
USING DEEP GENERATIVE NEURAL NETWORKS TO ACCOUNT
FOR MODEL ERRORS IN MARKOV CHAIN MONTE CARLO

INVERSION

A PREPRINT

Shiran Levy
Institute of Earth Sciences

University of Lausanne
Lausanne, Switzerland

Jürg Hunziker
Institute of Earth Sciences

University of Lausanne
Lausanne, Switzerland

Eric Laloy
Belgian Nuclear Research Center

Mol, Belgium

James Irving
Institute of Earth Sciences

University of Lausanne
Lausanne, Switzerland

Niklas Linde
Institute of Earth Sciences

University of Lausanne
Lausanne, Switzerland

Original publication: Geophys. J. Int., 23 September 2021
DOI: https://doi.org/10.1093/gji/ggab391

ABSTRACT

Most geophysical inverse problems are nonlinear and rely upon numerical forward solvers involving
discretization and simplified representations of the underlying physics. As a result, forward modeling
errors are inevitable. In practice, such model errors tend to be either completely ignored, which
leads to biased and over-confident inversion results, or only partly taken into account using restrictive
Gaussian assumptions. Here, we rely on deep generative neural networks to learn problem-specific
low-dimensional probabilistic representations of the discrepancy between high-fidelity and low-
fidelity forward solvers. These representations are then used to probabilistically invert for the model
error jointly with the target geophysical property field, using the computationally-cheap, low-fidelity
forward solver. To this end, we combine a Markov-chain-Monte-Carlo (MCMC) inversion algorithm
with a trained convolutional neural network of the spatial generative adversarial network (SGAN)
type, whereby at each MCMC step, the simulated low-fidelity forward response is corrected using
a proposed model-error realization. Considering the crosshole ground-penetrating radar traveltime
tomography inverse problem, we train SGAN networks on traveltime discrepancy images between: (1)
curved-ray (high fidelity) and straight-ray (low fidelity) forward solvers; and (2) finite-difference-time-
domain (high fidelity) and straight-ray (low fidelity) forward solvers. We demonstrate that the SGAN
is able to learn the spatial statistics of the model error and that suitable representations of both the
subsurface model and model error can be recovered by MCMC. In comparison with inversion results
obtained when model errors are either ignored or approximated by a Gaussian distribution, we find
that our method has lower posterior parameter bias and better explains the observed traveltime data.
Our method is most advantageous when high-fidelity forward solvers involve heavy computational
costs and the Gaussian assumption of model errors is inappropriate. Unstable MCMC convergence
due to nonlinearities introduced by our method remain a challenge to be addressed in future work.

Keywords Inverse theory · Neural networks · Ground penetrating radar · Probability distributions · Hydrogeophysics

1 Introduction

Bayesian inversion treats model parameters as random variables that are constrained by prior probability density
functions and noise-contaminated data through a likelihood function (Tarantola, 2005; Gelman et al., 2013). The

ar
X

iv
:2

11
2.

00
58

1v
1

 [
ph

ys
ic

s.
ge

o-
ph

]
 1

 D
ec

 2
02

1

https://orcid.org/0000-0002-6981-3232
https://doi.org/10.1093/gji/ggab391

Using deep generative neural networks to account for model errors A PREPRINT

Bayesian framework is flexible in that it allows accounting for uncertainties due to inaccurate or incomplete descriptions
of the underlying physics of the problem, as well as for errors related to the measurement process. We refer to the
former as model errors (Kaipio and Somersalo, 2007) because they describe inaccuracies in the forward modeling used
to connect physical properties to observable data, while other authors have used the term "theoretical error" (Tarantola
et al., 1982) in a similar context. Model errors are notoriously difficult to quantify, particularly when the forward
problem at hand is nonlinear. Their magnitudes and correlation patterns can be highly complex and variable throughout
the model parameter space, and deriving an appropriate statistical description of them is therefore challenging. At the
same time, relying on accurate state-of-the-art forward solvers with minimal model errors is not always practical as
they are generally computationally expensive, which becomes particularly problematic when the forward response has
to be calculated many times. Surrogate models (also referred to as proxy models or low-fidelity models) implying an
approximation or a simplified representation of the underlying physical process offer an attractive alternative provided
that one can adequately account for the resulting model errors. Model errors are commonly an order of magnitude or
so larger than measurement uncertainties (Tarantola et al., 1982; Kaipio and Somersalo, 2007; Hansen et al., 2014).
Therefore, ignoring them might lead to severe bias, artifacts and over-confident results (Brynjarsdóttir and O-Hagan,
2014; Hansen et al., 2014).

Early pioneering work on model errors was conducted by Kennedy and O’Hagan (2001). They represent model errors
as a Gaussian process (GP) that is conditioned at locations in the model parameter space where the model errors are
known. The general applicability of this method for geoscientific inverse problems of high dimensional and multivariate
nature remains unclear (Linde et al., 2017) even if some promising applications exist (Xu and Valocchi, 2015; Xu et al.,
2017). Most approaches dealing with model errors involve building a statistical model of the discrepancy between a
high-fidelity forward model and a cheaper, less-accurate counterpart. Some of these methods formulate the likelihood
function such that prior knowledge about the mean and covariance of the model errors is incorporated (Kaipio and
Somersalo, 2007; Cui et al., 2011; Hansen et al., 2014). Despite their proven value, the Gaussian assumptions made in
these methods might be problematic when confronted with non-Gaussian priors, non-Gaussian observational noise and
nonlinear problems. Traditionally, model errors are learned by evaluating modeling discrepancies using samples from
the prior, yet, recent adaptive approaches in which the model error description is updated based on samples from the
posterior region has shown important improvements (Cui et al., 2011; Calvetti et al., 2014). Other approaches for dealing
with model errors involve estimating and removing them from the residual data term before calculating the likelihood
function (Köpke et al., 2018, 2019). In such methods, the residuals are projected onto an orthogonal model-error basis,
which is constructed either during the inversion using a dictionary-based K-nearest-neighbour approach, or before the
inversion using principal component analysis (PCA) conducted on a suite of model-error realizations. The dynamic
model error estimation methods of Cui et al. (2011), Calvetti et al. (2014) and Köpke et al. (2018) enjoy local statistics
of model errors in regions of high posterior density; however, they do require occasional runs of a high-fidelity forward
solver during the inversion. Another approach is presented by Rammay et al. (2019) who perform joint inversion of
the model parameters and error-model in the context of reservoir history matching. They use PCA basis functions to
parameterize the error-model and infer for the PCA coefficients during inversion.

Over the past decade, the use of machine learning (ML) in geophysical applications has become increasingly popular as
a result of continuing growth in computational resources and numerous breakthroughs in ML research (Giannakis et al.,
2019; Bergen et al., 2019; Dramsch, 2020; Yu and Ma, 2020). Deep learning models, an extension to machine learning
models, can be trained to produce an amortized data-based alternative to expensive physics-based models (Tripathy and
Bilionis, 2018; Tang et al., 2020; Jin et al., 2020). Nonetheless, these models are problem specific and their accuracy
may vary depending on availability of training data and their ability to generalize. Furthermore, as surrogate models they
still suffer from some degree of model errors when compared to the high-fidelity model which they aim to approximate.
Here we give several examples of machine learning applications addressing model errors. The approach of Xiao (2019),
in analogy to the GP approach of Kennedy and O’Hagan (2001), uses GP regression, an ML algorithm, to learn a set
of error response functions associated with a low-fidelity flow model. The error response functions predict a set of
parameters that through proper orthogonal decomposition are projected into the full error space and used to correct
the low-fidelity model. Seillé and Visser (2020) utilize regression trees in order to learn a dimensionality discrepancy
model (DDM) predicting the model errors associated with using 1D instead of 3D magnetotelluric modeling. The
DDM is then used to define a likelihood function that is used within a reversible-jump Markov chain Monte Carlo
(MCMC) procedure (Green, 1995). Sun et al. (2019) apply convolutional neural networks (CNN’s) describing spatial
and temporal discrepancies between land surface model (LSM) predictions and observations from the gravity recovery
and climate experiment (GRACE). Their neural network combining three CNN architectures receives as an input the
LSM output as well as additional predictors (precipitation and temperature) and in return outputs the mismatch between
the LSM and GRACE observations. Their study shows an increased correlation between corrected LSM and observed
data, thereby, highlighting the potential of deep-learning to improve geo-scientific models over different spatiotemporal
scales. Machine and deep-learning algorithms have also been proven efficient for parameterizing geological models
(Laloy et al., 2017, 2018; Mosser et al., 2020). Laloy et al. (2018) parameterized model realizations using a spatial

2

Using deep generative neural networks to account for model errors A PREPRINT

generative adversarial network (SGAN) and integrated the generating part of the network within an MCMC routine. In
this type of neural network, a nonlinear transformation is learned using training images. The image space, representing
the high-dimensional space on which forward simulations are performed, is connected to a lower dimensional space
(latent space) through a series of nonlinear transformations in the form of convolution operations. The inversion is
performed with respect to this lower-dimensional representation. Given the notable reduction in the number of inferred
parameters, the spatial nature of the network and the fast generation of model realizations, the SGAN-parameterization
was able to significantly improve the MCMC inversion performance compared with sequential geostatistical resampling
(Mariethoz et al., 2010; Ruggeri et al., 2015).

