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Abstract

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is
silent or benign in most infected individuals, but causes hypoxemic COVID-
19 pneumonia in about 10% of cases. We review studies of the human
genetics of life-threatening COVID-19 pneumonia, focusing on both rare
and common variants. Large-scale genome-wide association studies have
identified more than 20 common loci robustly associated with COVID-19
pneumonia with modest effect sizes, some implicating genes expressed in the
lungs or leukocytes. The most robust association, on chromosome 3, con-
cerns a haplotype inherited from Neanderthals. Sequencing studies focusing
on rare variants with a strong effect have been particularly successful,
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identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients
with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in
another 15-20% of cases. Our growing understanding of the impact of human genetic variation
on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals
and populations.

1. INTRODUCTION

More than 600 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection and at least 6.5 million deaths from COVID-19 have already been recorded worldwide
(1). The clinical manifestations of COVID-19 are highly variable, ranging from silent infection to
life-threatening disease, typically beginning with pneumonia. Before effective anti-SARS-CoV-2
vaccines became available, around 3% of infected individuals developed critical COVID-19
pneumonia, requiring supplemental high-flow oxygen (O, > 6 L/min), mechanical ventilation
(noninvasive or by intubation), or extracorporeal membrane oxygenation (2), with an estimated
infection fatality rate of about 0.5-1% (3, 4). Advanced age was, by far, the strongest predictor of
COVID-19 severity at the time, with the risk of death doubling with every 5 years of age from
childhood onward (3, 4). Unvaccinated men also have a 1.5 times greater risk of death than women
(3, 5, 6). Ancestry, social status, and several comorbid conditions have been associated with higher
disease severity and death rates, but with modest odds ratios (OR; typically <1.5, rarely >2) (5, 7—
9). In the early days of the pandemic, it was already obvious that demographic and clinical factors
did not entirely account for the marked interindividual variability of COVID-19% clinical mani-
festations. The hypothesis of human genetic predisposition was most strongly supported by the
rare cases of previously healthy young individuals being admitted to intensive care for respiratory
failure. Other clinical presentations have emerged during the pandemic, including multisystem
inflammatory syndrome in children (MIS-C) (10) and adults (11), COVID toes (pernio) (12), and
long-term neurocognitive, pulmonary, and musculoskeletal sequelae collectively referred to as
long COVID or postacute COVID-19 syndrome (13). Here again, clinicians were puzzled by the
remarkable differences in clinical manifestations observed at population level and suggestive of a
causal or modulating role for human genetic variation (2).

The development of anti-SARS-CoV-2 vaccines rapidly became a global health priority. The
massive deployment of several effective vaccines, developed in less than a year, indubitably altered
the course of the pandemic, largely decreasing the risks of severe disease, hospitalization, and death
in regions of high vaccine coverage (14). However, the success of vaccination has been jeopardized
by the limited access to vaccination in lower-income countries, vaccine hesitancy, and the emer-
gence of multiple variants of concern, such as Alpha (B1.1.7), Beta (B.1.351), Delta (B.1.617.2) and
Omicron (BA.1,BA.2, BA.4, BA.5 and BQ.1), all of which are more transmissible than the original
strain, and some of which increase the risk of severe disease (15-19) or immune escape (20). More-
over, even the most effective RNA vaccines do not prevent infection per se, sometimes resulting
in so-called breakthrough pneumonia in vaccinated individuals (21, 22). Hence, the fight against
this disease continues, and humanity will benefit greatly from improvements in our understanding
of the mechanisms of host defense and immune protection against SARS-CoV-2. Human genetic
studies of infectious diseases can point to the primary cause of disease and provide invaluable
mechanistic insights (23, 24). In this review, we briefly introduce the field of human genetics of
infectious diseases and describe the main genetic findings relating to susceptibility to COVID-19
pneumonia and its severity, with their downstream implications.
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2. HUMAN GENETICS OF INFECTIOUS DISEASES

For almost all infectious agents, the clinical manifestations of infection are highly variable, rang-
ing from silent infection to lethal disease (25). The field of human genetics of infectious diseases
aims to characterize the genetic variants accounting for this considerable interindividual variabil-
ity. It was long held as a dominant paradigm that rare infections with weakly virulent microbes
or multiple, recurrent infections in a single patient result from rare monogenic inborn errors of
immunity (IEIs, also called primary immunodeficiencies), whereas common infections with more
virulent pathogens are more influenced by the polygenic inheritance of common alleles (26). IEIs
were discovered through individual-based studies focusing on a small number of patients, some-
times even a single patient, initially with sporadic infections. IEIs may be individually rare, but,
collectively, they are more common than initially thought, and their study can unravel general
mechanisms of diseases that can be triggered by other causes (23, 24).

