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Abstract 18 

Recently, steroid hormones quantification in blood showed a promising ability to detect 19 

testosterone doping and interesting complementarities with the urinary module of the Athlete 20 

Biological Passport (ABP). In this work, an ultra-high pressure liquid chromatography–high-21 

resolution mass spectrometry (UHPLC-HRMS) method was developed for the quantification of 22 

eleven endogenous steroids in serum. The performance of the full scan and targeted SIM 23 

acquisition modes was evaluated and compared to the performance of tandem mass 24 

spectrometry (MS/MS). Passing-Bablok regressions and Bland-Altman plots were assessed for 25 

each analyte of interest, and concentration values measured by HRMS showed high correlation 26 

with the ones obtained by MS/MS for all target hormones, with low absolute differences in the 27 

majority of cases. A slight decrease in terms of sensitivity was observed with HRMS in both 28 

acquisition modes, but performing an analysis of variance multiblock orthogonal partial least 29 

squares (AMOPLS) on the dataset obtained with all three methods revealed that only 0.8% of 30 

the total variance was related to instrumentation and acquisition methods. Moreover, the 31 

evaluation of the testosterone administration effect over time highlighted testosterone itself 32 

and dihydrotestosterone as the most promising biomarkers of exogenous testosterone 33 

administration. This conclusion suggests that HRMS could provide suitable performance for 34 

blood steroid analysis in the anti-doping field. 35 

 36 

 37 
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1. Introduction 39 

The detection of testosterone (T) abuse in sport is currently achieved through the steroidal 40 

module of the Athlete Biological Passport (ABP). The so-called “steroid profile” was 41 

implemented in 2014, and it is obtained from urinary concentrations of six endogenous anabolic 42 

androgenic steroids (EAAS) measured by gas chromatography-(tandem) mass spectrometry (GC-43 

MS(/MS)). It consists of longitudinal monitoring, with individual reference intervals calculated 44 

by a Bayesian adaptive model, of five ratios known to be potentially altered following the 45 

administration of synthetic forms of EAAS: androsterone/testosterone (A/T), 46 

androsterone/etiocholanolone (A/Etio), 5α-androstane-3α,17β-diol/5β-androstane-3α,17β-diol 47 

(5αAdiol/5βAdiol), 5α-androstane-3α,17β-diol/Epitestosterone (5αAdiol/E) and the most 48 

important, testosterone/epitestosterone (T/E) [1]. Although this new approach clearly improved 49 

detection capabilities in comparison with the previous population threshold criterion of T/E > 4, 50 

it still suffers from major drawbacks. These include the large presence in the urine matrix of 51 

both endogenous (e.g., metabolism, ethnicity) and exogenous (e.g., ethanol, bacterial 52 

contamination) confounding factors, which can influence either the quantification of the urinary 53 

steroid profile or its interpretation [2], and the difficulty of detecting doping in individuals with a 54 

genetic polymorphism for UGT2B17 enzyme activity [3-6] and/or in athletes who have been 55 

administered T gel and patch formulations [7].  56 

In the last few years, several studies have been conducted with the aim of improving steroid 57 

abuse detection capabilities. At first, major efforts were focused on the identification, by means 58 

of GC-MS(/MS) platforms, of new urinary biomarkers of EAAS abuse to be added to the panel of 59 

ratios included in the steroid profile [8-11]. Then, research broadened and oriented to UHPLC-60 
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MS/MS methods as well, as this type of technique is faster, more sensitive and capable of 61 

detecting phase II metabolites of steroid hormones in their intact form [12-14], unlike GC-MS 62 

analysis which always requires a derivatization step, eventually preceded by a hydrolysis step. 63 

More recently, high-resolution mass spectrometry (HRMS) has also been used to provide 64 

innovation in the context of steroid analysis. Indeed, holistic approaches such as metabolomics 65 

(defined as steroidomics [15]), allowed the untargeted evaluation of a large number of 66 

compounds, thus also representing a promising strategy for the discovery of new biomarkers 67 

and metabolites for anti-doping purposes [16, 17]. Nevertheless, the use of HRMS platforms by 68 

anti-doping laboratories for screening analyses is constantly increasing [18-21], even if their use 69 

for quantification purposes is still not widespread.  70 

In the anti-doping field, both endogenous and exogenous steroids have been traditionally 71 

analyzed in urine, but a first attempt of endogenous steroid analysis in blood was recently 72 

conducted [22]. The blood matrix is clearly more difficult to manipulate/contaminate than 73 

urine, and quantitative analysis of target compounds in blood represents a real snapshot of 74 

athlete physiological status, a key aspect for possibly better discriminating doping from 75 

pathologies. In addition, the study of steroid metabolism in blood could also be particularly 76 

relevant to explain diseases associated with a possible malfunction in steroidogenesis, in 77 

particular steroid metabolism enzymes (e.g. congenital adrenal hyperplasia, CAH) as well as in 78 

environmental sciences to better understand the mode of action of endocrine disrupting 79 

chemicals. On the other hand, the blood matrix also raises some concerns in the context of 80 

sports drug testing: its sampling is more invasive compared to urine, the collected volume is 81 

significantly lower and more accurate conditions for transportation and storage are needed.  82 
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In this work, a UHPLC-HRMS method was developed for the quantification of 11 endogenous 83 

steroid hormones in serum, including major androgens, progestogens and corticoids. The 84 

performance of the full scan (FS) and targeted selected ion monitoring (t-SIM) acquisition 85 

modes was evaluated and compared to that of UHPLC-MS/MS obtained in a previous work using 86 

samples from a testosterone clinical study [22]. Furthermore, in addition to quantitative 87 

performance, the ability to describe the exogenous testosterone administration by the three 88 

acquisition methods was also evaluated by means of an ANOVA-based multivariate statistical 89 

analysis.  90 
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2 Materials and methods 91 

