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ABSTRACT: The subseasonal-to-seasonal (S2S) predictive time scale, encompassing lead times ranging 
from 2 weeks to a season, is at the frontier of forecasting science. Forecasts on this time scale provide 
opportunities for enhanced application-focused capabilities to complement existing weather and climate 
services and products. There is, however, a “knowledge–value” gap, where a lack of evidence and 
awareness of the potential socioeconomic benefits of S2S forecasts limits their wider uptake. To address 
this gap, here we present the first global community effort at summarizing relevant applications of S2S 
forecasts to guide further decision-making and support the continued development of S2S forecasts 
and related services. Focusing on 12 sectoral case studies spanning public health, agriculture, water 
resource management, renewable energy and utilities, and emergency management and response, 
we draw on recent advancements to explore their application and utility. These case studies mark a 
significant step forward in moving from potential to actual S2S forecasting applications. We show 
that by placing user needs at the forefront of S2S forecast development—demonstrating both skill 
and utility across sectors—this dialogue can be used to help promote and accelerate the awareness, 
value, and cogeneration of S2S forecasts. We also highlight that while S2S forecasts are increasingly 
gaining interest among users, incorporating probabilistic S2S forecasts into existing decision-making 
operations is not trivial. Nevertheless, S2S forecasting represents a significant opportunity to generate 
useful, usable, and actionable forecast applications for and with users that will increasingly unlock the 
potential of this forecasting time scale.
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The subseasonal-to-seasonal (S2S) predictive time scale, encompassing forecast ranges 
from 2 weeks to a season, is a rapidly maturing discipline. The S2S time scale is a frontier 
of forecasting science, with emerging recognition for both the need and the potential utility 

of forecasts on this time scale (White et al. 2017; Merryfield et al. 2020; Mariotti et al. 2020). 
It is now over a decade since Brunet et al. (2010) recommended that the weather and climate 
communities, under the auspices of World Weather Research Programme (WWRP) and World 
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Climate Research Programme (WCRP), collaborate to jointly tackle the challenge of providing 
skillful and useable S2S forecasts. Significant advancements have been made in this time, including 
the joint WWRP–WCRP Subseasonal to Seasonal Prediction 
Project1 (Robertson et al. 2018), which is advancing the science 
in identifying and simulating key sources of S2S predictability 
and identifying “windows of opportunity” (Vitart 2014; Mariotti 
et al. 2020), quantifying and reducing inherent uncertainties, and working toward their future 
operationalization (Robertson et al. 2014; Vitart et al. 2017; Lang et al. 2020). As S2S prediction 
science continues to mature, the availability of extended-range forecasts provides opportunities 
for enhanced application-focused capabilities to complement existing services and develop new 
ones. Applications of S2S forecasts are increasingly being explored and assessed across a range of 
sectors (White et al. 2017), with efforts also underway to test their application in real time through 
the S2S Real-Time Pilot Initiative2 (Robbins 2020).

There remains, however, a “knowledge–value” gap, where  
evidence of the potential socioeconomic benefits of S2S forecasts 
supported by demonstrations of their utility across a number of 
sectors, has been limited to date. The 2018 international conference on S2S prediction in 
Boulder, reported in Merryfield et al. (2020), brought together research, operational prediction, 
and application expertise to help identify such gaps and provide pathways to address them. 
Several recommendations were identified for action, including the creation of a summary of 
application-focused S2S case studies that highlight past and ongoing projects to encourage 
and promote better engagement with end users and stakeholders. As user needs vary greatly 
between different sectors and regions, the wider community is increasingly working together 
on the cogeneration of S2S predictions, yet such application-focused studies are typically 
either reported as a “side story” to S2S predictability studies, or are simply not publishable 
in their own right. However, to guide further user-driven decision-making products and sup-
port the continued development and utility of S2S forecasts and related services, these efforts 
need to be catalogued and widely disseminated.

This study is the first coordinated global community effort at summarizing the experiences 
of application-relevant forecasts on the S2S time scale across sectors and regions. Focusing 
on 12 sectoral S2S application case studies spanning the public health, agriculture, water re-
source management, energy and utilities, and emergency management and response domains 
(Table 1), we draw on recent advancements to explore the use and utility of S2S predictions 
and demonstrate how they can be employed to benefit society. We explore common challenges 
and learnings, and why it is appropriate to integrate S2S forecasts with other predictive, veri-
fication, and risk-based systems for various decision-making purposes to seamlessly extend 
the forecast horizon. Through this collective exploration of existing applications, we aim to 
unlock the potential of S2S predictions.

Sectoral case studies
Public health. Public health is a key sector for the development and application of S2S fore-
casts, where decisions over extended-range forecasting time scales are directly contributing 
to positive health outcomes (e.g., expected disease outbreaks, morbidity and mortality predic-
tions, poverty, and nutrition indicators). The benefits are perhaps greatest in regions where 
climate-sensitive diseases pose a continuous threat to the lives and livelihoods of millions of 
people (White et al. 2017). In this section, we explore three diverse applications of S2S predic-
tions in the public health domain, including mortality predictions during extreme weather 
events in the United Kingdom, malaria occurrence in Nigeria, and an early-action system for 
acute undernutrition in Guatemala.

1	WWRP–WCRP “Subseasonal to Seasonal Predic-
tion Project” (http://s2sprediction.net/).

2	S2S Real-Time Pilot Initiative (http://s2spredic-
tion.net/xwiki/bin/view/dtbs/RealtimePilot).
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Mortality predictions during extreme cold weather events in the United Kingdom (authors:  
Andrew J. Charlton-Perez, Christian M. Grams, Dominik Büeler, Robert W. Lee, W. T. Katty Huang,  
and Ting Sun). Extreme weather, such as cold and heat waves, often increases human mortality 
in temperate countries (e.g., Anderson and Bell 2009; Ryti et al. 2016). Anomalous mortality 
can be particularly high during events that last several weeks, meaning mortality predictions 
on S2S time scales are of specific interest. Here we examine the application of S2S forecasts 
for predicting mortality in the United Kingdom during a recent cold wave event in 2018, 
colloquially “The Beast from the East,” by combining a statistical mortality model (Vicedo-
Cabrera et al. 2019) with 2 m temperature (T2m) and weather regime (Michelangeli et al. 
1995; Grams et al. 2020) predictions from S2S forecasts. The event was characterized by two  
intense cold waves peaking on 28 February and 18 March 2018 in the United Kingdom  
(Fig. 1a), which were both associated with a cold Greenland blocking weather regime  
(cf. Grams et al. 2017) (Fig. 1c). The statistical model, estimating temperature-related mortality 
from observed T2m, indicates more than 300 mortalities per day attributable to the event’s 
cold temperatures (Fig. 1b), totaling an estimated burden of 9,568 deaths during March that 
largely exceeded the 20-yr average. During the peak of the cold wave in the first week of 
March, the excess daily mortality compared to the 20-yr average (cf. differences of blue lines 
in Fig. 1b) matches the mortality attributable to cold weather (black line in Fig. 1b).

We explore how far in advance the European Centre for Medium-Range Weather Fore-
casts (ECMWF) extended-range (Vitart 2004; Vitart et al. 2008, 2014) S2S ensemble  

Table 1.  Description of sectoral case studies with notable prior or related studies where applicable. Note that not all case stud-
ies are based on previously published work; for some, this is the first time they have been documented (shown as long dashes). 
In other cases, such as study 2 and study 4, the studies listed describe key motivations, partially related components of the case 
study, or prediction of events different to that of the main study theme and should not be taken as a more complete account of 
the case study.