At the population level, attempts to understand how human genetic variation modulates the
individual response to more common pathogens began seven decades ago. One of the first major
discoveries was the identification of multiple red blood cell abnormalities associated with a lower
risk of severe malaria and subject to strong positive selection in populations living in regions in
which malaria was endemic (27). However, host genetic studies with the objective of discovering
variants were long hampered by technological limitations: The low throughput of DNA analysis
methods at the time obliged researchers to use candidate gene approaches, unless they had access
to family samples, which allowed for more solid linkage studies. Most candidate gene studies had
relatively small sample sizes and failed to account for population stratification or multiple test-
ing, generating a flurry of false-positive results. Recent progress in large-scale genotyping and
sequencing technology, coupled with dramatic improvements in bioinformatics and data science,
have finally made it feasible to mine the full human genome for infectious disease—altering variants.
Both genome-wide association studies (GWAS) and deep sequencing analyses of individuals with
unusually severe clinical presentations have been used successfully, and in a highly complementary
fashion, to explore the genetic architecture of human susceptibility to infections. GWAS, mostly
based on genome-wide genotyping arrays, have identified many associations between common
human genetic variants—generally defined as variants with a minor allele frequency of at least
1%—and complex traits or diseases. They have made it possible to identify chromosomal loci as-
sociated with the natural course of disease and responses to treatment in populations infected with
HIV-1, hepatitis B and C viruses, Plasmodium falciparum, Mycobacterium tuberculosis, and Mycobac-
terium leprae, for example (25). However, the risk factors identified were no more than modest at
the individual level.

The recent development of next-generation sequencing technologies, making it possible to
identify rare coding variants rapidly at genome-wide scale through whole-exome sequencing
(WES) or whole-genome sequencing (WGS), has revolutionized the field of human genetics.
It has accelerated the discovery of new disease-causing genes and provided molecular insight
into the etiology of many IEIs (28, 29). Over the last two decades, we and others have demon-
strated that rare monogenic IEIs underlie a growing number of life-threatening viral, bacterial,
fungal, and parasitic infections in otherwise healthy individuals with normal resistance to other
infectious agents (23, 24, 30, 31). Most of these IEIs are not Mendelian, as they frequently dis-
play incomplete penetrance. In addition, they are genetically heterogeneous, with both locus and
allelic heterogeneity, with different mutations of several genes underlying the same infectious
phenotype, but often united by the same signaling pathway (i.e., physiological homogeneity) (30).
For example, Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn er-
rors of interferon-gamma (IFN-y) immunity (32-34), with mutations of 15 genes and 30 allelic
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forms already reported. Likewise, forebrain herpes simplex encephalitis can be caused by an IEI
of TLR3-dependent type I IFN immunity resulting from mutations of eight genes (35, 36). Since
2001, rare monogenic defects have also been shown to underlie some common infectious diseases
in rare patients, as exemplified by the identification of several patients with tuberculosis but no fa-
milial history of clinical MSMD carrying causal mutations of MSMD genes (37). These rare IEIs
led to the recent discovery of a more common IEI, homozygosity for the P1104A TYK?2 allele,
underlying about 1% of cases of tuberculosis in populations of European descent (38-40).

Building on these achievements and long-standing international collaborations in human ge-
nomics dating back to the Human Genome Project, the HapMap Project, and The 1000 Genomes
Project, the host genetic research community quickly came together in the early weeks of the
COVID-19 pandemic to search the human genome for potential clues relating to viral patho-
genesis and host immune responses. Several consortia were created, including the COVID-19
Host Genetic Initiative (Covid-19-HGI; https://www.covid19hg.org) (41) and the Covid Hu-
man Genetic Effort (Covid-HGE,; https://www.covidhge.com) (42). Existing resources were
enhanced and redirected to facilitate the rapid analysis of large numbers of patients and con-
trols. A prime example is provided by the GenOMICC (Genetics of Mortality in Critical Care;
https://genomicc.org) study, which had been recruiting patients in the United Kingdom since
2015 for the study of emerging infections, sepsis, and other forms of life-threatening illness. This
study collected clinical data samples from thousands of critically ill COVID-19 patients and gener-
ated full-genome sequence data in record time. The global effort was not restricted to the academic
sector either: Several direct-to-consumer companies used their large reservoirs of clients (who
agreed to be recontacted for research purposes) to perform genome-wide analyses of susceptibility
to infection and symptom severity.

3. HUMAN GENETICS OF COVID-19 PNEUMONIA

Numerous human genetic studies have investigated the genetic determinants of COVID-19 pneu-
monia. As discussed in the corresponding sections, large-scale GWAS approaches, mostly based on
genome-wide SNP (single-nucleotide polymorphism) arrays and single-variant statistics assuming
an additive genetic model, led to the identification of multiple common genetic variants associated
with a modest increase in the risk of COVID-19 pneumonia. High-throughput DNA sequenc-
ing approaches, such as WES or WGS for the identification of rare genetic variants, have also
been highly successful, resulting in the discovery of genes and pathways crucial for the control of
SARS-CoV-2 infection through rare-variant aggregation tests followed by functional validation.

