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Abstract14

Passive seismic characterization is an environmentally friendly method to estimate the15

seismic properties of the subsurface. Among its applications, we find the monitoring of16

geothermal reservoirs. One key characteristic to ensure a productive management of these17

reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow18

of fluids within the formation. In this work, we explore the effects of fracture connec-19

tivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure20

diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a frac-21

tured water-bearing formation. For the stochastic fracture network prevailing in this for-22

mation, we consider varying levels of fracture density and connectivity. A numerical up-23

scaling procedure that accounts for FPD effects is employed to determine the correspond-24

ing body wave velocities. We use a Monte-Carlo-type approach to obtain these veloc-25

ities and incorporate them in the considered fractured reservoir model to assess the sen-26

sitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show27

that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the de-28

gree of fracture connectivity, which is mainly due to a reduction of the stiffening effect29

of the fluid residing in connected fractures in response to wave-induced FPD. These ef-30

fects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh31

wave velocity changes, which are commonly associated with changes in fracture density,32

may also be related to changes in interconnectivity of pre-existing or newly generated33

fractures.34

Plain Language Summary35

Low-intensity seismic energy generated by natural or anthropogenic sources is used36

to obtain a number of physical properties of the subsurface. Amongst a wide range of37

applications, this technique is increasingly employed to characterize fractured geother-38

mal reservoirs and to monitor their evolution. The interconnectivity of fractures is a crit-39

ical characteristic of such reservoirs as it enables preferential pathways for fluid flow. Con-40
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ventional models for interpreting such seismic data are based on linear elasticity and can-41

not account for realistic effects related to the interactions of pore fluid pressure and frac-42

ture connectivity. To alleviate this problem, we employ an advanced model that accounts43

for these so-called wave-induced fluid pressure diffusion (FPD) effects. We find that changes44

in the connectivity of fractures have a significant impact on seismic surface wave record-45

ings. This opens the perspective of using such observations to monitor the hydraulic evo-46

lution of fractured reservoirs during successive production and stimulation cycles.47

1 Introduction48

Fractured rock formations are of increasing interest and importance for a wide range49

of applications throughout the Earth, environmental, and engineering sciences. Fractures50

tend to constitute preferential pathways for fluid flow and, as such, the hydraulic prop-51

erties of a formation are greatly affected by the presence and connectivity of fractures.52

This, in turn, manifests itself in the need of new methods and techniques to detect frac-53

tures and characterize their geometrical, mechanical, and hydraulic properties. In this54

context, the use of passive seismic sensing to monitor the evolution of fracture networks55

has established itself due to its efficiency, reliability, and non-invasive nature. Prominent56

examples of scenarios where this technique has proven to be valuable include the mon-57

itoring of volcanic activity (e.g., Brenguier et al., 2008; Obermann et al., 2013), CO2 se-58

questration (e.g., Boullenger et al., 2015; Gassenmeier et al., 2014), and geothermal en-59

ergy production (e.g., Calò et al., 2013; Obermann et al., 2015; Taira et al., 2018).60

Passive seismic methods comprise a vast range of approaches and techniques which61

employ the energy of naturally occurring seismicity to gain information of the subsur-62

face. In active seismic regions, the energy released from natural earthquakes in the area63

can be used for this purpose. This method is known as local earthquake tomography (LET)64

(e.g., Aki & Lee, 1976; Thurber, 1983). Conversely, ambient-noise correlation or passive65

seismic interferometry is a passive seismic method based on surface wave analysis which66

is also applicable outside seismically active zones. Ambient-noise correlation is based on67
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the inversion of Rayleigh wave velocity dispersion inferred from ambient seismic noise68

measurements to obtain S-wave velocity profiles of the studied zone. Even though this69

method initially started with pioneering works focused at the continental and regional70

scale (e.g., Campillo & Paul, 2003; Shapiro & Campillo, 2004), it quickly evolved towards71

smaller scales, proving its effectiveness as an exploration and monitoring tool for appli-72

cations such as, for example, nuclear waste storage and CO2 sequestration, which nat-73

urally target zones with low natural seismicity(Planès et al., 2020). Notably, this tech-74

nique was employed successfully in the characterization of geothermal reservoirs by em-75

ploying time lapse observations. Obermann et al. (2015) employed ambient-noise cor-76

relation in order to monitor the geothermal site of St. Gallen in Switzerland, which per-77

mitted the identification of aseismic perturbations associated with gas infiltration. More78

recently, Taira et al. (2018) used ambient-noise correlation to monitor the response of79

the Salton Sea geothermal site in the U.S.A. to fluid extraction and local earthquake ac-80

tivity. Interestingly, these authors attributed observed surface wave velocity reductions81

to the opening of preexisting fractures due to induced stresses. In addition to this, it can82

be expected that fluid pressure diffusion (FPD) effects play a role in this scenario, as in83

the presence of fluid saturated fractures, such poroelastic effects have a significant im-84

pact on the effective mechanical properties of the medium in response to seismic waves85

(e.g., Rubino et al., 2013, 2014, 2017). To date, surface wave analyses do not, however,86

account for wave-induced FPD.87

When seismic waves travel through a fluid-saturated porous medium containing a88

distribution of mesoscopic fractures, that is, fractures larger than the typical pore size89

but much smaller than the prevailing seismic wavelengths, fluid pressure gradients are90

induced between compliant fractures and the stiffer embedding background, as well as91

between connected fractures (e.g., Rubino et al., 2013, 2014). The consequent pressure92

equilibration processes, usually referred to as fracture-to-background (FB) and fracture-93

to-fracture (FF) FPD, result in a frequency dependence of the effective mechanical mod-94

uli of the medium. The prevalence of these mechanisms is dependent on the frequency95
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of the seismic waves. In low-permeability formations and in presence of centimeter- to96

meter-scale fractures, FB-FPD typically prevails at frequencies below the seismic frequency97

range (≲ 0.01 Hz), while FF-FPD occurs at frequencies above the seismic frequency range98