In this study, we use SGANs to learn a low-dimensional parameterization of model errors associated with a low-fidelity
forward solver. A notable characteristic of the SGAN is its localized nature, allowing for perturbations in a specific
region of the image space following a perturbation in one of the latent parameters. Our approach takes advantage of
spatial correlation within model-error realizations to transform the high-dimensional model-error space (same dimension
as the data space) into a lower-dimensional latent space. We train two separate deep generative neural networks, one
for the subsurface model parameters and the other for the model errors. Then, we perform MCMC inversion on the
latent parameters to infer the joint posterior distribution of both. We consider numerical simulations in the context of
crosshole ground-penetrating radar (GPR) traveltime tomography and test our method with synthetic data generated by
either a (1) curved-ray (eikonal) or (2) finite difference time-domain full-waveform forward solver. The inversion on
the other hand is performed using a low-fidelity straight-ray forward solver. The aim of our approach is to account for
discrepancies in the modelling process when one replaces an expensive, high-fidelity solver with a cheap, less accurate
solver to speed up the inversion process. By doing so, we hope to reduce the bias caused by using low-fidelity solvers
while allowing for an efficient MCMC inversion. Note that the cheap low-fidelity solver could, in principle, also be a
deep-learning based forward solver that was trained on the same database of high-fidelity forward solvers. We compare
our approach against two alternative inversion approaches that also rely on the same low-fidelity forward solver, one
where model errors are ignored and the other where they are approximated as Gaussian. For the case of the synthetic
data being generated with the eikonal solver, we also compare with inversion results obtained without any model errors,
that is, when using the eikonal solver as forward model in the MCMC inversions.

2 Methods

Our approach to account for model errors involves three main steps: (1) database preparation, (2) SGAN training, and
(3) MCMC inversion. The database preparation involves setting up the database on which the neural networks for the
subsurface model parameters and model error are trained. During training, information about the trained parameters of
the generative network is given at regular intervals. The stage (generator iteration) at which training data are retained to
generate realizations for subsequent inversions is chosen according to statistical measures as well as visual inspection.
Finally, the deep generative neural networks are integrated into an MCMC inversion algorithm. Below we describe each
of the three stages in detail in the context of the considered crosshole GPR traveltime tomography inverse problem.

2.1 Database preparation

2.1.1 Multi-Gaussian model database

The training image (TI) used as a basis to describe the spatial structure of our subsurface model-parameter prior is
a 2500× 2500 pixels, (250× 250 m) anisotropic, multi-Gaussian, geostatistical realization with a variance of 1 and
mean of zero. It was generated by Pirot et al. (2017) based on the geostatistical analysis of sediments at the Boise
Hydrogeophysical Research Site conducted by Barrash and Clemo (2002). We split the TI into two parts: a segment of
size 2250× 2500 pixels, which is used for training the SGAN, and a segment of size 250× 2500 pixels, from which
we select the reference models used in our inversion examples. The training is performed on small patches XΦ of
pre-defined size which are randomly cropped from the segment of the TI intended for training. The porosity field Φ is
then computed from the multi-Gaussian realizations using the lognormal transformation

Φ = exp(XΦ × 0.22361− 1.579) (1)

in Pirot et al. (2017).

2.1.2 Crosshole GPR simulations and model-error database

In a crosshole GPR experiment, an electromagnetic impulse is emitted from a source antenna located in one borehole
and registered in a receiver antenna positioned in an adjacent borehole. To create a model-error database of first-arrival

3

Using deep generative neural networks to account for model errors A PREPRINT

travel time residuals, we perform crosshole GPR numerical simulations based on the Φ-realizations described in
subsection 2.1.1 using the low- and high-fidelity forward solvers, which we denote by gLF and gHF , respectively. The
numerical simulations are performed on slowness s (1/velocity) fields, therefore, the porosity field of the subsurface
model-parameter realizations must be converted to a slowness field. This can be done via the following relationships
(Pride, 1994):

κb = Φmκw + (1−Φm)κs, (2)

and

s =

√
κb
c
, (3)

where κw and κs are the water and rock dielectric constants, m is the cementation exponent, κb (b stands for "bulk") is
the effective dielectric constant of the medium and c is the speed of light in vacuum. We ignore petrophysical prediction
uncertainty related to scatter in the petrophysical relationship (Brunetti and Linde, 2018) and assume the petrophysical
parameters to be known. Following Pirot et al. (2017), we set κw to be 81, κs to 6 and m to 1.48.

Assuming that the forward solver gHF (HF stands for high-fidelity) describes perfectly the crosshole GPR experiment,
we have:

d = gHF (s) + ε, (4)

where d represents the observed traveltime data corresponding to slowness parameters s with observational noise ε. The
proxy solver gLF gives rise to a model error η(s):

d = gLF (s) + η(s) + ε, (5)

describing the discrepancy between the two solvers for each source-receiver pair:

η(s) = gHF (s)− gLF (s). (6)

To test our method, we consider two different model errors for the crosshole GPR traveltime tomography problem. In
both test cases, we use a straight-ray solver denoted by gSR as our low-fidelity solver gLF . In the first test case, we
consider a finite difference approximation of the eikonal equation by Podvin and Lecomte (1991) as the high-fidelity
model, such that gHF = geikonal and the model error is ηeikonal−SR(s) = geikonal(s) − gSR(s). In the second test
case, the high-fidelity model is based on a finite difference time-domain scheme (FDTD) (Irving and Knight, 2006),
such that gHF = gFDTD and the model error is ηFDTD−SR(s) = gFDTD(s)− gSR(s). We note that our method is
almost fully amortized as the computationally expensive high-fidelity solver is only used prior to inversion to create the
model-error database and, in a synthetic example such as ours, the data (observed data) that are to be inverted.

From the FDTD simulations, the first-arrival travel times are automatically chosen by identifying the first maximum of
the signal and subtracting the time delay between the source wavelet’s initiation and first peak. Due to an underlying
infinite-frequency assumption, ray-based approaches (straight ray and eikonal solvers) provide the same arrival times
in 2D and 2.5D media. This is not the case for FDTD simulations leading to important time shifts in the 2D FDTD
first-break picks compared to the ray-based solvers. We correct this phase shift by applying a reversed geometrical
correction to that found in Ernst et al. (2007), effectively performing a 2D to 2.5D correction of the FDTD data:

Ê(xtrn, xrec,ω) =
E(xtrn, xrec,ω)√

2πT (xtrn,xrec)
−iωκ̄µ0

, (7)

where E(xtrn, xrec,ω) and Ê(xtrn, xrec,ω) are the signal in the frequency domain before and after applying the
correction from 2D to 2.5D, respectively, for source and receiver locations xtrn and xrec. Here, T (xtrn, xrec) are
the picked arrival times based on signal E(xtrn, xrec) in the time domain, ω refers to the angular frequency of the
signal, κ̄ is the mean dielectric constant of the medium, µ0 is the magnetic permeability in vacuum and i2 = −1. After
correction, arrival times were repicked on the corrected signals.

4

Using deep generative neural networks to account for model errors A PREPRINT

2.2 Generative adversarial networks

In a fully connected neural network (see Goodfellow et al. (2016) for details), a single neuron with weight vector w,
bias term b, and input vector x can be represented as

h(x; w, b) = ϕ(

Nx∑
i=1

wixi + b), (8)

where ϕ is a nonlinear transformation referred to as the activation function. In a convolutional neural network applied
to an image, a single pixel at location (u, v) in the output feature map F is a result of a convolution between a kernel K
of size NH ×NW and a sub-region of the same size in the input image I:

Fu,v = ϕ(

NW∑
j=1

NH∑
i=1

Ki,jIu+i,v+j + b). (9)

The full feature map is the collection of pixels resulting from convolution operations over different locations in the
input image. A convolutional layer produces multiple feature maps, each being a result of convolution between the
input image and a different filter. All filters in a layer share the same dimensions, but contain different weights. A deep
convolutional network is a network in which several convolutional layers are sequentially stacked. As the number of
layers and neurons within layers increases, the ability of the network to express complex functions increases.

A generative adversarial network (GAN; Goodfellow et al., 2014) is a convolutional neural network (CNN), in which
training is a zero-sum game between a generator G and a discriminator D. The GAN seeks to minimize a distance
between the distribution Pr of the training data and the distribution Pg of the data created by the generator G. The
generator input is usually a low-dimensional latent vector z drawn from a uniform distribution U(−1, 1) or a standard
normal distribution N (0, 1), and the output is an image X̃. Jetchev et al. (2016) extended the GAN into a spatial-GAN
(SGAN), where the input Z becomes a 2D (later extended to 3D by Laloy et al., 2018) tensor of n×m (×q) dimensions
such that a perturbation in one tensor element corresponds to a change in a specific region of the output image X̃. The
input to the discriminator D is either an image X̃ from the generator distribution Pg or an image X from the training
distribution Pr (see Fig. 1). At each training iteration, a batch of generated images X̃, and a batch of training images
X are interchangeably fed into the discriminator and, according to the loss function in use, they are either classified
as 0 (fake) or 1 (true), or are given a score. As opposed to other types of deep generative networks (e.g. variational
autoencoders), training enforces only the distribution on X̃ (Pg) to approximate the distribution on X (Pr) while the
prior on Z is simply assigned such that, for example, all draws during training are drawn from a uniform distribution
U(−1, 1). For an enhanced stability of training and better general performance, we use the Wasserstein loss function
(Arjovsky et al., 2017), whereby the distance between distributions Pr and Pg is based on the Wasserstein-1 distance
W (Pr, Pg):

min
G

max
D∈D

E
X∼Pr

[D(X)]− E
Z∼pg

[D(G(Z))]. (10)

Given that the output ofD(·) in equation (10) is a score rather than a classification to 0 and 1, it is referred to as a "critic".
Once gradients of the loss function are calculated with respect to the network parameters, the error is back-propagated
through the network, allowing updates of the weights and biases of each layer.