2.1 Study samples  92 

Serum samples used for the method comparison were obtained from a T administration clinical 93 

trial (Swissmedic protocol n° 155/11) with 19 healthy male volunteers, who were administered 94 

twice with a T transdermal patch (Testopatch® 2.4 mg/24 h, Pierre Fabre Pharma GMBH, 95 

Freiburg, Germany) followed by T undecanoate capsules (Andriol Testocaps®, Essex Chemie AG, 96 

Luzern, Switzerland). The detailed description of the study is presented elsewhere [7]. 97 

2.2 Chemicals and reagents 98 

Available standards of endogenous steroids were purchased from Lipomed (Arlesheim, 99 

Switzerland), Cerilliant (Round Rock, TX, USA), Steraloids (Newport, RI, USA) and Sigma-Aldrich 100 

(Buchs, Switzerland), while all labeled internal standards (IS) were provided by the Australian 101 

Government National Measurement Institute (Pymble, Australia). Methanol (MeOH) was 102 

purchased from Macron Fine Chemicals (Deventer, Netherlands), and acetonitrile (ACN) ULC/MS 103 

(> 99%) and formic acid (FA) ULC/MS (99%) were supplied by Biosolve BV (Valkenswaard, 104 

Netherlands). Charcoal-dextran stripped human serum was obtained from Dunn Labortechnik 105 

GmbH (Asbach, Germany). Deionized water was obtained by a Milli-Q®-grade system (Millipore, 106 

USA) and was used for the preparation of all buffers and solutions. 107 

Analytes and IS mixture solutions were prepared in MeOH at appropriate concentrations and 108 

used for the preparation of calibration samples in depleted serum. Linear calibration curves 109 

were created for each analyte (weighting 1/x) to measure steroid concentration, and calibration 110 

samples were used for the extraction of lower limits of quantification (LLOQ) and accuracy 111 
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values of the method. Details concerning the composition and concentration of the calibration 112 

samples and IS mixtures are given in Supplementary Material Tables S1 and S2. 113 

2.3 Sample preparation and UHPLC conditions 114 

All the details concerning the extraction protocol and chromatographic conditions have been 115 

described in [22]. Briefly, a supported liquid extraction SLE+ 400 µL (Biotage, Uppsala, Sweden) 116 

in a 96 well-plate format was used to extract steroid hormones. Each serum sample (200 µL) 117 

was spiked with 20 µL of the IS mixture, diluted with 200 µL of water and then agitated for few 118 

minutes. Then, 400 µL of sample were loaded on each well and positive pressure of 3 psi was 119 

applied for 30 seconds to facilitate sample adsorption; after 5 minutes, the elution was carried 120 

out by adding 700 µL of DCM to each well and applying a pressure of 3 psi for 1 minute. After 121 

evaporation, 10 µL of reconstituted extracts were injected on a UPLC chromatographic system 122 

(Waters, Milford, MA, USA) equipped with an Ethylene Bridged Hybrid (BEH) C18 column (100 x 123 

2.1 mm, 1.7 µm; Waters) set at 30°C and a pre-column. The mobile phases consisted of (A) 0.1% 124 

formic acid in water and (B) 0.1% formic acid in ACN, and the flow rate was set at 400 µL/min. 125 

The gradient started linearly from 2% to 25% B over 0.5 min, followed by an increase to 58% B 126 

over 5.5 min and by a further increase to 98% B over 2 min; the column was then re-127 

equilibrated for 3 min at initial conditions.  128 

 129 

 130 

 131 
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2.4 MS conditions 132 

2.4.1 MS/MS analysis 133 

The UPLC system was coupled to a Xevo-TQ S triple quadrupole MS/MS system from Waters 134 

working in ESI positive and selected reaction monitoring (SRM) mode. The detailed instrumental 135 

UHPLC-MS/MS conditions (SRM transitions, ESI conditions, cone voltages and collision energies) 136 

are described in a previous article [22]. 137 

2.4.2 HRMS analysis 138 

HRMS analyses were performed by coupling the UPLC system to a Q Exactive Plus mass 139 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Mass calibration (<3 ppm) was 140 

performed once a week using the Pierce® LTQ Velos ESI Positive Ion Calibration standard 141 

mixture (Thermo Fisher Scientific) containing n-butylamine, caffeine, MRFA (peptide of Met-Arg-142 

Phe-Ala acetate salt) and Ultramark 1621. Detection of the targeted steroids was performed in 143 

positive ESI in both FS and t-SIM acquisition modes. The heated ESI source (HESI II) was used 144 

with a probe heater temperature of 425°C, and the sheath gas and auxiliary gas pressures were 145 

set to 50 and 15 arbitrary units, respectively. The sweep gas flow was set to 3 arbitrary units. 146 

The ion spray voltage was set to 4.5 kV, the capillary temperature to 250°C and the S-Lens RF 147 

level was 55%. FS mass spectra were acquired using a mass resolution of 70,000 (full width at 148 

half maximum, FWHM) at m/z 200, with a maximum IT fill time of 250 ms and the automatic 149 

gain control (AGC target) set to 1e6. The acquired mass range was from m/z 200 to 600. The t-150 