(≳ 103 Hz ). The effects of FPD on body wave velocities of fractured rocks were exten-99

sively studied, and it was demonstrated that the density, connectivity and orientation100

of fractures have a significant impact on the phase velocity dispersion and attenuation101

as well as on the anisotropy of body wave velocities (e.g., Gurevich et al., 2009; Vinci102

et al., 2014; Rubino et al., 2017; Solazzi et al., 2020). However, the corresponding im-103

pact on surface wave properties, such as, for example, their velocity dispersion charac-104

teristics, in the context of subsurface exploration and monitoring settings remains largely105

unexplored. Previous works associate surface wave velocity decreases in seismically ac-106

tive environments with the opening of fractures and the associated increases of fracture107

density (e.g., Silver et al., 2007; Taira et al., 2015, 2018). However, this interpretation108

ignores the possibility that changes in the fracture density may also be associated with109

changes in the connectivity between fractures and disregards the associated FPD effects110

on the properties of surface waves.111

The aim of this work is to explore the importance of fracture-related FPD effects112

on surface wave velocity dispersion. Our main objective is to better understand the ef-113

fects that fractures in general, and their interconnectivity in particular have on this widely114

used observable. The paper proceeds as follows. We begin by explaining the method used115

to compute synthetic Rayleigh wave dispersion curves in elastic layered media. We then116

outline of the theoretical basis of poroelasticity and the associated upscaling procedure117

employed to compute the effective seismic properties of fractured formations. Then, we118

consider a canonical model to explore the effects of FPD for a wide range of pertinent119

parameters, which allow us to systematically explore the effects of fracture density and120

interconnectivity on Rayleigh wave phase and group velocities. To assure the represen-121

tativity of our results, we use a Monte Carlo approach to explore the corresponding pa-122

rameter space. Rayleigh wave dispersion curves are analyzed for fracture distributions123
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characterized by constant and variable length in order to determine if the multiplicity124

of scales prevailing in many natural settings has significant impact on the results.125

2 Methodology126

2.1 Rayleigh Wave Dispersion127

Rayleigh waves propagate along the Earth’s free surface as a superposition of P-128

waves and vertically polarized S-waves. They are characterized by a counter-clockwise129

elliptical particle motion, whose amplitude decays exponentially with distance from the130

free surface. Conversely, geometrical spreading effects are very small compared to those131

of body waves, and, hence, Rayleigh waves tend to be prevalent in seismic recordings (e.g.,132

Stein & Wysession, 2003). In a stratified medium with varying seismic velocities, Rayleigh133

wave propagation is dispersive, which manifests itself in a prominent frequency depen-134

dence of their phase velocities. The reason for this is that different frequencies are as-135

sociated with different wavelengths and, thus, with different sensitivity to depth. Cor-136

respondingly, passive seismic approaches allow to characterize the subsurface through137

the inversion of Rayleigh wave dispersion curves extracted from ambient noise records138

(e.g., Socco et al., 2010; Wang & Yao, 2020).139

We consider a layered medium whose axis of symmetry is normal to the surface and140

impose the following boundary conditions for waves travelling in a layered half-space in141

contact with a free surface: (i) no stress at the surface; (ii) no stress and strain at in-142

finite depth; (iii) continuity of stress and displacements at layer interfaces; (iv) plane strain143

field. In this context, the equation of motion can be written as a linear differential eigen-144

value problem (e.g., Aki & Richards, 1980)145

df(z)

dz
= A(z)f(z), (1)146

where f is a vector composed of two displacement eigenfunctions and two stress eigen-147

functions, A is a 4x4 matrix depending on the vertical distribution of the of the subsur-148

face properties and z is the vertical coordinate. Equation 1 has nontrivial solutions for149
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certain values of the wavenumber. The associated equation is known as the Rayleigh sec-150

ular equation and in its implicit form is given by (e.g., Socco et al., 2010)151

FR[λ(z), G(z), ρ(z), kj , f ] = 0, (2)152

where λ and G are the Lamé parameters, ρ is the density, kj is the wavenumber of the153

mode of propagation j, and f is the frequency. The variables corresponding to the ma-154

terial parameters of the subsurface depend on z. For a stratified medium where each layer155

has homogeneous mechanical properties, this problem can be expressed using a matrix156

formulation, as shown by the works of Thomson (1950) and Haskell (1953). These au-157

thors introduced the so-called matrix propagator method which conceptualizes the sub-158

surface as a stack of layers overlying a semi-infinite half-space. These algorithms are com-159

monly employed for the computation of Rayleigh wave dispersion curves for a wide va-160

riety of applications. Buchen and Ben-Hador (1996) provide a review of the most sig-161

nificant propagator matrix algorithms and introduce the so-called “fast delta matrix”162

method, which we use in this study. The procedure to determine the associated Rayleigh163

wave phase and group velocities consists of finding the roots of the Rayleigh secular equa-164

tion (Equation 2), for which we use the secant method (e.g., Press et al., 1986). The fast165

delta matrix method employed here provides exact solutions for models consisting of a166

stack of horizontal, elastic, and isotropic layers.167

The objective of this work is to assess the effects of FPD in porous media contain-168

ing fracture networks on Rayleigh wave dispersion. To this end, we will consider a lay-169

ered subsurface model in which one of the layers represents a fractured formation. In this170

context, various scenarios of fracture connectivity are considered for Rayleigh wave dis-171

persion modelling. The effective body wave velocities of the fractured formation required172

to compute Rayleigh wave dispersion are obtained by employing a numerical upscaling173

procedure, which is described in the following section.174
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2.2 Effective Body Wave Properties of Fractured Rocks in a Poroelas-175

tic Context176

In the following, we briefly describe the effects of FPD on the seismic signatures177

of fractured rocks. This is followed by a brief review of Biot’s poroelasticity theory (Biot,178