3.1. Common Variants

Multiple large-scale GWAS have investigated the genetic factors associated with disease severity
by comparing COVID-19 pneumonia patients stratified into various subgroups (hospitalized, re-
quiring ventilation, admitted to the intensive care unit, or deceased) with SARS-CoV-2-infected
individuals with asymptomatic or mild clinical presentations, or untested individuals from the
general population. More than 15 genomic regions harboring common variants (Figure 1) have
already been robustly associated with COVID-19 pneumonia (43, 44). The strongest signal—and
the very first to be reported, in the spring of 2020—is that for the 3p21.31 locus, where a Nean-
derthal haplotype was found to be associated with an OR of 1.8 for severe infection (43, 45-48).
The association with this locus has been replicated in several independent cohorts. The frequency
of the lead SNP ranges from 1% in East Asians to 9% in Europeans and 23 % in South Asians, but
there is no evidence of between-origin heterogeneity (43). It has proved challenging to identify
the causal genes and variants underlying this association due to long-range linkage disequilibrium
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Figure 1

Genetic and immunological determinants of COVID-19 pneumonia. ORs for the associations of auto-Abs against type I IFN, IEIs, and
single genetic variants with the severity of COVID-19 pneumonia and resistance to SARS-CoV-2 infection are plotted according to
risk factor frequency. For auto-Abs against type I IFN, the ORs and frequency were taken from Reference 114. For X-linked TLR7
deficiency, the OR for the aggregated effect of biochemically proven LOF was taken from Reference 74 and the cumulative frequency
of biochemically proven LOF was taken from Reference 76. For other IEIs, the OR for the aggregated effect of homozygous (AR) or
heterozygous (AD) predicted LOF was taken from Reference 74 and the corresponding cumulative frequencies were estimated from
Gnomad v2.1.1. For single variants, the OR, assuming an additive model, and deleterious allele frequencies were taken from the most
recent update of the COVID-19 Host Genetics Initiative GWAS study (43), except for the DOCK2 and APOE loci. The chromosomal
region or closest gene is indicated. For the DOCK?2 locus, the OR for the effect of the rs60200309-A variant on the severity of
COVID-19 pneumonia under an additive model and the allele frequency for rs60200309-A were taken from Reference 156. For the
APOE locus, the hazard ratio for the effect of APOE4 homozygosity as opposed to APOE3 homozygosity for COVID-19 mortality and
the frequency of APOE4 homozygosity were taken from Reference 157. Abbreviations: AD, autosomal dominant; AR, autosomal
recessive; auto-Abs, autoantibodies; IE(I), inborn error (of immunity); IFN, interferon; LOEF, loss of function; OR, odds ratio.

in the region and a high local density of genes with a known or putative role in immunity. In silico
functional analyses identified LZTFLI as the most probable candidate gene (49), but variants of
the chemokine receptor genes CCRY, CXCR6, and XCRI may also contribute to the association
signal. Some of the additional loci implicated point to a role for known immune-related genes or
genes known to be involved in lung function, as detailed below. Surprisingly, given the very high
level of polymorphism of both class I and class I HLA (human leukocyte antigen) genes and their
demonstrated role in modulating multiple infectious diseases, the few associations identified in the
HLA region have proved to be weak. It was not until very large meta-analyses were performed
relatively late in the course of the pandemic that genome-wide-significant association signals were
confirmed for polymorphisms of both class I and class Il HLA genes (43, 47, 48).

The loci pointing to a role for known immune-related genes include the IFNAR?2 gene, en-
coding the interferon (IFN) alpha/beta receptor 2, for which associations with variants have been
replicated in several studies (47, 50). Type I IFNSs play a central role in the innate immune response
to SARS-CoV-2, as demonstrated by the marked increase in the risk of life-threatening disease
associated with rare loss-of-function variants of IFN-related genes and ant-IFN autoantibodies
(auto-Abs), as discussed below. It is, therefore, unsurprising that common variants of a subunit
of the type I IFN receptor modulate the severity of infection, particularly as the top-ranking
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associated variants are expression quantitative trait loci (eQTLs) for IFNAR2. An association
with a TYK?2 variant has been identified, which is particularly interesting, given the key role of
TYK2 in infection and immunity. The common rs34536443 (p.Pro1104Ala) variant, which is
protective against some autoimmune diseases (51) but increases the risk of tuberculosis in ho-
mozygous individuals (40), has been shown to be associated with a modest increase in the risk
of severe COVID-19 (48). Rare loss-of-function TYK?2 variants are discussed below. GWAS have
also identified a common haplotype of Neanderthal origin encompassing the OA4S1/2/3 genes on
chromosome 12 (12q24.13) that is associated with the risk of hospitalization for COVID-19 (47,
48,52, 53). The OAS proteins are cytosolic type I IFN-inducible antiviral proteins (54, 55). One
of the candidate causal variants in this region is the O4ST splice variant rs10774671. The minor
and reference G allele at rs10774671, which provides weak protection against severe forms of
COVID-19, encodes a longer and more active form of OAS1 (56).

In its most recent meta-analysis including more than 150,000 cases (43), the Covid-19-HGI
reported multiple associations between disease severity and genes involved in normal lung func-
tion. First, a regulatory variant (rs35705950:G>T) mapping to the promoter region of MUC5B
was found to be associated with a lower risk of hospitalization. The minor T allele is associ-
ated with higher levels of MUCSB mRNA and a higher risk of idiopathic pulmonary fibrosis
(57). Second, a missense variant of SFTPD (rs721917:A>G, p.Met31Thr) was found to be as-
sociated with more severe respiratory symptoms. SFTPD encodes the surfactant protein D, and
the same alternative allele was previously shown to have a negative impact on lung function (58)
and to increase the risk of chronic obstructive pulmonary disease (59). Third, a missense variant
of SLC22A31 (rs117169628:G>A, p.Pro256Leu) was also found to be associated with a higher
risk of hospitalization. SLC22A431 encodes a solute carrier protein that is highly expressed in the
lung. Finally, a strong association with severe disease was observed with an intronic variant of
DPP9 (rs2109069:G>A) previously reported to increase the risk of idiopathic pulmonary fibrosis
(60). These variants have very small effect sizes (0.8 < OR < 1.2), but their study may improve
our understanding of SARS-CoV-2 pathogenicity by shedding light on the underlying molecular
mechanisms.

