP), CHA5138 (ΔphoQ phoQ+), and CHA5153 (ΔphoP phoP+) were grown at 25°C in Lysogeny Broth (LB) at different 

concentrations of polymyxin B. The optical density of the cultures at 600 nm was determined in the exponential (6 hours post 

inoculation (hpi)) and stationary growth phase (24 hpi). The curves at 6 hpi of CHA5129 (arnA) and CHA5134 (ΔphoP) are 

overlapping. (C) The same assay as described in (B), but without the complementation strains CHA5138 and CHA5153, was 
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performed with LB supplemented with 20 mM MgCl2. The curves of CHA5129 (arnA) and CHA5134 (ΔphoP) are overlapping. Both 

experiments were repeated once with similar results. 

 

A locus orthologous to CHA0 oprH-phoPQ was also found in the genome of P. chlororaphis PCL1391 (Figure 

4A). As already previously observed (Chapter 5), PCL1391 was less resistant to PMB than P. protegens CHA0 

(Figure 4B and C). Increasing the concentration of Mg2+ in the growth medium resulted in a higher resistance 

of strain PCL1391 to low levels of PMB. However, at higher doses of PMB, PCL1391 became more sensitive to 

this antimicrobial compound when the Mg2+ concentration was high. Deletion of PCL1391_4349, the phoQ 

ortholog in P. chlororaphis PCL1391, increased the strain’s resistance to PMB at high Mg2+ concentrations but 

decreased it when Mg2+ was limited. This indicates that PCL1391_4349 is coding for PhoQ in PCL1391 and 

that the sensor kinase is able to increase and decrease the bacterium’s resistance to AMPs, depending on 

the availability of divalent cations in its surrounding. 

 

Taken together, these data suggest that both P. protegens CHA0 and P. chlororaphis PCL1391 possess the 

two-component regulatory system PhoP-PhoQ and that it is involved in the regulation of AMP resistance in 

these microbes. 
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Figure 4: Identification of the PhoP-PhoQ regulatory system in Pseudomonas chlororaphis PCL1391. (A) Organization of the locus 

predicted to code for the PhoP-PhoQ two-component system in P. chlororaphis PCL1391. Based on findings from P. aeruginosa, the 

phoP-phoQ genes are probably co-transcribed with oprH, which encodes an outer membrane protein, under the control of the PoprH 

promoter. An additional weak promoter (PphoP) directly upstream of phoP might ensure a basal expression level of the PhoP-PhoQ 

system. The predicted functional domains of the phoPQ-encoded proteins are depicted below. HAMP, alpha-helical linker domain; 

REC, receiver domain; TM, transmembrane domain. (B and C) P. chlororaphis PCL1391 and its isogenic phoQ deletion mutant (PCL-

10) were grown at 25°C in Lysogeny Broth (LB), with (B) or without 20 mM MgCl2 (C), at different concentrations of polymyxin B. The 

optical density of the cultures at 600 nm was determined in the exponential (6 hours post inoculation (hpi)) and stationary growth 

phase (24 hpi). The experiment was repeated once with similar results. 
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Aminoarabinose modification of lipid A is dependent on magnesium availability and PhoP-

PhoQ 

In Gram-negative bacteria, resistance to AMPs is amongst others mediated through covalent addition of 4-

aminoarabinose to lipid A via enzymes encoded in the arn gene cluster [17]. This modification neutralizes the 

negative charge of the lipid A 4'-phosphate group and thereby reduces the binding of AMPs to the bacterial 

outer membrane. In this study, a gene cluster orthologous to the arn gene cluster of P. aeruginosa PAO1 was 

identified in P. protegens CHA0 (with an overall nucleotide sequence identity of 78.5%) and P. chlororaphis 

PCL1391 (78.5% overall nucleotide sequence identity) (Figure 5). The arn genes in PCL1391 and CHA0 seem 

to be organized as an operon and are thus most probably co-transcribed. In order to study the role of PhoP-

PhoQ in the regulation of the expression of the arn gene cluster in P. protegens CHA0, a plasmid-based 

transcriptional arnB-gfp reporter fusion (pME8348) was constructed. The arnB gene was highly expressed in 

wild-type CHA0 when the bacteria were grown under low Mg2+ conditions in Lysogeny Broth (LB) (Figure 6). 

In contrast, the expression of arnB in the wild type was comparatively low in LB when supplemented with 22 

mM MgCl2 and in Grace’s Insect Medium (GIM), which has an equal concentration of Mg2+ and mimics the 

insect hemolymph. This indicates that Mg2+ availability plays a role in the expression of the arn gene cluster. 

 

 
Figure 5: The arn gene cluster in Pseudomonas aeruginosa PAO1, Pseudomonas protegens CHA0 and Pseudomonas chlororaphis 

PCL1391. Genes displayed in dark gray are encoding enzymes necessary for the modification of lipid A with 4-aminoarabinose in P. 

aeruginosa PA01 or are orthologs identified in P. protegens CHA0 and P. chlororaphis PCL1391. Gene names or putative functions of 

encoded proteins are indicated above the corresponding genes, information about the locus tags is given below (locus tags for 

PCL1391 are based on the draft genome and temporal). Genes in gray are most probably co-transcribed. Flanking genes are 

displayed in white. Genes are drawn to scale. AT, acetyltransferase; GT, glycosyltransferase; UGD, putative UDP-glucose 6-

dehydrogenase. 
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Figure 6: The expression of the arn gene cluster is induced under magnesium-limited conditions and controlled by the PhoP-PhoQ 

regulatory system in Pseudomonas protegens. CHA0, CHA5133 (ΔphoQ) and CHA5134 (ΔphoP) harboring the reporter plasmid 

pME8348 (ParnB-gfp) were grown at 25°C in Lysogeny Broth (LB), LB supplemented with 22 mM MgCl2 or Grace’s Insect Medium 

(GIM). Green fluorescence intensities of single cells were quantified (A) in the late exponential growth phase (6 hours post 

inoculation) and (B) in early stationary phase (24 hours post inoculation) by fluorescence microscopy (n=300-1300 cells analyzed per 

strain and condition). Shown are averages single cell fluorescence intensities per culture, corrected for background and 

autofluorescence using strain CHA0 carrying the empty pPROBE-TT vector as the control. (C) Single cell intensities of CHA0 and 

CHA5133 in LB shown in (A) are displayed as boxplots. The number of cells analyzed per strains was similar (n=1244 for CHA0, 

n=1175 for CHA5133). The experiment was repeated once with similar results. 

 

P. protegens CHA0 missing a functional phoP gene (CHA5134) displayed a strongly decreased expression of 

arnB (Figure 6A and B). During the exponential growth phase, the expression level in this mutant was similar 

to the expression level of the wild-type strain under Mg2+-replete conditions (Figure 6A), which suggests that 

PhoP is required for the activation of arn gene expression when Mg2+ is limited. In-frame deletion of phoQ 

(CHA5133) resulted in an increased activity of the ParnB promoter at high Mg2+ concentrations. In contrast, 
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the expression of arnB was lower in the ΔphoQ mutant than in the wild type when Mg2+ was limited in the 

medium. These observations suggest that PhoQ is repressing the expression of the arn gene cluster when 

Mg2+ concentrations are high but contributes to induction of their expression under Mg2+-limited conditions. 

The mutation of phoQ, however, caused that in LB a higher proportion of the bacterial population expressed 

arnB at very high levels in comparison to wild type CHA0 (Figure 6C). In summary, these findings indicate 

that modification of lipid A via Arn proteins takes place mainly at low Mg2+ concentrations and is controlled 

by the PhoP-PhoQ regulatory system in P. protegens CHA0, which seems to respond to divalent cations in 

this bacterium as in P. aeruginosa [18,20,34]. 

Since the expression of AMP resistance genes was reported to be induced in some bacteria in the presence 

of AMPs, the effect of PMB on the expression of arnB was investigated. When this AMP was present at 

sublethal concentrations, the expression of the arn gene cluster seemed to be induced in a small 

subpopulation of P. protegens CHA0 under Mg2+-replete conditions (Figure 7). This indicates that in P. 

protegens the presence of AMPs induces the expression of at least this resistance mechanism. 