1962), which is subsequently employed to model FPD effects in fractured porous media.179

To do so, we employ the numerical upscaling procedure proposed by Rubino et al. (2016),180

which was recently implemented into a versatile finite-element package named “Parrot”181

and allows to consider stochastic fracture distributions of realistic complexity (Favino182

et al., 2020).183

2.2.1 Fluid Pressure Diffusion Effects184

When a seismic wave propagates through a fluid-saturated porous medium contain-185

ing fractures in the mesoscopic scale range, FPD affects its phase velocity and amplitude.186

In presence of connected fractures, two manifestations of FPD can arise (Rubino et al.,187

2013): one is governed by FPD between compliant fractures and their stiffer embedding188

background and is referred to as FB-FPD; the other is associated with FPD between con-189

nected fractures and is referred to as FF-FPD. Figures 1a to 1c show a representative190

rock sample of a medium of interest being subjected to harmonic displacements applied191

on its boundaries, which allow us to obtain the associated effective frequency-dependent192

elastic moduli (Rubino et al., 2016). Figures 1d to 1g show schematic illustrations of FPD193

effects in terms of the pressure distribution in a subsection of a fractured sample sub-194

jected to vertical compression (Figure 1a), which emulates the strains produced by a ver-195

tically travelling P-wave. Orange-colored regions of the medium denote the fluid pres-196

sure build-up created by the harmonic deformation and black arrows indicate the direc-197

tion of the corresponding wave-induced fluid flow. The large stiffness contrast between198

fractures and background generates pressure gradients in response to the propagation199

of a seismic wave, which, in turn, generate oscillatory fluid flow between these regions200

and, thus, energy dissipation and velocity dispersion due to FB-FPD (Figure 1d). Fig-201
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ure 1f illustrates FF-FPD, where fluid flow and, thus, velocity dispersion and attenua-202

tion, is caused by local fluid pressure gradients occurring between intersecting fractures.203

Above the frequency range at which FF-FPD prevails, the sample behaves as if fractures204

were hydraulically isolated. This is the so-called no-flow limit, beyond which the medium205

essentially behaves elastically (Figure 1g). As mentioned before, for crystalline rocks, FB-206

FPD falls below the frequencies typical of passive seismic surveys, while FF-FPD cor-207

responds to frequencies higher than those of passive seismics. As illustrated in Figure208

1e, between these regimes we find a frequency range characterized by pressure equilib-209

rium between connected fractures, which substantially reduces the stiffening effect of the210

fracture fluid compared to the elastic case. Figure 1h then presents an illustration of the211

associated body wave phase velocity as a function of frequency for samples containing212

connected and unconnected fractures. The FB-FPD and FF-FPD dispersion ranges are213

highlighted in yellow. For frequencies higher than the FB-FPD regime and lower than214

the FF-FPD regime, there is a non-dispersive plateau in which the medium behaves ef-215

fectively as being elastic. Although there is neither attenuation nor velocity dispersion216

in this frequency range, FPD effects in presence of connected fractures produce a sig-217

nificant velocity drop. This means that, even though the body wave velocities in the plateau218

are representative of an elastic medium, this velocity change can only be modelled in the219

context of the theory of poroelasticity. For many applications of interest, the frequency220

range of approximately 0.1 to 10 Hz, at which passive seismic surveys are usually car-221

ried out (e.g., Obermann et al., 2015; Taira et al., 2018) is within the limits of this non-222

dispersive plateau. This implies that, as long as the frequencies considered correspond223

to those of the non-dispersive plateau, an elastic modelling such as the one described in224

Section 2.1 can be employed to evaluate Rayleigh wave dispersion in layered media.225

2.2.2 Numerical Upscaling Procedure226

The direct numerical simulation of FPD effects on wave propagation is a compli-227

cated task. This is mainly due to the fact that the dominant scales at which FPD takes228
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Figure 1. Schematic illustration of the (a) vertical, (b) horizontal, and (c) shear numerical

oscillatory relaxation tests employed to obtain the equivalent stiffness matrix of the considered

sample. (d, e, f, g) Fluid pressure distributions in a subsection of the sample highlighted in (a)

subjected to a vertical compression for different dispersion regimes. Increasing pressure is de-

noted by progressive intensities of orange. (d) FB-FPD: pressure exchange between fractures and

background rock, (e) non-dispersive (ND) plateau: pressure is equilibrated between connected

fractures; (f) FF-FPD: pressure exchange between connected fractures; (g) elastic equivalent

case: pressure confined to the horizontal fracture. (h) P- and S-wave velocities as functions of

frequency for samples with unconnected fractures (red line) and connected fractures (blue line).