SIM acquisition mode was also performed using a mass resolution of 70,000 FWHM, with a 151 

maximum IT fill time of 250 ms and the AGC target set to 5e4. An isolation window of 0.4 m/z 152 

was set, and the maximum number of precursor ions to be multiplexed in a scan event (MSX 153 
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count) was from 2 to 8, depending on the proximity of the analytes in terms of retention times. 154 

All extracted chromatograms were obtained using an extraction window of 10 ppm. 155 

2.5 Comparison of quantitative performance  156 

The comparison between HRMS and MS/MS methods was performed employing two different 157 

approaches. First, the correlation of the steroid concentrations obtained with the two methods 158 

was evaluated using the Passing-Bablok regression together with Bland-Altman plots; the latter 159 

helped evaluate the bias, as they correspond to regression residual plots. Then, a multivariate 160 

data analysis, involving analysis of variance multiblock orthogonal partial least squares 161 

(AMOPLS), was applied to simultaneously investigate signal variations related to the different 162 

experimental factors, i.e., inter-individual, temporal and method-related sources of variability, 163 

and their potential interactions. Indeed, AMOPLS allows the reliability of experimental effects to 164 

be objectively evaluated using a specific effect-to-residual ratio. The aim of this second 165 

approach was not to provide an absolute evaluation of the variations caused by the different 166 

quantification methods but to fairly compare and establish the relative impact of each source of 167 

variability in the obtained dataset. Random permutations of the design matrix simulate data 168 

under the null hypothesis (i.e., no effect), and the values obtained can be compared to the 169 

experimental value. AMOPLS models were computed under the MATLAB 8 environment (The 170 

MathWorks, Natick, MA, USA) and compared to a series of 103 random permutations. 171 

  172 
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3. Results and discussion 173 

3.1 Optimization of HRMS conditions  174 

The chromatographic conditions were already optimized in a previous study [22] allowing a 175 

satisfactory separation of the analytes, especially in the case of 11-deoxycortisol and 176 

corticosterone, which had the same exact mass and close retention times.In this work, the 177 

method development was mainly focused on the optimization of HRMS conditions. Details of 178 

the detection parameters are presented in Table 1 for the target analytes and in Supplementary 179 

Material Table S3 for the labeled internal standards (IS). First, all the ESI source parameters 180 

were tuned to obtain the best sensitivity. As DHT proved to have the lowest ionization efficiency 181 

among the 11 analytes, it was chosen as the target compound, and direct infusion of a DHT 182 

standard in MeOH at 1 μg/mL was performed. In addition, this compound had already been 183 

highlighted as a promising biomarker of testosterone administration in serum [22].  184 

Then, the first investigated acquisition mode was the FS. The scan range was set from 200 to 185 

600 m/z, allowing the detection of all steroid hormone ions and their potential adducts; the 186 

resolution, AGC target and Maximum IT were optimized with the aim of obtaining a sufficient 187 

number of acquisition data points over each chromatographic peak. For that, a target range of 188 

10-15 data points was set for acquisition. An example chromatogram for 17αOH-progesterone 189 

at 1 ng/mL obtained in FS mode is shown in Figure 1A, where 16 data points over the peak were 190 

obtained with a resolution of 70,000 FWHM. Because some of the target steroids, such as 191 

epitestosterone, progesterone and DHT, are known to be at a very low concentration in serum, 192 

a t-SIM experiment was also evaluated with the aim of enhancing sensitivity. For this purpose, 193 

preliminary experiments using a single t-SIM event were carried out during the whole 194 
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chromatographic run. For this experiment, an inclusion list containing m/z values of all target 195 

hormones and relative internal standards ions was created, and the acquisition was performed 196 

setting the multiplexing (MSX) count to 1. As shown in Figure 1B, this strategy was not 197 

satisfactory to obtain a sufficient number of data points across the peak, also compromising 198 

sensitivity. Indeed, in the retention time window where 17αOH-progesterone eluted (from 5 to 199 

5.5 min), three other analytes, as well as their respective IS, were detected, reaching a total of 8 200 

compounds (see Table 1). This meant that in this specific time window, after each FS event, only 201 

one of the 8 present ions was allowed to enter the C-Trap and be analyzed, resulting in a limited 202 

number of acquisitions in t-SIM mode for all the compounds in this time period (7 points under 203 

the peak in the case of Figure 1B). To resolve this issue, a different t-SIM experiment was then 204 

performed making use of the MSX function, depending on the number of compounds co-eluting 205 

in the same time window. MSX values from 2 (only the target analyte and its internal standard) 206 

up to 8 (four analytes and their relative IS) were selected (see Table 1). After each FS event, the 207 

ions of all co-eluting multiplexed compounds were accumulated in the C-trap and subsequently 208 

analyzed. This second strategy proved to be efficient, allowing a number of acquisition points 209 

similar or equal to the FS acquisition for all target steroids. As observed in Figure 1C, by applying 210 

an MSX count of 8, it was possible to obtain a very satisfactory peak shape with approximately 211 

16 data points for 17αOH-progesterone with the multiplexed t-SIM acquisition mode.  212 

Concerning sensitivity, the t-SIM acquisition provided an increased signal to noise (S/N) ratio, in 213 

particular for DHT, one of the two blood markers of T administration previously highlighted: a 214 

significant increase in the S/N from 9 to 32 RMS (root mean square) was observed passing from 215 

FS to multiplexed t-SIM, despite no remarkable augmentation of peak area. For analytes with a 216 
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low concentration and/or poor ionization in the ESI source, the t-SIM acquisition mode could, 217 

therefore, represent the optimal solution for quantification purposes, assuming the utilization 218 

of MSX count. 219 

3.2 Comparison of quantitative performance 220 

Once the HRMS conditions were optimized, 491 serum samples collected during a testosterone 221 

administration clinical study were prepared and analyzed using both of the developed UHPLC-222 