 

 
Figure 7: Polymyxin B induces the expression of the arn gene cluster in a subpopulation of Pseudomonas protegens CHA0 at 

sublethal concentrations. The P. protegens strain CHA0 equipped with the GFP-based reporter plasmid pME8348 was grown at 25°C 

in Lysogeny Broth supplemented with 20 mM MgCl2 in the presence or absence of polymyxin B at a sublethal concentration (2 

µg/ml). The green fluorescence intensities of single cells were quantified by epifluorescence microscopy in the exponential phase (6 

hours post inoculation) and the values are displayed as boxplots. Equal numbers of cells were analyzed for each treatment (n= 

approx. 400 cells per treatment). 
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The PhoP-PhoQ regulatory system controls the expression of oprH 

To investigate whether PhoP-PhoQ also regulates the expression of oprH, a PoprH-gfp reporter plasmid 

(pME11004) was constructed. As for the arn cluster, the expression of oprH was high in LB and repressed 

under high Mg2+ conditions and under the control of the PhoP-PhoQ two-component regulatory system 

(Figure 8). In contrast to the arn gene cluster, the differences in the expression level of oprH between the 

wild type and the isogenic PhoP and PhoQ defective mutants were larger in the stationary phase than in the 

exponential growth phase. If phoP and phoQ are co-transcribed with oprH in CHA0 as reported for P. 

aeruginosa PAO1 [20], the two-component regulatory system most likely regulates its own expression via 

PhoP. High expression of the arn operon in the ΔphoQ mutant under high Mg2+ conditions might thus be a 

consequence of the overexpression of phoP in this mutant strain. 

 

 
Figure 8: The expression of oprH is induced under magnesium-limited conditions and controlled by the PhoP-PhoQ regulatory 

system in Pseudomonas protegens. CHA0, CHA5133 (ΔphoQ) and CHA5134 (ΔphoP) harboring the reporter plasmid pME11004 

(PoprH-gfp) were grown at 25°C in Lysogeny Broth (LB), LB supplemented with 22 mM MgCl2 or Grace’s Insect Medium (GIM). Green 

fluorescence intensities of single cells were quantified (A) in the exponential growth phase (6 hours post inoculation) and (B) in early 
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stationary phase (24 hours post inoculation) by fluorescence microscopy (n=250-1300 cells analyzed per strain and condition). Shown 

are average single cell fluorescence intensities per culture, corrected for background and autofluorescence using strain CHA0 

carrying the empty pPROBE-TT vector as control. 

 

PhoQ is important for virulence of Pseudomonas protegens in Galleria mellonella 

Virulence and competition assays with larvae of G. mellonella were carried out to determine whether PhoP-

PhoQ is important for insect pathogenicity in P. protegens CHA0. The ΔphoQ mutant of CHA0 was 

significantly reduced in virulence in Galleria larvae upon injection (Figure 9A). In contrast, the ΔphoP mutant 

was as virulent as the wild type in this systemic infection model. A ΔphoPQ double mutant displayed a 

reduced virulence as well, however, not to the extent of the ΔphoQ mutant. Whereas deletion of phoQ 

resulted in significantly reduced competitiveness during infection of G. mellonella, mutation of phoP 

rendered CHA0 slightly more competitive compared to wild-type bacteria (Figure 9B). 

These observations indicate that, in contrast to PhoP, the sensor kinase PhoQ is essential for full virulence of 

P. protegens CHA0 upon systemic infection. Factors controlled by PhoQ outside of the PhoP regulon thus 

might contribute to insect pathogenicity of CHA0. However, it cannot be excluded that both components of 

this regulatory system modulate the virulence of CHA0 since deletion of either gene led to an altered 

competitiveness in Galleria larvae. 

 

 

Figure 9: PhoQ contributes to insect pathogenicity in Pseudomonas protegens CHA0. (A) Virulence of the PhoP and PhoQ defective 

mutant strains of CHA0 was determined by injection of low cell numbers into larvae of Galleria mellonella and monitoring the 

survival of the insects over time. Deletion of phoQ (in red, CHA5133) and phoPQ (in green, CHA5204) significantly reduced the 

virulence of the bacterium (p-value < 0.0001; Log-Rank test with Kaplan Meier estimations), while the ΔphoP mutant (in blue, 

CHA5134) was as virulent as the wild type (in black, CHA0). Sterile saline solution served as a negative control (in gray). The 

experiment was repeated once with similar results. (B) Competitiveness of the ΔphoQ and ΔphoP mutant strains during systemic 

insect infection was investigated by injecting equal numbers of fluorescently tagged mutant (CHA5133-mChe and CHA5134-mChe, 
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respectively) and corresponding wild-type cells (CHA0-gfp2) into larvae of G. mellonella and counting bacterial cells in hemolymph 

samples 20 to 24 hours after the injection by epifluorescence microscopy. The competitive index indicates the ratio between the cell 

numbers of the mutant and the wild type, normalized by the ratio in the inoculum. Asterisks indicate significant differences between 

the mutants and the wild type (*, p-value < 0.05; **, p-value < 0.001; one-sample t test). 

 

PhoQ represses Fit toxin production 

The phoQ and phoP genes were deleted individually in the FitD-mCherry reporter strain CHA1163 [3] to 

investigate whether the two-component regulatory system has any influence on the production of the Fit 

toxin in P. protegens CHA0. Deletion of phoQ, but not phoP, increased the expression of FitD-mCherry when 

the reporter bacteria were grown in GIM (Figure 10A). This suggests that PhoQ represses the production of 

Fit toxin in CHA0 in insect hemolymph, probably through a PhoP-independent pathway. Because the two-

component system was activated by Mg2+ limitation in CHA0 (Figure 8), the expression of FitD was further 

studied in minimal medium with low or high concentration of Mg2+. Minimal medium was chosen because, in 

contrast to LB, Fit toxin expression is induced in P. protegens CHA0 when grown in this medium (Chapter 3) 

and, in contrast to GIM, it is possible to change the concentration of Mg2+. Expression of the insecticidal toxin 

increased approximately 3-fold in the ΔphoQ mutant compared to the wild type regardless of the amount of 

Mg2+ in the growth medium, indicating that repression of Fit toxin production by PhoQ is independent of the 

Mg2+ availability (Figure 10). 

 

 
Figure 10: PhoQ represses Fit toxin expression in Pseudomonas protegens independent of the magnesium availability. (A) The fitD-

mCherry fusion reporter strain of CHA0 (CHA1163) and isogenic mutant strains with a deletion in phoQ (CHA5135) or phoP 

(CHA5136) were grown for 24 hours in Grace’s Insect Medium as three independent cultures. Red fluorescence intensity of single 

cells was quantified by epifluorescence microscopy. Shown are the means and standard deviations per treatment. Asterisks indicate 

strains which were significantly different from the wild type in (A) (p-value < 0.02; one-way ANOVA with Tukey HSD post hoc test). 

(B) The same assay was also performed in low phosphate minimal medium with 2 mM (low) or 40 mM (high) Mg2+, in order to study 
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the effect of magnesium on the expression of the Fit toxin, and with only one culture per strain and condition. The experiment was 

repeated once with similar results. 