The frequency ranges where body wave dispersion due to FB-FPD and FF-FPD prevails are

highlighted in yellow. Typical frequency range of passive seismic studies is shown inside the ND

plateau. –10–
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place are much smaller than the seismic wavelengths (Rubino et al., 2016). For this rea-229

son, numerical upscaling procedures are commonly employed to achieve an effective char-230

acterization of heterogeneous poroelastic media. In order to obtain the effective upscaled231

seismic response of a medium of interest, we solve Biot’s equations for a so-called rep-232

resentative elementary volume (REV) of the medium. An REV is defined as a subvol-233

ume that is structurally typical of the whole medium and for which the inferred prop-234

erties are independent of the applied boundary conditions (e.g., Milani et al., 2016). Frac-235

tures are conceptualized as highly porous, permeable, and compliant inclusions embed-236

ded in a much stiffer and much less porous permeable background (e.g., Nakagawa & Schoen-237

berg, 2007). As seismic attenuation and velocity dispersion due to FPD are governed by238

fluid pressure gradients, we can neglect inertial terms (e.g., Rubino et al., 2013). Hence,239

Biot’s poroelastic equations of motion (Biot, 1956b, 1956a) reduce to the so-called con-240

solidation equations (Biot, 1941), which, in the space-frequency domain are given by241

∇ · σ = 0, (3)242

243

∇pf = −iω
η

κ
w, (4)244

where σ is the total stress tensor, pf the pore fluid pressure, η the fluid viscosity, κ the245

permeability, ω the angular frequency, and w the relative fluid-solid displacement. These246

equations are coupled by the stress-strain constitutive relations (Biot, 1962)247

σ = 2µmϵ+ I(λc∇ · u− αMξ), (5)248

249

pf = −αM∇ · u+Mξ, (6)250

where I is the identity matrix, u the solid displacement, and ξ = −∇·w a measure of251

the local change in the fluid content. The strain tensor is given by ϵ = 1
2 (∇u+(∇u)T ),252

where the superscript T denotes the transpose operator. The Biot-Willis parameter α,253

the fluid storage coefficient M , and the Lamé parameter λc are given by254

α = 1− Km

Ks
, (7)255

256

M =
(α− ϕ

Ks
+

ϕ

Kf

)−1

, (8)257
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and258

λc = Km + α2M − 2

3
µm, (9)259

where ϕ denotes the porosity, µm the shear modulus of the bulk material, which is equal260

to that of the dry frame, and Kf , Ks, and Km are the bulk moduli of the fluid phase,261

the solid grains, and the dry matrix, respectively. Please note that the dry frame mod-262

ulus Km is related to the undrained saturated modulus Ku through Gassmann’s equa-263

tion Km = Ku − α2M (Gassmann, 1951). Due to computational constrains, we em-264

ploy a 2D characterization for our medium under the hypothesis of plane strain condi-265

tions. The plane strain assumption implies that the considered fractures are long enough266

in the direction perpendicular to the considered plane of wave propagation to neglect pres-267

sure gradients, as well as normal and shear strains along this direction. This also implies268

that the seismic waves are assumed to propagate along the plane of the sample. In or-269

der to characterize the full stiffness matrix of a 2D medium, we apply three oscillatory270

relaxation tests to a corresponding REV, whose boundary conditions are illustrated in271

Figure 1. The first test consists of a harmonic vertical compression (Figure 1a), performed272

by applying a time-harmonic homogeneous vertical displacement at the top boundary273

of the representative sample, while keeping the vertical displacement of the sample null274

at the bottom boundary. The second test is a harmonic horizontal compression test (Fig-275

ure 1b) and consists on applying a normal displacement at a lateral boundary of the sam-276

ple, while keeping the horizontal displacement null at the opposing boundary. The third277

and final test consist of applying a harmonic horizontal displacement at the top bound-278

ary of the sample, while keeping the bottom boundary fixed in place (Figure 1c). Fol-279

lowing Favino et al. (2020), the displacements and pressures obey periodic boundary con-280

ditions unless stated otherwise.281

Given that a heterogeneous poroelastic medium can be represented by an effective282

homogeneous viscoelastic solid (e.g., Rubino et al., 2016; Solazzi et al., 2016), the vol-283

umetric average of stress and strain, in response to the three tests, can be related through284
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an equivalent frequency-dependent and anisotropic stiffness matrix (Rubino et al., 2016)285 
⟨σ11(ω)⟩

⟨σ22(ω)⟩

⟨σ12(ω)⟩

 =


C11 C12 C16

C12 C22 C26

C16 C26 C66




⟨ϵ11(ω)⟩

⟨ϵ22(ω)⟩

⟨2ϵ12(ω)⟩

 , (10)286

where Cij(ω) are the components of the equivalent stiffness matrix in Voigt notation,287

and ⟨ϵij(ω)⟩ and ⟨σij(ω)⟩ represent the volume-averages of the strain and stress compo-288

nents, respectively. A least-squares procedure is employed to obtain the best-fitting val-289

ues of Cij using the averaged stress and strain fields obtained from the three tests for290

each frequency. The resulting P- and S-wave phase velocities are angle- and frequency-291

dependent, and are given by (Rubino et al., 2016):292

VP,S(ω, θ) =
ω

ℜ(κP,S(ω, θ))
, (11)293

where ℜ is the real part operator, κP,S(ω, θ) denotes the complex-valued wavenumbers294

obtained by solving the elastodynamic equation in a medium defined by the stiffness ma-295

trix in equation (10). The reader is referred to the works of Rubino et al. (2016) and Favino296

et al. (2020) for the details of this upscaling procedure.297

It is important to mention that these upscaling procedures allow us to obtain rep-298

resentative values of the rock physical properties of interest as long as the considered sam-299

ples constitute an REV of the lithological unit of interest. In the presence of stochas-300

tic fracture distributions, identifying subvolumes that fulfill the criteria of an REV tends301

to be impractical due to the excessively large size of the samples that would be required302

for this purpose. To overcome this difficulty, we follow the approach of Rubino et al. (2009),303

who employ the previously outlined upscaling procedure in a Monte Carlo fashion on sub-304