2.3 SGAN architecture and training

The network architecture of the generator and critic are asymmetric with respect to each other (see Appendix A.1 for
details) and each of them contains five sequentially stacked convolutional layers. Spectral normalization is applied
to the weights in each critic layer (Miyato et al., 2018). This normalizes the weight matrices K with respect to the
spectral norm at each layer, thus forcing them to conform to the Lipschitz continuity condition. In the SGAN trained on
model errors, we apply mean spectral normalization to critic layers (Subramanian and Chong, 2019) as it improved the
quality of the generated model-error realizations. The generator feature maps are normalized with respect to features
(elements) using instance normalization (Ulyanov et al. (2016)). The first four layers of the critic and the generator
are followed by a rectified linear unit (ReLU):f(x) = max(0, x) and a LeakyReLU: f(x) = max(0.2x, x) activation
function, respectively, and the last layer in the generator is followed by a tanh activation function. We set the learning

5

Using deep generative neural networks to account for model errors A PREPRINT

Figure 1: Illustration of our SGAN architecture with five layers when applied to represent model errors. During training,
each parameter in the latent space Z is randomly drawn from a uniform distribution U(−1, 1). Each Z is transformed
into a single image X̃ through a nonlinear transformation G(·). At each iteration, a batch of images X̃ (generated)
and a batch of images X (training) are interchangeably fed into the critic D(·), resulting in a score that is then used to
update the network parameters through back-propagation.

rates of the generator and critic according to the two time-scale update rule (TTUR) by Heusel et al. (2017), with a ratio
of 1 : 4. The output size x of layers l = 1, .., 5 in the generator can be calculated via the following relationship:

xl = s · (xl−1 − 1)− 2 · p+ (k − 1) + 1, (11)

where s is the stride controlling movement of the filter along the image, p is the the number of padding columns/rows
of zeros added to the layer’s input, and k is the kernel size (see Dumoulin and Visin (2016) for more information). We
use padding to control the output size and obtain an image with dimensions that are as close as possible to our model
size (see Appendix A for more details).

All images fed into the critic must be normalized to a [−1, 1] range and have the same dimensions. Thus, TI’s are either
cropped (subsurface model parameter) or linearly interpolated (model error) into a size fitting that of the generative
network’s output. After training, the generated subsurface model parameter X̃Φ or model-error X̃η realizations are
either cropped or interpolated to the desired image size and re-scaled back to the original value range. In the case of the
subsurface model-parameter realizations there is an additional step where porosity values are assigned according to
equation 1.

2.4 Bayesian inference of latent parameters

We aim to estimate the low-dimensional (latent-space) representation of the subsurface model parameters and associated
model error by incorporating the two trained generative networks within an MCMC inversion. Subsurface model-
parameter and model-error prior realizations are generated using the SGAN and the forward responses during inversion
are computed using the straight-ray solver gLF = gSR. The posterior probability density function (pdf) p(Z|d) is
expressed through Bayes’ theorem as:

p(Z|d) =
p(d|Z)p(Z)

p(d)
, (12)

where p(d|Z) is the likelihood function, p(Z) is the prior pdf of latent parameters Z, and p(d) is the marginal likelihood
(evidence). The latter is a constant that we ignore in this work and we thus focus on the unnormalized posterior

6

Using deep generative neural networks to account for model errors A PREPRINT

p(Z|d) ∝ p(d|Z)p(Z). For numerical reasons we work with the log-likelihood which, assuming the measurement
errors are independent, identical and normally distributed, is given by:

l(d|Z) = −Nd
2

log(2π)−Nd log(σ)− 1

2
σ−2 [d− dsim]

2
, (13)

where Nd is the number of data points, σ is the standard deviation of the measurement errors ε, and dsim and d are the
forward simulated and observed data, respectively. To sample from the posterior distribution, we rely on the differential
evolution adaptive Metropolis (DREAM(ZS)) algorithm, in which MCMC chains evolve in parallel and jumps are
proposed based on candidate points from an archive of past states (ter Braak and Vrugt, 2008; Vrugt et al., 2009; Laloy
and Vrugt, 2012). In this algorithm, the jump size is given by γ = 2.38√

2δd′
β, where β is a user defined scalar referred

to here as the jump rate scaling factor, δ is the number of candidate points pairs used to generate the proposal, and
d
′
, the number of dimensions to be updated, varies during the inversion according to a crossover (CR) probability

(Laloy and Vrugt, 2012). At each MCMC step and for each individual chain, a random sample is drawn from the
proposal distribution q(Z′,Zt−1), which is symmetric with boundary handling to ensure that the samples are drawn
proportionally to the uniform prior. As the prior is uniform, the sample is either accepted or rejected according to a
transition acceptance rule pacc(Zt−1 −→ Z′) = e(l(d|Z′)−l(d|Zt−1)). If accepted, the chain moves to Z′ such that Zt = Z′.
If rejected, the chain remains at the current sample and Zt = Zt−1. We run the inversion with eight parallel chains
and, to improve the search, we allow for a 20% chance of snooker update (ter Braak and Vrugt, 2008) during the first
20, 000 steps (per chain) which we consider as the burn-in period. As opposed to parallel updating where sampling
occurs along an axis that runs past states of a single chain, the snooker update involves an axis that runs along states of
two different chains. The jump rate scaling factor β is varied adaptively during the burn-in period in order to reach a
20%− 30% MCMC acceptance rate. To prevent very high acceptance rates and slow mixing after the burn-in period,
we set a minimum value to the β, beyond which it cannot decrease.

We jointly infer the posterior distribution of the two low-dimensional latent spaces: ZΦ describing the subsurface model
parameters and Zη describing the model error, both of which have uniform prior distributions U(−1, 1). The proposed
latent parameter realizations are mapped into their respective high-dimensional image spaces Φ and ηapp (approximate
model error), where a low-fidelity forward response is calculated on the porosity field Φ converted to slowness s using
equations (2) and (3). In addition to the subsurface model-parameter and model-error latent parameters, we infer an
auxiliary parameter ν with a uniform prior distribution U(0, 1) that scales the model-error realization before it is added
to the simulated data. This scalar was found to improve the inference and quality of the inferred model errors by
providing additional means to control their magnitudes. When inferring model errors, dsim in equation (13) is replaced
with gSR(s) + νηapp. The most salient features of our method, combining SGAN-ME (ME stands for model error)
with MCMC inversion, is provided in Algorithm 1 and Figure 2.

We compare SGAN-ME against cases where model errors are zero as the high-fidelity forward solver is used in
MCMC inversions or model errors are either ignored or approximated to be Gaussian. In these latter cases, the inferred
parameters are the latent parameters of the model alone, such that Z = ZΦ and we simply plug dsim = gSR(s) into
equation (13).

To approximate the model errors as Gaussian, we follow Hansen et al. (2014) and learn their mean dME and a covariance
matrix CME , which are used to correct the residual term and inflate the likelihood function:

l(d|Z) = −Nd
2

log(2π)− 1

2
log(|CD|)−

1

2

[
d− gSR(s)− dME

]T C−1
D

[
d− gSR(s)− dME

]
, (14)

where CD = Cd + CME , with Cd being the traditional data covariance matrix and CME the learned model-error
covariance matrix. The bias correction term dME is the model-error mean. We use 800 random model-error samples
from the same database used for training the SGAN to learn CME and dME , noting that Hansen et al. (2014) recommend
to use at least 300 samples.

7

Using deep generative neural networks to account for model errors A PREPRINT

Algorithm 1: SGAN-ME inversion with differential evolution adaptive Metropolis DREAM(ZS)

1 Set t = 1 and initialize the archive with realizations ZΦ, Zη and ν randomly drawn from p(ZΦ), p(Zη) and p(ν) (respectively)
2 Initialize Zt = [Zt

Φ,Zt
η, ν

t] for each MCMC chain
3 X̃t

Φ, X̃t
ηapp

← GΦ(Zt
Φ), Gη(Zt

η)

4 Perform post-processing (section 2.3): Φt, ηt
app ← X̃t

Φ, X̃t
ηapp

and convert Φt into slowness st (equations (2)-(3))
5 dsim = gLF (st) + νtηt

app

6 Compute l(d|Zt) (equation (13))
7 while t < Ndraw do
8 Propose a new sample Z′Φ, Z′η and ν′ from proposal distribution q(Z′,Zt−1)

9 X̃
′
Φ, X̃

′
ηapp

← GΦ(Z′Φ), Gη(Z′η)
10 Perform post-processing (section 2.3): Φ

′
, η
′

app ← X̃
′
Φ, X̃

′
ηapp

and convert Φ
′

into slowness s
′

(equations (2)-(3))
11 dsim = gLF (s′) + ν′η′app
12 Compute l(d|Z′)
13 Compute probability of acceptance α← e(l(d|Z′)−l(d|Zt−1))

14 Draw U from a uniform distribution U(0, 1)
15 if U < α then
16 Zt ← Z′
17 else
18 Zt ← Zt−1

19 end
20 t = t + 1
21 end
22 Function GΦ(ZΦ)
23 Performs a series of transposed convolution layers with pre-trained weights
24 return X̃Φ

25 end
26 Function Gη(Zη)
27 Performs a series of transposed convolution layers with pre-trained weights
28 return X̃ηapp

29 end

3 Results

In our numerical experiments we consider two parallel vertically-oriented boreholes, one containing 30 sources and the
other 30 receivers. The model domain on which the numerical experiment is performed is 4× 6.1 m (40× 61 pixels).
Sources and receivers are distributed evenly between 0.2 and 6 m depth in intervals of 0.2 m and the two boreholes
are located at 0 m and 4 m along the horizontal axis, respectively. In the straight-ray and eikonal forward solvers, the
model domain is discretized evenly into 0.1 m square cells. The FDTD simulated responses are performed using a
spatial discretization of 0.025 m and a time discretization of 0.15 ns. The FDTD simulation requires the dielectric
constant of the medium κb and electrical conductivity fields as input. We assume a constant conductivity of 0.002
S/m across the model domain. The dielectric constant κb is obtained using equation (2). The model-error databases
corresponding to ηeikonal−SR and ηFDTD−SR contain 10, 000 images, each of which requires a simulation using the
low- and high-fidelity forward solvers. In the next subsections, we present results obtained from SGAN training and
subsequent inversions.