Description Sector S2S application/product Prior or related studies

1) Mortality predictions during extreme 
cold weather events in the United Kingdom

Public health Cold-wave mortality Charlton-Perez et al. (2019), Huang et al. 
(2020)

2) Malaria occurrence prediction in Nigeria Public health Malaria prediction using a 
vector-borne disease model

Tompkins and Ermert (2013), Asare et al. 
(2016) (both related to the VECTRI model)

3) An early-action system for acute 
undernutrition in Guatemala

Public health Early-action system for food 
security

—

4) Season onset timing in Kenya Agriculture Season onset timing for crop 
yield and food security

Kilavi et al. (2018), MacLeod et al. (2021a) 
(both primarily related to heavy rain events 
in the study region)

5) Agricultural management in Bihar Agriculture Monsoon signal for small-
holder farmers

Robertson et al. (2019), Acharya (2018) 
(verification of district-level hindcasts and 
real-time forecasts in 2018)

6) Water management in Ceará State Water resource 
management

Reservoir inflows for water 
management

—

7) Water management in the western 
United States

Water resource 
management

Atmospheric rivers, ridging 
events, and precipitation

DeFlorio et al. (2019a,b), Gibson et al. 
(2020a,b)

8) A decision-support tool for the 
renewable energy sector

Renewable energy 
and utilities

Renewable energy decision-
support tool

Soret et al. (2019)

9) Hydropower inflow predictions in 
Scotland

Renewable energy 
and utilities

Reservoir inflows for 
hydropower

Graham et al. (2021)

10) Scenario planning for hydropower 
operations in Tasmania, Australia

Renewable energy 
and utilities

Low-rainfall scenarios for 
hydropower

—

11) Weather risk management for U.K. 
fixed-line telecommunications

Renewable energy 
and utilities

Telecommunication fault-rate 
maintenance scheduling

Brayshaw et al. (2020)

12) European flood forecasting Emergency 
management and 
response

Hydrological flood forecasting Wetterhall and Di Giuseppe (2018)
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forecasts,3 available from the S2S global repository, indicated 
the first cold wave to occur at the end of February. The T2m 
forecast converges toward a cold scenario after the 13 February 
initialization, which is indicated by the substantial drop in the 
ensemble mean and the gradual reduction in ensemble spread (Fig. 1d). The consideration of 
weather regime forecasts provides additional insight into the predictability of the large-scale 
conditions determining the cold temperatures. Both Scandinavian blocking and Greenland 
blocking probabilities were relatively high in the S2S forecasts from 5 February (Fig. 1e); as 
these regimes typically coincide with colder-than-average temperatures in the United Kingdom, 
the forecast thus indicates a possible cold scenario up to 3 weeks in advance. Nevertheless, 
the regime prediction is rather uncertain until a sudden stratospheric warming (e.g., Lee et al. 
2019) occurs on 12 February, indicated by the gradual increase in the probability for the two 
blocking regimes and the decrease in the probability for the typically mild cyclonic regimes.

These results reveal the potential for predicting mortality on an operational basis when 
combining a statistical mortality model with S2S forecasts. Our analysis shows that a sophis-
ticated combination of both temperature and weather regime information from S2S forecasts 
as predictors might generate useful operational mortality forecasts, such as national or re-
gional mortality exceedance probabilities, that could support National Health Service (NHS) 
decision-making (e.g., NHS Improvement 2018). This builds on previous investigations that 
systematically linked weather regimes with the likelihood of high mortality (Charlton-Perez 

Fig. 1.  Mortality during extreme cold weather events in the United Kingdom, showing (a) HadUK-Grid mean 2-m tempera-
ture (T2m) observations for the two cold waves in February and March 2018; (b) estimated U.K. mortality attributable to the 
cold weather (black line), observed raw total mortality (blue line), and 1998–2017 average (dashed line); (c) observed weath-
er regime evolution (based on ECMWF analysis) during the same period for a life cycle definition of seven weather regimes  
(cf. Grams et al. 2017); (d) ECMWF extended- and medium-range U.K. mean T2m ensemble forecasts valid for 0000 UTC  
28 Feb 2018 (y axis) as a function of forecast initial time (x axis), with the blue box-and-whiskers showing the 99th, 75th, 50th,  
25th, and 1st percentiles, the black dots the control forecast, and the red box-and-whiskers the model climatology for  
0000 UTC 28 Feb 2018 (plotting tool provided by Linus Magnusson, ECMWF); (e) as in (d), but for the predicted probabili-
ties of the active weather regime (regime projection > 1 sigma) in the ensemble indicated by the corresponding color (gray  
indicates the “no regime” category representing an atmospheric state not resembling any of the seven regimes).

3	ECMWF extended-range forecasts (www.ecmwf.
int/en/forecasts/documentation-and-support/
extended-range-forecasts).
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et al. 2019; Huang et al. 2020). Engagements with national health boards and public health 
agencies in the United Kingdom through webinars and one-on-one interviews indicate interest 
by stakeholders (particularly once the capability of S2S forecasts 
is clearly communicated).4 However, the lack of operational 
planning focused on S2S time scales and health services’ limited 
capacity to react to moderate probability events are challenges 
that need to be overcome.

Malaria occurrence prediction in Nigeria (authors: Eniola Olaniyan, 
Elijah A. Adefisan, Ahmed A. Balogun, John A. Oyedepo, and Kamoru A. Lawal). Malaria is one of 
the largest contributors to disease in Nigeria. Humans contract the malaria parasite through 
mosquitos (Githeko and Ndegwa 2001; Jones and Morse 2010), the distribution and survival 
of which is largely influenced by environmental and atmospheric factors such as tempera-
ture and rainfall (Abiodun et al. 2016; Asare and Amekudzi 2017). The vector-borne disease 
community model of International Centre for Theoretical Physics (ICTP), Trieste (VECTRI) 
(Tompkins and Ermert 2013), a distributed open-source dynamical malaria model that re-
solves the growth stages of the egg–larvae–pupa in addition to the gonotrophic and the spo-
rogonic cycles, has demonstrated predictive skill over different regions in Africa using both 
modeled and observed climatic drivers (Tompkins and Ermert 2013; Asare et al. 2016; Asare 
and Amekudzi 2017). The Nigerian Meteorological Agency (NiMet) and the National Weather 
and Hydrological Centers (NWHC) are collaborating with researchers globally5 to develop a 
sustainable African weather forecasting and application system. Under these auspices, NiMet 
has developed a real-time monitoring system based on temperature and rainfall conditions 
for malaria transmission and has been issuing early warning forecasts for the potential oc-
currence of malaria on the S2S time scale (2–6 weeks) using VECTRI. Despite the potential 
benefits of forecasting malaria distribution in West Africa on the S2S time scale (Olaniyan 
et al. 2018), the utility of S2S forecasts in the operational early warning system has yet to be 
explored in this region.

Here we explore the potential benefits of S2S forecasts for the hyperendemic malaria zones 
in Nigeria using the VECTRI model. Observed daily temperature and rainfall datasets were 
obtained from the Nigerian Meteorological Agency, together with ensemble hindcasts from 
ECMWF (VarEPS, based on IFS version 41r1), China Meteorological Administration (CMA) 
(BCC-CPS-S2Sv1 version 1) and the Met Office (UKMO) (GloSea4) from the S2S global repository. 
Clinically reported malaria cases were obtained from of the “Roll Back Malaria” program.6 
Two evaluations were undertaken between 2013 and 2017: first, reported (observed) malaria 
cases were used to evaluate the skill of the VECTRI model using 
an estimated entomological inoculation rate (EIR) as a measure 
of exposure to infectious mosquitoes; second, the skill of the 
S2S predictions in driving the VECTRI model. The EIR from the 
observed-driven VECTRI model was then compared with the EIR 
from the S2S-driven VECTRI model. Preliminary results show 
that the estimated EIR from the S2S-driven VECTRI model (and as also seen in the observed-
driven VECTRI model) increases from the Gulf of Guinea to the Sahel as a function of the 
population profiles, with the ensemble means of both the CMA and ECMWF S2S ensembles 
showing correlations with the observed-driven EIR ranging from 0.7 to 0.85. A correlation of 
approximately 0.9 was found over all regions from the UKMO model.