REV-size samples. For this, we assume that the rock physical properties of the litholog-305

ical unit of interest are statistically ergodic, and thus, stationary, such that spatial av-306

erages can be replaced by ensemble averages inferred through compressibility and shear307

tests to a multitude of random samples. This approach is equivalent to considering re-308

peated applications of the upscaling procedure to randomly chosen samples as a repeated309

measurement of the rock physical properties of the lithological unit of interest. As such,310
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Figure 2. Schematic illustration of the canonical 1D model considered in this study show-

ing the lithological column and the associated P- (blue) and S-wave (red) velocity profiles.The

blow-up illustrates its detailed structure at the size of the samples considered in our upscaling

procedure.

the representative mechanical properties can then be characterized by the correspond-311

ing mean values and variances inferred from a sufficiently large set of such measurements.312

Finally, please note that, while the velocities computed using the upscaling technique313

are in general frequency-dependent, in this work, we consider a frequency range in which314

the resulting velocities have no velocity dispersion.315

3 Results316

3.1 Numerical Framework317

In order to assess the sensitivity of Rayleigh wave dispersion with regard to the ef-318

fects of fractures in general and their interconnectivity in particular, we consider a canon-319

ical model composed of two horizontal layers overlying a half-space (Figure 2). The sur-320

ficial layer corresponds to a 2500-m-thick sandstone formation, followed by a layer of frac-321

tured granite with a thickness of 700 m, and an underlying half-space consisting of in-322
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tact granite. The sandstone layer is homogeneous and, hence, seismic waves traversing323

it are not attenuated or dispersed due to FPD effects. Its seismic properties are: VP =324

3500 m/s, VS = 2000 m/s, and ρ = 2500 kg/m3 (Mavko et al., 1998). For the frac-325

tured granite layer, the fractures are represented using highly porous and permeable in-326

clusions. As mentioned above, we assume the statistical stationarity of the properties327

of the formation, which allows us to carry out the upscaling procedure previously described.328

This layer is characterized by its fracture density, quantified as the ratio of fracture area329

over the sample area, the length distribution of fractures, and the number of connections330

between fractures. These parameters have a significant impact on the resulting body wave331

velocities of saturated fractured samples (e.g., Hunziker et al., 2018). The underlying granitic332

half-space has the same material properties as the intact parts of the fractured granitic333

layer. As the surficial sandstone layer, it is homogeneous and hence devoid of FPD ef-334

fects. The P- and S-wave velocities of this layer are computed as VP =
√

Ku+4/3µm

ρb
335

and VS =
√

µm

ρb
, respectively, where ρb is the bulk density of the medium. Note that336

one could alternatively obtain these velocities applying the upscaling procedure in the337

homogeneous layer. The physical properties of the granitic rocks and fractures are listed338

in Table 1. The granite properties correspond to those in Detournay and Cheng (1993)339

and the fracture and fluid properties to those from Rubino et al. (2017). The saturat-340

ing pore fluid is brine, and the grain-level properties of the fractures are assumed to be341

consistent with those of the intact granite.342

In order to estimate the body wave velocities of the fractured layer, we follow the343

upscaling procedure described in Section 2.2 employing isotropic rock samples with ho-344

mogeneously oriented fractures. To explore the role played by the connectivity of the frac-345

tures, we consider two end-member-type scenarios: (i) fully connected and (ii) entirely346

unconnected fracture distributions. When generating a particular synthetic fractured sam-347

ple, the center positions of the fractures are assigned randomly and fractures not meet-348

ing the stipulated connectivity criteria are substituted. This process is repeated until the349

desired fracture density is obtained and fractures are either fully connected or fully un-350
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Table 1.

Properties of intact granitic background rock and embedded fractures.

Property Background Fracture

Solid grain density 2700 kg/m3 2700 kg/m3

Solid grain bulk modulus 45 GPa 45 GPa

Dry frame shear modulus 19 GPa 0.02 GPa

Dry Frame bulk modulus 35 GPa 0.04 GPa

Permeability 1e-19 m2 1e-10 m2

Porosity 0.02 0.8

Fluid viscosity 1e−3 Pa.s 1e−3 Pa.s

Fluid bulk modulus 2.25 GPa 2.25 GPa

Fluid density 1090 kg/m3 1090 kg/m3

Note. Embedding background is assumed to correspond to intact granite

(Detournay & Cheng, 1993). The pore fluid properties correspond to brine.

Fractures are represented as highly compliant, porous, and permeable

inclusions, whose grain-level properties correspond to those of the embedding

background (Rubino et al., 2017).
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connected. To avoid that the substitution process generates preferential orientations of351

the fractures, the original orientations are retained during substitution. For each con-352

nectivity scenario we consider three fracture densities: 0.25%, 0.50%, and 0.75%. These353

values were chosen based on the feasibility of generating completely connected and un-354

connected distributions. Finally, we consider two cases of fracture length distributions.355

We begin with fractures of constant length, in order to isolate the effects of fracture con-356

nectivity from those associated with fracture length variation. Later, we repeat the anal-357

ysis considering a more realistic scenario where fractures have varying lengths governed358

by a power law distribution, which allows us to assess the impact of effects related to frac-359

ture geometry. Recall that, in order to compute effective P- and S-wave velocities for a360

given fracture density and connectivity, we employ a Monte-Carlo-type approach in com-361

bination with the upscaling procedure. The corresponding convergence criterion is based362

on the stability of the standard deviation (Rubino et al., 2009). The convergence anal-363

ysis of the Monte Carlo approach is performed for a frequency of 1 Hz, which is typical364

of Rayleigh waves in passive seismic studies and is located within the non-dispersive plateau365

illustrated in Figure 1. As mentioned before, the fact that the frequencies of interest for366

