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Abstract

Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila
pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal
and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the
virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully
active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary
structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is
regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P.
entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage
of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin
production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is
consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins
suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.
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Introduction

The intestinal epithelium has a role in defining the barrier

between the host and the external environment [1]. This barrier

protects the host against invasion and systemic dissemination of

both pathogenic and commensal microorganisms. Both resistance

and tolerance mechanisms contribute to maintain the gut integrity

from the assault of infectious bacteria [2]. Resistance mechanisms

involve the activation of various local immune responses that

directly target pathogens. In contrast, tolerance mechanisms

involve the activation of repair and stress pathways that quickly

seal damages caused by infectious agents. Pathogenic bacteria

have the capacity to overcome gut defenses and impede the return

to homeostasis [3]. To study how pathogenic bacteria disrupt gut

homeostasis, we chose to investigate the interactions between

Drosophila and a newly identified entomopathogen, Pseudomonas

entomophila. P. entomophila is closely related to the saprophytic soil

bacterium Pseudomonas putida [4,5]. It was originally isolated from a

fly sampled in Guadeloupe and subsequently shown to be lethal to

Drosophila larvae and adults after ingestion. P. entomophila can also

effectively kill members of other insect orders (e.g. Bombyx mori,

Anopheles gambiae, Galleria mellonella). After ingestion, P. entomophila is

able to persist in the Drosophila gut. It induces the expression of

antimicrobial peptide genes via the Imd pathway, both locally in

the intestinal epithelium and systemically in the fat body, an organ

analog to the mammalian liver [4]. It was shown that P. entomophila

virulence is under the control of two global regulatory systems: the

well known GacS/GacA two component system, and a second

system involving a secreted secondary metabolite synthesized by

the pvf gene products [4,6]. The Gac system also controls the

production of a secreted protease, AprA, which is important for P.

entomophila to counteract the local immune response of Drosophila

[7].

Recent studies revealed that upon bacterial infection, homeo-

stasis in the gut is restored only when bacterial clearance is

coordinated with the repair of infection-induced damage through

epithelium renewal [8–10]. Epithelium renewal of the Drosophila

gut is stimulated by the release of the secreted ligand Upd3 from

damaged enterocytes, which then activates the JAK/STAT

pathway in intestinal stem cells to promote both their division

and differentiation, establishing a homeostatic regulatory loop

[8,9]. In contrast to infection with non-lethal bacteria, P.

entomophila infection inflicts strong damage to its host without

triggering an epithelial renewal [8,11]. This suggests that the

damages inflicted by P. entomophila are too severe to be repaired.

How damages are inflicted however remains unknown. One

hypothesis was that P. entomophila produces cytotoxic factors that

damage the intestinal epithelium.
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In this study, we identified a secreted protein that plays an

important role in the damage inflicted by P. entomophila to the

Drosophila gut. We showed that this protein is a pore-forming toxin

(PFT) that we called Monalysin. Our work indicates that

production of PFTs is a strategy used by entomopathogenic

bacteria to disrupt gut homeostasis.

Results

Identification of a secreted protein involved in P.
entomophila pathogenicity

We previously showed that P. entomophila secretes large amount

of the metalloprotease, AprA, which can degrade antimicrobial

peptides [7]. The production of this protease is regulated by the

GacS-GasA system, known to control secondary metabolite

production, protein secretion, and virulence determinants in c-

proteobacteria [12]. To identify additional factors responsible for

P. entomophila virulence, we analyzed the culture supernatant of the

wild-type bacterium and a gacA mutant by SDS-PAGE

(Figure 1A). Bands corresponding to major secreted proteins in

the wild type strain, but not in the gacA mutant were submitted to

analysis by mass spectrometry. This allowed us to confirm that one

of the major bands corresponds to the 51 kDa AprA. Three bands

contained Hcp, Vgr and Rhs, proteins known to be secreted by the

Type VI Secretion System (T6SS). T6SS are bacterial needle-like

structure involved in the injection of effectors into the cytoplasm of

eukaryotic but also prokaryotic cells [13]. We also identified a

band with an apparent molecular weight of 30 kDa, containing a

protein encoded by the uncharacterized gene pseen3174 that we

named Monalysin.

In order to investigate the role of these secreted proteins, we

made a T6SS mutant (affecting the ORF pseen0535) and a monalysin

(mnl) mutant (Dmnl), and tested their virulence in Drosophila. No

difference could be observed between the wild type strain and the

T6SS mutant. Interestingly, the mnl mutant presented a decreased

pathogenicity. Indeed, survival analysis of Drosophila adults after

oral infection with the wild-type strain, the gacA mutant, and the

mnl mutant showed that only 40% of the flies infected with the mnl

mutant succumbed within 3 days, while 70% of the flies died after

infection with wild-type P. entomophila (Figure 1B and Figure
S6). As previously shown [4], a gacA deficient mutant did not show

any pathogenicity using this assay. The attenuated virulence of the

mnl mutant was fully rescued by complementation with a wild-type

copy of the monalysin gene.