3.1 Quality assessment of generative models

By training the SGAN on the subsurface model parameters and model error, we are able to reduce the two parameter
spaces containing 2440 and 900 parameters (respectively) into two latent spaces, ZΦ and Zη, each of size 5× 5× 1.
In order to assess the quality of the generative models at a given training iteration, we calculate pixel-wise means
and variances on a set of generated and training realizations. Based on this analysis, we found that the quality of the
generated realizations could be further improved by scaling each realization by a spatially-varying correction factor
intended to match the pixel-wise means of the TI’s:

X̃ = G(Z) · (Mx �Mx̃), (15)

8

Using deep generative neural networks to account for model errors A PREPRINT

Figure 2: SGAN-ME workflow. Subsurface-model representation using SGAN is discussed in details in the work of
Laloy et al. (2018), here we focus on model-error representation.

where Mx is the mean of 10, 000 TI’s, Mx̃ is the mean of 10, 000 SGAN realizations and G(Z) is a single SGAN
realization to be corrected. The correction matrix obtained by element-wise division Mx �Mx̃ contains the mean
of generated SGAN realizations, and, thus, it is specific to a given training iteration. For the subsurface model-
parameter realizations, we also evaluate the spatial auto-correlation within each realization by calculating directional
semivariograms using the GSTools package (Müller and Schüler, 2020).

Training the SGAN for 58, 000 iterations with a batch containing 64 images took about 8 − 9 hours on one GPU
GeForce GTX Titan X with 12 GB memory. Figure 3 provides a comparison between the statistics of the subsurface
model-parameter training images and SGAN realizations. We show the pixel-wise mean and variance of the TI’s
(Figs 3a-b) and the SGAN realizations before (Figs 3c-d) and after (Figs 3e-f) applying the correction in equation
15. The SGAN mean image before correction shows horizontal band-like features. After mean correction, this effect
decreases and the image becomes closer to homogeneous. The variance images, however, do not exhibit the same
improvement following the correction and look overall similar in both cases (Figs 3d and f). The spatial statistics
represented by the directional semivariograms in x- and y-directions are given in Figures 3g and h, respectively; the
mean semivariograms are calculated over 5, 000 TI (blue) and corrected SGAN (red) model realizations. The two
mean curves fall on top of each other, indicating a good agreement between the TI and corrected SGAN realizations.
Furthermore, the semivariograms of single SGAN realizations (gray curves) are mostly concentrated within the ranges
of the TI (dashed blue curves).

A similar mean correction and assessment to those described above for the subsurface model-parameter SGAN training
are performed for the model error training. Example model-error TI’s for the two types of model errors considered in this
paper are shown in Figure 4. In most cases, ηFDTD−SR has a larger range of error values compared to ηeikonal−SR and
displays similar features to ηeikonal−SR with additional off-diagonal patterns. Figure 5 provides a comparison between
the pixel-wise mean and variance of the model-error TI’s and those of the SGAN realizations before and after the mean
correction. Although the mean image of the SGAN generated ηeikonal−SRapp realizations before correction (Fig. 5c) is
close to that of the TI realizations (Fig. 5a), it underestimates the model-error mean on the diagonal. After correction

9

Using deep generative neural networks to account for model errors A PREPRINT

Figure 3: Statistics of subsurface model-parameter realizations after 58, 000 training iterations. Mean and variance
images calculated on 5, 000: (a-b) TI realizations , (c-d) SGAN realizations before mean correction and (e-f) SGAN
realizations after mean correction. The directional semivariograms in the (g) x- and (h) y-directions were calculated on
5, 000 TI realizations and SGAN realizations after mean correction. The gray lines are single semivariograms calculated
on SGAN realizations after correction; their mean is marked as a solid red line and it is almost completely overlapped
by the blue solid line, representing the mean of TI realizations. The blue dashed lines mark the TI realizations’ range.

(Fig. 5e), the bias in the mean is removed and the variance (Fig. 5f), which also suffers from underestimation on the
diagonal, is slightly improved. Training with ηFDTD−SR realizations proved to be more challenging and required
larger number of training iterations (450, 000 iterations as opposed to 250, 000 for ηeikonal−SR). The SGAN mean
image before correction (Fig. 5i) is distorted compared to the TI mean image (Fig. 5g). We attribute this difference
to the patchy nature of the ηFDTD−SR realizations and features that extend to elements further off-diagonal (Fig. 4).
These distortions were reduced after applying the mean correction (Fig. 5k), although improvements in the variance
(Fig. 5l) are not as visible. One can observe a broken pattern on the diagonal in the ηFDTD−SR TI’s mean and variance
images (Figs. 5g and h). This pattern can also be found in ηeikonal−SR TI’s mean and variance images (Figs. 5a and b),
albeit to a lesser extent. Since the subsurface model-parameter TIs on which model errors are calculated were randomly
chosen, we attribute this pattern to be a result of the forward modeling process rather than a repetitive pattern in the
subsurface model-parameter TIs.

Finally, we test the ability of the SGAN to capture the true model by performing a pixel-to-pixel MCMC inversion
(i.e., the actual pixel values are considered as data in the inversion) on two reference models, cropped out of the testing
segment of the subsurface model-parameter TI described in Section 2.1.1. We consider the maximum a posteriori
estimate of pixel-to-pixel based inversion results as being the closest possible SGAN representation of the reference
model (’closest SGAN realization’). Figure 6 shows the considered reference models and their corresponding closest
SGAN realization illustrating the capability of the SGAN to generate model realizations that closely resemble their
reference models.

10

Using deep generative neural networks to account for model errors A PREPRINT

Figure 4: Examples of actual model-error realizations (a-d) ηeikonal−SR and (e-h) ηFDTD−SR. Figures in the same
column were calculated for the same subsurface model-parameter realization.

Figure 5: Model errors of (a-f) ηeikonal−SR and (g-l) ηFDTD−SR. Pixel-wise mean and variance of 10, 000 (a-b and
g-h) TI realizations, (c-d and i-j) SGAN realizations before mean correction and (e-f and k-l) SGAN realizations after
mean correction (see equation (15)).

11

Using deep generative neural networks to account for model errors A PREPRINT

Figure 6: Reference models (a) 1 and (c) 2 and (b and d) corresponding closest SGAN realizations obtained from
pixel-to-pixel inversion considering 25 latent parameters.

3.2 Inversion results

We perform inversion of data generated from the two multi-Gaussian reference models in Figures 6a and 6c that we
refer to as ’Model 1’ and ’Model 2’, respectively. The synthetic data for each reference model are created using the
high-fidelity forward solver, which is either geikonal or gFDTD depending on the type of model error considered
(i.e., ηeikonal−SR or ηFDTD−SR). The data are contaminated with random noise drawn from a normal distribution
N (0, 0.52 ns2). We consider in our analysis only those traveltime data corresponding to source-receiver angles of less
than 50◦ from the horizontal, as is commonly done with field data to avoid borehole and antenna effects (Irving and
Knight, 2005). This leads to a total of 858 traveltimes to be considered in the inversion. Note that the number (25) of
subsurface model parameters ZΦ to be estimated is the same for all considered approaches. The SGAN-ME approach
requires estimation of 26 additional parameters: 25 for the model error Zη along with auxiliary parameter ν. Note that
the number of parameters in ZΦ and Zη is chosen based on a trade-off between inversion performance and efficiency. It
is chosen such that it remains low while enduring high-quality subsurface model estimation.

For each of the considered approaches, we show the maximum a posteriori estimate. Given the uniform prior on
the parameters, this corresponds also to the maximum-likelihood solution. For comparison, we calculate the root
mean-square-error (RMSE) and structural similarity (SSIM) index for each approach including that of the closest SGAN
realization obtained by pixel-by-pixel inversion. We consider two different RMSE values: one on the subsurface model
parameters denoted by RMSEΦ and the other on the data denoted RMSEd. The RMSE metric gives an indication as to
the spread of residuals, with larger weight given to higher values, while the SSIM complements the latter by measuring
the similarity of two images (here these are images of either the subsurface model parameters or model errors) in terms
of their structure (see Appendix B). The above metrics are calculated for the maximum-likelihood realization in the case
of pixel-to-pixel inversion whereas in data-based inversions, they represent an average value for the last 50% samples of
the chains. In the case of the inferred model error, we also calculate what we refer to as "error recovery". This measure
serves as an indication of how well the model error is approximated, by taking the average posterior mean-squared-error
(MSE) between the approximated model error and the reference model error (MSE(ηapp,ηref)) and dividing it by the
MSE between the reference model and 0 (MSE(ηref , 0)).

12

Using deep generative neural networks to account for model errors A PREPRINT

Table 1: Inversion convergence for Test Case 1 (ηeikonal−SR) and Test Case 2 (ηFDTD−SR). The mean acceptance
rate represents the average acceptance rate of the two tested reference models excluding the first 20, 000 steps.