3.2. Rare Variants

The use of large-scale sequencing approaches has allowed an in-depth exploration of human
genetic diversity, including rare and putatively functional genetic variants that are not included
in most genotyping arrays and cannot be reliably imputed due to their very low minor allele
frequency.

3.2.1. Type I interferon influenza susceptibility loci. Based on our discoveries over the last
20 years, we launched the Covid-HGE, an international consortium with the aim of deciphering
the human genetic and immunological basis of the various clinical manifestations of SARS-CoV-2
infection. The first breakthrough emerged from a study testing the hypothesis that candidate in-
born errors of TLR3-, IRF7-, and IRF9-dependent type I IFN immunity previously shown to
underlie life-threatening influenza pneumonia (2,23, 24, 30, 31, 61-64) might also underlie critical
COVID-19. We considered the three loci (IRF7, IRF9, and TLR3) for which germline mutations
are causal for influenza pneumonia (62-64) and 10 other genes [FNARI, IFNAR?2, IRF3, IKBKG,
STAT1, STAT2, TBK1, TICAM]I, TRAF3, and UNC93BI) encoding products biochemically and
immunologically connected to the three core genes, for which deleterious genotypes have been
shown to underlie other severe viral diseases (61). We screened a cohort of 659 patients with crit-
ical COVID-19 for rare variants predicted to be loss-of-function (pLOF) at these 13 type I IFN
influenza susceptibility loci. We found a significant enrichment in these variants in patients with

470 Cobat et al.



critical COVID-19 relative to 534 SARS-CoV-2-infected controls who remained asymptomatic or
paucisymptomatic, with mild, self-healing, ambulatory disease (p = 0.01) (61). We also found that
23 (3.5%) of the patients with critical COVID-19 carried biochemically deleterious germline mu-
tations of 8 of the 13 genes. These patients included four unrelated previously healthy adults aged
25-50 years with autosomal recessive (AR) complete IRF7 or IFNARI1 deficiency. AR IFNARI,
IFNAR?2, TBKI, and STAT?2 deficiencies were subsequently reported in children with critical
COVID-19, and AR TYK2 deficiency was identified in children with COVID-19 pneumonia
(65-69).

Several other groups were unable to replicate our findings (44, 70-72). There are several pos-
sible reasons for this (73), two of which are particularly important. First, the key epidemiological
factor driving COVID-19 severity was ignored: Our international cohort was much younger than
the other cohorts (mean age of 52 versus 66 years). As discussed below, these inborn errors are
much more frequent in patients under the age of 60 years (Figure 2). Second, the other groups did
not test for auto-Abs against type I IFN, the most common determinant of critical COVID-19,
especially in patients over 60 years old (discussed below in Section 5.1). More recently, we con-
firmed an enrichment in rare pLOF variants at the 13 type I IFN-related influenza susceptibility
loci in an extended sample of 3,269 patients with critical COVID-19 relative to 1,373 controls with
asymptomatic or mild infection (p = 2.1 x 107*) (74). The addition of TYK2 strengthened the as-
sociation signal, particularly if a recessive model was assumed. We also found that homozygous
carriers of rare pLOF variants had a higher risk of life-threatening COVID-19 than heterozygotes,
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Figure 2

Proportion of critical COVID-19 patients with IEIs and auto-Abs against type I IFN as a function of age. Age-specific proportions of
dominant and recessive IEIs among cases of critical COVID-19 pneumonia were estimated with Bayes’ theorem as a function of the
probability of critical COVID-19 pneumonia for IEI carriers infected with SARS-CoV-2 (i.e., the penetrance). The age-specific
frequency of IEIs in the general population and the age-specific critical infection rate were taken from Reference 158. The age-specific
frequency of IEIs in the general population was estimated from the frequency of IEIs at birth, assuming a nonspecific mortality rate
(i.e., not attributable to COVID-19) of (#) 0% or (b) 1% per year. Based on our previous findings (67, 159, 160), the frequency of IEIs at
birth was set at 1073 for dominant and 5 x 10~ for recessive IEIs. We assumed a penetrance of 0.2 for dominant IEIs and 0.8 for
recessive IEIs, consistent with the estimated effect size for recessive IEIs being larger than that for dominant IEIs. The age-specific
proportions of patients with critical COVID-19 producing auto-Abs neutralizing low doses (100 pg/mL; light gray line) or high doses
(10 ng/mL; dark gray line) of IFN-o and/or IFN-w were taken from Reference 114. Abbreviations: auto-Abs, autoantibodies; IEI,
inborn errors of immunity; IFN, interferon.
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consistent with the expected higher penetrance of recessive IEIs than of dominant IEIs. In analy-
ses restricted to rare in-frame nonsynonymous variants, we detected no significant enrichment in
patients relative to controls. This result was not surprising, as we showed in a previous study (61)
that less than 15% of the rare in-frame nonsynonymous variants at the 13 loci were biochemically
proven LOF (bLOF) variants, whereas all the pLOF variants were found to be bLOF variants. A
similar trend was observed for other immune system genes, even when advanced in silico scoring
systems, such as the CADD (Combined Annotation Dependent Depletion) score, were used to
stratify the variants (39, 75-77). The study of in-frame nonsynonymous variants will therefore
require the experimental characterization of all these variants.