 

The aminoarabinose modification genes are conserved in insect-pathogenic pseudo-

monads 

Genome comparisons revealed that not all P. fluorescens group strains possess the arn gene cluster (Figure 

11). A more detailed study of the different genomes showed that all P. protegens and P. chlororaphis strains 

have a fully conserved gene cluster, while most strains without insecticidal activities seemed to have 

reduced or completely lost it over time (Figures 5 and 11). The lineages with a reduced arn operon lack the 

arnB gene which is generally highly conserved across species and essential for 4-aminoarabinose 

modification of lipid A [35,36]. Interestingly, whereas the gene sequences are highly conserved, the 

promoter sequence of the arn gene cluster differs significantly between P. protegens and P. chlororaphis 

(data not shown), which might lead to a higher (or constitutive) expression of these genes in the former 

bacterial species. Certain strains seem to possess an ortholog of P. aeruginosa PAO1 pagP (Figure 11) which 

is a lipid A acylation protein and might contribute to PMB resistance in addition to lipid A modification with 

4-aminoarabinose [30,32]. 
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Figure 11: Conservation of the arn gene cluster in insecticidal Pseudomonas protegens and Pseudomonas chlororaphis. The 

presence or absence of the fit gene cluster (encoding the Fit toxin as well as transport and regulatory proteins), the arn gene cluster 

(coding for enzymes for the covalent modification of lipid A with 4-aminoarabinose and for resistance to cationic antimicrobial 

peptides (AMPs)) and the putative pagP gene (encoding a lipid A acylation protein putatively contributing to AMP resistance) is 

indicated for selected strains of the P. fluorescens group. Strains that possess the fit gene cluster are efficiently killing lepidopteran 

insect larvae. The phylogenic tree is based on sequences of the core genome (Flury et al., manuscript in preparation). Incomplete arn 

clusters (i.e. the absence of the arnB gene) are indicated as open circles in the figure. 
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Discussion 

PhoP-PhoQ regulates AMP resistance in entomopathogenic pseudomonads 

This study identified the PhoP-PhoQ regulatory system in two insecticidal pseudomonads with biocontrol 

properties and provides evidence that it plays an important role in AMP resistance and virulence in these 

bacteria. Although some of the results presented here are preliminary and several experiments need to be 

repeated in triplicates, the present study gives a first insight into the possible roles of this complex 

regulatory system in two related bacterial species. 

The response regulator PhoP activates the expression of oprH and arn genes which likely both contribute to 

PMB resistance in pseudomonads (Figure 12). Unlike in P. aeruginosa, where AMP resistance is only 

increased in phoQ mutants [18,34], these genes seem to be highly transcribed under Mg2+-limited conditions 

in P. protegens wild type CHA0. In contrast, the expression of these PhoP-regulated genes is repressed in this 

bacterium when the availability of the divalent cation is high. The sensor kinase PhoQ seems to be the 

regulator that controls the Mg2+-dependent switch in oprH and arn expression. Results in this study suggest 

that, in P. protegens CHA0 and P. chlororaphis PCL1391, PhoQ contributes to the activation of the expression 

of these genes under low Mg2+ concentrations, but represses their transcription under Mg2+-replete 

conditions. The sensor kinase has been suggested to act predominantly as a phosphatase in P. aeruginosa 

[18,20] whereas in Salmonella it activates PhoP by phosphorylation [21,25]. The PhoP-PhoQ system in the 

pseudomonads tested in the present study is thus a good example for the general assumption that PhoQ can 

be both a phosphatase and a phosphorylase of its cognate response regulator in the same bacterium. 
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Figure 12: Model for the PhoP-PhoQ two-component regulatory system in Pseudomonas protegens CHA0. (A) Under magnesium-

limited conditions or when antimicrobial peptides (AMPs) are present in the environment, the sensor kinase PhoQ activates its 

cognate response regulator PhoP by phosphorylation in P. protegens CHA0. The transcriptional regulator subsequently activates the 

expression of proteins that contribute to AMP resistance. These include the Arn proteins which are responsible for the addition of 4-

aminoarabinose to lipid A, the outer membrane protein OprH, and the palmitoyltransferase PagP. It is also possible that the 

expression of these proteins is induced by AMPs indirectly via or independent of PhoP-PhoQ. (B) Under magnesium-replete 

conditions, PhoQ dephosphorylates PhoP and thereby inactivates the response regulator and the expression of AMP resistance 

genes. In addition, the sensor kinase regulates the expression of genes that are contributing to virulence of P. protegens CHA0, such 

as the Fit insect toxin, independent of PhoP. 

 

The role of the PhoP-PhoQ system in regulating the expression of the Arn proteins directly translated into 

the bacterial resistance to PMB. Both PhoP and the Arn proteins were essential for high resistance to this 

particular AMP under all conditions tested. Based on the observed lower arn expression at high Mg2+ 

concentrations in strain CHA0 and the literature about P. aeruginosa PhoP-PhoQ, one would expect that 4-

aminoarabinose modification of lipid A does not play a significant role in AMP resistance under  high Mg2+ 

conditions as occurring for instance in insect hemolymph [37-39]. Our results, however, strongly indicate 

that PhoP-dependent 4-aminoarabinose modification of lipid A is also taking place in presence of AMPs, at 

least in a subpopulation, and contributing to AMP resistance when Mg2+ is not limited. It is possible that the 

presence of AMPs (for example in the insect gut and hemolymph) induces the expression of the arn operon 

and other AMP resistance genes (at least in a subpopulation), which has been suggested to happen in many 

other bacteria (Figure 2) [40-42]. Moreover, in P. aeruginosa it was previously found that binding to 

epithelial cells highly induces the PhoP-PhoQ regulatory system under Mg2+-replete conditions [43]. It is 
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further important to note that the expression of genes necessary for AMP resistance via lipid A modification 

are generally not solely controlled by the PhoP-PhoQ system. In Salmonella and P. aeruginosa, the PmrA-

PmrB two-component system also contributes, amongst other regulators, to arn gene regulation (Figure 2) 

[27,33]. The induction of the arn genes could thus theoretically also take place in a ΔphoP mutant. However, 

since the PmrA-PmrB regulatory is not conserved in P. protegens and P. chlororaphis (data not shown), this 

may involve further, as yet to be identified regulatory systems. 

Resistance to AMPs most probably is mediated by several factors. We have previously shown that resistance 

to PMB is also dependent on O-antigen (Chapter 5) whose synthesis might not be controlled by PhoP-PhoQ. 

We noticed that P. protegens strains further possess a gene coding for the putative palmitoyltransferase 

PagP whose expression might also contribute to AMP resistance [30,32]. Under high Mg2+ conditions, P. 

protegens CHA0 was resistant to low doses of polymyxin independent of PhoP and Arn proteins. This could 

be attributed to the presence of such other resistance factors. Another explanation could be that the 

negatively charged lipid A moieties were masked by Mg2+ under these conditions, which would have 

protected these pseudomonads against attacks by PMB. 

 

PhoQ is important for insect pathogenicity 

By using G. mellonella as a systemic infection model we found evidence that a functional PhoQ is essential 

for full virulence and competition of P. protegens CHA0 in insects. The studies on the regulation of oprH and 

the arn operon by PhoP-PhoQ indicate that deletion of phoQ caused constitutive expression of the 

regulatory system and PhoP-regulated genes. As it has been suggested by others before [18,20,34], a ΔphoQ 

mutant could thus display the phenotypes of a phoP overexpressing mutant, which could lead to false 

conclusions on the role of the sensor kinase. We therefore created a phoP-phoQ double mutant, which was 

sensitive to polymyxin in the same way as the ΔphoP mutant strain (data not shown), and assessed the 

resulting virulence in the insect model. Because the deletion of both phoP and phoQ significantly reduced 

the virulence of the bacterium as well, we conclude that PhoQ is important for the insect pathogenicity of 

CHA0. 

In contrast, deletion of phoP did not affect the virulence of CHA0 upon injection into the hemocoel of G. 

mellonella. Mutation of phoP even seemed to increase competitiveness of CHA0 in this insect model. It is 

therefore possible that PhoP-controlled modifications of lipid A are not important for P. protegens to infect 

and kill the insect host upon injection or that regulators other than PhoP are important for the expression of 

the arn genes during insect infection. It is further possible that P. protegens interferes with the production of 

AMPs in G. mellonella, as it has been observed in Drosophila for P. aeruginosa [44], or evades detection by 

the host’s immune system. If this was true, high resistance to AMPs might be unnecessary for persistence of 

CHA0 in the hemolymph of the insect host when injected, and even cause a decrease in fitness. Since 
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lepidopteran insects constitutively synthesize AMPs in their guts [7], resistance to these antimicrobials might 

alternatively be vital for a successful infection of the host via the oral route. It is also plausible that during an 

infection by ingestion the host organism has more time and ways to detect the bacterium and mount a 

protective systemic immune response. Mutation of the arn gene cluster in Salmonella, for example, reduced 

its virulence only when mice were infected orally but not when the bacteria were administered 

intraperitoneally [36]. 