HRMS and UHPLC-MS/MS methods. For comparison purposes, concentrations of 11 target 223 

steroids were measured by means of the three different acquisition modes: FS, multiplexed t-224 

SIM and SRM. 225 

Epitestosterone, progesterone and deoxycorticosterone were present in serum at very low 226 

concentrations (below 100 pg/mL), and it was not possible to detect them with the HRMS 227 

platform; therefore, they were discarded for the following comparison.  228 

3.2.1 Assay correlation 229 

For each of the 8 sufficiently concentrated compounds, Passing-Bablok regressions [23] and 230 

Bland-Altman plots [24, 25] were assessed, using MS/MS values as a reference method. The 231 

plots obtained for T and DHT are presented in Figures 2 and 3, respectively, and discussed 232 

herein in more detail, while the graphs for all remaining compounds are shown in 233 

Supplementary Material Figures S1-S6. 234 

For the Passing-Bablok regression, the parameters that were evaluated were the slope, the 235 

intercept, and the determination coefficient (R2). For the Bland-Altman plots, the percentage of 236 

samples with a difference of measured concentrations between ±20% (arbitrary acceptability 237 
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range [26]) was evaluated. In both cases, the T concentration measured with the HRMS method 238 

correlated well with MS/MS. In the t-SIM vs SRM plot (Figure 2A), the samples were less spread 239 

than in the FS vs SRM plot (Figure 2B), resulting in a better determination coefficient; this 240 

dispersion of the samples is more pronounced in the high concentration region. Moreover, a 241 

slope value close to one was found for both regressions, while the obtained intercept had a 242 

negative value in both cases, suggesting a minor underestimation of T concentration with both 243 

HRMS methods. According to the Bland-Altman plots, for a high percentage of samples (99.6% 244 

and 93.9%, respectively), measured T concentration differences were within the acceptability 245 

limits arbitrarily defined for both t-SIM (Figure 2C) and FS (Figure 2D); mean biases of -3.615% 246 

and 0.298% were observed comparing MS/MS measurements with the t-SIM and FS results, 247 

respectively.  248 

In Figure 3, the plots of the DHT measurement comparison are presented. Looking at Passing-249 

Bablok regressions, similar results to T were obtained, demonstrating a good correlation 250 

between different quantification results, considering slope values close to one and satisfactory 251 

R2 for both HRMS methods (0.9328 t-SIM, 0.9013 FS). On the other hand, there was a lower 252 

percentage of samples within the acceptability limits (82.7% t-SIM, 73.5% FS) and a higher mean 253 

bias from SRM quantification (6.48% t-SIM, 6.89% FS) evaluating Bland-Altman plots. For 254 

concentrated analytes such as T, HRMS measurements appear to be a valuable alternative to 255 

classical MS/MS experiments. However, the higher dispersion of samples in Bland-Altman plots 256 

in the low concentration region suggests that HRMS measurements are slightly less sensitive 257 

than MS/MS. This could be an issue for the less concentrated analytes such as DHT, especially 258 
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when FS acquisition is considered. In this context, the t-SIM acquisition mode could reduce the 259 

gap with MS/MS quantification, thanks to a significant increase in sensitivity.  260 

To further investigate this aspect, calibration curves were constructed and LLOQ values were 261 

estimated for all steroid hormones with both the FS and t-SIM developed methods. First, several 262 

regression models were tested to select the most suitable and simple response function. 263 

Because the hypothesis of variance homogeneity was rejected, the simplest regression model 264 

without data transformation, based on the least squares method, could not be retained. 265 

Therefore, the best weighting factor was chosen taking into account the relationship between 266 

the logarithm of the natural variance and the concentration as described elsewhere [27]. For 267 

each analyte, the specially selected weighting factor was the inverse of the concentration raised 268 

to the λth power (1/x λ), λ being the slope of the line fitted to the data on the logarithm scale. 269 

Hence, the mean selected weighting factor was round off the inferior unit and determined to be 270 

1/x. Then, the lowest concentration at which the back-calculated concentration of the 271 

calibration curves exhibited a precision that did not exceed 20% of the CV and accuracy within 272 

20% of the nominal concentration was evaluated. This approach, in accordance with official 273 

guidelines such as the FDA [28], permitted obtaining the LLOQ values shown in Table 2 together 274 

with those of the reference MS/MS method. The accuracy and repeatability details for all target 275 

analytes at all concentration levels are presented in Supplementary Material Tables S4 and S5. 276 

 277 

 278 

 279 
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3.2.2 Multivariate data analysis 280 

In addition to the classical comparison of the analytical methods for each of the measured 281 

target compounds discussed above, a more global approach has also been applied to evaluate 282 

the quality of the measurements obtained using HRMS. A multivariate data analysis method 283 

based on ANOVA and PLS, namely AMOPLS, which was recently proposed for the analysis of 284 

omics data generated from designed experiments [29], was used for proper data analysis 285 

accounting for both the highly multivariate structure of the data and the study design. Indeed, 286 

multifactorial experiments, such as the analysis of clinical study samples, generate data 287 

simultaneously altered by several sources of variation. The systematic strategy proposed herein 288 

is particularly well suited to gather information on the potential effects of experimental factors 289 

and their interactions, and it was demonstrated to be a relevant tool to disentangle the 290 

influences of specific factors or interactions in multifactorial experiments, with a simplified 291 

interpretation of signal variations based on specific sets of scores and loadings related to each 292 

effect. 293 

Two separate AMOPLS models were therefore computed based on the combination of 294 

quantitative data from the 8 steroid hormones measured by all three analytical methods in 295 

blood control samples and samples collected after transdermal and oral T administrations. Unit 296 

variance scaling was applied to analyte concentration variations, avoiding their impact in 297 

intensity range. The main effects of the three experimental factors taken into account for this 298 

study, namely inter-individual variability (Volunteer factor, 19 levels), longitudinal signal 299 

variations (Time factor, 16 levels) and differences due to the quantification strategy (Method 300 
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factor, 3 levels), as well as their first-order interactions (Volunteer*Time, Volunteer*Method and 301 