3.2.2. Unbiased screening for chromosome- and genome-wide rare variant burden. We
hypothesized that the higher risk of critical COVID-19 in men than in women might be explained
by X-linked disorders. We conducted an unbiased X chromosome-wide gene burden test on a
cohort of 1,202 unrelated, auto-Ab-negative male patients with critical COVID-19 pneumonia
and 331 men with asymptomatic or mild COVID-19. The most strongly associated gene, and the
only gene remaining significant after accounting for the number of genes tested, was TLR7, with
21 unrelated patients carrying a very rare hemizygous nonsynonymous variant that was completely
absent from controls (p = 3.5 x 107°) (76). Of these 21 patients, 16 carried a TLR7 allele that was
bLOF or hypomorphic. Biochemically proven TLR7 deficiency was identified in four additional
male patients with critical COVID-19 (74), as well as in four male patients with severe COVID-19
(67, 76) from the Covid-HGE cohort. Moreover, we confirmed the proposed diagnosis of TLR7
deficiency in 9 of 16 other reported male patients (65, 78-82) with our biochemical assay (76).
An enrichment in rare nonsynonymous 7LR7 variants in patients with critical COVID-19 was
reported in another two studies, but the variants were not disclosed and the diagnosis of TLR7
deficiency remains to be confirmed, especially in the women (70, 71). Overall, TLR7 deficiency
was found to account for about 1% of cases of critical COVID-19 in men (74, 76). The penetrance
of TLR?7 deficiency for severe or critical COVID-19 among relatives of index cases was high, but
incomplete, especially in children. Human TLR?7 is an endosomal receptor of ribonucleic acids
expressed by B cells and myeloid subsets. Its stimulation in plasmacytoid dendritic cells (pDCs)
results in the production of large amounts of type I IFN (76). We showed that blood B cell lines and
myeloid cell subsets from patients with TLR?7 deficiency did not respond to TLR7 stimulation and
that the patients’ pDCs produced low levels of type I IFNs in response to SARS-CoV-2, further
highlighting the essential role of type I IFN for protection against SARS-CoV-2 (Figure 3) (76).

Several large-scale sequencing studies have attempted to identify new genetic causes of severe
COVID-19 pneumonia through unbiased genome-wide gene burden analyses (44, 70, 71, 74).
None of the genes considered remained statistically significant after stringent correction for the
number of genes and phenotypes tested. In addition to TLR7, for which association has consis-
tently been reported across studies (70, 71, 74, 76, 78), two genes reached the less conservative
exome-wide significance threshold of 2.5 x 107 in one study focusing on 5,085 individuals with
critical COVID-19 and 571,737 controls, mostly uninfected, from the general population (70):
MARKI (p = 1.9 x 107°) and RILPLI (p = 2.4 x 107%), with cases displaying an enrichment
in pLOF variants. Nevertheless, these results require further investigation. It should be stressed
that stringent correction for multiple testing, while necessary to avoid false positives, is a conser-
vative strategy, and that a lack of formal statistical significance at a genome-wide level does not
exclude biological causality and medical significance. The burden of proof can be provided ex-
perimentally via biochemical, virological, and immunological experiments, as we previously did
for TLR7 (76). Additional genes may be found by restricting the association analysis to variants
proved experimentally to be deleterious.
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Figure 3

Impaired type I IFN immunity underlies life-threatening COVID-19. Nearly 20% of patients with life-threatening COVID-19
pneumonia have impaired production of or response to type I IFNs due to IEIs (1 to 5%) or to blockade of type I IFN activity by
preexisting neutralizing autoantibodies (~15%). IEIs of type I IFN immunity (red) have been identified and, in response to
SARS-CoV-2 infection, lead to (Jeff) an impaired production of type I IFNs in RECs or in blood plasmacytoid dendritic cells or (right)
an impaired response to type I IFNs in RECs. Genes for which X-linked or autosomal recessive defects have been identified are circled
in yellow. Genes for which common variants have been associated by GWAS with severe COVID-19 are circled in blue. Abbreviations:
IEIs, inborn errors of immunity; IFN, interferon; ISGs, interferon-stimulated genes; RECs, respiratory epithelial cells.

3.3. Age-Dependent Genetic Architecture

Inborn errors of type I IFN immunity are more frequent in younger patients (those under 60 years
of age) (61, 74, 76), an observation consistent with IEIs being generally more common in children
(26, 83). Of the 23 patients first reported to carry biochemically deleterious germline mutations
at eight type I IFN-related influenza susceptibility loci, 18 (78%) were under 60 years old (61).
TLR7 deficiency was found to account for 1% of cases of critical COVID-19 in men and about
1.8% of cases of critical COVID-19 in men below the age of 60 years (76). In an extended sample
of 3,269 patients with critical COVID-19, we identified 57 patients carrying a rare predicted LOF
variant at 14 type I IFN-related influenza susceptibility loci (including TYK?2) or with biochemi-
cally proven TLR?7 deficiency (74). These patients were significantly younger than the rest of the
cohort of patients with critical COVID-19 (43.3 versus 56 years old; p = 1.7 x 107°) (74). Con-
sistent with these results, we recently reported 12 children (~10%) from an international cohort
of 112 pediatric patients hospitalized for COVID-19 pneumonia with biochemically complete re-
cessive inborn errors of type I IFN immunity, including seven children with X-linked recessive
TLR7 deficiency and five children with AR IFNAR1, STAT?2, or TYK?2 deficiency (67). Interest-
ingly, the effect of the major common genetic risk factor for severe COVID-19 pneumonia on
chromosome 3 was also found to be more pronounced in individuals under 60 years of age than
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in those over 60 years of age (odds of death or severe respiratory failure of 2.7 versus 1.5; p-value
for the interaction = 0.038) (84). A greater heritability of common SNPs has also been reported
in patients under 60 years of age than in those over 60 years of age (85).