Despite regional model biases, the findings show the use of S2S forecasts in a malaria early 
warning system to be realistic, supporting early identification of malaria hyperendemic areas, 
as well as prompt mobilization and intervention by the responsible health department, at 
least a month before the outbreak of the disease. However, the integration of S2S predictions 

4	“Addressing the resilience needs of the U.K. health 
sector: climate service pilots” project, part of 
the U.K. Climate Resilience Programme (www.
ukclimateresilience.org/projects/addressing-the-
resilience-needs-of-the-uk-health-sector-climate-
service-pilots/).

5	“GCRF African SWIFT” project (https://africans-
wift.org/).

6	“Roll Back Malaria” program (https://endmalaria.
org/).
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into operational early warnings has its challenges, with real-time warnings only shared with 
“Roll Back Malaria” and Nigeria’s Ministry of Health, reducing the potential for coproduction 
due to lack of feedback from users.

An early-action system for acute undernutrition in Guatemala (authors: Carmen González Romero, 
Ángel G. Muñoz, Ana María García-Solórzano, Xandre Chourio, and Diego Pons). The World Food 
Programme indicates the prevalence of stunting in children younger than 5 years old in 
Guatemala reaches 46.5% nationally, with peaks of 90% in the hardest-hit municipalities 
[World Food Programme (WFP); WFP 2020]. Food insecurity in Guatemala is driven by both 
climate and nonclimate factors, and its pathways are often complex (Beveridge et al. 2019). 
Additionally, 70% of the impoverished population in Guatemala lives in rural areas, where 
agricultural production is mainly rain fed (Lopez-Ridaura et al. 2019). Climate factors con-
tribute to acute undernutrition in children under 5, especially in the dry corridor, a region 
already highly vulnerable to climate-related impacts.

Since September 2018, the National Secretariat for Food Security and Nutrition (SESAN) 
has been using a monitoring system called “Sala Situacional,” to allow for an early-action 
system for food security. Some limitations, though, have been identified: the expert-based 
criteria and the survey-based method are labor intensive, and its outputs are more aligned 
with a monitoring system than an early warning system. These challenges limit the use 
of the system as a forecasting tool, since it does not provide enough forecast lead time for 
decision-makers to maneuver and distribute the resources available to better deal with food 
insecurity. To address these issues, an objective, automated forecast system that incorporates 
S2S forecasts that supports SESAN’s current monitoring system is presented and discussed. 
Using the “Sala Situacional” approach as the base, the International Research Institute for 
Climate and Society (IRI) worked with SESAN to codevelop a system to forecast the number 
of cases of acute undernutrition for children under 5 per department.

The forecast system follows the NextGen methodology (Muñoz et al. 2019, 2020; 
WMO 2020) and promotes ecosystems of climate services (a climate services landscape 
that increases resilience to crises via optimal orchestration of available resources; see  
Goddard et al. 2020), considering the role of both climate and nonclimate factors in statisti-
cal models of increasing complexity. Observed total rainfall (or lack thereof) can be used 
as a predictor of acute undernutrition in children under 5, with lags (or lead times) ranging 
from 3 to 6 months depending on the geographical location. A combination of observed 
rainfall and calibrated rainfall forecasts produced by the S2S prediction project (Vitart 
and Robertson 2018) were found to provide monthly predictions of acute undernutrition 
for up to 5 months in advance—a lead time identified by SESAN as useful since it would 
allow the national government to deploy resources effectively. Calibration was found to 
be required in order to guarantee that the S2S forecasts could reproduce the observed 
(statistical) characteristics of acute undernutrition. The best predictive models were found 
to exhibit good forecast discrimination (as measured by the two-alternative forced-choice 
metric; Mason and Weigel 2009) for almost all departments in Guatemala, with the system 
forecast skill being highest over the eastern dry corridor (Fig. 2).

Although the interannual and seasonal characteristics (e.g., timing) of acute undernutrition 
are well captured by models using rainfall as the only predictor, the inclusion of nonclimate 
predictors, such as the price of maize, beans, and coffee, and user-defined probability of 
exceedance of thresholds, were found to increase forecast skill and usability. In other words, 
the inclusion of nonclimate predictors, which are consistent with the conceptual model of 
drivers for food security in Guatemala developed by SESAN, helps to reproduce the main fea-
tures beyond the annual cycle and interannual variability of the undernutrition time series 
by better capturing peaks at monthly time scales.
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Agriculture. The agriculture sector is already one of the most advanced in terms of using 
weather forecasts and seasonal outlooks to support operational decisions (Clements et al. 
2013). S2S forecasts are starting to provide additional decision-relevant information to 
support the timing of crop planting, irrigation scheduling, and harvesting, particularly in 
water-stressed regions. In this section, we explore agricultural applications of S2S forecasts 
of season onset timing in Kenya and agricultural management in India.

Rainy Season onset timing in Kenya (authors: Richard J. Graham, Mary Kilavi, David MacLeod, 
George Otieno, Martin C. Todd, and Stella Aura). Approximately 98% of Kenya’s agricultural 
systems are rain fed (Ministry of Agriculture, Livestock and Fisheries 2017). Prediction of 
rainy season onset timing is therefore a key requirement for assisting farmers in timely land 
preparation and planting. The Kenya Meteorological Department (KMD) provides season onset 
predictions based on inferences from statistical and dynamical seasonal forecast systems.  

Fig. 2.  Skill assessment for the early-action system for acute undernutrition in Guatemala, show-
ing the generalized relative operating characteristics (GROC) skill metric for cases of acute under-
nutrition for children under 5 years old in each department in Guatemala. GROC measures forecast 
discrimination, or how well the system discriminates between different categories (below-normal, 
normal, or above-normal values). This NextGen forecast system uses total monthly rainfall as a 
predictor of monthly cases of acute undernutrition for children under 5 years old. Values ~50% 
indicate discrimination as good as climatology, and values above (below) 50% indicate better 
(worse) discrimination than climatology. The skill shown corresponds to the average skill for the 
following target month (example, January, if the forecast is made in December), and considers the 
different lag/lead times between rainfall and acute undernutrition for each department.

Unauthenticated | Downloaded 10/07/22 04:09 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U N E  2 0 2 2 E1456

A real-time trial of the utility of S2S forecasts was undertaken by KMD to assess their useful-
ness in strengthening these operational onset predictions, at lead times of up to 4 weeks, for 
improved agricultural decision-making, crop yield, and food security. The trial was part of 
the “Forecast-based Preparedness Action” (ForPAc) project,7 conducted over five rainy seasons 
in the period 2018–20.

Met Office GloSea5 (MacLachlan et al. 2015) S2S forecasts8 
were provided to KMD in the form of weekly guidance bulletins 
with a supporting narrative. KMD used the guidance primarily 
for preoperational evaluation purposes; however, in some cases 
where confidence in the predictions was high (e.g., consistency 
over consecutive lead times), the information was used in opera-
tional forecasts to the Kenyan public, including farming com-
munities. The bulletin was provided weekly throughout each 
rainy season, beginning 3–4 weeks ahead of the climatological start of the season. Products 
included maps of forecast probabilities for tercile categories of weekly averaged precipitation 
at weeks 1–4 ahead and forecasts of the Madden–Julian oscillation (MJO), a key driver of 
subseasonal rainfall in the region (Berhane and Zaitchik 2014), using phase and amplitude 
diagrams (Wheeler and Hendon 2004). The prediction skill and GloSea5’s representation of 
the MJO phase teleconnections, which are generally well captured (MacLeod et al. 2021a), 
were also provided. Two March–May (MAM) rainy seasons and three October–December 
(OND) rainy seasons were sampled in the trial, each containing marked rainfall anomalies, 
including one with a widespread notable delay in rainfall onset (MAM 2019) and one with a 
marked early rainfall onset (OND 2019). In both of these highly impactful cases, predicted 
tercile category rainfall probabilities for the early weeks of the seasons were consistent with 
the observed onset anomaly, including at week 4 of early forecasts, with the forecast signal 
strengthening as the lead time shortened.