Model
error
type

Inversion
approach

Nr. of
MCMC steps

(per chain)

Mean
acceptance
rate (excl.

burn-in) [%]Model 1 Model 2

ηeikonal−SR

straight-ray 95, 510 22, 060 28
Covariance 43, 860 189, 760 36
SGAN-ME 108, 960 382, 620 18

eikonal 34, 710 61, 160 23

ηFDTD−SR
straight-ray 53, 160 141, 110 18
Covariance 27, 810 188, 010 35
SGAN-ME 363, 760 437, 810 23

3.2.1 Convergence

We use the Gelman-Rubin diagnostic (Gelman and Rubin, 1992) and declare convergence when all inferred parameters
satisfy R̂ ≤ 1.2. The initial jump rate scaling factor was set to 5 for all inversion runs. The minimum jump rate scaling
factor had to be adjusted in each inversion individually in order to achieve a reasonable acceptance rate (ideally 20−30%
and not more than 50%) and convergence. A value of 0.2 was often suitable to achieve convergence and reasonable
acceptance rates with some SGAN-ME cases requiring slightly smaller values (0.15− 0.2). In Table 1, we provide
convergence information for each inversion approach. All inversions reached convergence, but the number of steps
required differ between approaches. More steps are needed to reach convergence with the SGAN-ME approach. The
mean acceptance rates in Table 1 are consistently higher for the covariance approach compared to the other approaches
due to its inflated error term, which increases the chance for proposed samples to be accepted in the MCMC.

3.2.2 Test Case 1: eikonal - straight-ray model error

We first consider inversion results with model error ηeikonal−SR in terms of maximum-likelihood solutions of the
straight-ray, covariance, SGAN-ME and eikonal-based inversion approaches in Figure 7 and RMSEΦ, SSIM and
RMSEd in Table 2. Generally speaking and given values in Table 2, the SGAN-ME approach exhibits better overall
performance compared to the straight-ray and covariance approaches, scoring lower RMSE and higher SSIM values.
The SGAN-ME approach captures well the general structure of the various porosity zones in both test models. The
spatial representation of model errors in Figure 8 together with values in Table 3, suggest that SGAN-ME is able to
recover a large part of the model error (about 51% for Model 1 and 67% for Model 2). Table 3 also indicates that the
closest SGAN realizations obtained by the pixel-based inversions consistently reached better scores than the closest of
the 10, 000 model realizations used for training, thereby indicating that the SGAN generalizes well for the model error.

We now consider results for Model 1 specifically. The SGAN-ME and eikonal solutions exhibit similar structures
between 0 and 5 m depth, resulting in similar SSIM values (0.79 and 0.78, respectively). The low porosity zone between
5 and 5.5 m depth is thinner in the SGAN-ME solution and the high-porosity zone between 4− 4.5 is overestimated.
This can be explained by considering the SGAN-ME model-error posterior samples in Figures 8c-e. Although the
features on the diagonal (and close to diagonal) are correctly located, they are underestimated for source-receiver pairs
(15, 15)− (20, 20) and overestimated for source-receiver pairs (20, 20)− (25, 25) causing overestimation of porosity
in the region corresponding to the latter source-receiver pairs. Furthermore, the model errors at the bottom right corner
of all posterior samples in Figure 8c-e are overestimated and differ by up to ∼ 2 ns from the truth, translating to a
thicker high-porosity layer at the bottom of the subsurface model (5.5-6 m). The covariance solution overestimates the
low-porosity zone at around 3 m depth. It scores the same RMSEΦ as the straight-ray solution (0.016) but receives
higher SSIM (0.74 versus 0.72) and slightly lower RMSEd (0.75 ns versus 0.77 ns) scores.

As for Model 2, the SGAN-ME maximum-likelihood realization is the only solution properly reconstructing the
porosity structure between 0-1 m depths. Other approaches, including the eikonal solution do not have a clear layered
structure around these depths. The eikonal solution tend to overestimate some high-porosity zones (4-4.5 m in Model
1 and around 1.5-1.7 m in Model 2) and exhibit rough texture in its solution to Model 2. The covariance solution
underestimates the porosity at 4 m depth but still surpasses the straight-ray solution in both subsurface model-parameters
scores (RMSEΦ and SSIM). As opposed to Model 1, here the straight-ray solution fits the data significantly better than
the covariance solution (RMSEd of 0.87 ns for straight-ray versus 1.17 ns for covariance). Furthermore, the straight-ray

13

Using deep generative neural networks to account for model errors A PREPRINT

Figure 7: Inversion results for reference Models (a) 1 and (f) 2 for Test Case 1 (ηeikonal−SR). (b)-(e) and (g)-(j) are the
maximum-likelihood realizations obtained from inversion using the straight-ray, covariance, SGAN-ME and eikonal
approaches. The first three approaches use the straight-ray solver for the forward response during inversion, while the
observed data for all approaches were created using the eikonal solver.

solutions are smooth and do not contain major artifacts. They do however, generally underestimate high-porosity zones
and receive the highest RMSE and lowest SSIM scores in most cases.

As can be seen in Table 2, the RMSEd was also calculated for the closest SGAN realization using the high-fidelity
forward solver, namely the eikonal solver. For better visualization, we show in Figure 9 the RMSEd values of each
approach and for each of its eight chains along 100, 000 sequential samples (per chain). The data fit plots corresponding
to Model 1 and 2 and model error ηeikonal−SR (Figs 9a and b) indicate that our SGAN-ME approach fits the data as
well as the eikonal solver, close to the noise level of 0.5 ns (indicated by the red dotted line) and significantly better
than the straight-ray and covariance approaches. The RMSEd of the closest SGAN realization (indicated by a dotted
black line) is higher compared to that of the eikonal and SGAN-ME inversion approaches, but lower than that of the
straight-ray and covariance approaches.

Finally, we represent posterior samples in the form of RMSEΦ and SSIM distributions (Figs. 10a,b,e,f). The RMSEΦ

and SSIM values, calculated separately for each posterior sample, were plotted as a normalized density function to
which a Gaussian kernel was fitted. It is observed that the SGAN-ME approach generally results in RMSEΦ and SSIM
distributions that rank higher than the straight-ray and covariance approaches. For Model 2, the RMSEΦ and SSIM
distributions associated with SGAN-ME almost completely overlap those corresponding to the model error-free eikonal
approach. The SGAN-ME posterior distributions are characterized by intermediate widths as opposed to the covariance
approach for which RMSEΦ and SSIM values vary widely and to the straight-ray approach for which the distribution is
narrow and with the worst statistics.

3.2.3 Test Case 2: FDTD - straight-ray model error

We now consider the model error ηFDTD−SR for the same reference porosity models and create the synthetic data
using the FDTD forward solver. Here we compare only between the straight-ray, covariance and SGAN-ME approaches
due to the excessive computational time needed to perform MCMC inversion with the FDTD forward solver (Hunziker
et al., 2019). Results for this test case can be found in Figure 11 and Table 4 which show the maximum-likelihood
solution of the straight-ray, covariance and SGAN-ME approaches for the two reference models and their respective
RMSE and SSIM scores.

14

Using deep generative neural networks to account for model errors A PREPRINT

Figure 8: Model errors for Test Case 1 (ηeikonal−SR) representing the discrepancy between the eikonal and straight-ray
solvers. (a) and (f) are reference model errors calculated based on reference Models 1 and 2 in Figures 7a and 7f,
respectively, (b) and (g) are the corresponding closest SGAN model-error realizations obtained from pixel-to-pixel
inversion and (c)-(e) and (h)-(j) are posterior samples obtained from inversion with the SGAN-ME approach.

Table 2: Inversion results for Test Case 1 (ηeikonal−SR) in terms of the subsurface model considering gLF = gSR and
gHF = geikonal. The RMSEΦ and SSIM values are average values of the posterior samples. The RMSEΦ of each
posterior sample was calculated on porosity values with respect to the corresponding reference model. The SSIM was
calculated on normalized images in the range of [0, 1]. The SSIM can take values between -1 and 1, where 1 indicates
identical images. The RMSEd represents the data fit with respect to the observed data and is an average value over the
last draws from the eight MCMC chains. For more details see Appendix B.

Model Inv. approach RMSEΦ [-] SSIM [-] RMSEd [ns]
True 0 1 0.5

1

straight-ray 0.016 0.72 0.77
Covariance 0.016 0.74 0.75
SGAN-ME 0.015 0.79 0.53

eikonal 0.013 0.78 0.53
Closest SGAN real. 0.010 0.83 0.62

2

straight-ray 0.021 0.72 0.87
Covariance 0.018 0.75 1.17
SGAN-ME 0.017 0.78 0.55

eikonal 0.017 0.78 0.55
Closest SGAN real. 0.013 0.83 0.63

15

Using deep generative neural networks to account for model errors A PREPRINT

Table 3: Inversion results in terms of model-error estimation for the two considered reference models (1 and 2) and Test
Case 1 (ηeikonal−SR) and 2 (ηFDTD−SR) . The given RMSE and SSIM values are average values of the posterior
samples of model errors. The RMSE of each posterior sample was calculated with respect to the corresponding reference
model error. The SSIM was calculated on normalized images in the range of [0, 1]. The SSIM can take values between
-1 and 1, where 1 indicate identical images. The error recovery represents the fraction of mean-squared-error (MSE) of
posterior samples MSE(ηapp,ηref) compared to the MSE(ηref , 0) of the reference model with respect to 0 and can
range between 0% to 100%. For more details see Appendix B.