Stronger genetic effects in young patients may partly reflect the greater contribution of other
risk factors in the elderly, such as comorbid conditions and auto-Abs against type I IFNs (which ac-
count for ~15% of critical cases in elderly patients, discussed below in Section 5.1), which become
more frequent with increasing age. At the cellular level, aging is also associated with immunosenes-
cence, which may contribute to a defective innate and adaptive response to SARS-CoV-2 infection,
thereby conferring a nonspecific predisposition to severe COVID-19 (86). At the molecular level,
global type I IFN immunity in the blood (pDCs) and respiratory tract (respiratory epithelial cells)
has been shown to decline with age (87-90). The frequency of IEIs may also decline with age in
the general population, because IEIs can underlie fatal illness due to influenza or other viruses,
resulting in the premature death of affected individuals (2). Cohorts consisting mostly of patients
over the age of 60 years would, therefore, have a very low power to identify rare inborn errors,
as illustrated in Figure 2, which shows the proportion of critical COVID-19 cases expected to be
due to IEIs as a function of age. Assuming a frequency of 10~* for dominant IEIs and 5 x 10~*
for recessive IEIs and a penetrance for critical COVID-19 pneumonia of 0.2 and 0.8, respectively,
the expected proportion of critical COVID-19 cases due to IEIs would be expected to decrease
strongly with age, from more than 15% below the age of 30 to less than 1% after the age of 60.

4. HUMAN GENETICS OF SUSCEPTIBILITY
TO SARS-CoV-2 INFECTION

It has been suggested that a fraction of the human population may possess intrinsic resistance
to SARS-CoV-2 infection, but this remains unproven (91). Epidemiological observations suggest
that some exposed individuals may indeed be resistant; in particular, there have been reports of
highly exposed individuals remaining uninfected in the health care setting (92), as well as reports
of households in which everyone except one individual became infected (93). Genetic resistance to
infection with specific pathogens is rare. The only validated examples in humans are AR resistance
to (@) Plasmodium vivax,linked to a regulatory variant that modifies the GATA-1 binding site in the
DARC promoter, thereby selectively preventing the expression of the Duffy antigen on red blood
cells (94); (b) HIV-1, conferred by a 32-bp deletion in CCRS5, the gene encoding the main HIV-1
coreceptor on CD4t T cells (95-97); and (¢) norovirus, due to FUT?2 deficiency (nonsecretor
phenotype), which prevents the binding of the norovirus VPg (viral genome-linked protein) capsid
to FUT?2 (98).

No highly penetrant protective variant against SARS-CoV-2 infection has yet been reported.
However, GWAS have identified a few genetic factors as associated with a lower likelihood of
infection at the population level (Figure 1). One of the first genomic regions to be identified
in COVID-19 host genetic studies was the ABO locus on chromosome 9 (45). A highly signifi-
cant association with susceptibility to infection was later observed at the same locus for the SNP
rs912805253 (OR ~ 0.9), both in the initial Covid-19-HGI meta-analysis (48) and in a large study
by the direct-to-consumer genetics company 23andMe (99). Interestingly, a systematic review
confirmed that the ABO association is mostly restricted to susceptibility to infection, with blood
group O associated with a significantly lower susceptibility to infection than non-O blood groups
(OR = 0.9), whereas most of the other reported genetic regions are associated with disease severity
(100). The precise mechanism by which ABO blood status influences SARS-CoV-2 susceptibil-
ity remains unclear, but blood antigens are known to alter individual susceptibility to multiple
pathogens (101), including other coronaviruses (102).
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The angiotensin-converting enzyme 2 (ACE2) protein acts as a functional receptor for the
spike glycoprotein of SARS-CoV-2 and other coronaviruses. ACE2 variants were thus suspected
to play a role in modulating infectiousness. However, this gene is under strong negative selec-
tion. Putative functional variants are therefore rare, and a very large number of study participants
(>50,000 COVID-19 cases and >700,000 controls) were required to identify a relatively rare
variant associated with protection against SARS-CoV-2 infection (rs190509934:T>C; frequency
of the minor C allele = 0.3%; OR for the additive effect of each copy of the minor C allele =
0.69) (50). This variant, which is located 69 bp upstream from ACE2, is an eQTL for the gene:
The C allele is associated with lower levels of mRNA, probably accounting for the lower level
of susceptibility to infection. This association was replicated in the most recent Covid-19-HGI
meta-analysis (43). Five additional loci were identified by GWAS as being more likely to be as-
sociated with susceptibility to SARS-CoV-2 infection than with disease severity (43, 103), but the
effect sizes were, again, very modest (Figure 1) and the mechanisms involved remained mostly
undefined. No inborn variant conferring strong resistance to SARS-CoV-2 infection has yet been
identified. Human genetic studies of resistance to infection may benefit from large-scale host-viral
interactome studies (61) and genome-wide CRISPR knockout (104-112) and activation (104, 112)
screens, which can identify candidate genes influencing the viral life cycle. Such studies will require
a specific strategy, particularly for the reliable identification of highly exposed subjects potentially
resistant to infection (113).