The finding that PhoP is not required for systemic virulence does, however, not exclude that CHA0 is 

resistant to AMPs during insect interaction by other mechanisms, such as protection by O-antigen. Genome 

comparisons indicated that certain P. fluorescens group lineages possess proteases similar to P. entomophila 

AprA that could degrade AMPs when secreted into the environment (Flury et al., manuscript in preparation). 

As discussed above, the expression of lipid A modification genes could also be induced in insect hemolymph 

independent of PhoP. Costechareyre et al. reported that the arn operon is important for virulence of the 

plant pathogenic bacterium Dickeya dadantii in the pea aphid, Acyrthosiphon pisum [45]. They observed that 

AMP resistance genes, including the arn gene cluster, were upregulated during D. dadantii infection. 

Preliminary results of an experiment with the CHA0 arnB-gfp reporter strains in G. mellonella, however, 

suggest that this is not the case in P. protegens (data not shown). In addition, expression of arnB was 

observed to be relatively low in the insect medium compared to LB. Further experiments are necessary to 

clarify whether and how well the arn operon is expressed by CHA0 during insect infection and if expression 

of the Arn proteins contributes to the virulence in this bacterial strain, in particular during infection via the 

oral route. Interestingly, the arn gene cluster is conserved in all P. protegens and P. chlororaphis strains while 

it has been reduced or lost in most other P. fluorescens group strains inspected. This could help to explain 

why only insect-pathogenic pseudomonads were found to be naturally resistant to PMB. It can be speculated 

that AMP resistance might not have been conserved in non-insecticidal strains because of the lack of 

interaction with insects. 

It can be argued that results obtained with the model AMP PMB cannot be generalized for insect derived 

AMPs. Modification of lipid A might thus not confer resistance to all AMPs synthesized by insects. However, 

in previous studies a correlation between resistance to polymyxins and resistance to host AMPs has been 

observed [13,46], suggesting that PMB is a good model AMP. Studies using insect-derived AMPs would be 

expensive since the costs for the purification or synthesis of these antimicrobial compounds are very high. 

Alternatively, it could be interesting to investigate whether certain lepidopteran AMPs can be heterologously 

expressed in Escherichia coli, yeast cells or an insect cell line and be used for inhibition tests on agar plates. 

Amino acid sequences of several lepidopteran AMPs are available [47] and similar experiments with plant 

AMPs have been published previously [48]. 

Similar to P. protegens CHA0, it has been reported that only PhoQ is required for virulence of P. aeruginosa, 

but not PhoP [24]. This discrepancy has been explained with the finding that PhoQ controls the expression of 
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numerous genes outside the PhoP regulon [24]. PhoQ controls, amongst others, the expression of the type II 

secretion genes, iron-scavenging-related genes, energy-metabolism-related genes, and other global 

regulators independent of PhoP [24]. The reduced virulence of the CHA0 ΔphoQ mutant thus could be 

attributed to dysregulation of genes outside the PhoP regulon as well. We found evidence that PhoQ 

influences the expression of the Fit toxin, an important virulence factor of P. protegens CHA0 [3,5]. Because 

the sensor protein seemed to repress the expression of this insecticidal toxin, it does, however, not explain 

the reduced virulence of the CHA0 ΔphoQ mutant in Galleria. The virulence of the PCL1391 ΔphoQ mutant 

remains to be tested to assess whether the sensor kinase plays a similar role in virulence in P. chlororaphis as 

in P. protegens. PhoQ could influence virulence in PLC1391 via affecting the quorum sensing systems. The 

PhoP-PhoQ system was previously suggested to influence quorum sensing in P. fluorescens 2P24 [49]. For 

future studies it could therefore be interesting to identify additional genes controlled by PhoP-PhoQ in these 

bacteria, for example by an RNA sequencing approach.  

 

Conclusions and future directions 

The present study identified PhoP-PhoQ as a further two-component global regulatory system, in addition to 

GacS-GacA [5], that regulates virulence in P. protegens CHA0. In contrast to canonical two-component 

systems its components seem to regulate two different sets of genes. With a few exceptions, the PhoP-PhoQ 

system of P. protegens and P. chlororaphis is similar to its equivalent in P. aeruginosa. So far, only the sensor 

kinase PhoQ was found to be required for the virulence of strain CHA0. The response regulator PhoP in 

contrast seems to be necessary for the bacterium’s inherent resistance to AMPs under laboratory conditions. 

PhoP-dependent modification of lipid A does not seem to be essential for persistence in the hemocoel of G. 

mellonella upon injection. This challenges the hypothesis previously formulated in Chapter 5 that AMP 

resistance is important for CHA0 to systemically infect insect larvae. Resistance to AMPs might be more 

important for surviving antimicrobial responses of epithelial immunity during colonization of the insect gut 

and conferred by multiple factors, some of which are expressed independent of the PhoP-PhoQ system. 

Additional resistance mechanisms, such as the expression of proteases and efflux pumps and the synthesis 

of exopolysaccharides, could be identified in strain CHA0 with a transposon sequencing approach by growing 

a mutant library in a specific medium supplemented with PMB or another model AMP. Deletion of oprH and 

pagP will further reveal whether their encoded proteins contribute to AMP resistance in CHA0. Insect 

feeding assays with several AMP-sensitive strains should be performed in order to test the hypothesis that 

resistance to AMPs contributes to oral insecticidal activity in pseudomonads. Future studies should in 

addition aim at the identification of PhoQ-regulated genes that contribute to virulence of CHA0.  

The results of this study point out that we need to learn more about the interaction of entomopathogenic 

pseudomonads with the insect’s immune system. It is still completely unknown which strategy these bacteria 
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evolved to counteract the immune defenses of the insect host, which makes it very difficult to tell if their 

natural resistance to AMPs is required in order to successfully infect and kill insect larvae. Thus, the next big 

challenge will be to answer the question whether these bacteria are able to suppress, evade or resist the 

host’s production of these key players of innate immunity. 

 

Material and Methods 

Bacterial strains, plasmids, media, and culture conditions 

All strains and plasmids used in this study are listed in Table 1. Bacterial strains were routinely maintained on 

nutrient agar (NA) plates or cultured in LB (LB Broth Miller, BD Difco) supplemented with appropriate 

antibiotics as needed. Pseudomonas strains were grown at 25°C while E. coli was cultured at 37°C. The 

following antibiotic concentrations were used: ampicillin, 100 µg/ml; chloramphenicol, 10 µg/ml; kanamycin, 

25 µg/ml for E. coli and P. protegens, 50 µg/ml for P. chlororaphis; gentamicin, 10 µg/ml for E. coli and P. 

protegens, 20 µg/ml for P. chlororaphis; and tetracycline, 25 µg/ml or 125 µg/ml for E. coli and 

Pseudomonas, respectively. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at a final concentration 

of 0.1 mM, if not otherwise stated. 

 

Table 1: Bacterial strains and plasmids used in this study 

Strain or plasmid Genotype, phenotype or relevant characteristics Reference or 
source 

Pseudomonas protegens   
 CHA0 Wild type [50] 
 CHA0-gfp2 CHA0::attTn7-gfp2; Gmr [3] 
 CHA1163 CHA0::fitD-mcherry [3] 
 CHA5129 CHA0 arnA::pEMG (PFLCHA0_c30730); Kmr This study 
 CHA5133 CHA0 ΔphoQ (PFLCHA0_c45400) This study 
 CHA5133-mChe CHA5133::attTn7-mcherry; Gmr This study 
 CHA5134 CHA0 ΔphoP (PFLCHA0_c45410) This study 
 CHA5134-mChe CHA5134::attTn7-mcherry; Gmr This study 
 CHA5135 CHA5133::fitD-mcherry This study 
 CHA5136 CHA5134::fitD-mcherry This study 
 CHA5138 CHA5133::attTn7-Ptac/lacIq-phoQ; Gmr This study 
 CHA5153 CHA5134::attTn7-Ptac/lacIq-phoP; Gmr This study 
 CHA5204 CHA0 ΔphoPQ This study 
   
Pseudomonas chlororaphis   
 PCL1391 Wild type [51] 
 PCL-10 PCL1391 ΔphoQ (PCL1391_4349) This study 
   