In the case of late onset (MAM 2019) the GloSea5 forecasts were used by KMD to update 
the previously issued seasonal forecast to delay the expected onset date by 3–4 weeks, thus 
providing the farming communities with improved information for scheduling of planting. 
The trial also documented examples of good predictability beyond week 2 for intraseasonal 
periods with rainfall above the upper tercile, generally when the MJO was predicted to be 
active in a rainfall-favoring phase. This supports the expectation that while, on average, skill 
drops sharply beyond 2 weeks lead time (MacLeod et al. 2021a), an active MJO can provide a 
“window of opportunity” for longer-lead warning (Kilavi et al. 2018). These results give clear 
indications that S2S predictions can assist KMD in strengthening its season onset predic-
tions. Further, as part of a seamless approach such S2S predictions can add value to existing 
heavy rain hazard warnings (MacLeod et al. 2021b) by enabling early “horizon scanning” for 
upcoming heavy rain events and, potentially, by extending the warning lead time.

Agricultural management in Bihar, India (authors: Nachiketa Acharya, Andrew W. Robertson, and 
Lisa Goddard). A probabilistic S2S forecast system was developed for the state of Bihar, one 
of the most climate-sensitive states in India. Precipitation forecasts were issued in real time 
during the June–September 2018 monsoon to explore the potential value of the S2S fore-
casts for small-holder farmers who operate farms of less than 5 acres.9 Four districts were 
selected—two in the northern plains (flood prone) and two in the 
southern plains (drought prone). The project was a collaboration 
between IRI, The University of Arizona, Indian Meteorological 
Department (IMD), Regional Integrated Multi-Hazard Early 
Warning System for Africa and Asia (RIMES), and the govern-
ment of Bihar.

7	“Toward Forecast-based Preparedness Action” 
(ForPAc) project (www.shear.org.uk/research/
ForPAc.html).

8	Met Office GloSea5 seasonal prediction system 
(www.metoffice.gov.uk/research/approach/
modelling-systems/unified-model/climate-
models/glosea5).

9	“International Research Applications Project” 
(IRAP) project (https://cpo.noaa.gov/Meet-the-
Divisions/Climate-and-Societal-Interactions/
IRAP).
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Real-time National Centers for Environmental Prediction (NCEP) CFSv2 (Saha et al. 2014) 
S2S forecasts,10 calibrated against observed gridded rainfall fields from the IMD using ca-
nonical correlation analysis, were generated each month during June–September 2018. The 
forecasts were limited to 2 weeks in advance as the calibrated probabilistic forecasts for weeks 
3–4 were concentrated around climatological probabilities (0.33), which was a limitation of 
the forecast’s potential utility. The 2018 monsoon recorded a large rainfall deficit over Bihar 
(~25% below its long-term average) with 11 of the 18 weeks registering deficits. The real-time 
S2S forecast captured the signal of the weaker monsoon in 2018 over Bihar, including the 
delayed monsoon onset and the observed break phase in August at the week 2 lead time. 
The quantitative verification of the district-level hindcasts and real-time forecasts over the 
monsoon season in 2018 is evaluated in Robertson et al. (2019) and Acharya (2018).

To assess the usability and utility of the real-time S2S forecasts to the user community, 
“field schools” involving ~300 farmers were conducted prior to the monsoon in May 2018. 
The curriculum extended beyond the presentation of climate forecasts to include contextual 
information on climate systems and variability, the technology 
of forecasting, and the range of adaptations available under 
specific forecast conditions. During the monsoon season, real-
time forecasts were displayed through a virtual “map room.”11 
Text summaries based on the forecast maps were sent to two of 
Bihar’s state agricultural universities (SAUs)—one for the flood 
districts and the other for the drought districts—who translated 
the forecast summary into the local language (Hindi). These were disseminated through a 
nongovernmental organization (NGO) directly to farmers via text message (Fig. 3). A user 
survey was conducted at the end of the 2018 monsoon season across the four districts to 

find out how farmers used the 
S2S forecasts for farm-level 
planning and decisions (October 
2018). The survey found that 
almost half of the farmers that 
participated in the field school 
used the forecasts to change 
their farming practices and 
irrigation schedules compared to 
previous years. Farmers used the 
late arrival of the 2018 monsoon 
(~16 days), which was well cap-
tured across Bihar by the S2S 
forecast, to delay the sowing of 
rice and other crops until closer 
to the monsoon onset. They 
also changed to a less water-
demanding variety of paddy rice 
in response to expectations of a 
weaker monsoon.

Water resource management.  
Forecast information on S2S 
time scales is crucial for manag-
ing water resources, especially 
in times of f lood or drought. 

Fig. 3.  Agricultural management in Bihar, showing a flow-
chart of the forecast generation and dissemination. Inter-
actions between the institutions and actors involved are 
indicated. NGO: nongovernmental organization; IMD: India 
Meteorological Department; RIMES: Regional Integrated 
Multi-Hazard Early Warning System for Africa and Asia; 
SAU: state agricultural universities; IRI: International Re-
search Institute for Climate and Society.

10	NCEP CFSv2 seasonal forecasts (www.cpc.ncep.
noaa.gov/products/CFSv2/CFSv2_body.html).

11	IRI Bihar Climate Maproom (http://iridl.ldeo.
columbia.edu/maproom/Agriculture/bihar.
html#tabs-2).
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Combined S2S meteorological, climatological, and hydrological forecast systems provide 
valuable water resource information to reduce economic, social and environmental damages 
(White et al. 2015), particularly in climate-sensitive regions (Ralph et al. 2020). Here, we 
explore water resource management S2S forecasting applications in Brazil and the western 
United States.

Water management in Ceará State, Brazil (authors: Francisco C. Vasconcelos Jr., Dirceu S. Reis Jr., 
Caio A. S. Coelho, and Eduardo S. P. R. Martins). A combination of seasonal climate and hydro-
logical models has been used for ~15 years by Ceará State Meteorology and Water Resources 
Foundation (FUNCEME) and Ceará State Water Resources Management Company to support 
reservoir operations by forecasting inflows for key regional basins in Brazil, for both water 
resources planning and drought risk response. Current efforts on improving the seasonal 
forecast system include the use of an interannual statistical model and both global and re-
gional dynamical models, but forecast use on S2S time scales is still in its infancy (Fig. 4a).  
The Interagency Drought Contingency Group (IDCG) is responsible for monitoring and pre-
dicting the State drought status within a 30-day planning horizon for 184 municipalities, 
including triggering emergency warnings and responses for municipalities at risk. In the 
absence of operational S2S forecasts, these 30-day-ahead scenarios are based on seasonal 
forecasts updated monthly.