5. DOWNSTREAM IMPLICATIONS OF THE GENETIC FINDINGS

5.1. Biological Insight from Genetic Discoveries: Autoantibodies
Neutralizing Type I Interferons

The identification of type I IFN-related IEIs led to the almost simultaneous major discovery
that preexisting auto-Abs neutralizing type I IFNs account for about 15% of critical COVID-19
cases (114, 115). While searching for type I IFN-related IEIs in patients with critical COVID-19
pneumonia, we also hypothesized that autoimmune phenocopies of these IEIs might underlie crit-
ical COVID-19. Autoimmune phenocopies of IEIs of cytokines have already been described, in
which patients with the same or a similar infectious phenotype produce auto-Abs neutralizing the
corresponding cytokines. Auto-Abs against cytokines have already been shown to underlie my-
cobacterial disease (type II IFN), mucocutaneous candidiasis (IL-17A/F), nocardiosis [GM-CSF
(granulocyte-macrophage colony-stimulating factor)], and staphylococcal disease (IL-6) (116,
117). Auto-Abs neutralizing type I IFNs were known to occur in some patients receiving IFN
therapy, and in patients with systemic lupus erythematosus, myasthenia gravis, thymoma, or au-
toimmune polyendocrine syndrome type 1 (APS-1) caused by germline mutations of AIRE, but
they were not thought to confer a predisposition to viral diseases (2, 118). We first reported the
presence of auto-Abs neutralizing high, supraphysiological concentrations (10 ng/mL, with plasma
diluted 1/10) of IFN-02 or IFN-w in about 10% of 987 patients with critical COVID-19 pneumo-
nia, but not in 663 individuals with asymptomatic or mild infection (115). This finding has been
largely replicated worldwide in many studies (76, 119-134). We later detected auto-Abs neutral-
izing lower, more physiological concentrations (100 pg/mL, with plasma diluted 1/10) of IFN-a2
or IFN-w in 13.6% of 3,595 patients with life-threatening COVID-19 (114). This proportion in-
creased in patients older than 65 years, reaching more than 20% in patients over 80 years old, and
was greater in men than in women. Another 1% of patients with critical COVID-19 had auto-Abs
neutralizing high concentrations of IFN-f.

Several lines of evidence strongly suggest that autoimmunity to type I IFN plays a causal role
in life-threatening COVID-19 (135). For patients for whom plasma sampled before the pandemic
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was available, the auto-Abs were found to be present before SARS-CoV-2 infection (115). Pa-
tients with APS-1, who produce such auto-Abs from early childhood, were shown to be at very
high risk of developing severe or critical COVID-19 pneumonia, especially after 20 years of age
(136). These auto-Abs neutralize the antiviral activity of type I IFNs against SARS-CoV-2 in vitro
(115) and are found in vivo in the blood and in the respiratory tract of patients (123, 137, 138).
Remarkably, these auto-Abs were also found in samples from a fraction of the general popula-
tion before the pandemic. Their prevalence in the general population remains fairly stable until
the age of 70 (at ~1% for auto-Abs neutralizing low doses of IFN-a2 or IFN-w), but sharply
increases thereafter (reaching up to 6.3% after the age of 80 years) (114). Auto-Abs against type
I IFNs strongly increase COVID-19 infection fatality rates in unvaccinated populations, espe-
cially those neutralizing both IFN-a2 and IFN-w (135). Screening for auto-Abs against type 1
IFN in patients infected with SARS-CoV-2, and even in uninfected individuals, is feasible and
may be warranted. Individuals carrying such antibodies should be given high priority for vacci-
nation against COVID-19. They may also benefit from specific care, such as the administration
of monoclonal antibodies neutralizing the virus or early recombinant IFN-§ therapy (139). The
exact level of protection against severe COVID-19 pneumonia provided by COVID-19 vaccines
in carriers of auto-Abs remains unclear. However, we recently detected auto-Abs against type 1
IFNs in 24% (10 of 42 tested) of fully vaccinated patients with normal antibody responses who
developed critical breakthrough COVID-19 (140), suggesting that at least some of the carriers of
these auto-Abs may not be fully protected by the vaccine. The same auto-Abs were subsequently
shown to underlie other severe infectious manifestations, such as severe adverse reactions to yel-
low fever live-attenuated viral vaccine (33) and critical influenza pneumonia (141). In critically ill
COVID-19 patients, auto-Abs were also shown to increase the risk of herpesvirus reactivation,
which has been associated with a poorer clinical outcome (142, 143).