Escherichia coli   
 DH5α, DH5α λpir Laboratory strains [52] 
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Plasmids   
pEMG pSEVA212S; oriR6K, lacZα MCS flanked by two I-SceI sites; Kmr, Apr [53] 
pME8300 Carrier plasmid for Tn7 for Ptac/lacIq controlled target gene expression; Gmr, Apr [54] 
pME8340 pEMG-arnA’; suicide plasmid for the disruption of arnA (PFLCHA0_c30730) in 

CHA0; Kmr 
This study 

pME8345 pEMG-ΔphoQ; suicide plasmid for the in-frame deletion of phoQ 
(PFLCHA0_c45400) in CHA0; Kmr 

This study 

pME8346 pEMG-ΔphoP; suicide plasmid for the in-frame deletion of phoP 
(PFLCHA0_c45410) in CHA0; Kmr 

This study 

pME8348 pPROBE-TT-ParnB-gfp; Tcr This study 
pME8349 pME8300-Ptac/lacIq-phoQ; IPTG-inducible expression of CHA0 phoQ 

(PFLCHA0_c45400); Gmr, Apr 
This study 

pME8353 pME8300-Ptac/lacIq-phoP; IPTG-inducible expression of CHA0 phoP 
(PFLCHA0_c45410); Gmr, Apr 

This study 

pME11003 pEMG-ΔphoPQ; suicide plasmid for the deletion of phoP (PFLCHA0_c45410) and 
phoQ (PFLCHA0_c45400) in CHA0; Kmr 

This study 

pME11004 pPROBE-TT-PoprH-gfp; Tcr This study 
pME11005 pEMG-ΔphoQ(PCL1391); suicide plasmid for the in-frame deletion of phoQ 

(PCL1391_4349) in PCL1391; Kmr 
This study 

pME9407 pUC19-based delivery plasmid for miniTn7-mcherry; mob+; Gmr, Cmr, Apr [55] 
pPROBE-TT Promoter-probe vector based on eGFP; Tcr [56] 
pSW-2 oriRK2, xylS, Pm::I-sceI; Gmr [53] 
pUX-BF13 Helper plasmid encoding Tn7 transposition functions; R6K-replicon; Apr [57] 

Abbreviations: Apr, ampicillin resistance; Gmr, gentamicin resistance; Kmr, kanamycin resistance; Tcr, tetracycline resistance. Locus 

tags of newly identified genes are indicated in brackets. 

 

Bioinformatics 

The genes putatively coding for PhoP, PhoQ and the Arn proteins in P. protegens CHA0 were identified via 

protein BLAST searches performed on the Pseudomonas Genome Database website 

(http://pseudomonas.com/blast.jsp) using protein sequences of characterized genes (i.e., PA1179, PA1180 

and PA3552-PA3558) from P. aeruginosa PAO1. Detected genes and gene clusters were further analyzed by 

predicting the function of the encoded proteins using the NCBI Conserved Domain Database [58] and 

InterPro [59] with default parameters. The ortholog of phoQ in P. chlororaphis PCL1391 was identified by 

local BLASTn search using the nucleotide sequence of CHA0 phoQ [60]. Orthologs of genes of the arn cluster 

were identified in P. fluorescens group strains by pan-genome calculations in EDGAR [61] with standard 

settings as described in [62]. 

 

Recombinant DNA techniques 

DNA manipulations and PCRs were performed according to standard protocols [52]. Genomic DNA was 

extracted with the Promega Wizard Genomic DNA Purification Kit. Plasmid DNA preparations were 

performed using the QIAprep Spin Miniprep Kit (Qiagen) and the Genomed JETStar Plasmid Purification Midi 

Kit for small and large scale purifications, respectively. DNA gel extractions were conducted using the 
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MinElute Gel Extraction Kit and the QIAquick Gel Extraction Kit (Qiagen). DNA restriction and modification 

enzymes were purchased from Promega and were used according to the manufacturer’s recommendations. 

DNA enzyme reaction cleanups were conducted using the QIAquick PCR Purification Kit (Qiagen). PCR for 

molecular cloning was conducted according to the recommendations of the manufacturer with the 

PrimeSTAR HS high-fidelity DNA polymerase kit (Takara Bio Inc.), while the DNA Polymerase kit (Promega) 

was used to perform PCRs for analytic purposes. The primers used in this study were synthesized by 

Microsynth AG (Balgach, Switzerland) and are listed in Table 2. DNA sequencing was conducted at GATC 

Biotech (Konstanz, Germany) and obtained sequences were analyzed using the DNASTAR Lasergene software 

suite. 

 

Table 2: Primers used in this study 

Name Sequence 5’ → 3’, restriction enzyme(s)1 Purpose 

arnA-im-1 CGGGATCCAACTGGGTGCTGGTCAAG, BamHI Disruption of CHA0 arnA 
arnA-im-2 GGAATTCGTCCACCAGGCCCAGTTC, EcoRI Disruption of CHA0 arnA 
ParnB-F CGGGATCCGTGACATGCTCGGGTTG, BamHI Reporter for CHA0 arnB 
ParnB-R GGAATTCGATCCAGCCGGAGCGCAG, EcoRI Reporter for CHA0 arnB 
PCL.phoQ-del-1 CGGGATCCTCAGACCGAGCAGTTCAACC, BamHI Deletion of PCL1391 phoQ 
PCL.phoQ-del-2 CCCAAGCTTGCGTAACGATCGGATCATCGG, HindIII Deletion of PCL1391 phoQ 
PCL.phoQ-del-3 CCCAAGCTTCTCTTCCCGACGATTTGACCG, HindIII Deletion of PCL1391 phoQ 
PCL.phoQ-del-4 GGAATTCGAGAGCCTGCTGGTGATCTG, EcoRI Deletion of PCL1391 phoQ 
phoP-del-1 GCGGATCCTGGCGAACTCAT, BamHI Deletion of CHA0 phoP 
phoP-del-2 GACTAGTAACGAGCGTTGCCGATGATTC, SpeI Deletion of CHA0 phoP 
phoP-del-3 GACTAGTCCAGGCAAAATTCGACATCTCC, SpeI Deletion of CHA0 phoP and phoPQ 
phoP-del-4 GGAATTCGATATGTTCCTGCCGGTGAC, EcoRI Deletion of CHA0 phoP and phoPQ 
phoP-expr-F GACTAGTATGTCGAATTTTGCCTGGGAGAG; SpeI Expression of CHA0 phoP 
phoP-expr-R CGGGATCCGAATCATCGGCAACGCTCG, BamHI Expression of CHA0 phoP 
phoQ-del-1 CGGGATCCTACGACCTGCTTTTCCCTTGC, BamHI Deletion of CHA0 phoQ and phoPQ 
phoQ-del-2 GACTAGTCACTTTCCGGCCCTGTAGG, SpeI Deletion of CHA0 phoQ and phoPQ 
phoQ-del-3 GACTAGTGCGCAGCGATCGAATCATCG, SpeI Deletion of CHA0 phoQ 
phoQ-del-4 GGAATTCAGACGTTCCCGATCCTCATC, EcoRI Deletion of CHA0 phoQ 
phoQ-expr-F GACTAGTATGATTCGATCGCTGCGCCTG, SpeI Expression of CHA0 phoQ 
phoQ-expr-R CCCAAGCTTCCTACAGGGCCGGAAAGTG, HindIII Expression of CHA0 phoQ 
PoprH-F CGGGATCCGCACCGTGGAAACTCACCAC, BamHI Reporter for CHA0 oprH 
PoprH-R GGAATTCGACAACCCAACGAAGTTGCTG, EcoRI Reporter for CHA0 oprH 

1 Restriction sites are underlined 

 

Construction of in-frame deletion and gene disruption mutants 

In-frame deletions of selected genes in P. protegens CHA0 and P. chlororaphis PCL1391 were performed 

based on homologous recombinations using the suicide vector pEMG and the I-SceI system. For the 

construction of the suicide vectors (Table 1), upstream and downstream regions of 500–600 bp length 

flanking the region to be deleted were amplified by PCR using the primer pairs listed in Table 2 and 



 Identification and characterization of PhoP-PhoQ in insect-pathogenic pseudomonads 

209 

chromosomal DNA from strains CHA0 or PCL1391 as DNA templates. Purified PCR products were digested 

using the corresponding restriction enzymes (indicated in Table 2) and subsequently cloned into the suicide 

vector pEMG via triple ligation. Correct insert sequences of the resulting plasmids were confirmed via DNA 

sequencing. The obtained suicide vectors then served to construct strains CHA5133, CHA5134, CHA5204, and 

PCL-10 (Table 1), respectively, using the I-SceI system as described previously [54]. 