A mutant deficient in Monalysin production is affected in
its abilities to induce cell damage in the Drosophila gut

It was previously shown that P. entomophila virulence towards

Drosophila is associated to its ability to persist in the gut and the

transcription of antibacterial peptide genes both locally and

systematically [4]. In order to better characterize the role of the

monalysin gene in the infectious process, we next compared the

ability of the mnl mutant (Dmnl) to persist to that of the wild type

strain or a gacA mutant. Flies were infected by feeding and

bacterial loads were quantified at two time points (Figure 1C).
While bacterial loads were indistinguishable after 3 hrs, persistence

of the mnl mutant and the gacA mutant were significantly decreased

when compared to wild type bacteria [4]. We then compared the

activation of the Imd pathway after infection by the wild type, the

gacA, and the mnl mutant. We used reverse transcriptase

quantitative PCR (RT-qPCR) to measure the expression of the

Diptericin gene, a target of the Imd pathway, specifically in the gut

(local response) or in whole flies (reflecting mostly the systemic

expression of Diptericin by the fat body) (Figure 1D and E). As

previously shown [7], Diptericin expression increased already 4 h

after infection by P. entomophila and even more after 16 h, both in

the gut and the fat body, an increase that was not observed for the

gacA mutant [4]. The mnl mutant leads to an increase in Diptericin

expression in the gut similar to that observed for the wild-type

bacterium (Figure 1D). However, while Diptericin expression

increased to wild-type levels in the fat body 4 h after infection, no

further increase was observed (16 h) in flies infected with the mnl

mutant (Figure 1E).

We next investigated the contribution of Monalysin in the

damage caused by P. entomophila to the Drosophila gut. We first

monitor the induction of cell death upon bacterial ingestion using

an acridine orange staining. A high number of dead cells were

detected in guts from flies infected by wild type P. entomophila, but

not in guts from flies infected by a gacA mutant as previously

reported [6]. Interestingly, a reduced level of cell death was

observed in the mnl mutant (Figure 1F and S7). Oral infection

with P. entomophila resulted in a decrease of the adherens junction

marker Cadherin-GFP (Figure 2A) and to morphologically

altered guts, with regions devoid of enterocytes indicative of a

disruption of tissue integrity (see the lack of nuclear DAPI staining

due to the loss of cell in Figure 2A3). Interestingly, gut collected

16 hrs after oral infection with gacA and mnl mutants did not show

any Cadherin-GFP signal decreases or a rupture of the gut

integrity (Figure 2A4 to 2A6). Previous studies showed that

ingestion of P. entomophila activates both JAK-STAT and the Jun

N-terminal kinase (JNK) pathway in the Drosophila gut [8] that

participate in the repair and stress responses, respectively [8,14–

16]. The activation of both pathways can be monitored by

measuring by RT-qPCR the expression of puckered (puc) (a direct

downstream target of JNK signaling) or upd3 (a target of JAK-

STAT signaling) and Socs36E (a target of JAK-STAT signaling

that encodes a negative regulator of this pathway). Figure 2B, 2C
and 2D shows that the mnl mutant was less efficient than wild type

P. entomophila to activate the JNK and JAK-STAT pathways, yet

more efficient than a gacA mutant. Consistent with the RT-qPCR

analysis, expression of the upd3-GFP reporter gene (upd3-Gal4,

Author Summary

Insects are potential reservoirs for microbes and ideal
vectors for their transmission due to their motility and
capacity to live in bacteria-rich environments. This is
exemplified by fruit flies that live in rotting fruits and are
capable of transmitting phytopathogenic bacteria. Insects
are notably resistant to microbial infection allowing them
to colonize these microbe-rich environments. To study
how pathogenic bacteria disrupt gut homeostasis, we
investigated the interactions between Drosophila and a
newly identified entomopathogen, Pseudomonas entomo-
phila. Ingestion of P. entomophila inflicts severe damage to
the Drosophila intestine. How damages are inflicted,
however, remains unknown. In this study, we identified a
secreted protein that plays an important role in the
damage inflicted by P. entomophila to the Drosophila gut.
We showed that this protein is a pore-forming toxin (PFT)
that we named Monalysin. Our study reveals that
Monalysin oligomerizes into ring-like structures that form
pores into the plasma membrane of target cells leading to
the disruption of membrane permeability and cell death.
Our work together with studies on the insecticidal Cry
toxins produced by Bacillus thuringiensis suggests that
production of PFTs is a common strategy of entomo-
pathogenic bacteria to interfere with insect gut homeo-
stasis.

P. entomophila Pore-Forming Toxin Monalysin
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UAS-GFP) was strongly induced in the gut of flies orally infected

with a sub-lethal dose of P. entomophila but not the mnl mutant

(Figure 2E). Altogether, these data show that even though the mnl

mutant retains some ability to cause intestinal damage, this ability

is strongly diminished compared to wild type P. entomophila. This

suggested a specific role of the Monalysin protein in P. entomophila

cytotoxicity towards Drosophila.

Monalysin is a secreted cytotoxic protein
In order to characterize the activity of the secreted protein

encoded by monalysin, we produced and purified a his-tag version

of it in E. coli. Ingestion of the recombinant protein at high dose

had no impact on fly survival. However, the Monalysin protein

was highly toxic when directly injected in the body cavity

(Figure 3A). This dose-dependent lethal activity suggests that

Monalysin function as a bacterial toxin. Results shown in

Figures 3B, 3C and Table S2 indicate that Monalysin has a

strong cytotoxicity towards S2 cells (derived from Drosophila

embryonic hemocytes) and SF9 cells (from the Lepidoptera

Spodoptera frugiperda). Moreover, Monalysin treated S2 cells showed

DNA fragmentation and condensation that are sign of apoptosis

(Figure 3D and E). Along the same line, Figure 4A shows that

the recombinant toxin rapidly induced hemolysis in a dose

dependant manner as measured by the loss of sample turbidity. In

addition we found that two mammalian culture cell lines – Hela

and RPE1– were also sensitive to Monalysin (Figure 4B and
Table S2). Altogether these observations show that Monalysin is a

secreted cytotoxic factor of P. entomophila with a broad range of

activity.