In this study, ECMWF S2S precipitation forecasts from the S2S global repository were 
evaluated to assess their performance at producing inflow predictions for the Orós reservoir 
in Ceará State up to 45 days ahead between January and April 2018 (Fig. 4). The verifica-
tion study focuses on 15 weekly forecasts as if issued every Thursday from 18 January to 
26 April. The quality of these forecasts has been evaluated at three time-mean horizons, 
15, 30, and 45 days ahead from the initialization date. ECMWF S2S forecasts initialized 
once a week during the January–April 1998–2017 period were used to feed a hydrological 
model to produce flow forecasts into the Orós reservoir. These forecasts were then post-
processed through an empirical quantile mapping procedure using observed (1998–2017) 
flows to generate mean flow forecasts for 2018. All 11 available ECMWF hindcast ensemble 
members were used for postprocessing. Figure 4b shows the correlation between the 
11-member ensemble mean flow forecasts and the corresponding observations computed 
over the 1998–2017 hindcast period for each initialization date and time mean horizons. 
Correlation values between 0.70 and 0.90 indicate reasonable forecast association ability. 
Figure 4c shows boxplots of 51-member postprocessed ensemble flow forecasts for 2018 
(for 30-day means) along with the observed flow and climatological 50th and 80th per-
centiles (dashed lines), which provided a good description of the observed flow for most 
initialization dates.

These results illustrate the utility of inflow forecasts based on S2S precipitation forecasts 
in addition to the existing seasonal flow forecast system to support water management deci-
sions and the triggering of emergency responses (e.g., construction of pipelines and wells) 
for municipalities at risk in Ceará State. Although this study illustrates the utility of S2S 
forecasts to guide IDCG’s decisions, additional activities are needed to demonstrate their 
long-term value, such as one-on-one meetings with IDCG members to provide details about 
the developed S2S time-scale inflow forecasting system, an assessment of past performance 
of this system, and the opening of a two-way dialogue with users to enable suggestions for 
future improvements and product codevelopment.

Water management in western United States (authors: Michael J. DeFlorio, Peter B. Gibson,  
Duane E. Waliser, F. Martin Ralph, Michael L. Anderson, and Luca Delle Monache). The Center  
for Western Weather and Water Extremes (CW3E) and the National Aeronautics  
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Fig. 4.  Water management in Ceará State, showing (a) Ceará State flow forecast system schematic depicting January–April 
(rainy period) forecasts. Produced with 1) statistical models using previous July and October equatorial Pacific and Atlantic 
indices, and 2) daily precipitation forecasts from dynamical global and regional seasonal forecast models updated monthly 
from January to April for feeding a hydrological model to generate monthly flow forecasts (brown), and with ECMWF 
subseasonal precipitation forecasts produced every Thursday for the following 45 days for feeding a hydrological model 
to generate daily flow forecasts during the January–May period (yellow). The blue (gray) bar illustrates the wet (dry) pe-
riod; (b) correlations between cross-validated 11-member ensemble-mean flow forecasts postprocessed through empirical 
quantile mapping and the corresponding observed flow over the 1998–2017 hindcast period for three time horizons (15-, 
30-, and 45-day means). Flow forecasts were produced with a hydrological model (Lopes 1999) fed with daily precipita-
tion ECMWF S2S forecasts initialized every Thursday (15 dates between 18 Jan and 26 Apr). The solid, dashed, and dotted 
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and Space Administration Jet Propulsion Laboratory (NASA JPL), supported by the 
California Department of Water Resources (CA DWR), formed a partnership to improve the 
S2S prediction of precipitation to benefit water management in the western United States. 
The main objective of this team is to produce experimental S2S prediction products for 
atmospheric rivers (ARs), ridging events, and precipitation, supported by research and 
hindcast skill assessments. Although the main quantity of interest for stakeholders is 
total precipitation (i.e., available water), ARs and ridging events are a focal point due to 
their strong influence on the presence (and absence, respectively) of precipitation in the 
western United States during wintertime and their intrinsic predictability. The primary 
sector and stakeholder for which this effort is particularly relevant is western U.S. water 
resource management and CA DWR, respectively.

A key pillar of this applied research endeavor is to collaborate with CA DWR’s stakeholders 
regarding the target predictand, methodology, and data used for research along with the 
experimental product display and description for experimental S2S forecast products. Our 
team, which also includes collaborators at IRI, University of California, Los Angeles, The 
University of Arizona, and University of Colorado, has interacted regularly with stakeholders 
from CA DWR to facilitate communication and help with the development of the forecast 
products. This interaction ensures that the research and forecast product development are 
meeting the specific needs of end users while maintaining high standards for both qual-
ity of research and utility of the forecast products for the applications community. These 
experimental S2S forecast products, together with continued investment from CA DWR into 
S2S research, stand to benefit end users at CA DWR by providing information at subsea-
sonal lead times to support flood risk management, emergency response, and situational 
awareness (DeFlorio et al. 2021).

Figure 5 summarizes two CW3E/JPL experimental S2S applications that utilize data 
from the S2S global repository: the week 3 AR activity outlook (Fig. 5a) and the weeks 
3–4 ridging outlook (Fig. 5b). This figure shows an example of particular forecast for AR 
activity and ridging made on 21 September 2020. In Fig. 5a, the bottom panel shows the 
anomaly forecast field (top minus middle panels) for above or below average AR days 
per week for the 6–12 October week-3 verification period in the NCEP forecast system. 
In Fig. 5b, forecast probabilities for each ridge type (north, south, and west) during the 
5–19 October weeks 3–4 verification period are shown. If >50% of ensemble members in 
the NCEP forecast system predict above-normal ridge frequency, the right panel maps are 
displayed to show the likelihood of wetter or drier conditions based on how each ridge 
type typically influences precipitation (Gibson et al. 2020a). Both outlooks are updated 
weekly and made available on the CW3E S2S 
forecast website.12 Skill assessments of the NCEP 
and ECMWF hindcasts from the S2S repository  
are provided in DeFlorio et al. (2019a,b)  and 

horizontal gray lines represent the correlation values computed aggregating all available forecasts (300 pairs of forecasts 
and observations) for the three time horizons; (c) 30-day-mean postprocessed flow forecasts for 2018 (boxplots of 51 mem-
ber ensembles) produced with a hydrological model fed with daily precipitation ECMWF subseasonal forecasts initialized 
every Thursday (between 18 Jan and 26 Apr). The red line in the boxplots represents the median p50 (50th percentile), the 
upper box border represents the upper quartile p75 (75th percentile), and the lower border the lower quartile p25 (25th 
percentile). The whiskers at the top of each box extend to p75 + 1.5IQR, where IQR is the interquartile range (p75–p25). The 
whiskers at the bottom of each box extend to p25 − 1.5IQR. Values outside the whiskers are plotted with open circles. The 
black line represents the 2018 observed flow, and the dashed lines the climatological (1998–2017) 50th and 80th percentiles.

12	CW3E Subseasonal to Seasonal (S2S) Experimen-
tal Forecasts (https://cw3e.ucsd.edu/s2s_fore-
casts/).
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Gibson et al. (2020b). These forecast products have been regularly consulted by our 
stakeholders at CA DWR, both in internal CA DWR meetings and in collaborative meetings 
between CA DWR stakeholders and our research team.

Renewable energy and utilities. Understanding weather-related risk is vital for renewable 
energy pricing, production, transmission, and usage. Energy demand and risk-based scenarios 
based on S2S predictions are now being explored to support the management of anticipated 
energy peaks and other weather-related risks. In this section, we explore an S2S forecast-based 
renewable energy decision-support tool, hydropower inflow predictions and scenario plan-

Fig. 5.  Water management in western United States, showing (a) CW3E/JPL week 3 AR activity outlook. Forecast  
initialized 21 Sep 2020 and verified 6–12 Oct 2020. (top) The forecasted number of AR days to occur during the week 3  
verification period; (middle) the NCEP hindcast climatology of AR days during the 6–12 Oct week in the hindcast  
record; (bottom) the anomaly forecast field (top minus middle panels). Hindcast skill assessment provided in DeFlorio  
et al. (2019a,b). (b) CW3E/JPL weeks 3–4 experimental ridging outlook. Forecast initialized on 21 Sep 2020 and verified 5–19 
Oct 2020. (left) Occurrence frequency of each ridge type (bars) compared to climatology (horizontal line) for each of the 
model ensemble members. (top) North, (middle) south, and (bottom) west ridge forecasts, respectively. (right) If over 50% 
of the ensemble members predict more ridging than expected (for this time of year), then maps indicate the likelihood  
of wetter or drier conditions based on how each ridge type typically influences precipitation. We note that summing 
across ridge types for a given ensemble member does not necessarily equal 14 daily counts as there can be days in the 
2-week forecast verifying period where none of the three ridge types are predicted to occur. Methodology for calculating 
ridge types is provided in Gibson et al. (2020a); hindcast skill assessment is provided in Gibson et al. (2020b).
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ning in Scotland and Australia, and weather risk management for telecommunications in the 
United Kingdom.