For the disruption of the arnA gene in P. protegens CHA0, a pEMG-based suicide vector was constructed and 

inserted sequence-specifically via homologous recombination. To do so, a 500-bp region in the middle of the 

arnA was amplified by PCR, using the primers arnA-im-1 and arnA-im-2 (Table 2) and chromosomal DNA 

from strain CHA0. The resulting BamHI-EcoRI fragment was digested with BamHI and EcoRI and cloned by 

ligation into pEMG opened with the same restriction enzymes. The insert sequence of the resulting vector 

pME8340 was verified by DNA sequencing and, for constructing strain CHA5129, the plasmid was integrated 

into the CHA0 chromosome by transformation of competent bacteria via electroporation. 

 

Complementation of mutant strains 

In order to complement the ΔphoQ mutation in strain CHA5133, the 1348 nt coding sequence (CDS) of phoQ 

was amplified by PCR using primers phoQ-expr-F and phoQ-expr-R (Table 2) and chromosomal DNA from P. 

protegens CHA0. After digestion with SpeI and HindIII, the fragment was ligated into plasmid pME8300 

(Table 1) opened with the same restriction enzymes. Correct insert sequence of the resulting plasmid 

pME8349 (Table 1) was verified via DNA sequencing. The obtained vector was subsequently used for 

constructing strain CHA5138 by electroporation of competent CHA5133 cells with pME8349 and pUX-BF13 

(Table 1). 

A similar approach was chosen to complement the ΔphoP mutation in strain CHA5134. Using chromosomal 

DNA from CHA0 as a template, the 708 nt long fragment CDS of phoP was amplified by PCR using the primers 

phoP-expr-F and phoP-expr-R. The purified PCR product was digested with SpeI. The vector pME8300 was 

opened with HindIII, blunt-ended with T4 DNA polymerase and digested with SpeI after a purification step. 

The digested phoP PCR product was cloned into the opened plasmid via ligation. Correct insert sequence of 

the resulting vector pME8353 (Table 1) was verified via DNA sequencing and the plasmid was subsequently 

used for constructing strain CHA5153 by electroporation of competent CHA5134 cells with pME8353 and 

pUX-BF13 (Table 1). 

 

Polymyxin resistance assays 

To test the resistance of different P. protegens and P. chlororaphis strains toward cationic AMPs, the 

bacterial strains were exposed to increasing concentrations of polymyxin B (Sigma) (ranging from 2 µg/ml to 

200 µg/ml). The bacteria were grown overnight at 25°C and 180 rpm in 10 ml LB supplemented with 
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kanamycin and IPTG if necessary. The cells were washed once with 0.9% NaCl solution and the optical 

density at 600 nm (OD600) of the bacterial suspension was adjusted to 1. Three milliliter of LB (supplemented 

with 20 mM MgCl2, if indicated) in glass test tubes were supplemented with 0, 2, 20, or 200 μg/ml of 

polymyxin B, and inoculated with 60 μl of bacterial suspension. The cultures were incubated at 25°C with a 

constant agitation of 180 rpm and the OD600 was measured 6 h and 24 h after inoculation. 

 

Gene expression studies 

For studying the expression of the oprH-phoPQ and arn operons, fragments of approximately 740 bp 

containing the putative promoter regions located upstream of the arnB and oprH gene were amplified from 

chromosomal DNA of P. protegens CHA0 by PCR using the primer pairs indicated in Table 2. The DNA 

fragments obtained were digested with BamHI and EcoRI and cloned into the GFP-based promoter probe 

vector pPROBE-TT [56] opened with the same restriction enzymes. Insert sequences of the resulting plasmids 

were verified by DNA sequencing. Competent cells of CHA0 and their isogenic mutants were subsequently 

transformed with the constructed vectors by electroporation to create reporter strains for expression 

studies. Reporter strains were grown at 25°C and 180 rpm in 10 ml LB, LB supplemented with 22 mM MgCl2 

or Grace’s Insect Medium (GIM, Sigma) [54] contained in 50-ml Erlenmeyer flasks. Samples were taken at 

different time points and single cell fluorescence intensities were measured by fluorescence microscopy as 

described previously for the Fit toxin [54], using the GFP channel. 

Assays for measuring the expression of the Fit toxin by fluorescence microscopy in strains CHA1163, 

CHA5135 and CHA5136 were performed in GIM as described previously [54]. For studying the effect of Mg2+, 

the reporter strains were grown in M9 minimal medium (as described in [54]) with a low phosphate content 

(7.4 mM K2HPO4; low phosphate concentration to lower pH in order to avoid precipitation of salts) and with 

or without 40 mM MgCl2. 

 

Galleria mellonella virulence and competition assays 

Injection assays for virulence determination using last-instar larvae of G. mellonella (Entomos AG, 

Grossdietwil, Switzerland) were performed as described before [3]. For the competition assay, strains 

CHA5133 and CHA5134 were marked with a constitutively expressed mCherry tag using the Tn7 delivery 

vector pME9407 and the helper plasmid pUX-BF13 as described previously [55]. The resulting strains 

CHA5133-mChe and CHA5134-mChe (Table 1) and the GFP-tagged CHA0 wild-type strain (CHA0-gfp2) were 

grown overnight in 10 ml of LB at 25°C and 180 rpm. The cells were washed once in 0.9% NaCl solution and 

the OD600 of the bacterial suspension was adjusted to 1. Each mCherry-tagged mutant strain was mixed 1:1 

with CHA0-gfp2 and the resulting suspension was diluted 200-times in saline solution. Aliquots of 5 µl were 

injected into the last left pro-leg of G. mellonella larvae which were then incubated at room temperature for 
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approximately 22 h. Hemolymph was collected and visualized by fluorescence microscopy as described 

before [3]. Mutant and wild-type cells were counted using the DsRed and GFP channel, respectively. The 

competitive index was calculated by first normalizing the counts for wild type and mutant with the ratio 

observed in the undiluted inoculum (to correct for variation within the inocula) and then dividing the 

number of mutant cells by the number of wild-type cells. 

 

Statistical analysis 

Statistical analysis of experiments was performed in RStudio version 0.98.1091 (http://www.rstudio.com/). 

One-way or two-way analysis of variance (ANOVA) with Tukey's HSD test for post-hoc comparisons was 

performed when appropriate. The Log-Rank test of the survival package of R was used to calculate significant 

differences in insect toxicity between the wild type and isogenic mutant strains in the Galleria virulence 

assay. One-sample t tests were performed with data from competition assays. 
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Advancing the understanding of insect pathogenicity in plant-beneficial pseudomonads 

Plant-beneficial pseudomonads have been studied for decades primarily because of their abilities to protect 

crop plants from phytopathogens and promote plant growth [1,2]. Eventually this led to the development 

and commercialization of several biofungicides [1,3] that are based on formulations of these rhizobacteria 

and help to reduce the amount of harmful chemical fungicides used for plant protection worldwide. Since 

Pseudomonas bacteria are well-known to thrive on various substrates and under many different conditions, 

it is not surprising that these microorganisms have often been detected in association with insects as well 

[1]. Moreover, we could show that strains of defined lineages of root-associated pseudomonads are in fact 

true insect pathogens as they are able to persist within the gut of certain insect species and subsequently kill 

them by invading their hemocoel and causing septicemia. While the molecular basis and ecology of their 

antifungal activities have been dissected in some detail [1], we have only just started to unravel the 

underlying mechanisms, regulation, ecological roles, and evolution of their insect pathogenicity. This thesis 

provided new insights into the regulation of an insecticidal toxin and suggests that a defined surface 

structure is critical for these bacteria to successfully infect the insect host. More precisely, we could 

demonstrate that Pseudomonas protegens produces its Fit toxin, which contributes to virulence of this 

entomopathogen [4,5], only during interaction with insects (Chapter 2). A follow-up study on the membrane-

bound sensor protein FitF, which tightly controls the expression of this insecticidal toxin, brought up a 

possible explanation for how detection of the insect host works and evolved in this bacterium (Chapter 3). 