Regulation and processing of Monalysin
P. entomophila virulence is controlled by several regulatory

systems: i) the two component system GacS/GacA that functions

at the post-transcriptional level, ii) a secreted signaling molecule

produced by the pvf genes, and iii) AlgR that is known to control

alginate production in other bacteria [5,6,7]. To determine which

of these mechanisms regulate Monalysin production, crude cell

extracts or filtered supernatants from wild-type and mutant P.

entomophila were analyzed using a specific antiserum (Figure 5A,
Figure S5). Monalysin was undetectable in both cells and

medium of P. entomophila lacking the two-component system GacS/

GacA and the pvf signaling molecule.

Interestingly, this analysis revealed that the supernatant of P.

entomophila contained a shorter form of Monalysin when compared

to the form detected in cell extracts. A N-terminal Edman

sequencing of the shorter form found in culture supernatant

(extracted from SDS gels) was performed, which revealed that the

size shift was due to a cleavage taking place before Asparagine 34

(indicated in Figure 6A). Many toxins require a proteolytic

activation, which can be performed by proteases produced by the

bacterium itself or by enzymes of the host digestive tract [17].

Interestingly P. entomophila secretes large amounts of the metallo-

protease AprA. To test whether AprA could be responsible for

maturation of pro-Monalysin to Monalysin, we analyzed the

supernatants of AprA-deficient and wild-type P. entomophila by

Western blotting. Figure 5B shows that pro-Monalysin was found

in supernatant derived from the aprA mutant while the mature

form predominates in supernatant from wild-type P. entomophila.

Collectively, our data indicate that Monalysin production is

controlled by the global regulatory systems Gac and Pvf and that

its N-terminus is cleaved by AprA upon secretion into the

extracellular medium.

Monalysin is a novel ß-type pore-forming toxin
The Monalysin amino acid sequence does not show any

homology to other sequences using P Blast, except for two

uncharacterized orthologs found in Pseudomonas putida F1 strain

(Figure S1). Neither the P. entomophila nor the P. putida gene

products displayed any obvious protein domains. Nevertheless, the

use of the HHpred software (Homology detection & structure

prediction by HMM-HMM comparison) revealed the presence of

an internal region with alternating polar and hydrophobic residues

flanked by stretch of serine- and threonine residues, a hallmark of

the membrane-spanning region of ß-barrel pore-forming toxins

(Figure 6A). PFTs can be classified according to the secondary

structure of their membrane-spanning region as a- and ß-PFTs.

Far-UV circular dichroism analysis of Monalysin revealed a

spectrum typical of structured proteins (Figure S2). The content

of a-helixes and b-sheets was estimated to be 13% and 40%,

respectively in agreement with the secondary structure prediction

obtained with the program JPRED giving 17% of a-helixes and

35% of b-sheets as indicated in Figure 6A. This program also

indicated that the putative membrane-spanning region of

Monalysin was formed of a ß-sheet. This sequence analysis

suggests that Monalysin is related to PFT of the ß-type.

ß-PFTs are synthesized as soluble proteins and have the ability

to multimerize into circular polymers at high concentration, a step

that for certain toxins, such as Aerolysin, requires proteolytic

activation [18]. We next investigated whether Monalysin shared

these properties with PFTs. SDS-PAGE analysis of a fresh

recombinant Monalysin solution revealed a major band at the

expected size (30 kDa) as well as several high molecular weight

bands corresponding to oligomers that were resistant to SDS (see

below). Interestingly, a shorter form of the protein was observed

upon storage of samples at 4uC (Figure S3A). This together with

the observation that Monalysin is matured by AprA indicates the

existence of a protease sensitive site in the N-terminus part of

Monalysin (Figure 5B). The cleavage of the recombinant pro-

Monalysin into its shorter form could also be induced by a limited

trypsinolysis (Figure S3B). This processed form has a molecular

Figure 1. PSEEN3174 encodes a secreted protein, Monalysin, required for P. entomophila virulence. (A) SDS-PAGE analysis of culture
supernatants from wild type P. entomophila and the DgacA derivative. Proteins extracted from culture supernatants were loaded on a SDS-PAGE and
stained with coomassie blue. The nature of proteins identified by MALDI-TOF analysis of tryptic fragments is shown on the right. (B) Survival analysis
of wild-type Oregon adult flies following infection by feeding with the P. entomophila wild-type strain (Pe), the gacA-deficient strain (DgacA), the mnl
deficient strain (Dmnl) the mnl-deficient strain carrying a plasmid expressing a wild-type copy of the monalysin gene (Dmnl-pPSVmnl), or carrying the
plasmid pPSV35 without any insert (Dmnl-pPSV). UN: unchallenged. The Kaplan-Meier log rank test was used to determine statistical significance.
Dashed brackets represent the significance between the different infections (***: p,0.001, ns: not significant). (C) Bacterial persistence in wild-type
Oregon flies as the number of colony-forming-unit (cfu) per fly. After infection by the P. entomophila wild-type strain (Pe), the gacA-deficient strain
(DgacA), the mnl deficient strain (Dmnl), the number of cfu per fly was determined at the indicated time point. (D and E )Time-course analysis of
Diptericin expression measured by RT-qPCR in (D) guts (local) or (E) whole flies (corresponding to the systemic fat body expression). (F) Cell death
quantification using acridine orange staining. Results represent the percentage of dead cells (acridine orange positive nuclei) in the midguts of flies
infected for 16 hours with the indicated bacterial strains. Results represent the average of four independent experiments. Statistical analysis was
performed using a Wilcoxon test, and different letters indicate significantly different values (P,0.05).
doi:10.1371/journal.ppat.1002259.g001
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Figure 2. Monalysin contributes to P. entomophila-inflicted damage to the Drosophila gut. (A) Expression of the marker of adherens
junction Cadherin-GFP 16 hours after infection with lethal doses of the indicated bacteria. Ingestion of wild type P. entomophila disrupts the pattern
of Cadherin-GFP. A3 and A6 show DAPI of A2 and A5 respectively. The symbol (*) marks regions where DAPI staining is absent. (B–D) Analysis of
puckered (puc), unpaired3 (upd3), and socs36E expression measured by RT-qPCR in guts of infected flies. Statistical analysis was performed using a
Wilcoxon test and letters indicate significantly different values (P,0.05). (E) Expression of the upd3-Gal4, UAS-GFP reporter in (E1) unchallenged flies
or( E2–E4) 4 hours after infections with a sublethal dose of bacteria (OD600 = 10). In contrast to the wild type P. entomophila strain (E2), the Dmnl (E3)
and the DgacA (E4) strains were unable to elicit upd3-GFP expression. Scale bars represent 50 mm.
doi:10.1371/journal.ppat.1002259.g002
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weight of 26.5 kDa as determined by MALDI-TOF analysis, as