Time*Method) were included in the models.  302 

Concerning the transdermal administration, as a first investigation of signal variations, the 303 

relative contribution related to each effect and interactions (expressed as sum of squares) was 304 

computed to obtain the following values: Volunteer 29.7%, Time 38.6%, Method 0.8%, 305 

Volunteer*Time 28.9%, Volunteer*Method 0.8%, Time*Method 0.2% and Residuals 1.0%. These 306 

results, shown in Figure 4A, clearly highlight the strong influence of the inter-individual 307 

variability in the measured steroids levels, together with marked alterations during the 308 

temporal follow-up. Interestingly, the cumulative proportion of signal variations due to the 309 

different quantification strategies (SRM and HRMS in both FS and t-SIM modes) was very low 310 

(main effect+interactions <2%).  311 

Random permutations of the experimental design were then carried out to evaluate the 312 

statistical significance of the results. The comparison with random designs highlighted the main 313 

effect due to the Time factor as the only significant structured source of variation in the dataset 314 

(p<0.01). Notably, despite an important proportion of total variability related to the Volunteer 315 

factor, all the other ANOVA terms were declared non-significant (p>0.05). This may be because 316 

inter-individual variations are related to biological noise. While no major structure emerges 317 

from these uncoordinated differences, these results also confirmed that the very low 318 

contribution related to the Method factor was statistically negligible. Total inter-individual 319 

variability is obtained by summing the main effect of the Volunteer factor (differences between 320 

individuals on average over all time points) and the interaction effect between Volunteer and 321 

Time (differences between the evolutions over time). 322 
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Predictive components related to the Time factor were then further investigated to highlight 323 

trends in the sample distributions (Supplementary Material Figure S7A). The most important 324 

temporal pattern was associated with a circadian modulation of steroid levels, clearly visible on 325 

the first latent variable associated with the Time factor (47.9%). This pattern confirms the 326 

results previously obtained by MS/MS and was mainly associated with androstenedione, DHEA, 327 

corticosterone, cortisol, and 11-deoxycortisol. Additionally, the effect of T transdermal intake 328 

was observable on the second component associated with the Time factor (30.3%) (Figure 4B), 329 

characterized by a marked increase until 12 h after administration and a slow decrease until 48 330 

h. The major biomarkers associated with this trend were T and DHT.  331 

In the same fashion as transdermal administration, differences due to inter-individual and 332 

temporal variability were responsible for the largest variations of the dataset of the oral 333 

testosterone undecanoate (TU) intake, as illustrated by the relative sum of squares related to 334 

each effect in Figure 5A: Volunteer 26.5%, Time 31.3%, Method 0.6%, Volunteer*Time 35.7%, 335 

Volunteer*Method 0.9%, Time*Method 0.4% and Residuals 4.5%. According to random 336 

permutations, the only significant effect was related to the Time factor (p<0.01), while all other 337 

effects were deemed non-significant (p>0.05). Investigating the Time factor (Supplementary 338 

Material Figure S7B), similarly to the transdermal administration, a circadian rhythm was found 339 

as the major source of variability (53.5% of the Time factor), with marked modulations of DHEA, 340 

corticosterone, cortisol, and 11-deoxycortisol. Moreover, the effect of oral T administration was 341 

observed on the second component related to the Time factor (18.6%, Figure 5B). Altered levels 342 

of T, DHT and androstenedione were associated with an increase of the temporal trajectory 343 

after 2 and 4 h and a return to the basal situation. 344 
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Taking all this information, these results are perfectly in line with our previous study based on 345 

multiway modeling [22], highlighting the marked impact of inter-individual differences and 346 

intra-day variations. The decomposition of the different sources of variability can constitute an 347 

objective basis for the selection of biomarkers less affected by these factors. The data mining 348 

strategy was able to efficiently decompose the different sources of variation and investigate the 349 

impact of T administration in the presence of confounders or other experimental factors, a 350 

situation commonly found in the anti-doping routine analysis. 351 

  352 
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4. Conclusions 353 

Measurement of endogenous steroid hormones in serum has been recently proven to be an 354 

interesting complementary strategy to the current urinary steroid profile for the detection of 355 

steroid-related doping abuse. In this research study, the potential of HRMS analysis in this 356 

context was evaluated by developing an UHPLC-HRMS method for the quantification of some of 357 

the most important endogenous steroids in serum related to testosterone metabolism. Its 358 

analytical performance was then compared to that of an already validated UHPLC-MS/MS 359 

method by analyzing serum samples collected during a testosterone clinical study. The results 360 

showed that for the 8 analytes that were detected with all three employed acquisition methods, 361 

concentration values measured by HRMS strongly correlated with the ones measured by 362 

MS/MS. Only in the case of low concentration steroids, such as DHT and 11-deoxycortisol, was a 363 

higher dispersion of samples in Bland-Altman plots observed in the low concentration region. 364 