A decision-support tool for the renewable energy sector (authors: Andrea Manrique-Suñén, Isadora 
Christel, Ilaria Vigo, Lluís Palma, Ilias G. Pechlivanidis, and Albert Soret). The S2S4E13 project 
explored the usefulness of S2S forecasts to anticipate renew-
able energy production and demand several weeks to months 
ahead (Soret et al. 2019). A decision-support tool (DST) that 
provides S2S predictions of climate variables and renewable 
energy–related indices was codeveloped with users. The spatial coverage of the majority 
of the forecasts is global with some products provided for the pan-European domain. The 
DST is fed with forecasts from the ECMWF S2S forecast system (2-m mean, maximum, and 
minimum temperature, 10-m wind speed, precipitation, solar radiation, and mean sea level 
pressure). It provides weekly S2S forecasts for up to 4 weeks lead time via a visual interface 
that includes a skill score that evaluates the quality of the forecast with respect to a climato-
logical forecast reference (fair-ranked probability skill score for the tercile probabilities and 
fair Brier skill score for the extreme probabilities; Wilks 2011; Ferro 2014). The raw forecasts 
are bias adjusted to remove the model mean bias with respect to ERA5 (Hersbach et al. 2020). 
The computation of a robust climatology is crucial to ensure an effective bias adjustment of 
subseasonal forecasts (Manrique-Suñén et al. 2020).

The DST provides forecast indices per energy sector: hydropower (maximum snow and 
inflows at the catchment scale), wind energy (three capacity factors for three different 
turbine types), solar energy (capacity factor), and energy balance (electricity demand, 
wind energy production, and demand minus wind energy production per country). Energy 
companies use the S2S forecasts to inform operation and maintenance decisions, optimize 
water levels in the reservoirs, and hedge against climate variability (e.g., by trading energy 
futures).

The cogeneration and operationalization of the DST involved scientists, designers, and com-
munication and industry specialists. The inclusion of three energy companies as consortium 
partners [Electricité de France (EDF), EDP Renováveis SA, and Energie Baden-Württemberg 
AG (EnBW)] provided opportunities for collaboration at all stages of the project, and ensured 
their needs were addressed in the codevelopment of the DST. In the design phase, user input 
was crucial to devise a structured, complete, and concise interface. Focus groups, workshops, 
interviews, usability testing, and eye tracking were some of the techniques used (Calvo et al. 
2022). During the operational phase, monthly meetings were held with partners to under-
stand how the tool was being employed. This allowed a continuous feedback that served to 
include small modifications or additional functionalities. A key challenge in the development 
of the DST was introducing the concept of “skill” to users. To orientate the user, a qualitative  
skill classification was devised: “no skill” (skill < 0%), “fair” (0% < skill < 15%), “good”  
(15% < skill < 30%) and “very good” (30% < skill). This helped users to evaluate expected 
quality. Nevertheless, in order to attribute trust to a probabilistic forecast, users need to 
combine the skill information with a measure of uncertainty (related to the ensemble spread) 
provided by the forecast probability. This remains an open challenge in the field of uncertainty  
communication in climate services.

Hydropower inflow predictions in Scotland, United Kingdom (authors: Robert M. Graham, Jethro 
Browell, Christopher J. White, and Douglas Bertram). In Scotland, reservoir inflow forecasts for 
hydropower generation are primarily dependent on weather forecasts rather than initial hy-
drological conditions. This is due to steep topography and low groundwater storage capacity 
(Svensson 2015). SSE Renewables, a U.K. energy generation company, have a hydropower 

13	“Sub-seasonal to Seasonal climate forecasting 
for Energy” project (https://s2s4e.eu/dst).
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portfolio of 1,459 MW across Scotland, enough to supply approximately 1 million U.K. homes. 
Hydropower operators at SSE currently use deterministic inflow forecasts, covering periods 
up to 2 weeks ahead, and an expert meteorologist provides longer range outlooks based on 
S2S forecasts. A team of hydropower operators from SSE Renewables and researchers from 
the fields of meteorology, energy forecasting and hydrology at the University of Strathclyde 
codeveloped probabilistic S2S inflow forecasts for selected hydropower reservoirs in Scotland 
and further evaluated the potential economic value of these forecasts. SSE were involved from 
the initial concept stage of the project to its closure.

Inflow forecasts were derived from ECMWF S2S forecasts from the S2S global repository. 
Benchmark inflow forecasts for a case study reservoir were created by training a linear 
regression of the S2S precipitation forecasts onto the historical inflow record. These were 
then postprocessed, following methods similar to Scheuerer (2014), to produce calibrated 
probabilistic inflow forecasts (Graham et al. 2021). We evaluated the inflow forecasts for 
11 lead times, including weekly mean inflow rate forecasts from week 1 (days 1–7) to week 
6 (days 36–42), and extended mean inflow rate forecasts from 2 (days 1–14) to 6 weeks 
(days 1–42) ahead. After postprocessing, the probabilistic weekly mean inflow forecasts 
demonstrated skill up to week 6, though skill in weeks 3 to 6 is low relative to weeks 1 and 
2. Furthermore, the 6-week-average (days 1–42) inflow rate forecasts displayed greater skill 
than weekly mean inflow forecasts for week 2 (days 8–14). In contrast, the raw S2S precipi-
tation forecasts and benchmark inflow forecasts held statistical skill only to forecast week 
2, the typical skill horizon in midlatitudes for probabilistic ensemble forecasts (Branković 
et al. 1990).

The economic value of the inflow forecasts was explored using a stylized cost model based 
on the classical “news vendor” optimization problem (Khouja 1999), following the principle 
of maintaining a target water level in the reservoir. Within this framework, the probabilistic 
inflow forecasts consistently reduced costs relative to the use of climatological forecasts, even 
for forecast week 6 (days 36–42). However, deterministic inflow forecasts, based on the me-
dian of the probabilistic forecast distribution, often resulted in poor operational decisions and 
increased costs relative to the use of climatological forecasts from week 2 (days 8–14) onward.

The project concluded that S2S probabilistic forecasts can improve water management deci-
sions for hydropower reservoirs up to 6 weeks ahead. However, postprocessing and forecast 
calibration is an essential step to realize skill in the S2S range. The demonstration of the po-
tential for the S2S inflow forecasts to increase economic value and improve decision-making 
was particularly welcomed by the industry collaborators. The partnership was not without 
its challenges, however; understanding how the “value” of the S2S forecasts could be fully 
realized and applied in operation would require closer and continued collaboration between 
the researchers, hydropower operators, and in-house meteorologists.