opposed to 30.2 kDa for the full-length pro-toxin. Interestingly,

Monalysin had stronger hemolytic activity than pro-monalysin

(Figure 4A), indicating that the removal of the N-terminal

fragment constitutes a maturation step that enhances the cytotoxic

activity. Processing of pro-monalysin to its mature form was

accompanied by an increase and change in the higher order SDS-

resistant complexes (Figure S3B).

While multiple size oligomers were observed by SDS-PAGE, a

single species was observed by native PAGE analysis of Monalysin

(Figure S3C). Multi-Angle Light Scattering analysis (MALS/

UV/RI) confirmed the presence of a single species with a

molecular mass of 546 kDa and hydrodynamic radius of 7.5 nm

hence a diameter of 15 nm, which would correspond to about 18

monomers (Figure S4). This was further confirmed by electron

microscopy of negatively stained recombinant Monalysin which

Figure 3. Monalysin encodes a cytotoxic protein secreted by P. entomophila. (A) Survival analysis of wild-type Oregon adult flies after
injection of various quantities of Monalysin or heat-inactivated (denaturated) Monalysin. (B and C) Cytotoxic effect of Monalysin on insect culture cell
line S2. (B) Drosophila S2 cells and Spodoptera frugiperda Sf9 cells were treated with Monalysin (Final concentration = 100nM) and stained with a live-
dead viability reagent. Living cells are stained in green with Calcein while dead cells are stained in red with Ethidium homodimer 1 (EthD1, red). (C)
The loss of viability was quantified by measuring the release of lactate dehydrogenase (LDH) from S2 cells. (D) DNA fragmentation in S2 cells was
monitored by ISNT (in situ nick translation). (E) Chromatin condensation on untreated and Monalysin treated S2 cells was examined by DAPI staining.
Phase-contrast and fluorescence views of the same microscopic fields are shown. (2) untreated cells, (+) = cells treated with Monalysin 100nM.
doi:10.1371/journal.ppat.1002259.g003
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showed circular like (top view) and barrel like structures (side view)

similar to that observed with other ß-PFT (Figure 6B).

Sequence analysis of Monalysin, its ability to form ring like high

order structures combined with its hemolytic activity strongly

indicate that the toxin is a PFT. To address this issue directly, we

analyzed its ability to form channels in planar lipid bilayers, an

extremely sensitive electrophysiological method that enables the

study of single-channel events. Addition of Monalysin led to a

stepwise increase in membrane current, reflecting the formation of

pores (Figure 6C). Collectively, our data show that P. entomophila

Monalysin is a bona fide pore-forming toxin of the ß type.

Discussion
Many bacterial pathogens, both Gram-positive and Gram-

negative, produce PFTs that contribute to their virulence [17].

Here we report the identification of a novel PFT that contributes

to the virulence of P. entomophila against Drosophila. Our data show

that Monalysin requires N-terminal cleavage to become fully

active, forms oligomers in vitro, and induces pore formation in

artificial lipid membranes. The prediction of the secondary

structure of the membrane-spanning domain indicates that

Monalysin is a PFT of the ß-type. Outside of this domain,

Monalysin does not show any homology to any other PFT and

appears rather different from previously identified insecticidal

PFTs such as B. thuringiensis Cry toxins. Nevertheless, Monalysin

has two homologs in the closely related P. putida F1 strain. These

proteins could participate to the interaction of some Pseudomonas

species with eukaryotic cells, defining a new family of PFTs.

We previously showed that P. entomophila virulence is multi-

factorial and regulated by multiple signaling modules. Taking

advantage of the genetic amenability of both the host and the

pathogen, we aimed to identify P. entomophila and Drosophila

pathways and effectors involved in the infectious process. Using

this integrated approach, we previously proposed a role for the

AprA metalloprotease in protection against antimicrobial peptides

[7]. We now identify a second virulence factor, the ß-PFT

Monalysin. Like AprA, a mnl mutant is affected in several, but not

all, aspects of P. entomophila virulence. This attenuated virulence of

the mnl mutant is clearly shown by survival analysis, which

Figure 4. Monalysin hemolytic activity and cytotoxicity towards mammalian cells. (A) Hemolytic activity was measured with pro and
matured Monalysin incubated with red blood cells. The mature Monalysin was obtained by limited trypsinolysis of a fresh extract of recombinant Pro-
Monalysin. (B) Phase contrast microscopy of Hela cells untreated or treated with Monalysin 100 nM for 24h. Cells were shrinking and displayed
irreversible loss of adherence.
doi:10.1371/journal.ppat.1002259.g004
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monitors the global outcome of infection. Our study indicates that

Monalysin significantly contributes to the damage inflicted to

intestinal cells by the bacterium, which is fully consistent with its

activity as a pore-forming toxin. Supporting this notion, we

observe that a mnl-deficient mutant induced less cell damage and a

lower level of stress and repair pathway activity. The mnl mutant

still induced a local immune response but the systemic immune

response is drastically attenuated. This is also consistent with a role

of Monalysin as a cytotoxin since activation of a systemic immune

response is probably linked to damage of intestinal tract rendering

possible the translocation of peptidoglycan, the bacteria elicitor

activating the Imd pathway, from the lumen to the hemolymph

compartment.