Rayleigh wave monitoring fall within the non-dispersive plateau allows us to employ a367

purely elastic modelling of Rayleigh wave dispersion.368

3.2 Constant Length Fracture Distributions369

In the following, we consider square samples with a side length of 50 cm drawn from370

the fractured granite formation (Figure 2). The fractures are represented as rectangu-371

lar poroelastic features with an aperture of 0.4 mm and a length of 12 cm. We analyze372

the seismic response for fracture densities of 0.25%, 0.50%, and 0.75% for two end-member-373

type connectivities: (i) connected case, where all fractures have at least one connection374

with another fracture; (ii) unconnected case, where the fractures do not have any con-375

nections with each other. A single realization from each set of samples is illustrated in376

Figure 3. Recall that we infer effective body wave velocities for each fracture density and377
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Figure 3. Examples of fracture distributions employed to derive effective body wave velocities

of the fractured layer (Figure 2). We consider representative samples comprising (a, b, c) con-

nected and (d, e, f) unconnected fracture distributions. Each column depicts a different fracture

density: (a, d) 0.25%, (b, e) 0.50% and (c, f) 0.75%. The side length of the samples is 50 cm, and

fractures are rectangular poroelastic features with a length of 12 cm and a width of 0.4 mm.
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Figure 4. Standard deviations of (a) P- and (b) S-waves at 1 Hz as functions of the number

of realizations for connected (dashed lines) and unconnected (solid lines) samples of constant

fracture length and fracture densities of 0.25%, 0.50%, and 0.75%.

connectivity using a Monte Carlo approach. Figure 4 shows the results of the standard378

deviations as functions of the number of realizations for a frequency of 1 Hz, which is379

representative of Rayleigh wave studies and located within the non-dispersive plateau.380

We find that after 50 realizations, the standard deviations have stabilized and, thus, the381

average of the velocities of each sample set can be considered as being representative of382

the effective velocities of the corresponding fractured layers (Rubino et al., 2009).383

Figure 5 shows the resulting effective P- and S-wave velocities as functions of fre-384

quency for the scenarios illustrated in Figure 3. In general, both P- and S-wave veloc-385

ities decrease with increasing fracture densities. However, we observe that, when con-386

sidering a constant fracture density, velocities for the unconnected case tend to be higher387

than those for the connected case. This velocity drop in presence of connected fractures,388

which is particularly prominent for frequencies around 1Hz, is due to FPD effects (Ru-389

bino et al., 2014, 2017). To reconcile this, it is important to account for the fact that,390

for such frequencies, there is not enough time in a half wave cycle to allow for hydraulic391
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communication between fractures and background and, thus, fractures behave as hydrauli-392

cally sealed. Therefore, in presence of unconnected fractures, there is a significant pres-393

sure buildup in the fluid contained in the fractures in response to the passage of seismic394

waves, which in turn, opposes the deformation. Conversely, in the presence of connected395

fractures, there is enough time for the fluid pressure within connected fractures to equi-396

librate, the stiffening effect of the fracture fluid is correspondingly diminished and, hence,397

the medium behaves as if it was softer, which manifests itself in the form of the observed398

velocity drop (Figure 5). It is interesting to observe in Figure 5 that the body wave ve-399

locity drop is more significant for the case of S-waves than for the P-waves. The reason400

for this is that, in the case of P-waves, regardless of the orientation, the fluid contained401

in a given fracture will experience a pressure increase in response to the associated com-402

pression. Conversely, in the case of S-waves, the associated deformation of the fractures403

increases the fluid pressure in some fractures and diminishes it in others, depending on404

their orientation with respect to the direction of propagation of the seismic perturba-405

tion (Rubino et al., 2017). This particularity, in turn, implies that in the presence of con-406

nected fractures, the local fluid pressure gradients may be significantly higher for S-waves407

than for P-waves. Consequently, the associated reduction of stiffening effects and, thus,408

the magnitude of the associated velocity drop is much more significant in the case of S-409

waves (Figure 5). These effects are accounted for in the model within the framework of410

poroelasticity. It is, however, important to remark that, for the range of frequencies usu-411

ally employed for passive seismic surveys (∼ 0.1 - 10 Hz) , dispersion in the resulting ef-412

fective velocities is almost non-existent (Figure 5). We have verified that the residual P-413

wave dispersion in the considered frequency range has no noticeable effect on the sim-414

ulations we performed. This allows, in turn, for the use of the upscaled effective body415

wave velocities to compute Rayleigh wave velocity dispersion curves employing an elas-416

tic model (Section 2). Table 2 summarizes the corresponding velocity values (Figure 5)417

which we consider in the following to study Rayleigh wave characteristics.418
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Figure 5. (a, b, c) Effective P- and (d, e, f) S-wave velocities inferred through a Monte Carlo

approach for connected (solid lines) and unconnected (dashed lines) fractures of constant length

and fracture densities of 0.25%, 0.50%, and 0.75%.
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Table 2. Layer thicknesses and seismic properties of the considered model (Figure 2).