Model error Model Inv. approach RMSE [ns] SSIM [-] Error recovery [%]
True 0 1 100

ηeikonal−SR

1 SGAN-ME 0.67 0.56 51
Closest SGAN real. 0.23 0.87 94

Closest database real. 0.29 0.87 90

2 SGAN-ME 0.66 0.64 67
Closest SGAN real. 0.29 0.86 94

Closest database real. 0.54 0.63 77

ηFDTD−SR

1 SGAN-ME 0.49 0.68 74
Closest SGAN real. 0.24 0.88 94

Closest database real. 0.33 0.85 88

2 SGAN-ME 0.63 0.72 71
Closest SGAN real. 0.32 0.89 92

Closest database real. 0.56 0.71 78

The maximum-likelihood solution together with the RMSEΦ and SSIM values in Table 4 suggest that the SGAN-ME
results capture both the magnitude and structure of porosity for Model 1 and is the closest to values observed for the
closest SGAN realization, having RMSEΦ of 0.0014 ns (versus 0.010 ns) and SSIM value of 0.75 (versus 0.83). The
SGAN-ME approach is also able to recover large portions of the model error (74% error recovery) for this reference
model (Table 3). The high-porosity zone between 0.5 and 1.5 m depth is wider in the all solutions compared to
reference Model 1, although less visible in the SGAN-ME solution. Similarly, as was found previously for the case of
ηeikonal−SR, the covariance solution consistently overestimates the porosity around 3 m depth for Model 1 (Figs. 7c
and 11c). All compared approaches underestimate the high porosity zone between ∼ 3.8-4.5 m depth and overestimate
the low-porosity zone between 5-5.5 m depth.

As for Model 2, the porosity structure between 0 and 1 m is better defined in the SGAN-ME solution compared to the
other approaches. The porosity zone between 1.8 and 2.8 m depth is overestimated in the right hand side of the SGAN
solution. This part of the subsurface model is covered by receivers 10-15. Indeed, the posterior samples displayed in
Figure 12h-j show a larger diagonal feature between receivers 10-15 and sources 10-15 than in the reference model
error for those source-receiver pairs. Nonetheless, the inferred SGAN-ME model error recovers 71% of the true model
error (Table 3).

For both reference models, the RMSEΦ of the covariance and straight-ray approaches are increasing or remain the
same when going from ηeikonal−SR to ηFDTD−SR. Interestingly, the SGAN-ME inversion result corresponding to
Model 1 improves from ηeikonal−SR to ηFDTD−SR, with RMSEΦ decreasing from 0.015 to 0.014 while the SSIM
value decreases from 0.79 to 0.75. This improvement in RMSEΦ score can be linked to better error recovery, which
increases from 51% for ηeikonal−SR to 74% for ηFDTD−SR. Notice that in both types of model errors the closest
SGAN model-error realizations obtained by pixel-based inversion (Figs. 8b and 8g for ηeikonal−SR and Figs. 12b and
12g for ηFDTD−SR) strongly resemble their reference model errors and their error recovery is between 92 to 94%,
further exemplifying the ability of the SGAN to represent model errors. Tables 2 and 4 and Figure 9 show that the
SGAN-ME approach is able to fit the data equally well in both test cases and approaches the noise contamination level.
Finally, we observe that the posterior samples in the form of RMSEΦ and SSIM distribution (Figure 10c,d,g,h) show
similar patterns as for Test Case 1, in the sense that the SGAN-ME approach generally results in RMSEΦ and SSIM
distributions that rank higher than the straight-ray and covariance approaches. Again, the SGAN-ME distributions are
characterized with intermediate widths as opposed to the covariance approach for which RMSEΦ and SSIM values vary
widely and to the straight-ray approach for which the distribution is narrow and exhibits the worst statistics.

16

Using deep generative neural networks to account for model errors A PREPRINT

Figure 9: Data fit (RMSEd) for inversion considering: modelling error ηeikonal−SR for reference models (a) 1 and (b)
2 and modelling error ηFDTD−SR for reference models (c) 1 and (d) 2.

Table 4: Inversion results for Test Case 2 (ηFDTD−SR) in terms of the subsurface model considering gLF = gSR and
gHF = gFDTD. The RMSEΦ and SSIM values are average values of the posterior samples. The RMSEΦ of each
posterior sample was calculated on porosity values with respect to the corresponding reference model. The SSIM was
calculated on normalized images in the range of [0, 1]. The SSIM can take values between -1 and 1, where 1 indicates
identical images. The RMSEd represents the data fit with respect to the observed data and is an average value over the
last draws from the eight MCMC chains. For more details see appendix B.

Model Inv. approach RMSEΦ [-] SSIM [-] RMSEd [ns]
True 0 1 0.5

1

straight-ray 0.017 0.73 0.65
Covariance 0.018 0.69 0.84
SGAN-ME 0.014 0.75 0.53

Closest SGAN real. 0.010 0.83 0.58

2

straight-ray 0.021 0.71 0.73
Covariance 0.019 0.74 1.16
SGAN-ME 0.018 0.76 0.54

Closest SGAN real. 0.013 0.83 0.62

17

Using deep generative neural networks to account for model errors A PREPRINT

Figure 10: RMSEΦ and SSIM distributions of posterior samples for inversion considering: Test Case 1 (ηeikonal−SR)
for reference models (a and e) 1 and (b and f) 2 and Test Case 2 (ηFDTD−SR) for reference Models (c and g) 1 and (d
and h) 2. The high-fidelity solution is only available in Test Case 1 (blue area in a, b, e and f).

4 Discussion

Our results demonstrate the suitability of our SGAN architecture and training procedure to represent model errors and
the ability of SGAN-ME inversions to infer them for a given subsurface model realization (Figs. 8 and 12). Among
the considered inversion methods employing a low-fidelity forward solver, the SGAN-ME inversion scored RMSE (Φ
and d) and SSIM values that are the closest to those obtained when the high-fidelity forward eikonal solver is used in
the inversion (Table 2). This indicates that inferring the model error during inversion using the SGAN-ME offers an
overall better performance compared to ignoring model errors or accounting for them by inflating the error term in the
likelihood function following Hansen et al. (2014). Somewhat surprisingly, the straight-ray approach, where model
errors are neglected, resulted in subsurface models with relatively minor artifacts (Figs. 7b, 7g, 11b and 11f). This is
likely a consequence of the SGAN dimensionality reduction. The dimensionality of the subsurface model domain is
reduced in our examples from 2440 parameters to 25 latent parameters, thus, limiting strong artifacts at the expense
of the ability to achieve high likelihoods. We expect that more artifacts would appear when inverting the data in the
original high-dimensional subsurface model space.

In all tested cases, the SGAN-ME is able to infer meaningful model-error representations (Figs. 8 and 12) ranging
between 71 and 74% recovery of the true model error in the ηFDTD−SR Test case (Table 3). By jointly inferring the
subsurface model parameters and the model error, SGAN-ME enables identification and localization of regions in the
subsurface model that are prone to large model errors. Some of the inferred model errors are still misplaced (Figure 8c-e)
or underestimated (Figure 8h-j). This could suggest that the inferred model error accommodates inadequacies between
the subsurface-model realizations that can be generated by the SGAN and the reference subsurface model used to
generate the data. Indeed, with 25 parameters it is of course impossible to fully represent all the geostatistical variability
of our training image. Tables 2 and 4 reinforce this hypothesis, as they show that the closest SGAN realization obtained
from a pixel-to-pixel inversion does not fit the data as well as the eikonal or our SGAN-ME approach, implying a
certain bias in the SGAN-ME inversions. A possible solution to address this problem would be to perform a hierarchical
inversion in which the standard deviation of the data error is one of the inferred parameters (Malinverno and Briggs,
2004). Initial results with such an hierarchical approach have been inconclusive to date and require further investigation.

18

Using deep generative neural networks to account for model errors A PREPRINT

Figure 11: Inversion results for reference models (a) 1 and (e) 2 for Test Case 2 (ηFDTD−SR). (b)-(d) and (f)-(h) are the
maximum-likelihood realizations obtained from inversion using the straight-ray, covariance and SGAN-ME approaches.
All three approaches use the straight-ray solver for the forward response during inversion, while the observed data were
created using the FDTD solver.

Figure 12: Model errors for Test Case 2 (ηFDTD−SR) representing the discrepancy between the FDTD and straight-ray
solvers. (a) and (f) are reference model errors calculated based on reference models 1 and 2 in Figures 11a and 11e,
respectively, (b) and (g) are the corresponding closest SGAN model error realizations obtained from pixel-to-pixel
inversion and (c)-(e) and (h)-(j) are three posterior samples obtained from inversion with the SGAN-ME approach.

19

Using deep generative neural networks to account for model errors A PREPRINT

The RMSEd values corresponding to SGAN-ME are very similar to those obtained when using the high-fidelity eikonal
solver (Table 2). For both types of errors, ηeikonal−SR and ηFDTD−SR, SGAN-ME is found to fit the data significantly
better than the straight-ray and covariance approaches with values close to the noise level of σ = 0.5 ns (Tables 2
and 4). We have seen that the impact of the type of model-error size on data fit is small in the SGAN-ME approach,
indicating its robustness in fitting the data by inferring the model error. The covariance approach is characterized by a
large variability of RMSEd values throughout the inversion due to the inflation of the likelihood function, and hence
a wide range of realizations are accepted. This variability in model realizations is also observed in Figure 10, where
the covariance-based RMSEΦ and SSIM distributions exhibit the largest variance. The straight-ray approach spans a
smaller range of posterior realizations, but those present poor RMSEΦ and SSIM scores. In that regard, the SGAN-ME
presents a combination of small uncertainty (intermediate posterior widths) and the best RMSEΦ and SSIM scores.