We further found evidence that the outermost and most variable part of lipopolysaccharide, the O-antigen, 

is vital for virulence of P. protegens and contributes amongst others to the protection against attacks by host 

antimicrobial peptides (AMPs) (Chapter 5). We discovered that many insecticidal strains of plant-beneficial 

Pseudomonas species are resistant to certain AMPs. We provided evidence that the resistance toward these 

insect-derived antimicrobials is multifactorial and could be critical for a successful infection of insects, as 

AMPs constitute an important immune response to clear bacterial infections (Chapter 6). These 

achievements were amongst others made possible by developing new methods and tools for the 

quantification of single cell fluorescence by microscopy and for faster and more efficient mutation of genes 

and gene clusters in our model bacteria. 

This research project did therefore answer some of our initial questions regarding the molecular basis and 

regulation of insect pathogenicity in these microbes. It however also made us realize that in a way we were 

just scratching the surface and need to pursue with more in-depth studies in order to adequately answer our 

central research question: How do entomopathogenic pseudomonads with plant-beneficial properties 

survive within, invade and eventually kill the insect host? Some observations, hypotheses and possible 

approaches to further answer this question will be discussed in the following. 
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Interaction with the host’s innate immunity 

P. protegens strain CHA0 is able to invade and kill larvae of the large white, Pieris brassicae, upon ingestion 

within a few days while larvae of the greater wax moth, Galleria mellonella, seem to be resistant to oral 

infection (Chapter 2). One could conclude that P. protegens accidently infects susceptible insect species. 

However, our findings on the presence and host-specific expression of an insecticidal toxin and the 

resistance to AMPs suggest otherwise. This plant-beneficial bacterium and related strains seem to have 

adapted to the life within insects and to specifically produce virulence factors upon infection. The more we 

known about the underlying mechanisms and adaptations, the less it looks like accidental infections and 

more like these bacteria have evolved into insect pathogens over time. But why are these bacteria able to 

infect and kill certain insect species while others seem to be resistant? 

The evolutionary success of insects has amongst others been attributed to their highly-developed innate 

immune systems [6]. To survive its defense reactions, pathogens need to evolve counterstrategies. These 

include resistance to antimicrobial compounds and phagocytosis, camouflage to avoid detection by the 

innate immune system, suppression of immune reactions, or combinations thereof [6,7]. In addition, they 

have to find a way to get across the gut epithelial barrier if they need to invade the insect in order to kill it 

and use it as a nutrient source. The strategy that entomopathogenic pseudomonads chose to interact with 

the insect immunity might limit the range of insect species they can successfully infect and kill. Knowing the 

infection tactic of these bacteria would certainly help us to answer our central question stated above. 

 

We observed that strain CHA0 is able to invade the hemocoel of P. brassicae within one day after oral 

infection and to kill the insect within a few days, even when low doses of the bacterium were ingested [1,4]. 

It is thus likely that P. protegens follows a hit-and-run strategy which probably leaves the insects with not 

enough time to mount a protective immune response. To test if fast infection, which is a prerequisite for a 

hit-and-run strategy, is indeed essential for P. protegens to kill the insect host is challenging. One could 

engineer a bacterial strain whose growth is artificially slowed down, without affecting its ability to express 

virulence factors, and test if it can still cause mortality via the oral route of infection (with an expected 

delay). Even if the larvae failed to induce the necessary systemic immune reactions, invading bacteria would 

still have to deal with AMPs and reactive oxygen species (ROS) that are produced constitutively by the 

epithelial immunity and secreted into the gut (Chapter 6: Figure 1). Although we have no direct experimental 

evidence, O-antigen and lipid A modifications could amongst others provide the necessary protection against 

AMPs during these first steps of infection. AMP resistance was demonstrated to be an important factor for 

pathogenicity of other bacteria, such as Staphylococcus epidermidis [8]. The types of AMPs produced by 

insects vary considerably between insect species and orders [9-12]. It is thus possible that resistance to a 
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certain set of AMPs but susceptibility to others shapes the host range of P. protegens. The expression of 

catalase and superoxide dismutases might additionally confer resistance to host-derived ROS [13]. 

In contrast to Pseudomonas entomophila, which primarily colonizes the gut and can kill insects without 

necessarily invading the hemocoel [7,14], some of our observations suggest that P. protegens is not an 

efficient gut colonizer and probably needs to get across the gut epithelial barrier into the hemocoel in order 

to survive within the insect host. Hence, in addition to protection against ROS and AMPs, entomopathogenic 

pseudomonads also need a strategy to translocate to the hemocoel across the physical barrier composed of 

epithelial tissues and the peritrophic matrix (a chitin and glycoprotein layer [15]) [16]. To date, we can only 

speculate about how this is achieved by these microbes. It is imaginable that they produce and secrete 

certain enzymes, such as proteases and chitinases, or harmful secondary metabolites, such as hydrogen 

cyanide, that cause enough damage to the epithelial tissue to disrupt the integrity of the epithelial barrier 

which allows the translocation to the hemocoel (Figure 1). It needs to be determined whether the Fit toxin 

contributes to hemocoel invasion in P. protegens. A protein toxin of Pseudomonas taiwanensis was for 

example reported to cause damage to intestinal cells when ingested by larvae of the lepidopteran Plutella 

xylostella [17]. A similar mechanism was proposed for an insecticidal toxin (Monalysin) of P. entomophila 

[18]. However, our data predict that P. protegens expresses the Fit toxin only in hemolymph (Chapter 2 and 

3). Pseudomonads could alternatively also disrupt the integrity of the gut epithelial barrier by promoting an 

extensive inflammation in the gut, which, however, might take several days to occur. Intracellular pathogens, 

such as Salmonella and Yersinia, exploit M cells for transepithelial transport [19]. Since pseudomonads are 

generally extracellular pathogens and the bacteria in the focus of our research lack the type III secretion 

system, which seems to be required for such a strategy [20], crossing the physical barrier passively with the 

help of host cells is rather unlikely for these pseudomonads. 

Interestingly, most pathogenic bacteria that infect insects orally are not known to translocate across the 

epithelial tissue to kill insects via septicemia [11]. The tactic that P. chlororaphis and P. protegens use to 

invade the insect host thus might present a novel mechanism of tissue translocation. 

 

According to the current knowledge about the innate immunity of insects, bacteria are recognized by the 

immune system mostly via detection of their peptidoglycan [7,21,22]. This macromolecule is essential for 

bacteria to grow and is released into their surroundings during cell division [22]. It might therefore be 

possible that limited proliferation in the gut is part of the proposed hit-and-run strategy of P. protegens to 

avoid detection and minimize the induction of the systemic immune reactions during the first steps of 

infection. Cell division could be suppressed or reduced until the bacteria are in the hemocoel where they 

grow faster than the immune system is able to clear the systemic infection. Alternatively it could be 

speculated that these bacteria found a way to modify their peptidoglycan structures as a kind of camouflage 

to reduce its detection by host receptors which has been observed in other bacteria [22-24]. Changes in the 
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composition of the peptidoglycan backbone could be determined by purification and analysis of the 

macromolecule via spectrometric methods. 

 

To date, we do not know whether susceptible insect larvae are able to initiate the production of AMPs in the 

fat body upon infection with P. protegens. By conducting an RNA sequencing, real-time quantitative PCR or 

microarray experiment on the host side, or choosing a proteomics approach, one would get insights into 

which immune genes are up or downregulated during infection [25] and thus find out if and how the animal 

host reacts to invading pseudomonads. One might have to include a well-selected microbe or 

immunostimulant that triggers the induction of the insect immune system as a control in this experiment to 

see whether P. protegens is able to avoid detection or suppress defense reactions. P. entomophila was for 

example reported to cause a translational blockage in Drosophila, which inhibits immune responses that 

would otherwise clear the infection [25]. In case AMPs are synthesized and secreted into the hemolymph, O-

antigen and lipid A modifications could play a vital role in the protection of P. protegens against these 

antimicrobial compounds during systemic infection as well. 