Lithology Thickness [m] VP [m/s] VS [m/s] ρb [kg/m3]

Sandstone 2500 3500 2000 2500

Fractured

granite
700 See Below See Below See Below

Intact granite Infinite 4810 2620 2700

Properties of the fractured granite layer: constant length fracture distributions

Fracture den-

sity
Connectivity VP [m/s] VS [m/s] ρb [kg/m3]

0.25% Connected 4623 2274 2694

0.25% Unconnected 4679 2409 2694

0.50% Connected 4415 1989 2690

0.50% Unconnected 4520 2197 2690

0.75% Connected 4242 1762 2687

0.75% Unconnected 4374 2011 2687

Note. The properties corresponding to the fractured granite layer are depicted in

the lower half of the table and result from taking the velocities corresponding to the

non-dispersive plateau (Figure 5).
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The Rayleigh phase and group velocities obtained for the canonical model are shown419

in Figure 2 and the different characteristics for the fracture network, summarized in Ta-420

ble 2, are shown in Figure 6. In general, there is a distinct phase velocity behaviour for421

all scenarios considered (Figures 6a to 6c). This is due to the fact that different frequen-422

cies are sensitive to different depths of investigation, with low frequencies being dom-423

inated by the properties of intact granite and high frequencies by those of sandstone. Sen-424

sitivity to the fractured granite layer prevails for frequencies between ∼0.1 Hz and ∼1425

Hz. We note that differences between the Rayleigh wave phase velocities associated with426

the connected and unconnected cases increase with fracture density, which is expected427

from the body wave velocity results (Figure 5). We quantify the relative velocity vari-428

ation, computed as the ratio between the differences and the average of the connected429

and unconnected case for each frequency (black dashed line in Figures 6 a to f). The peak430

of the relative difference curve for phase velocities occurs around 0.3 Hz, with values of431

1%, 1.8%, and 2.7% for fracture densities of 0.25%, 0.50%, and 0.75%, respectively. Rayleigh432

wave group velocities (Figures 6 d to f) exhibit similar characteristics as the phase ve-433

locities. For intermediate frequencies, where the curves are sensitive to the fractured gran-434

ite layer, we note that the relative differences for the group velocities are twice of the phase435

velocities, with a peak located near 0.25 Hz and a notch near 0.3 Hz. Peak relative dif-436

ference values between the connected and unconnected cases are 2%, 3.8%, and 5.5% for437

fracture densities of 0.25%, 0.50% and 0.75%, respectively. These results indicate that,438

for the considered scenarios and for constant fracture lengths, both phase and group Rayleigh439

wave velocities are highly sensitive to changes in the fracture connectivity.440

3.3 Stochastic Distribution of Fracture Lengths441

As seen above, fracture connectivity greatly influences Rayleigh wave dispersion442

characteristics when the fracture lengths are constant. In the following, we consider a443

more realistic scenario based on a stochastic distribution of fracture lengths. Following444

pertinent previous works on this topic (e.g., de Dreuzy et al., 2001; Bonnet et al., 2001;445
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Figure 6. (a, b, c) Rayleigh wave phase and (d, e, f) group velocities for the connected (blue

solid lines) and unconnected (orange solid lines) scenarios for different fracture densities. Given

the small value of the absolute differences, we also illustrate relative velocity differences (dashed

black lines) with scales depicted on the right-hand side of the corresponding plots. The latter are

computed as the ratio between the differences and the average of the connected and

unconnected case for each frequency.
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Hunziker et al., 2018), we use a power law of the form446

n(L) = fd(a− 1)
L−a

L1−a
min

;L ∈ [Lmin, Lmax], (12)447

where L is the fracture length, n(L) is the number of fractures in the considered sam-448

ple with a length comprised between L and L+dL, fd is the fracture density, a is the449

characteristic exponent of the fracture size distribution, and Lmin and Lmax are the bound-450

ing minimum and maximum values of the distribution, respectively. While earlier works451

(e.g., de Dreuzy et al., 2001) consider fracture density as the number of fracture centers452

per area, Hunziker et al. (2018) defines it as the ratio of the fracture area over the to-453

tal area of the studied medium. This allows to distinguish between the effects associated454

with changes of fracture volume and fracture length. The exponent a can take values be-455

tween 1.5 and 3 and controls the prevalence of shorter to longer fractures within the lim-456

its given by Lmin and Lmax. For this work, we choose Lmin and Lmax as 4 cm and 25457

cm, respectively. Together with a fixed aperture of 0.4 mm, results in fracture aspect ra-458

tios between 100 and 625, which is in agreement with corresponding observations of Vermilye459

and Scholz (1995) for real fractures. For the exponent a, we choose an intermediate value460

of 2.25, which implies that there is no predominance of neither shorter nor longer frac-461

tures on the seismic response of the medium (Hunziker et al., 2018).462

The considered samples are generated in the same way as those characterized by463

constant length fractures and we employ the same physical properties for the fractures464

and background given in Table 1. Again, we consider three different fracture densities:465

0.25%, 0.50%, and 0.75%, and two end-member-type connectivity scenarios of fully con-466

nected and fully unconnected fractures. Figure 7 illustrates some examples of the frac-467

ture distribution realizations considered in this section. We again employ the upscaling468

procedure described in section 2 in combination with a Monte Carlo approach to obtain469

the effective mechanical properties of the fractured formation. Although not shown here470

for brevity, we found that 50 samples are sufficient to obtain a stable standard devia-471

tion and, thus, representative body wave velocities.472
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Figure 7. Examples of the variable length fracture distributions employed to derive the effec-

tive body wave velocities of fractured granite. We consider representative samples comprising (a,

b, c) connected and (d, e, f) unconnected fractures. Each column depicts a different fracture den-

sity: (a, d) 0.25%, (b, e) 0.50%, and (c, f) 0.75%. Samples have a 50 cm side length. Fractures

are rectangular features with a constant aperture of 4 mm and length drawn from a power law

distribution (Equation 12).
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Table 3. Properties of the fractured granite layer: Variable length fractures distributions

Fracture

density
Connectivity VP [m/s] VS [m/s] ρb [kg/m3]

0.25% Connected 4661 2337 2694

0.25% Unconnected 4701 2445 2694

0.50% Connected 4477 2093 2690

0.50% Unconnected 4551 2265 2690

0.75% Connected 4310 1855 2687

0.75% Unconnected 4416 2093 2687

Note. Characteristics of the fractured layer schematically illustrated in Figure 2

used for computing Rayleigh wave dispersion curves.