Auto-Abs against type I IFNs can also be genetically driven, and few IEIs are already known
to underlie their production. The most striking example is the production of these auto-Abs from
early childhood in nearly all patients with APS-1 due to germline deleterious variants of AIRE
(4). They have also been reported in patients with immunodysregulation polyendocrinopathy
enteropathy X-linked (IPEX) due to deleterious variants of FOXP3, as well as combined immu-
nodeficiency due to biallelic hypomorphic RAGI or RAG?2 variants (37-42). A feature common
to these IEIs is that they affect T cell tolerance. Interestingly, among the patients with auto-Abs
against type I IFN and life-threatening COVID-19, we identified a woman with X-linked inconti-
nentia pigmenti (IP), in which cells activate the same single X chromosome (cells having activated
the X chromosome and bearing the null mutation of NEMO die during development) (27). A fur-
ther study of 32 women with IP showed that 25% carried auto-Abs against type I IFNs, suggesting
an X-linked germline genetic etiology for type I IFN auto-Abs (115). New IEIs underlying the
production of auto-Abs against type I IFN are likely to be discovered in the future, particularly in
young patients. It is also tempting to speculate that somatic mutations, which accumulate with age
in normal human tissues (144), may be partly responsible for the sharp increase in the prevalence
of auto-Abs against type I IFNs after 70 years of age.

5.2. Clinical Implications: Toward Personalized Medicine in Infectious Diseases

Deciphering the genetic architecture of susceptibility to SARS-CoV-2 infection and severe
COVID-19 pneumonia is only the first step toward clinical implementation and improved health
care. How can we translate the knowledge gained in the genomic screens described above into
medically useful strategies? The first and most obvious answer to this question is through the iden-
tification of individuals at high risk. The rare deleterious variants of TLR7- and TLR3-dependent
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type IIFN immunity genes identified confer a massive increase in the risk of severe disease and ac-
count for a significant proportion of cases (e.g., 1 % of men with critical disease carry a deleterious
TLR7 variant). One could imagine screening programs, at the population level, in primary care
centers, or in emergency rooms (at the time of early COVID-19 diagnosis), providing point-of-
care testing for such variants (145). Carriers would then benefit from specific preventive and ther-
apeutic measures. In particular, type I IFN might be useful in patients prone to severe COVID-19
and infected with the virus, provided it is administered at an early stage of infection. Along the
same lines, the discovery that auto-Abs against type I IFN account for 20% of COVID-19 deaths
has clinical implications. The detection of such auto-Abs before or during early stages of infection
is straightforward and warranted. Carriers of these auto-Abs should be vaccinated and given pri-
ority for booster injections and may benefit from specific treatments, such as IFN-f, monoclonal
antibodies neutralizing SARS-CoV-2, or plasma exchange (146, 147).

A second way forward in the clinical translation of these findings would be the development of
polygenic risk scores (PRS), constructed by summing the effects of all genetic variants confirmed
to be associated with a phenotype of interest. In recent years, PRS have been shown to have a
high predictive value for a range of complex diseases, including cardiovascular, metabolic, and
tumoral disorders (148). A few studies have attempted to build PRS for COVID-19, but with little
success. Indeed, one of the main factors determining the predictive ability of PRS is the fraction
of the phenotypic variance explained by the combination of selected variants, which remains low
in COVID-19 host genetic studies of common variants (50, 84, 149). Nevertheless, some private
companies already offer polygenic risk prediction for severe COVID-19. However, current tests
have low discriminatory power at the individual level and variable accuracy depending on ancestry,
making their clinical use questionable (150). Nevertheless, the assessment of patient risk based on
a combination of demographic, clinical, and genetic data has the potential to deliver more precise
information that could prove useful for personalized health management.

6. CONCLUSION

The SARS-CoV-2 pandemic has highlighted the vast potential of human genomics research when
itis performed at a large scale, in real time, and in a highly collaborative manner. One of its greatest
successes has been the identification of a molecular explanation for about 20% of cases of criti-
cal COVID-19 pneumonia: inborn errors of type I IFN immunity in 1-5% of cases and auto-Abs
against type I IFNs in 15-20% of cases. Other IEIs, related or unrelated to type I IFN, may also be
involved. Future studies should build upon the observations of the impact of SARS-CoV-2 infec-
tion in individuals with previously known IEIs (151). Remarkably, common genetic variants with
modest effect sizes were also identified in regions encompassing genes involved in type I IFN im-
munity. It is tempting to speculate that they may act as modifiers of the clinical expression of IEISs,
which display high but incomplete penetrance. Most human genomics studies have focused on
COVID-19 pneumonia, with fewer considering resistance to SARS-CoV-2 infection. Interesting
results are starting to emerge for MIS-C and already suggest a pathogenesis different from that
of COVID-19 pneumonia (152-154). Future research should also encompass other COVID-19-
related clinical manifestations, such as long COVID (13) and COVID toes (12), as well as severe
adverse effects of vaccination (155) and breakthrough infections (140).

The lessons learned should be used to improve our collective capacity to confront other
infectious threats. In particular, COVID-19 has illustrated the central importance of large-scale
research infrastructures embedded in health care systems, facilitating the rapid collection and
analysis of samples in times of crisis. It has also become clear that it is crucial to define disease out-
comes clearly and to gather as many clinical data as possible to minimize patient misclassification,
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thereby maximizing statistical power to detect true genetic signals. Ultimately, a better under-
standing of the impact of human genetic variation on pathogen response will enable health
systems to provide appropriate care to protect individuals and populations more efficiently
against future infectious threats.
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