The biosynthesis of O-antigens and exopolysaccharides, such as alginate, Psl and poly-N-acetylglucosamine 

(PNAG), as well as the Fit toxin could further protect the bacterium against phagocytosis via hemocytes. This 

could be studied in vitro using cell cultures of phagocytic hemocytes and the corresponding mutant strains, 

optionally equipped with GFP cell tags for observations by fluorescence microscopy. 

 

Identification of additional factors contributing to virulence in these entomopathogens might also give 

valuable information about how these bacteria interact with the insect immune system and breach the gut 

epithelial barrier. Possible approaches to do so will be discussed in the following part. 

  

It’s on the outside that matters: looking for additional virulence-associated factors on the 

cell surface 

Whole-genome screenings for putative virulence factors often result in a list of genes that are related to the 

metabolism or cell cycle of the pathogen [26]. It is however at the cell surface where direct microbe-host 

interactions take place and surface structures are thus particularly interesting to characterize with respect to 

contributions to virulence. If we better understood how the surface of our bacteria of interest looks like and 

what role it plays during the infection, we might also better understand how these plant-associated 

microorganisms evolved into insect pathogens. The fact that gene clusters for the biosynthesis of two 

surface molecules that have not been associated with Pseudomonas before (i.e. PNAG and the putative 

capsular polysaccharide (Chapter 5)) were detected in this research project without specifically searching for 

them, tells us that we hardly know what the surface is composed of in these rhizobacteria. If we keep 
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studying it, we might learn things even beyond the interactions with insects, since surface decoration most 

probably is also critical for symbiotic interactions with plants. 

 

 
Figure 1: Virulence factors of plant-beneficial pseudomonads displaying insect pathogenicity. The insecticidal toxin Fit, 

lipopolysaccharide O-antigen, the type VI secretion system1, hydrogen cyanide2, lipopeptides2, and certain secreted enzymes2 

contribute to the virulence of P. protegens CHA0 (1 M. Péchy-Tarr, personal communication;  2 P. Flury et al., in preparation). Flagella 

and certain exopolysaccharides, such as Pel1, possibly play an important role during insect infection as well. 

 

The targeted screening for new virulence factors in P. protegens and P. chlororaphis (Chapter 4) and the 

follow-up study on O-antigen (Chapter 5) clearly showed that at least one surface component is important 

for successful infections of insects in these bacteria. There are however many more surface-related 

candidate virulence factors that remain to be investigated in the future. It would for example be interesting 

to test whether motility and chemotaxis are necessary for invasion of insects (Figure 1). At this point, it 

cannot be excluded that also non-motile pseudomonads are capable of causing a systemic infection. It is also 

imaginable that these bacteria need to actively move to a particular location within the gut (which might 

require chemotaxis or a kind of tissue tropism) where they are able to breach the epithelial barrier. The 

genetic background of flagellar biogenesis and chemotaxis in bacteria is well known and this information 

could be used to generate specific mutants. 

We found genes for the biosynthesis of several exopolysaccharides (alginate, Psl, Pel, PNAG, putative 

capsular polysaccharide, etc.) in the genomes of P. protegens and P. chlororaphis strains, but lack knowledge 

about their expression and contribution to virulence. They might play a role during the infection as 

colonization factor, protection against antimicrobial compounds and phagocytosis, as camouflage for 

evasion of immune detection, or for competition with the resident microbiota [8,27,28]. 
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It is of course also possible to identify novel virulence factors by conducting a whole-genome random 

mutagenesis screening and performing RNA sequencing experiments. Such studies allow the identification of 

factors that contribute to pathogenicity without having necessarily been described as such in other bacteria 

before. Besides cell surface-related genes it most probably will also detect genes encoding for secreted 

proteins, which can be as important for virulence as the right surface decoration (Figure 1). 

 

Perception of and adaptation to the insect host 

We demonstrated that a local regulatory system, composed of FitF, FitH and FitG, controls Fit toxin 

expression in a host-specific manner in P. protegens CHA0, ensuring that the insecticidal toxin is only 

produced when needed [29,30]. We can ask ourselves whether P. protegens and P. chlororaphis also evolved 

similar regulatory systems to adaptively induce the expression of resistance genes and protect themselves 

against the attack by AMPs. Such systems have been reported for several pathogenic bacteria. S. epidermidis 

possesses the so-called Aps system to sense AMPs and regulate AMP resistance mechanisms [8,31]. The 

PhoP-PhoQ system in Salmonella was suggested to have a similar function [32]. In Pseudomonas aeruginosa, 

the two-component regulatory system ParR-ParS is attributed to activate the expression of AMP resistance 

genes while the PhoP-PhoQ system does not appear to play a major role in peptide-mediated adaptive 

resistance [33,34]. We have some indications from expression studies with sublethal doses of Polymyxin B 

that P. protegens CHA0 induces the expression of lipid A modification genes when exposed to AMPs. It 

would consequently make sense to search for such regulatory systems in our model bacteria. A possible 

experiment in this direction would be to conduct a screening with a transposon sequencing approach. 

Bacteria of a mutant library created by high density random transposon insertion mutagenesis could be 

exposed to synthetically produced AMPs of a lepidopteran insect species in Grace’s Insect Medium. Mutants 

that display reduced survival could subsequently be identified by transposon sequencing. The advantage of 

this approach is that also novel resistance determinants can be identified and that it provides quantitative 

data about their individual contributions to AMP resistance. The challenge will be to produce the AMP for 

this experiment because this kind of peptides often requires post-translational modifications, such as 

glycosylation [12,35]. 

 

Significance of this research topic 

Knowledge about the molecular basis and regulation of insecticidal activities and the host range of these 

interesting pseudomonads offers valuable information for the development and successful registration of 

novel bioinsecticides for crop protection. If we can confirm that these bacteria are mostly active against pest 

insects feeding on above-ground plant parts, development of products based on these entomopathogens 

should consequently be targeted at these insect species and not root feeders. Our research further could 



CHAPTER 7  

222 

help to isolate and select optimal strains for achieving a high efficiency in the field, which is a major 

challenge for the successful registration and commercialization of a new biocontrol product. For example, 

this might implicate that selected isolates need to survive well in the phyllosphere. Information about how 

these bacteria persist in the gut and manage to invade the hemocoel might additionally be critical for 

optimal formulation of these microorganisms. Moreover, this knowledge is of high importance for assessing 

the biosafety of these bacteria. It is not only important to know about the presence of virulence-associated 

genes but also when they are expressed in these microbes. 

 

By doing basic research on the insect-associated lifestyles of pseudomonads we can also learn more about 

insects, a highly successful class of animals. Their enormous diversity has kept us in the dark about their 

many ways of dealing with pathogens. The insect immune system has almost exclusively been studied in a 

single species, Drosophila melanogaster. Owing to the now available genetic and molecular tools, we are just 

about to realize the differences in caterpillars and aphids [10,36-38], which are far more relevant to 

agriculture than the fly model. Knowing about how pest insects protect themselves against pathogens and 

how these mechanisms evolve will hopefully help us to use entomopathogenic microorganisms more 

efficiently for biological control of these pests. 

 

Functions of virulence factors (and their regulators) are often conserved across species and even genera. 

What we discover about virulence determinants in our model bacteria thus could also make significant 

contributions to medical research. Studying the underlying mechanisms of intrinsic AMP resistance in P. 

protegens could for example be important for the treatment of patients with chronic Pseudomonas 

aeruginosa infections. Polymyxins are widely used as last-hope antibiotics against the human pathogen 

[39,40]. Development of resistance can, however, also occur against this novel class of antibiotics and a few 

resistance determinants have already been characterized in P. aeruginosa [33]. Our research illustrates that 

additional factors could be involved, how resistance to these AMPs can evolve in pseudomonads and that 

one has to be careful with applying polymyxin AMPs for the treatment of bacterial infections because of 

possible cross-resistance to host AMPs. Basic research on the molecular basis and regulation of AMP 

resistance and any other factor that contributes to virulence in P. protegens and P. chlororaphis could thus 

have impacts beyond a better understanding of the entomopathogenicity of these fascinating bacteria. 
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