This was probably due to a sensitivity gap between HRMS and MS/MS, which could be partially 365 

counterbalanced by the multiplexed t-SIM approach. The evaluation of HRMS performance was 366 

also investigated with a complementary approach based on ANOVA decomposition and 367 

multivariate analysis. Among the factors of variability, the AMOPLS showed that the influence of 368 

quantification Method was negligible (<2% of the total variance) in both transdermal and oral 369 

administration datasets, hence giving a biological description of testosterone intake fully in 370 

accordance with already published research based on UHPLC-MS/MS quantification.  371 

This study noted the suitability of UHPLC-HRMS systems for the quantification of endogenous 372 

steroid hormones in serum (Quan), confirming this matrix as a promising aid to improve steroid 373 

abuse detection in the anti-doping field. In addition, the possibility to acquire data in HRMS 374 
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FullScan mode opens the way to untargeted studies (Qual) for new metabolites identification. 375 

Qual-Quan acquisition will be of great usefulness, in particular in the anti-doping context, 376 

where most of WADA accredited laboratories are increasing their investments on HRMS 377 

instruments.  378 
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Tables 484 

Table 1 - Description of target analytes and detection parameters 485 

Analyte Elemental 
Composition 

Retention Time      
[min] 

Observed Ion 
Mass 

(monoisotopic)            
[m/z] 

Theoretical Ion 
Mass 

(monoisotopic)           
[m/z] 

Mass Error                      
[ppm] 

MSX                       
Count* 

Time Window 
[min] 

Testosterone C19H28O2 4.61 289.12579 289.21621 0.93 2 4.1 - 4.7 

Epitestosterone C19H28O2 5.31 289.21582 289.21621 1.35 8 4.6 - 5.5 

Androstenedione C19H26O2 5.13 287.20026 287.20056 0.84 8 4.6 - 5.5 

Progesterone C21H30O2 6.85 315.23157 315.23186 0.54 2 6.2 - 7.2 

17α-Hydroxyprogesterone C21H30O3 5.26 331.22641 331.22677 1.27 8 4.6 - 5.5 

DHEA C19H28O2 5.10  271.20535°   271.20564° 0.96 8 4.6 - 5.5 

DHT C19H30O2 5.60 291.23175 291.23186 1.10 2 5.3 - 5.7 

Corticosterone C21H30O4 3.63 347.22122 347.22169 0.72 3 3.1 - 4.1 

Cortisol C21H30O5 2.77 363.21619 363.21660 1.57 2 2.3 - 3.0 

Deoxycorticosterone C21H30O3 4.86 331.22638 331.22677 1.09 2 4.5 - 5.0 

11-Deoxycortisol C21H30O4 3.77 347.22124 347.22169 1.01 3 3.1 - 4.1 

* Also taking into account the deuterated internal standard for each target analyte        

° [M-H2O]+               
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Table 2 – Estimated lower limit of quantification (LLOQ) for target analytes with FS and t-SIM acquisition 486 

modes in comparison with the MS/MS method 487 

Compound 
LLOQ [pg/mL] 

FS t-SIM MS/MS[22] 

Testosterone 100 50 20 

Epitestosterone 100 50 20 

Androstenedione 100 50 50 

17α-Hydroxyprogesterone 500 250 100 

Progesterone 100 50 15 

DHEA 500 500 500 

DHT 500 250 50 

Corticosterone 100 100 100 

Cortisol 1000 1000 1000 

Deoxycorticosterone 500 250 25 

11-Deoxycortisol 250 250 25 

 488 

 489 

 490 

  491 
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Figures captions 492 

Figure 1 Chromatograms of 17α-hydroxyprogesterone obtained with three different HRMS 493 

acquisition modes: (A) Full scan, (B) t-SIM without multiplexing and (C) t-SIM with MSX count of 494 

8  495 

Figure 2 Passing-Bablok regressions and Bland-Altman plots for the comparison of testosterone 496 

quantification results. (A, B) t-SIM vs SRM and (C, D) FS vs SRM 497 

Figure 3 Passing-Bablok regressions and Bland-Altman plots for the comparison of DHT 498 

quantification results. (A, B) t-SIM vs SRM and (C, D) FS vs SRM  499 

Figure 4 AMOPLS modeling for transdermal administration data (30.3% of explained variance): 500 

(A) relative contributions of volunteer, time and method effects and their interactions; (B) score 501 

and loadings plots of predictive component related to the time factor. C: control, P: patch. 502 

Figure 5 AMOPLS modeling for oral administration data (18.6% of explained variance): (A) 503 

relative contributions of volunteer, time and method effects and their interactions; (B) score and 504 

loadings plots of predictive component related to the time factor. C: control, O: oral. 505 

 506 
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Table S1 Internal Standard Mix composition (final conc. in serum) 

Compound Concentration 
(ng/mL) Compound Concentration 

(ng/mL) 

   Testosterone-d3  0,2    DHT-d3  2 

   Epitestosterone-d3  0,5    Corticosterone-d8  5 

   Androstenedione-d7  5    Cortisol-d4  2,5 

   Progesterone-d9  2    Deoxyorticosterone-d8 2 

   17α-Hydroxyprogesterone-d8 10    11-Deoxycortisol-d2  1 

   DHEA-d5  4 

Table S2 Calibration samples composition (final conc. in serum) 

Compound 
Concentration (pg/mL) 