We also show that Monalysin production is regulated both by

the GacS/GacA two component-system and the pvf genes.

However, a mnl mutant still causes higher levels of stress and

damage to the intestinal epithelium than gacA or pvf mutants. This

indicates that these signaling modules regulate additional virulence

factors contributing to P. entomophila cytotoxicity. Alternatively, it is

possible that the overall cytotoxicity is caused by a synergy

between the metalloprotease AprA and the PFT Monalysin, both

of them being regulated by GacA. Along this line, we observed

that AprA promotes the rapid cleavage of the pro-Monalysin into

its active form. Since Monalysin can also be processed by trypsin,

it is likely that AprA is not essential for PFT function of Monalysin

in the Drosophila gut, as this toxin could also be processed by host

enzymes. Both Monalysin and AprA are expressed in the algR

mutant that affects a transcriptional regulator involved in alginate

production as well as genes that are often associated to virulence

(ie: pili biosynthesis, cyanide production…) [19]. The observation

that an algR mutant is still avirulent (Vodovar 2005), although

expressing both Monalysin and AprA, indicates the existence of

additional virulence factors. Future studies should investigate at

which level Pvf and GacS/GacA affect Monalysin production as

well as identify other potential virulence factors regulated by the

Pvf, Gac or AlgR.

Recent studies have shown that cells respond to PFTs by

inducing repair and stress signal-transduction pathways to repair

damage. Studies in C. elegans and mammalian cells have revealed a

role for the P38 pathway, the unfolded protein response, and

hypoxia in cellular resistance to the action of PFT [20–22]. The

reduced expression of JAK-STAT and JNK pathway activities in

guts infected with the mnl mutant indicate that Drosophila epithelial

cells respond to PFT by activating stress and repair pathways.

Thus, the P. entomophila/Drosophila interaction provides an

interesting model to dissect the host response to PFTs in a natural

infectious context.

Insects are potential reservoirs for microbes and are ideal

vectors for their transmission due to their motility and their

capacity to live in bacteria-rich environments [23]. This is

exemplified by fruit flies that live in rotting fruits and are capable

of transmitting phytopathogenic bacteria [24]. Insects are notably

resistant to microbial infection allowing them to colonize these

microbe-rich environments. This is largely due to the existence of

very efficient physical barriers that block entry of microbes in the

body cavity. As an illustration, injection of less than 10 cells of P.

aeruginosa or Serratia marcescens in the body cavity rapidly kills flies,

while high doses of these bacteria have only modest effects on

survival when ingested [25]. In contrast to mammals, the gut of

insects is lined with a chitinous matrix, the peritrophic matrix [26],

that blocks the direct interaction between bacteria and epithelia

cells and prevents the use of virulence devices such as type III and

VI secretion systems that allow the injection of virulence factors

directly into target cells. Rare bacterial species such as Photorhabdus

luminescens can bypass this physical barrier since there are

transported by symbiotic nematodes that can pierce the insect

cuticle [27]. Other entomopathogens that enter through the oral

route have to escape the local immune response and breach the

gut barrier [23]. Despite the characterization of several virulence

factors in few species, the mechanisms by which enteric pathogens

kill insects remain poorly understood. This paper together with the

well-characterized action of Bacillus thuringiensis cytotoxin Cry

suggests that PFTs efficiently promote bacterial colonization of the

insect gut [28–30]. This heavy artillery strategy does not require a

direct contact between bacteria and host cells since PFTs can cross

the pores of the peritrophic matrix and reach intestinal cells. PFTs

Figure 5. Regulation and processing of Monalysin. (A) Western-blot analysis of proteins from crude cell extracts or filtrate supernatants shows
that Monalysin was not produced in gacA and pvf mutants, but was produced in the algR mutant. (B) Western-blot analysis of bacterial crude cell
extracts and filtrated supernatants of Pe wt and DaprA shows that pro-monalysin is not processed in the supernatant of an AprA mutant. The stronger
signal in the AprA mutant lane is due to the fact that the serum recognized better the pro-monalysin than the monalysin (see Figure S5).
doi:10.1371/journal.ppat.1002259.g005
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Figure 6. Monalysin is a ß pore-forming toxin. (A) Protein sequence analysis of Monalysin reveals an internal domain with amphipathic patches
flanked by serine- and threonine-rich sequences that shares similarities with the membrane-spanning domain of ß-PFT (e-toxin from Clostridium
perfringiens, aerolysin from Aeromonas hydrophila and MTX-3 from Bacillus sphaericus). The multiple sequence alignment reveals the presence in P.
entomophila Monalysin of putative membrane exposed residues (Yellow stars), solvent-exposed residues (green stars), and serine and threonine
residues (red stars). A black star ( ) shows the first amino acid detected by MALDI-TOF analysis of tryptic fragment of the recombinant Monalysin.
The N-terminal residues of the mature Monalysin, identified by Edman sequencing, present in P. entomophila supernatant are underlined in red; a
triangle (.) indicates the potential cleavage site of pro-monalysin deduced from the N-terminal Edman sequencing. Purple cylinders indicate
predicted a-helixes and yellow arrows indicate predicted b-sheets. (B) Scanning Electron micrographs show that Monalysin forms circular-like
structures (top view) and barrel-like aggregates (side view). Scale bar represents 100 nm. (C) Monalysin (5 mg.ml) is able to form pores in a planar lipid
bilayer.
doi:10.1371/journal.ppat.1002259.g006
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can induce gut damage and rupture of intestinal homeostasis that

in fine will lead to a weakening of the gut barrier and an inhibition

of gut peristaltism promoting bacteria persistence. Gut damage

and food uptake blockage are two symptoms of insect pathogenesis

and could reflect the action of PFTs [23]. It would be interesting to

know if other entomopathogens such as Serratia marcescens and

Serratia entomophila also used PFT to colonize their insect host. In

conclusion, this and other studies using different bacteria species

contribute to uncovering strategies used by entomopathogens to

breach insect barriers. A better knowledge of these strategies could

also open the route to new methods of insect pests control.