Scenario planning for hydropower operations in Tasmania, Australia (authors: Carly R. Tozer, Sonia 
Bluhm, Carolyn J. Maxwell, Tomas A. Remenyi, James S. Risbey, and Robert G. Wilson). El Niño–
Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) are recognized as key large-scale 
drivers of Australia’s climate variability (Risbey et al. 2009). The cooccurrence of El Niño 
and positive IOD events has been associated with dry conditions across the country (Meyers 
et al. 2007; Ummenhofer et al. 2011). One such occurrence was in 2015, which coincided 
with below average winter and spring rainfall across parts of southern Australia. Tasmania 
experienced statewide rainfall deficits and the lowest spring rainfall on record in western 
Tasmania (Karoly et al. 2016). Hydro Tasmania, which manages multiple hydropower 
facilities, primarily located across western Tasmania, produces hydroelectricity for both 
Tasmania and mainland Australia. The record low rainfall in 2015 contributed to an energy 
supply challenge for Hydro Tasmania, leading to a subsequent operational review. In 2019, 
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a reappearance of this combination of climate drivers looked likely, with S2S forecasts is-
sued in April and May 2019 pointing toward the development of El Niño and positive IOD 
over winter and spring (e.g., Bureau of Meteorology 2019). The positive “super-IOD” (Doi 
et al. 2020) event has since been linked to rainfall deficits and bushfires across Australia 
(van Oldenborgh et al. 2021).

Hydro Tasmania collaborated with the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) as part of a project to understand the use and potential utility of climate 
forecasts, including identifying Hydro Tasmania’s operations and decision-making processes, 
and the climate variables of importance for forecast evaluation. The application of climate fore-
casts within Hydro Tasmania’s operations is through operational scenario planning (Fig. 6a).  
Potential operational outcomes are produced in response to forecast information and evalu-
ated against historical data. In the case of the 2019 El Niño–positive IOD forecast, Hydro 
Tasmania’s operational scenario planning options were focused on dry conditions as this 
was the expectation based on past experiences (Figs. 6b,d). As the year progressed, Hydro 
Tasmania monitored the subseasonal climate driver forecasts issued by Australia’s Bureau 
of Meteorology in concert with rainfall received in western Tasmania, in a “watch and act” 
process. When it became clear that the rainfall deficits experienced in 2015 were not being 
repeated in 2019 (Fig. 6d) no major changes to operations were enacted (Fig. 6c).

Using S2S forecasts of climate drivers to inform scenario planning—as opposed to the direct 
input of forecast information into operational systems—implicitly acknowledges that there is 
uncertainty in S2S forecasts, and that teleconnections between large-scale climate drivers 
and regional rainfall are complex. There are typically multiple drivers at play on different 

Fig. 6.  Scenario planning for hydropower operations in Tasmania showing (a) a general scenario 
planning approach, where a climate driver forecast is received from which there is an expectation 
around the seasonal rainfall response focused toward operational scenario planning; (b) dry sce-
nario planning in response to IOD positive–El Niño forecast and the expectation of negative (dry) 
rainfall anomalies in western Tasmania; (c) 2019 example outcome; (d) probability density func-
tion of total winter/spring rainfall (in mm) in western Tasmania for each year from 1900 to 2019. 
The years marked in red indicate past IOD positive–El Niño events and the associated winter/
spring rainfall anomalies. Dashed line indicates median winter/spring rainfall. Western Tasmania 
is considered the region west of the dashed black line (inset map).
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time scales, which is the case in Tasmania (Risbey et al. 2009; Tozer et al. 2018), meaning 
a skillful forecast of a particular climate driver may not lead to a skillful rainfall forecast. 
The forecast may also not directly change a decision, but it can influence which scenarios to 
reassess. Scenario planning puts Hydro Tasmania in a stronger position to identify options 
and make appropriate decisions should a dry scenario play out, or continue normal opera-
tions if it does not.

Weather risk management for U.K. fixed-line telecommunications (authors: David Brayshaw, Alan 
Halford, Stefan Smith, and Kjeld Jensen). The physical infrastructure associated with fixed-line 
telecommunication systems, which are critical for many aspects of modern service-based 
economies, is subject to significant weather exposure. In the United Kingdom, weather-related 
line faults are commonly associated with service disruptions (e.g., BT 2018); however, rapid 
evolution of the infrastructure (e.g., growth in broadband) limits the availability of histori-
cal data for both weather risk assessment and impact-based prediction. A jointly supervised 
project (Halford 2018) by the University of Reading and a leading U.K. communications ser-
vices company, BT PLC, sought to address these challenges by creating a robust long-term 
historic fault-rate record for the U.K. telecommunications system with a multiweek fault-rate 
forecasting system to support line-maintenance scheduling. In brief, historic fault rates from 
1979 to 2017 were constructed using a multiple linear regression fault-rate model which was 
applied to weather inputs from ERA-Interim (Dee et al. 2011), i.e., a time series of estimated 
fault rates assuming the historic weather impacted upon the U.K. telecoms system of 2017 was 
produced [refer to Brayshaw et al. (2020) for details]. S2S “forecasts” spanning 1996–2015 for 
the same U.K. telecoms system were then generated using ECMWF S2S ensemble hindcasts 
(11 ensemble members). Here, and in the original study (Brayshaw et al. 2020), there was an 
emphasis on the quantitative estimation of end-user “value” from skillful S2S forecasts that 
can be summarized by the schematic:

S2S forecasts(weather) Þ Impact model(line faults) Þ Decision model(cost)

S2S forecasts were identified as potentially offering predictive skill and opportunities for 
user value through efficient scheduling of staffing resources (restorative maintenance ver-
sus provision of new line connections). A strategy was agreed that combined a tercile-based 
S2S forecast of the North Atlantic Oscillation (NAO), with fault-rate distributions from the 
long-term synthetic fault-rate record corresponding to the occurrence of each NAO tercile. 
The resulting forecast system was shown to have skill in predicting weekly fault rates up to 
4 weeks ahead in winter, based on 11-member ECMWF S2S hindcasts spanning 1996–2015 
(Vitart and Robertson 2018).

A decision-simulation model utilizing the fault-rate forecast in maintenance scheduling 
was then developed to estimate forecast value. This demonstrated that the fault-rate forecast 
system could be used to improve both short-term and long-term management strategies, e.g., 
either meeting week-to-week performance targets (a simulated ~5%–10% improvement) or 
achieving the same level of performance but at lower long-term cost (a simulated ~1% reduction 
in resource levels). Though these estimates are likely an upper bound to that which would be 
achievable in practice, the savings are potentially significant with the penalty for failing to 
meet repair targets reaching up to ~GBP 1 million day−1 and annual staffing costs of around 
GBP 500 million (see Brayshaw et al. 2020).

The success of the project is attributable to the extensive collaboration between the 
academics and BT PLC staff from the outset. This not only enabled the rapid codevelopment 
of statistical fault-rate and decision-support models, but also deepened engagement in 
both directions (as BT staff, rather than the academic team, held the expertise regarding 
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the fault-rate modeling and maintenance scheduling). Beyond successfully demonstrat-
ing skill on S2S lead times, the project emphasized that the skill of the fault-rate forecast 
does not in itself guarantee value to the end user, e.g., a forecast may have skill but may 
hold little value if the outcome has no relevant consequences and/or the user is unable 
to act upon it.

Disaster early warnings and emergency management. Skillful and reliable extended-range 
forecasts of extreme events, such as floods and droughts, offer significant opportunities for 
improved disaster preparedness and risk reduction, including tracking the progress of the 
slowly evolving, large-scale climate modes and supporting the transition from long-range 
outlooks to weather forecasts to provide early warnings and inform emergency management 
activities (Tadesse et al. 2016). In this section, we explore the use of S2S forecasts for flood 
forecasting across Europe.