Cal1 Cal2 Cal3 Cal4 Cal5 Cal6 Cal7 Cal8 

Testosterone 20 50 100 500 1000 5000 10000 25000 

Epitestosterone 20 50 100 500 1000 2500 10000 

Androstenedione 50 100 500 1000 2500 5000 10000 25000 

Progesterone 15 25 50 100 500 2500 10000 25000 

17α-Hydroxyprogesterone 100 250 500 1000 2500 500 10000 25000 

DHEA 500 2500 5000 10000 25000 

DHT 50 250 500 750 1000 2500 5000 10000 

Corticosterone 100 500 1000 5000 25000 50000 100000 

Cortisol 1000 2500 10000 25000 100000 200000 300000 400000 

Deoxycorticosterone 25 250 500 1000 2500 10000 

11-Deoxycortisol 25 250 500 1000 2500 5000 



Table S3 Description of labeled internal standards and detection parameters 

Analyte Elemental 
Composition 

Retention Time     
[min] 

Observed Ion Mass 
(monoisotopic)     

[m/z] 

Theoretical Ion Mass 
(monoisotopic)          

[m/z] 

Mass Error     
[ppm] 

MSX    
Count 

Time Window 
[min] 

Testosterone-d3 C19H25D3O2 4.58 292.23484 292.23431 1.81 2 4.1 - 4.7 

Epitestosterone-d3 C19H25D3O2 5.28 292.23484 292.23431 1.81 8 4.6 - 5.5 

Androstenedione-d7 C19H19D7O2 5.10 294.24429 294.24384 1.53 8 4.6 - 5.5 

Progesterone-d9 C21H21D9O2 6.81 324.28835 324.28784 1.57 2 6.2 - 7.2 

17α-Hydroxyprogesterone-d8 C21H22D8O3 5.24 339.27679 339.27628 1.50 8 4.6 - 5.5 

DHEA-d5 C19H23D5O2 5.07 276.23703 276.23706 -0.11 8 4.6 - 5.5 

DHT-d3 C19H27D3O2 5.58 294.25069 294.25027 1.43 2 5.3 - 5.7 

Corticosterone-d8 C21H22D8O4 3.60 355.27190 355.27155 0.99 3 3.1 - 4.1 

Cortisol-d4 C21H26D4O5 2.77 367.24171 367.24142 0.79 2 2.3 - 3.0 

Deoxycorticosterone-d8 C21H22D8O3 4.82 339.27699 339.27634 1.92 2 4.5 - 5.0 

11-Deoxycortisol-d2 C21H28D2O4 3.75 349.23424 349.23384 1.15 3 3.1 - 4.1 

° [M-H2O]+ 



 

Figure S1 – Passing-Bablok regressions and Bland-Altman plots for androstenedione 

 



 

Figure S2 - Passing-Bablok regressions and Bland-Altman plots for 17α-hydroxyprogesterone 



 

Figure S3 - Passing-Bablok regressions and Bland-Altman plots for DHEA 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S4 - Passing-Bablok regressions and Bland-Altman plots for corticosterone 



 

Figure S5 - Passing-Bablok regressions and Bland-Altman plots for cortisol 



 

Figure S6 - Passing-Bablok regressions and Bland-Altman plots for 11-deoxycortisol 

 

 

 

 

 

 

 

 

 

 

 



Table S4 –Trueness, repeatability and intermediate precision calculated for all analytes at each 
concentration level with t-SIM acquisition mode. Highlighted in grey LLOQ values, defined as 
the lowest concentration at which measured accuracy and precision are <20%. 

          

Analyte Concentration                     
(pg/mL) 

Trueness     
(%)* 

Precision 

Repeatability      
(%, n=2) IP  (%, n=12)* 

Testosterone 20 127.0 5.5 12.9 
  50 94.5 11.1 12.0 
  100 94.6 4.3 5.6 
  500 91.4 9.3 9.3 
  1000 92.8 7.4 7.7 
  5000 105.2 13.1 13.1 
  10000 91.8 7.7 7.7 
  25000 104.0 7.9 7.9 
          
Epitestosterone 20 -  -  -  
  50 116.4 14.0 14.0 
  100 111.6 11.1 11.1 
  500 89.4 5.0 5.1 
  1000 84.6 7.0 7.1 
  2500 94.9 6.4 6.8 
  10000 157.8 14.0 14.0 
          
Androstenedione 50 100.3 13.3 14.0 
  100 95.1 7.6 12.4 
  500 100.9 8.6 8.6 
  1000 98.0 9.5 9.5 
  2500 101.1 5.0 5.0 
  5000 103.7 5.2 8.3 
  10000 95.6 9.0 9.0 
  25000 101.8 6.9 6.9 
          
Progesterone 15 98.5 48.0 48.0 
  25 93.5 23.6 23.6 
  50 93.0 9.2 10.0 
  100 99.0 16.6 16.6 
  500 103.5 19.1 19.1 
  2500 102.2 12.5 13.7 
  10000 101.0 13.0 13.0 
  25000 100.1 11.2 11.2 
  
 
 

  
  
 
 

    



 
 
 

 
 

17α-hydroxyprogesterone 100 102.0 23.8 23.8 
  250 90.1 10.3 10.3 
  500 95.3 12.1 12.1 
  1000 102.5 9.0 10.2 
  2500 97.0 7.0 10.3 
  5000 95.4 4.5 7.4 
  10000 97.0 9.9 11.1 
  25000 101.7 6.9 6.9 
          
DHEA 500 117.4 6.6 6.6 
  2500 87.5 6.9 6.9 
  5000 95.8 8.8 9.0 
  10000 89.1 7.1 7.1 
  25000 106.2 5.2 5.2 
          
DHT 50 101.3 23.4 23.4 
  250 85.1 4.8 5.0 
  500 108.2 6.5 8.2 
  750 105.6 6.6 7.4 
  1000 108.2 3.0 6.2 
  2500 98.0 9.1 9.1 
  5000 92.4 6.3 6.3 
  10000 106.0 4.5 4.9 
          