Materials and Methods

Bacterial strains, media and antibiotics
P. entomophila L48 [4] was grown in LB for all experiments. P.

entomophila mutated for the gacA, aprA, algR, and the pvf gene are

described elsewhere [4,5,6,7,11]. The mnl deletion construct was

generated by amplifying flanking regions of the monalysin gene

(pseen3174 or mnl) by PCR. The resulting PCR product was cloned

into the plasmid pEXG2. This plasmid was then used to create the

strain D3174 (alternatively Dmnl), containing a deletion of the gene

pseen3174. Complementation construct were made by cloning into

the plasmid pPSV35 of PCR-amplified DNA fragments from P.

entomophila containing the mutated genes. Pseudomonas Isolation

agar (PIA, Difco) was used for selection after conjugations and

persistence experiments. When E. coli was grown, antibiotics were

used when necessary at the following concentrations: G418,

25 mg/ml and tetracycline, 5 mg/ml. When P. entomophila was

grown, antibiotics were used when necessary at the following

concentrations: gentamicin, 50 mg/ml for liquid cultures and

150 mg/ml for solid media, tetracycline 40 mg/ml and rifampicin,

30 mg/ml. The bacterial strains used in this study and the culture

conditions are presented in Table S1. All primer sequences are

available upon request. Insertion constructs were generated as

previously described [6,11].

Sequence analysis
DNA sequence searches and analysis were performed using the

Pseudomonas genome database (www.pseudomonas.com). The

monalysin gene (ORF PSEEN3174) corresponds to the accession

number YP_608728.1 . Monalysin putative orthologs in Pseudo-

monas putida Pput_1063 and Pput_1064 correspond to the

accessions numbers YP_001266408.1 , YP_001266409.1 respec-

tively. The ORF PSEEN0535 involved in the production of the

type VI secretion system corresponds to the accession number

YP_606298.1 Monalysin amino-acids sequence analysis was

performed using the HHpred software (Homology detection &

structure prediction by HMM-HMM comparison http://toolkit.

tuebingen.mpg.de/hhpred).

Fly stocks and infection assays
Oregon R flies were used as a standard wild-type strain and

were maintained at 25uC. Adherens junctions were visualized

using ubi-DE-cadherin-GFP flies [14,31]. Upd3 expression in

unchallenged gut and following infection, was monitored using

upd3-Gal4, UAS-GFP flies (Buchon et al., 2009). Fly natural

infections were carried out at 29uC on 4- to 8- day-old adult

females as previously described. All the infections, except when

specified, were carried out with bacterial preparation adjusted to

an OD600 = 100 which correspond to 6.5E10 colony forming

units per ml [11]. Monalysin was injected in the body cavity of fly

using a Nanodrop microinjector (Nanoject). Virulence assays were

performed at least three times in triplicate.

Reverse transcriptase quantitative PCR analysis
Total RNA was extracted from whole flies (5 for each assay) or

from dissected guts without Malpighian tubules (14 for each assay)

using TRIzol (Invitrogen). RT-qPCR was performed using SYBR

Green I (Roche) on a Lightcycler 2.0 (Roche) as previously

described [32]. Data represent ratio of the amount of mRNA

detected normalized to the amount of the control rpl32 mRNA.

Experiments were performed at least three times independently.

Averages of more than three experiments are shown.

Cell cultures, treatments, cytotoxicity assays and live
imaging

The macrophage-like lineage S2 cells derived from D.

melanogaster embryos where grown in Schneider’s medium

(Invitrogen). The Sf9 cells (Invitrogen) derived from Spodoptera

frugiperda (Lepidoptera) pupal ovarian tissue were cultured in

complete TNM-FH (Invitrogen). The mammalian cell lines Hela

and the Retinal Pigmented Epithelial (RPE1) were grown in a

humidified incubator with 5% CO2 at 37uC. Hela cells were

cultured in MEM media supplemented with 10% fetal calf serum,

1% penicillin-streptomycin, 1% glutamine and 1% NEAA (Gibco).

RPE1 cells were cultured in DMEM media supplemented with

10% fetal calf serum, 1% penicillin-streptomycin and 1%

glutamine (Gibco). Cell viability was observed using the LIVE/

DEAD Viability/Cytotoxicity Assay Kit (Invitrogen) according to

the provider instruction. Briefly cells are simultaneously labeled

with calcein AM that reveals intracellular esterase activity in live

cells and ethidium homodimer (EthD-1) that reveals plasma

membrane damages. LDH release from damaged cells was

measured following the instructions of the CytoTox-One Homo-

geneous Membrane integrity Assay kit (Promega). In Situ Nick

Translation was performed to detect fragmented DNA in nuclei. In

situ DNA synthesis was performed by a DNA polymerase I (150

units/ml) (Takara) in the presence of a dNTP mix in which dUTP

is tetramethylrhodamine-conjugated (Roche). The reaction was

carried out for 90 min at room temperature. Live imaging and

immunofluorescence were performed as previously described [8].