European flood forecasting (authors: Francesca Di Giuseppe and Fredrik Wetterhall). The European 
Flood Awareness System (EFAS)14 is operated by the Copernicus Emergency Management 
System (CEMS), and functions as a common pan-European 
tool to provide coherent early warnings of flood events. A set 
of decision rules based on forecast persistency and magnitude 
are defined to identify points on Europe’s river network where 
flooding is likely to happen. The authorities responsible for 
flood forecasting in the specific location are then sent flood notifications ahead of such 
events. EFAS uses medium-range forecasts, typically up to a 10-day lead time, but for rare 
and potentially widespread flood events a system working on the S2S time scale (10–30 days) 
would extend the early warning window to help pinpoint regions in need of attention. EFAS 
recently added a twice weekly extended-range ensemble forecast with 51 members up to 
6 weeks (aggregated into weekly averages) based on ECMWF S2S forecasts (Wetterhall and 
Di Giuseppe 2018). These forecasts are currently only for supplementary information and 
not used to issue warnings. Since the predictability for extreme events on S2S lead times 
can be uncertain (Domeisen et al. 2022), decision rules for preventive actions would have 
to be designed with this increased uncertainty in mind in comparison with the medium-
range forecasts.

In this study, we revisit a major flooding event that took place in southeastern Europe in May 
2014 to explore the potential added value in the decision-making process of S2S hydrological 
forecasts. During the event, large areas of southeastern and central Europe experienced excep-
tionally intense rainfall which led to widespread flooding where over 60 people died and more 
than a million inhabitants were affected (Stadtherr et al. 2016). The EFAS system indicated 
exceedance of the 20-yr return period more than a week ahead of the event and was able 
to issue notifications with a 4–5-day lead time. However, this information could potentially  
have been even more useful if an even earlier indication of the event was available. In this 
revised analysis, we look at how far back a signal for these conditions was present in the S2S 
forecasts. The fraction of ensemble members that predicted the exceedance of the “decision” 
threshold is considered as the probability of an event occurring for the period preceding 
and following the event (1 April–30 June in this case) and as a function of lead times up to 
46 days ahead. Considering that extreme conditions are difficult to detect at longer lead times 
as the forecast naturally reverts to climatology as predictability decreases, a 30% chance at 
lead times > 10 days is generally taken as an indication a forthcoming event. In this study, 
the main event had a persistent signal up to 25 days before the event in the S2S forecasts, 
highlighting the importance and potential utility of the S2S time scale for prewarning. To put 
this into the context of decision-making, a full cost–loss scenario analysis of the historical 

14	EFAS (www.efas.eu), part of the European 
Commissions’ Emergency Management System 
(CEMS) (https://emergency.copernicus.eu/).
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period is needed to establish the correct level of probability and lead time to issue prealerts 
for severe events. Further, the decision-making process in the region would need to be trained 
to utilize the added information.

Discussion
We demonstrate here that S2S forecasts are increasingly being used across the public health, 
agriculture, water resource management, renewable energy and utilities, and emergency man-
agement and response sectors in both the developed and emerging economies. As identified 
across our 12 application-focused case studies (Table 1), current decision-making is generally 
based on either short- to medium-range (often deterministic) or seasonal forecasts. The S2S 
forecasting time scale is therefore a new concept for many users. While the additional value 
of S2S forecasts for decision-making is increasingly gaining interest among users, as shown 
here, incorporating probabilistic ensemble S2S forecasts into existing operations is not trivial. 
S2S forecasts do not produce a “go–no go” answer of what a user should do; instead they pro-
vide additional, supplementary “situational awareness” information that can be used to drive 
decision-making and risk-based management processes on weekly to monthly forecast horizons. 
Seasonal to decadal forecasts face the same challenge. What the presented case studies clearly 
suggest, however, is that the kind of widespread national and international investment witnessed 
in service development on seasonal and climate time scales is also needed on the S2S time scale.

In addition to the limited awareness and demonstration of the potential benefits of the S2S 
time scale across sectors to date, a lack of “in house” expertise in how to effectively apply 
S2S forecasts and, to some extent, a lack of access to S2S forecasts, have also been barriers 
to widespread adoption of S2S forecasts. This is the “knowledge–value” gap, highlighting 
the challenge and need of translating S2S forecast skill into forecast value (e.g., Giuliani 
et al. 2020). For S2S predictions to have utility, there needs to be an signal in the forecast 
that emerges beyond the noise in the system (Mariotti et al. 2020). However, across the case 
studies presented here, there are varying interpretations of what “skill” is from a scientific 
or user perspective and what magnitude of signal is needed for a forecast to add value for a 
user. For any forecast application, user-focused questions such as “What is the minimum level 
of skill (or perhaps “certainty”) that can still be useful?” and “Is the required level of skill 
actually attainable for the variables, region, and application of interest?” are as essential to 
the concept of forecast utility as is verifying forecast skill (e.g., Crochemore et al. 2021). Here, 
we highlight that the answers to these and similar questions can only be determined via user 
engagement and continued partnership. This approach helps determine whether S2S forecast 
information can be better utilized through approaches such as multiple scenario planning 
“storyline” frameworks with a comparison to recent historical events (e.g., hydropower opera-
tions in Tasmania), or supplemented by statistical postprocessing (e.g., hydropower inflows 
in Scotland), or through additional impact-based models (e.g., malaria occurrence in Nigeria). 
Some of the most effective real-time/operational applications presented here are where S2S 
forecasts have been communicated to end users and contributed to “situational awareness” 
using an early “horizon scanning” approach of upcoming extreme events. This is true in the 
case of farmers determining the planting and management of crops, informed by the timing of 
the monsoon in Bihar, and the rainy season onset in Kenya. The codevelopment of the S2S4E 
project’s decision-support tool for the renewable energy sector also provides a particularly 
useful and insightful discussion around forecast skill, value, trust, and communication, with 
all of the cross-sectoral case studies presented here confirming the need for the cogeneration 
of forecast products. This clearly identifies and communicates the strengths and limitations 
of forecasts in support of improved forecast utility.

We acknowledge, however, that S2S forecasting is still a maturing discipline, with several 
of the studies here being at the “proof of concept” stage so their scope is somewhat limited 
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or that issues to their further implementation and/or operationalization remain. There is 
also a distinction between case studies that use S2S forecasts directly (e.g., precipitation and 
temperature fields) compared to those exploring the large-scale climate drivers to identify 
additional sources of skill (e.g., ENSO, NAO, MJO). While we present application case studies 
that span different sectors from around the world, there is also a notable focus on water-related 
applications. This is perhaps not surprising—there is an experienced user base spanning the 
water-related sectors, meaning the “knowledge–value” gap is perhaps not as significant here 
compared to other disciplines. For example, the agriculture sector is already familiar with 
using seasonal outlooks (e.g., Verbist et al. 2010), and flood management is the forefront of 
providing risk-based anticipatory warnings in response to forecasts. Impact-based flood and 
drought forecasts, for example, have huge potential to help shape these dialogues (Merz et al. 
2020) and have been deployed in a number of the water-related studies shown here. Water 
therefore presents perhaps the best opportunity to demonstrate the utility of S2S forecasts to 
bridge the gap between the weather and climate forecasting time scales.

It is, however, the collective body of evidence provided by all of these multisectoral case stud-
ies that marks a significant step forward from White et al. (2017) in moving from potential to 
actual S2S forecasting applications. By placing user needs and applications at the forefront of 
S2S forecast development—demonstrating both skill and utility across sectors—in unison with 
ongoing scientific endeavors to improve forecasting systems and identify sources of skill, it is 
hoped that this dialogue will help promote and accelerate the awareness, value and cogeneration 
of S2S forecasts to real-world decision-making. Increasing the ability of users to engage simply 
and transparently with S2S forecasts, and to employ new technologies such as machine learn-
ing and artificial intelligence tools to build and augment impact models, would help to further 
accelerate this process. Crucially, this study provides a platform toward the creation of a global 
community of researchers and users with a shared aim of exploring and promoting applications of 
this new generation of forecasts. S2S forecasting represents a significant opportunity to generate 
useful, usable, and actionable forecast information and services for and with users for a range 
of sectoral applications on previously untapped predictive time scales.
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