Corticosterone 100 104.1 16.7 17.3 
  1000 100.0 10.9 11.3 
  5000 96.0 11.0 11.0 
  25000 100.2 11.6 11.6 
  50000 105.2 7.5 9.4 
  100000 95.8 8.1 10.8 
          
Cortisol 1000 108.8 8.7 9.9 
  2500 89.2 6.4 6.4 
  10000 98.7 7.8 9.4 
  25000 101.4 5.9 9.6 
  100000 97.2 7.5 9.2 
  200000 99.0 11.1 11.1 
  300000 94.1 9.6 9.6 
  400000 105.2 3.2 4.0 
  
 
 
 

        



 
 
 
Deoxycorticosterone 25  - -  -  
  250 101.1 13.0 17.3 
  500 118.7 16.5 19.3 
  1000 119.4 8.3 16.4 
  2500 119.0 2.8 10.4 
  10000 87.5 3.9 6.0 
          
11-deoxycortisol 25 153.9 36.1 36.1 
  250 86.8 7.2 9.1 
  500 86.6 6.8 12.4 
  1000 83.6 8.5 8.7 
  2500 90.4 16.2 16.2 
  5000 87.7 7.8 11.7 
*IP: Intermediate Precision  
- : analyte not detected 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S5 –Trueness, repeatability and intermediate precision calculated for all analytes at each 
concentration level with FS acquisition mode. Highlighted in grey LLOQ values, defined as the 
lowest concentration at which measured accuracy and precision are <20%. 

Analyte Concentration                     
(pg/mL) 

Trueness     
(%)* 

Precision 

Repeatability      
(%, n=2) IP (%, n=12)* 

Testosterone 20 146.2 19.2 35.8 
  50 110.4 9.6 29.9 
  100 92.1 16.3 16.3 
  500 86.2 13.7 14.6 
  1000 87.8 11.4 11.4 
  5000 109.2 12.4 12.4 
  10000 91.9 14.3 14.3 
  25000 106.3 4.6 6.0 
          
Epitestosterone 20 -  -  -  
  50 -  -  -  
  100 115.6 19.1 19.1 
  500 97.2 18.6 18.6 
  1000 90.2 15.8 15.8 
  2500 99.0 14.5 14.5 
  10000 101.0 8.1 8.1 
          
Androstenedione 50 115.8 34.2 39.2 
  100 100.5 17.8 17.8 
  500 94.2 15.9 15.9 
  1000 100.5 3.2 5.6 
  2500 100.1 4.9 6.3 
  5000 101.5 4.2 5.5 
  10000 96.5 7.6 7.6 
  25000 101.2 2.3 3.2 
          
Progesterone 15 121.6 59.7 59.7 
  25 101.7 31.1 43.3 
  50 106.5 34.4 34.4 
  100 93.7 9.2 9.7 
  500 94.8 4.1 7.5 
  2500 95.9 5.0 5.0 
  10000 98.2 6.5 6.5 
  25000 100.6 7.2 7.2 
  
 
 
 
 

  
 
 

  
 
 
 
 

    



 
 
17α-hydroxyprogesterone 100 -  - - 
  250 89.4 12.1 27.0 
  500 86.9 16.5 16.7 
  1000 109.3 7.6 11.7 
  2500 94.5 8.8 8.8 
  5000 98.2 2.0 6.3 
  10000 95.5 8.6 8.6 
  25000 101.3 8.7 8.7 
          
DHEA 500 117.9 2.6 2.7 
  2500 87.0 8.8 8.8 
  5000 93.8 3.6 6.7 
  10000 87.3 3.5 4.5 
  25000 107.3% 4.4 4.4 
          
DHT 50 109.6 21.2 21.2 
  250 79.7 4.4 5.0 
  500 105.1 10.3 10.3 
  750 101.9 7.5 8.6 
  1000 110.4 8.3 9.2 
  2500 97.1 6.7 7.1 
  5000 92.3 6.2 6.2 
  10000 105.2 5.2 5.2 
          
Corticosterone 100 101.9 13.9 15.8 
  1000 100.6 15.4 15.4 
  5000 94.2 9.2 10.6 
  25000 100.1 12.6 12.6 
  50000 105.1 8.3 9.1 
  100000 96.9 6.8 10.4 
          
Cortisol 1000 112.9 5.0 7.1 
  2500 88.2 3.4 3.4 
  10000 98.1 5.4 5.8 
  25000 101.0 2.4 5.6 
  100000 99.2 3.4 5.7 
  200000 98.1 5.4 5.6 
  300000 93.5 7.8 7.8 
  400000 106.2 5.2 5.5 
  
 
 
 
 

        



 
 
Deoxycorticosterone 25  -  -  - 
  250 83.6 9.5 22.1 
  500 111.2 15.7 15.7 
  1000 119.1 17.7 17.9 
  2500 119.8 18.7 18.7 
  10000 92.9 5.6 5.6 
          
11-deoxycortisol 25 162.5 18.5 26.3 
  250 83.7 4.9 10.1 
  500 83.3 6.4 9.7 
  1000 81.6 8.5 9.8 
  2500 88.6 20.0 20.0 
  5000 89.2 11.0 11.0 
*IP: Intermediate Precision  
- : analyte not detected 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S7 - Score and loadings plots of time modes of tp 1 obtained from AMOPLS modeling for 

(A) transdermal administration data (47.9% of explained variance) and (B) oral administration 

data (53.5% explained variance). C: control, P: patch, O: oral 

 