After treatment, cells were recovered, fixed with 4% PFA and

permeabilized with 0.3% Triton X-100. Dead cells were detected

using acridine orange staining (Invitrogen). Dead cells quantifica-

tion was performed as follows: 16 hours after infection, guts were

dissected and stained with acridine orange and DAPI. Pictures

were taken using a fluorescent microscope. From these pictures,

groups of 100 hundred DAPI stained nuclei were randomly

defined and the number of acridine orange positive nuclei (ie dead

cells) was determined. Three parcels per guts were analyzed. The

results are the mean of four independent experiments. Nuclei were

stained by DAPI (Sigma). All the images were performed using a

Zeiss Axioimager Z1.

Monalysin expression, purification, and analysis
All cloning steps were performed as described earlier [33]. The

sequence of Monalysin (from residue 1 to 271, access number

pseen3174) was PCR-amplified from genomic DNA (isolated from

P. entomophila) and cloned into pDONR201 (Invitrogen). The ORF

was then subcloned into the pETG-20A E. coli (a generous gift

from Dr A. Geerlof, EMBL) destination vector to generate a

constructs encoding Monalysin with an N-terminal fusion

composed of the thioredoxin (TRX) protein, followed by a

6xHis-tag and a Tobacco Etch Virus (TEV) protease cleavage site.

The construct was sequenced verified. The production and

purification were performed as described earlier [34]. Briefly,

the pETG-20A-Monalysin was transformed into Rosetta (DE3)

P. entomophila Pore-Forming Toxin Monalysin
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pLysS E. coli cells (Novagen). An overnight LB pre-culture (with

100 mg mL-1 ampicillin and 34 mg mL-1 chloramphenicol) was

used to inoculate large cultures in ZYP-5052 auto-induction media

[35] supplemented with the same antibiotics and incubated with

vigorous shaking (250 rpm) at 37uC during 4 h. At this stage, the

temperature was decreased to 17uC, and the cultures were allowed

to grow for an additional 18 h with vigorous shaking (250 rpm).

After 18 h, cells were harvested by centrifugation (4000g for

10 min) and the pellet was homogenized and frozen in lysis buffer

(50 mM Tris-HCl; 500 mM NaCl; 0.5 mM lysozyme; 10 mM

imidazole and 1 mM phenylmethylsulfonyl fluoride (PMSF),

pH 8). The cell pellets were thawed and lysed with a sonicator

after the addition of DNase I at 20 mg mL21 and 1 mM MgSO4.

The pellet and soluble fraction were separated by centrifugation

(30 min at 16,000g) of an early stationary phase culture. The

supernatants were filtered through a 0.22 mm filter and were

concentrated 50-fold by using 5 kDa cutoff Centricon membranes

(Biorad). The cell pellets were washed in PBS, resuspended in PBS

containing protease inhibitors and lysed by sonication. The soluble

fraction was purified by immobilized metal ion affinity chroma-

tography using a 5 mL HisTrap crude (GE Healthcare) Ni2+-

chelating column equilibrated in buffer A (500 mM NaCl; 50 mM

Tris–HCl; 10 mM imidazole; pH 8). After the loading of the

soluble fraction and a column wash (buffer A with 50 mM

Imidazole), the protein was eluted with buffer A supplemented

with 250 mM imidazole. The eluted fraction was desalted in

buffer A (Hiprep 25/10 Desalting column, GE) and the protein

concentration of the TRX-His6-TEV-Monalysin determined.

After a 4uC overnight cleavage of the protein with 1:20 w:w

His-TEV protease, the TRX-His6-TEV and the His-TEV were

separated from the pure Pro-Monalysin by collecting the Flow

Through (FT) of a second Nickel purification. The final

purification and the characterization of the oligomeric state of

the monalysin were achieved by the separation of the FT on a size

exclusion chromatography (HiLoad 16/60 Superdex 200 prep

grade, GE), equilibrated in Tris 10mM, NaCl 500mM pH8. The

pure Pro-Monalysin was used for the functional characterizations.

For the MultiAngle Light Scattering analysis, size exclusion

chromatography was carried out on an Alliance 2695 HPLC

system (Waters) using a Silica Gel KW804 column (Shodex)

equilibrated in 10 mM Tris and 150 mM NaCl at pH 7.5 at a

flow of 0.5 ml/min. Detection was performed using a triple-angle

light scattering detector (Mini-DAWN TREOS, Wyatt Technol-

ogy), a quasi-elastic light scattering instrument (Dynapro, Wyatt

Technology), and a differential refractometer (OptilabrEX, Wyatt

Technology). Proteins were analyzed by SDS-PAGE. Native

PAGE was performed to determine the oligomeric state of

Monalysin. To generate Monalysin, pro-monalysin samples were

submitted to limited trypsinolysis by adding trypsin (1:100 w:w).

The reaction was stopped by using a trypsin-chymotrypsin

inhibitor (Invitrogen). Pro-monalysin and Monalysin were detect-

ed by Western-blot using a specific serum that recognized better

the pro-monalysin than the Monalysin (see Figure S5).

Production of the antibody anti-monalysin
The Guinea pig antibody anti-Monalysin was provided by

Eurogentec.

Circular dichroism, molecular weight and hydrodynamic
radius determination

Far-UV Circular Dichroism (CD) spectra (Figure S2) were

recorded with a JASCO J-810 spectropolarimeter (JASCO

Corporation) equipped with a Peltier temperature control and using

1-mm thick quartz cells. The molecular weight of recombinant

pro-monalysin and Monalysin was determined by MALDI-TOF/

TOF. Molecular weight and hydrodynamic radius determination

was performed by the ASTRA V software (Wyatt Technology).

Proteins were loaded at a final concentration of 0.02 mM.