In agreement with other approaches treating model errors as the discrepancy between a low- and a high-fidelity solver,
we stress that our method is unable to quantify any model errors arising from simplifications in the high-fidelity solver
or an inappropriate prior model (training data) of the subsurface properties. As a deep learning method, our approach
depends on the availability of training data (i.e. subsurface-model representation and two fidelity-varying forward
solvers). Note also that the networks are model and model-error specific, meaning that new training is required if
considering a different set-up. Furthermore, our SGAN-ME approach combines multiple nonlinear transformations
leading to MCMC convergence issues. Here, we relied on the DREAM(ZS) algorithm and found that convergence
was highly sensitive to the chosen jump-rate scaling factor. In the future, it would be beneficial to assess if convergence
could be improved by using other MCMC samplers such as gradient-, Hamiltonian-dynamics- (Duane et al., 1987; Neal,
2011) or diffusion- (Roberts et al., 1996; Roberts and Rosenthal, 1998) based samplers.

5 Conclusions

We present a methodology accounting for model errors in Bayesian inversion using deep generative neural networks.
In contrast to most existing methods, our approach makes no restrictive Gaussian assumptions about the statistical
distribution of the model errors arising from using a fast low-fidelity solver instead of a slow high-fidelity solver. We
use SGANs to learn two separate generative models: one for the subsurface model parameters of interest and the
other for the model errors. The underlying low-dimensional latent parameterizations are then used to jointly infer the
subsurface model parameters and model error via MCMC using the fast low-fidelity forward solver, thereby, allowing
for significant speed-up. By doing so, we are able to improve the posterior estimates of subsurface model parameters
and model errors. Our SGAN-ME method is shown to perform better than in cases where model errors are ignored or
accounted for using a Gaussian error model. In fact, the quality of the posterior solutions is close to results obtained
when using a high-fidelity forward solver in the MCMC. By providing posterior distributions of the model errors, it is
possible to visualize where model errors occur and to identify regions where inversion results might be less reliable.
This information could be used to locally replace low-fidelity simulations with high-fidelity simulations. Our focus
has been on model errors due to simplified physics, but our approach and the extension discussed above could also be
useful when considering coarse meshes for the forward computations. In addition, our approach could be extended to
other fields of geophysics, for example, full-waveform inversion. Even if our SGAN-ME method works well in the
considered test examples, we highlight the need to address MCMC instabilities due to the underlying nonlinearity of
the SGAN transformation. Since the performance of our approach depends on the quality of the SGAN realizations,
there is a need to further advance network architectures and training procedures for both subsurface model parameters
and model errors. Further improvements could also be made by training the subsurface model and model error jointly
with shared latent parameters or by combining our SGAN-ME approach with deep-learning based surrogate modeling.

6 Acknowledgements

This research was supported by the Swiss National Science Foundation (project number: 184574). We thank associated
editor Juan-Carlos Afonso, as well as reviewers Brent Wheelock and Jianwei Ma for their constructive comments.
The SGAN and MCMC scripts as well as test examples can be found in the following GitHub repository: https:
//github.com/ShiLevy/SGAN_ME.

Citation

This is a pre-copyedited, author-produced PDF of an article accepted for publication in Geophysical Journal
International following peer review. The version of record

20

http://p3.snf.ch/project-184574
https://github.com/ShiLevy/SGAN_ME
https://github.com/ShiLevy/SGAN_ME

Using deep generative neural networks to account for model errors A PREPRINT

Shiran Levy, Jürg Hunziker, Eric Laloy, James Irving, Niklas Linde, Using deep generative neural networks to
account for model errors in Markov chain Monte Carlo inversion, Geophysical Journal International, 2021;, ggab391,
https://doi.org/10.1093/gji/ggab391

is available online at: https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggab391/
6374556

References
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Generative Adversarial Networks. In Proceedings of the

34th International Conference on Machine Learning, volume 70, pages 214–223. PMLR.

Barrash, W. and Clemo, T. (2002). Hierarchical geostatistics and multifacies systems: Boise Hydrogeophysical Research
Site, Boise, Idaho. Water Resources Research, 38(10):1–18.

Bergen, K., Johnson, P., Maarten, V., and Beroza, G. (2019). Machine learning for data-driven discovery in solid Earth
geoscience. Science, 363(6433).

Brunetti, C. and Linde, N. (2018). Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and
model selection. Advances in Water Resources, 111:346–359.

Brynjarsdóttir, J. and O-Hagan, A. (2014). Learning about physical parameters: The importance of model discrepancy.
Inverse Problems, 30(11):114007.

Calvetti, D., Ernst, O., and Somersalo, E. (2014). Dynamic updating of numerical model discrepancy using sequential
sampling. Inverse Problems, 30(11):114019.

Cui, T., Fox, C., and O’Sullivan, M. J. (2011). Bayesian calibration of a large-scale geothermal reservoir model by a
new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resources Research, 47(10):[W10521].

Dramsch, J. S. (2020). 70 years of machine learning in geoscience in review. Advances in Geophysics, 61:1–55.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B,
195(2):216–222.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285.

Ernst, J. R., Green, A. G., Maurer, H., and Holliger, K. (2007). Application of a new 2D time-domain full-waveform
inversion scheme to crosshole radar data. Geophysics, 72(5):J53–J64.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian data analysis.
CRC press.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science,
7(4):457–472.

Giannakis, I., Giannopoulos, A., and Warren, C. (2019). A machine learning-based fast-forward solver for ground
penetrating radar with application to full-waveform inversion. IEEE Transactions on Geoscience and Remote Sensing,
57(7):4417–4426.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.
org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets. Advances in neural information processing systems, 27.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.
Biometrika, 82(4):711–732.

Hansen, T. M., Cordua, K. S., Jacobsen, B. H., and Mosegaard, K. (2014). Accounting for imperfect forward modeling
in geophysical inverse problems — Exemplified for crosshole tomography. Geophysics, 79(3):H1–H21.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). GANs trained by a two time-scale
update rule converge to a local Nash equilibrium. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 6629–6640.

Hunziker, J., Laloy, E., and Linde, N. (2019). Bayesian full-waveform tomography with application to crosshole ground
penetrating radar data. Geophysical Journal International, 218(2):913–931.

Irving, J. and Knight, R. (2006). Numerical modeling of ground-penetrating radar in 2-D using MATLAB. Computers
& Geosciences, 32(9):1247–1258.

21

https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggab391/6374556
https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggab391/6374556
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Using deep generative neural networks to account for model errors A PREPRINT

Irving, J. D. and Knight, R. J. (2005). Effect of antennas on velocity estimates obtained from crosshole GPR data.
Geophysics, 70(5):K39–K42.

Jetchev, N., Bergmann, U., and Vollgraf, R. (2016). Texture synthesis with spatial generative adversarial networks.
arXiv preprint arXiv:1611.08207.

Jin, Z. L., Liu, Y., and Durlofsky, L. J. (2020). Deep-learning-based surrogate model for reservoir simulation with
time-varying well controls. Journal of Petroleum Science and Engineering, 192:107273.

Kaipio, J. and Somersalo, E. (2007). Statistical inverse problems: Discretization, model reduction and inverse crimes.
Journal of Computational and Applied Mathematics, 198(2):493–504.

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63(3):425–464.

Köpke, C., Irving, J., and Elsheikh, A. H. (2018). Accounting for model error in Bayesian solutions to hydrogeophysical
inverse problems using a local basis approach. Advances in Water Resources, 116:195–207.

Köpke, C., Irving, J., and Roubinet, D. (2019). Stochastic inversion for soil hydraulic parameters in the presence
of model error: An example involving ground-penetrating radar monitoring of infiltration. Journal of Hydrology,
569:829–843.

Laloy, E., Hérault, R., Jacques, D., and Linde, N. (2018). Training-image based geostatistical inversion using a spatial
generative adversarial neural network. Water Resources Research, 54(1):381–406.

Laloy, E., Hérault, R., Lee, J., Jacques, D., and Linde, N. (2017). Inversion using a new low-dimensional representation
of complex binary geological media based on a deep neural network. Advances in Water Resources, 110:387–405.

Laloy, E. and Vrugt, J. A. (2012). High-dimensional posterior exploration of hydrologic models using multiple-try
DREAM(ZS) and high-performance computing. Water Resources Research, 48(1).

Le, H. and Borji, A. (2017). What are the receptive, effective receptive, and projective fields of neurons in convolutional
neural networks? arXiv preprint arXiv:1705.07049.

Linde, N., Ginsbourger, D., Irving, J., Nobile, F., and Doucet, A. (2017). On uncertainty quantification in hydrogeology
and hydrogeophysics. Advances in Water Resources, 110:166–181.

Malinverno, A. and Briggs, V. A. (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes
and empirical Bayes. GEOPHYSICS, 69(4):1005–1016.

Mariethoz, G., Renard, P., and Caers, J. (2010). Bayesian inverse problem and optimization with iterative spatial
resampling. Water Resources Research, 46(11).

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for generative adversarial
networks. In International Conference on Learning Representations.

Mosser, L., Dubrule, O., and Blunt, M. J. (2020). Stochastic seismic waveform inversion using generative adversarial
networks as a geological prior. Mathematical Geosciences, 52(1):53–79.

Müller, S. and Schüler, L. (2020). GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2(11):113–162.

Pirot, G., Linde, N., Mariethoz, G., and Bradford, J. H. (2017). Probabilistic inversion with graph cuts: Application to
the Boise Hydrogeophysical Research Site. Water Resources Research, 53(2):1231–1250.

Podvin, P. and Lecomte, I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: a
massively parallel approach and its associated tools. Geophysical Journal International, 105(1):271–284.

Pride, S. (1994). Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review
B, 50(21):15678–15696.

Rammay, M. H., Elsheikh, A. H., and Chen, Y. (2019). Quantification of prediction uncertainty using imperfect
subsurface models with model error estimation. Journal of Hydrology, 576:764–783.

Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 60(1):255–268.

Roberts, G. O., Tweedie, R. L., et al. (1996). Exponential convergence of Langevin distributions and their discrete
approximations. Bernoulli, 2(4):341–363.

Ruggeri, P., Irving, J., and Holliger, K. (2015). Systematic evaluation of sequential geostatistical resampling within
MCMC for posterior sampling of near-surface geophysical inverse problems. Geophysical Journal International,
202(2):961–975.

22

Using deep generative neural networks to account for model errors A PREPRINT

Seillé, H. and Visser, G. (2020). Bayesian inversion of magnetotelluric data considering dimensionality discrepancies.
Geophysical Journal International, 223(3):1565–1583.

Subramanian, A. K. and Chong, N. Y. (2019). Mean spectral normalization of deep neural networks for embedded
automation. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pages
249–256.

Sun, A. Y., Scanlon, B. R., Zhang, Z., Walling, D., Bhanja, S. N., Mukherjee, A., and Zhong, Z. (2019). Combining
physically based modeling and deep learning for fusing GRACE satellite data: Can we learn from mismatch? Water
Resources Research, 55(2):1179–1195.

Tang, M., Liu, Y., and Durlofsky, L. J. (2020). A deep-learning-based surrogate model for data assimilation in dynamic
subsurface flow problems. Journal of Computational Physics, 413:109456.

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and
Applied Mathematics.

Tarantola, A., Valette, B., et al. (1982). Inverse Problems= Quest for Information. Journal of Geophysics, 50(1):159–170.
ter Braak, C. J. and Vrugt, J. A. (2008). Differential Evolution Markov Chain with snooker updater and fewer chains.

Statistics and Computing, 18(4):435–446.
Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31.
Tripathy, R. K. and Bilionis, I. (2018). Deep UQ: Learning deep neural network surrogate models for high dimensional

uncertainty quantification. Journal of Computational Physics, 375:565–588.
Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The missing ingredient for fast stylization.

arXiv preprint arXiv:1607.08022.
Vrugt, J. A., Ter Braak, C. J., Gupta, H. V., and Robinson, B. A. (2009). Equifinality of formal (DREAM) and informal

(GLUE) Bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment,
23(7):1011–1026.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing, 13(4):600–612.

Xiao, D. (2019). Error estimation of the parametric non-intrusive reduced order model using machine learning.
Computer Methods in Applied Mechanics and Engineering, 355:513–534.

Xu, T. and Valocchi, A. J. (2015). A Bayesian approach to improved calibration and prediction of groundwater models
with structural error. Water Resources Research, 51(11):9290–9311.

Xu, T., Valocchi, A. J., Ye, M., and Liang, F. (2017). Quantifying model structural error: Efficient Bayesian calibration
of a regional groundwater flow model using surrogates and a data-driven error model. Water Resources Research,
53(5):4084–4105.

Yu, S. and Ma, J. (2020). Data-driven geophysics: from dictionary learning to deep learning. arXiv preprint
arXiv:2007.06183.

23

Using deep generative neural networks to account for model errors A PREPRINT

A Details on SGAN Architecture and training

Below we discuss the SGAN architecture and provide practical information about its training.

A.1 Network architecture

Figure 13 details the architecture of the SGAN used in this study. The learning rate of the generator (ratio of 1 : 4 in
learning rate between generator and critic) in subsurface-model training is 5e− 05 while it is 1e− 06 in model-error
training. We found that using such a low learning rate was essential to avoid artifacts from appearing in the generated
images. We used a batch size of 64 even if a batch size of 32 provides similar results. The hyper-parameters of each
layer are detailed in Table 5 and include the kernel, stride and padding sizes. We use the RMSProp (Tieleman and
Hinton, 2012) optimizer in both generator and critic to update the parameters of the network.

Figure 13: SGAN architecture showing the activation and normalization types and output size after each convolution
(/transposed convolution) with NC being the number of image channels (e.g. three channels in RGB images). When
training over model errors the critic layers include mean-spectral-normalization as opposed to spectral normalization
alone for subsurface-model training.

A.2 Effective receptive field and feature size

A distinct difference between SGANs and GANs is the way information in the latent space is being translated into
the image space. GANs usually involve a latent space vector where each latent parameter affects the resulting images
globally, while in SGANs the latent parameters are ordered within a 2D/3D tensor and contain local information
which overlaps in the image space. One of the limitations arising from using spatially-dependent information within a
convolutional network is that a change in the dimensions of the latent space affects the output image size (see eq. (11)).
This means that the network output size is determined by the dimensions of the latent space. All input to the critic
in SGANs must have the same dimensions, therefore, the dimensions of the TIs should match those of the generated
images.

We can easily match image sizes by performing an interpolation on the TI to match the generated image dimensions (or
vice versa). Note though that there is an indirect effect of image interpolation on the learning process that is related to
the effective receptive field (ERF). The ERF is the area in the input (or output in the case of a generator) influencing a

24

Using deep generative neural networks to account for model errors A PREPRINT

Table 5: SGAN hyper-parameters.

layer kernel stride padding

Generator

1 5 2 3
2 5 2 3
3 5 2 3
4 5 2 3
5 5 2 4

Critic

1 5 2 2
2 5 2 2
3 5 2 2
4 5 2 2
5 1 2 0

Figure 14: (a) Multi-Gaussian TI of dimensions 65x65 pixels and (b) the same TI interpolated into 129x129 pixels,
both overlaid by the ERF’s of neurons computed for 5 sequential convolutional layers. The ERF is computed given
k = 5 and s = 2 for all layers.

neuron in a given convolutional layer. The ERF is a function of the kernel and stride sizes and can be computed for the
lth layer in the following way (Le and Borji, 2017):

Rl = Rl−1 + (kl − 1)

l−1∏
i=1

si, (16)

where Rl and Rl−1 are the ERF’s of a neuron in the current and previous layers, kl is the kernel size in the current layer,
si is the stride in layer i and R0 = 1. Although the ERF size does not depend on the size of the image or latent space,
an interpolation to the TI affect the network for given kernel and stride sizes. The reason is that for an interpolated
TI, features within the image are larger/smaller and therefore, the portion of the features seen by a neuron is changed
(see Figure 14). As illustrated in Figure 14, where the ERFs of 5 layers are plotted on top of a TI before and after
interpolation for a given network architecture, the resolution in which neurons in each layer ’see’ features of difference
scales changes with interpolation. This means that some scales cannot be properly resolved which can lead to a mode
collapse or a failure of the network to learn the underlying data distribution.

Hence, it is important to test how well the output/input image is covered by the ERF’s of neurons in different layers.
Since the SGAN was proven to be substantially more sensitive to changes in k or s than in p (padding; see section 2.3),
in our work we limited the generated image size using padding when we increased the number of latent parameters.

25

Using deep generative neural networks to account for model errors A PREPRINT

B Quality measure calculation

Here we expand the information concerning the quantitative measures appearing in Tables 2, 3 and 4. We use RMSE
as a metric for model and data fit. The RMSE of the model (RMSEΦ) is calculated on porosity values of individual
posterior realizations (only the last 50% of each chain is considered) with respect to the reference model:

RMSEΦ =

√∑NΦ

n=1(Φref −Φn)2

NΦ
, (17)

where NΦ is the number of subsurface model parameters. The final reported RMSEΦ is the average value of posterior
samples. The data RMSE (RMSEd) is the average RMSE value in the last draw of the MCMC chains

RMSEd =

√∑Nd

n=1(d− dsimn)2

Nd
, (18)

where Nd is the number of data points.

The structural similarity (SSIM; Wang et al., 2004) index of two images U and V is a common quantitative measure
in image processing. It is calculated using sliding windows u and v of dimension M ×M (we use a 7× 7 window)
subsampling the [0, 1] normalized images,

SSIM(u, v) =
(2µuµv + C1)(2σuv + C2)

(2µ2
u + µ2

v + C1)(2σ2
u + σ2

v + C2)
, (19)

where µu and µv are the mean values over u and v, σ2
u and σ2

v are the respective variances of u and v and σuv is the
covariance between u and v. We follow Wang et al. (2004) and set C1 = 0.01 C2 = 0.03.

The error recovery value is calculated based on MSE values of the reference model error with respect to 0
(MSE(ηref , 0)) and the MSE of the inferred model error with respect to the reference model (MSE(η,ηref)):

MSE(ηref , 0) =

∑Nη

n=1(0− ηref,n)2

Nη
, (20)

MSE(ηapp,ηref) =

∑Nη

n=1(ηref − ηapp,n)2

Nη
, (21)

where Nη is the number of model error parameters. The error recovery is the fraction of the average MSE(ηapp,ηref)
within posterior samples and MSE(ηref , 0) given in percentage:

ER =
MSE(ηapp,ηref)

MSE(ηref , 0)
∗ 100%. (22)

26

	1 Introduction
	2 Methods
	2.1 Database preparation
	2.1.1 Multi-Gaussian model database
	2.1.2 Crosshole GPR simulations and model-error database

	2.2 Generative adversarial networks
	2.3 SGAN architecture and training
	2.4 Bayesian inference of latent parameters

	3 Results
	3.1 Quality assessment of generative models
	3.2 Inversion results
	3.2.1 Convergence
	3.2.2 Test Case 1: eikonal - straight-ray model error
	3.2.3 Test Case 2: FDTD - straight-ray model error

	4 Discussion
	5 Conclusions
	6 Acknowledgements
	A Details on SGAN Architecture and training
	A.1 Network architecture
	A.2 Effective receptive field and feature size

	B Quality measure calculation