Edman sequencing
After SDS-PAGE electrophoresis and Coomassie blue staining,

protein bands were excised. Proteins were extracted from gel and

blotted onto polyvinylidene difluoride membranes with the ProSob

system (Applied Biosystems). The N-terminal sequences of proteins

were determined by automated Edman degradation by introduc-

ing the blots into a Procise P494 automated protein sequencer

(Applied Biosystems). The sequences obtained were compared to

sequences in public protein sequence databases.

Planar lipid bilayer
Planar lipid bilayer experiments were performed as previously

described [36]. The bilayer was formed by painting a solution of 50%

PC (egg lecithin) / 50% DOPE (w:w) in n -decane (40 mg ml 21)

on an aperture (d = 150 mm, pretreated with the same solution) in a

delrin cuvette separating two chambers, each containing 1 ml of 1 M

NaCl, 5 mM CaCl2 10 mM HEPES, pH 7 and agar bridge

connection (1 M KCl) to Ag/AgCl electrodes (Warner Instrument

Corp. Hamden, CT). Monalysin was added to the cis chamber at

room temperature.

Statistical analysis
Survival assays have been performed at least three times in

triplicate. The Kaplan-Meier log rank test was used to determine

statistical significance. Dashed brackets represent the significance

between the different infections (*: p,0.05, **: p,0.01, ***: p

,0.001, ns = not significant). RT-qPCR analysis and cell death

quantification using acridine orange staining are averages of at

least 4 independent experiments. Error bars indicate standard

errors. Statistical analysis was performed using a Wilcoxon test,

and letters indicate significantly different values (P,0.05).

Supporting Information

Figure S1 Identification of two putative Monalysin
orthologs in Pseudomonas putida F1. Alignment of

Monalysin amino-acids sequence and the sequence of its putative

orthologs in Pseudomonas putida F1 encoded by the ORF Pput_1063

and Pput_1064.

(TIF)

Figure S2 Far-UV CD spectra of Monalysin. The far-UV

CD spectra were recorded with a JASCO J-810 spectropolarimeter

(JASCO Corporation) equipped with a Peltier temperature control

and using 1 mm thick quartz cells. CD spectra were averaged on

three accumulations using a scanning speed of 50 nm/min.

Measurements were performed between 190 and 260 nm at 20uC
in 10 mM Hepes buffer pH 7.5, NaCl 150mM with a protein

concentration of 1 mg/ml. Circular dichroism of Monalysin reveals

a spectrum of a protein with alpha-helix and beta-sheets.

(TIF)

Figure S3 Recombinant Monalysin is processed by a
proteolytic cleavage. (A) SDS-PAGE analysis of recombinant

Monalysin. Lane 1: fresh sample, line 2: old sample. (B) Silver

staining of a SDS-PAGE fresh monalysin samples untreated (lane

1) or treated with trypsin (v:v) 1:10 (lane 2), 1:100 (lane 3), 1:1000

(lane 4). (C) Native gel electrophoresis shows that Monalysin

migrates at a high molecular weight.

(TIF)
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Figure S4 Absolute molecular weight determination of
the Monalysin oligomer by Static Light Scattering
analysis. The molar mass (left axis, dotted lines) and the UV280nm

absorbance (right axis, solid lines) are plotted as a function of the

column elution volume. Monalysin measured mass and hydrody-

namic radius are 546.5 KDa and 7.52 nm, respectively.

(TIF)

Figure S5 Western blot analysis of Monalysin. (A)
Western-blot analysis of proteins from crude cell extracts and

filtrate supernatant. Pe = P. entomophila wild-type strain, Dmnl =

the monalysin deficient strain, Dmnl-pPSVmnl = the monalysin-

deficient strain carrying a plasmid expressing a wild-type copy of

the monalysin gene, Dmnl-pPSV = the monalysin-deficient carrying

the plasmid pPSV35 without any insert. (B and C) Comparison

of the serum anti-monalysin recognition of pro-monalysin and

monalysin. (A) Coomassie staining and (B) Western-blot of the

same samples. Pro-Monalysin was purified from E. coli a described

in Material and Methods and used to immunize Guinea pigs. The

serum recovered from the final animal bleed was tested on a fresh

toxin purification containing mainly 2 and 8 mg of the pro-

Monalysin (line 1 and 3 respectively) and a sample containing the

same amounts of predominantly the mature form Monalysin (line

2 and 4) as shown by coomassie staining. The western blot shows

that the serum recognizes more epitopes in pro-monalysin than in

monalysin. Indeed, monalysin (Figure S5C, lane 4) could be

detected only when the exposure time was increased, which

resulted in a saturating signal for pro-monalysin.

(TIF)

Figure S6 Survival analysis of wild-type Oregon flies
following oral infection with various concentrations of
bacteria. Survival curves of flies infected with various concen-

trations of (A) the P. entomophila wild-type strain (Pe), (B) the mnl

deficient strain (Dmnl), (C) the gacA-deficient strain (DgacA). UN =

unchallenged. The number next to the bacterial strains indicates

the concentration (Optical Density measured at 600nm) of the

bacterial sample use for the infection. Survival assays have been

performed at least three times in triplicate.

(TIF)

Figure S7 Cell death in guts of infected flies monitored
by acridine orange staining. Guts were dissected from

unchallenged female Oregon flies (A) or infected for 16 h with

wild-type P. entomophila (B), a mnl mutant (C) or a gacA mutant

(D), and stained with acridine orange. Scale bars represent 50 mm.

(TIF)

Table S1 Bacterial strains used in this study.

(TIF)

Table S2 Monalysin cytotoxicity towards insect and
mammalian cells. Different culture cell lines were treated with

the indicated concentration of Monalysin. Sensitivity (+) or

resistance (2) to Monalysin was determined by phase contrast

microscopy observation performed at 4 and 24 h. For HRBC

(human red blood cells) the sensitivity was monitored by hemolytic

activity as described in Material and Methods.

(TIF)
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