The results for the effective P- and S-body wave velocities as functions of frequency473

are shown in Figure 8. The characteristics of the velocity dispersion curves are similar474

to those for the constant fracture length scenario (Figures 6 and 8). Each fracture den-475

sity shows the manifestations of FPD effects described in section 2, with a constant ve-476

locity plateau for the frequencies of interest between ∼0.01 and ∼3 Hz. We note that477

velocities for P-waves (Figures 8a to 8c) and S-waves (Figures 8d to 8f) decrease for in-478

creasing fracture density. As observed previously the difference in body wave velocities479

between connected and unconnected fracture distributions increases for larger fracture480

densities and is more prominent for S-waves than for P-waves. This indicates that, re-481

gardless of the fracture length distribution, velocity variations associated with changes482

in fracture connectivity are strongly affected by the fracture density. The resulting ef-483

fective velocities for each scenario are listed in Table 3.484

Figure 9 illustrates the Rayleigh wave velocity dispersion for the variable fracture485

length case. Phase and group velocities present limiting values at high and low frequen-486

cies corresponding to the values of sandstone and intact granite, respectively. Sensitiv-487
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Figure 8. (a, b, c) Effective P- and (d, e, f) S-wave velocities for connected (solid lines) and

unconnected (dashed lines) fractures of variable lengths (Figure 7). We illustrate the results

for fracture densities of 0.25%, 0.50%, and 0.75%. The curves are obtained by averaging the re-

sponses of 50 fracture network realizations.
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ity to the fractured layer prevails at frequencies between ∼0.1 Hz and ∼1 Hz. For Rayleigh488

wave phase velocities (Figures 9a to 9c), the maximum of the relative difference between489

connected and unconnected cases occurs near 0.3 Hz with values of 0.7%, 1.4%, and 2.3%490

for fracture densities of 0.25%, 0.50%, and 0.75%, respectively. For Rayleigh wave group491

velocities, maximum relative differences occur for a frequency close to 0.25 Hz with val-492

ues of 1.5%, 2.9%, and 4.8% for fracture densities of 0.25%, 0.50%, and 0.75%, respec-493

tively. A comparison of Rayleigh wave velocities for the variable length case with the cor-494

responding results obtained for the constant length fracture distributions show that the495

relative differences for the latter case are approximately 25% higher. However, the rel-496

ative effect of changing fracture density or connectivity is the same for both variable and497

constant length fracture distributions. This implies that for the fracture length varia-498

tions considered in this work, the controlling factors regarding FPD effects on Rayleigh499

waves are the fracture density and fracture connectivity rather than the length distri-500

bution of the fractures.501

In order to obtain a clearer idea on the impact of FPD effects on Rayleigh wave502

dispersion, we repeat the analysis for additional values of fracture density ranging be-503

tween 0.25% and 0.90% (Figure 10). Figures 10a and 10b show the results of the effec-504

tive body wave velocities for a frequency of 1 Hz, which is representative of the non-dispersive505

plateau (dashed lines). In addition to the connected and unconnected scenarios, we also506

consider samples which have not been subjected to the previously outlined control of con-507

nectivity and, hence, have not undergone any fracture substitution. We refer to this case508

as randomly connected. As the end-member-type cases of fully connected and fully un-509

connected distributions are not likely to occur in real formations, the randomly connected510

scenario is expected to be more representative of the naturally-occurring degree of con-511

nectivity for a given fracture density. We again observe a clear trend of decreasing P-512

and S-wave velocities with increasing fracture density (Figures 10a and 10b). In partic-513

ular, we observe that for a given fracture density, connected fracture distributions have514

the lowest velocities, unconnected fracture distributions have the highest velocities, and515
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Figure 9. (a, b, c) Rayleigh wave phase and (d, e, f), group velocities for connected (blue

solid lines) and unconnected (orange solid lines) fractures whose length distribution obey the

power law given in Equation 12 (Figure 7). Dashed black lines indicate the relative velocity

difference, computed as the ratio between the differences and the average of the connected and

unconnected case for each frequency.
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randomly connected fracture distributions (red dashed lines) have intermediate veloc-516

ities. The velocities of the randomly connected fracture distributions are closer to those517

of the unconnected fracture distributions for lower fracture densities and closer to those518

of connected fracture network for higher fracture densities. This is expected as the prob-519

ability of interconnections increases with the fracture density.520

Figures 10a and 10b also show the velocities in the high-frequency or no-flow limit521

at 106 Hz, which corresponds to the elastic behaviour of the samples (solid lines). We522

observe that, while the trend of decreasing velocity with increasing fracture density is523

still present, the effect of fracture connectivity is largely negligible. This is consistent with524

works based on elastic approximations of fractured media (e.g., Grechka & Kachanov,525

2006), where FPD effects are neglected and, thus, suggest that fracture connectivity has526

no impact on the mechanical properties. Interestingly, P- and S-wave velocities for the527

randomly connected case considering FPD effects (red dashed lines) decreases more dras-528

tically with the fracture density than the corresponding high frequency estimates (red529

solid lines). Figures 10c and 10d show the maximum relative Rayleigh wave velocity dif-530

ference between connected and unconnected fractures for a given fracture density in the531

presence and absence of FPD. For the cases considering FPD effects, this corresponds532

to the analysis shown in Figure 9 extended for additional fracture densities. For the cases533

disregarding FPD effects, the relative difference corresponds to velocities in the high-frequency534

no-flow limit (106 Hz). Figure 10c corresponds to the maximum relative difference be-535

tween connected and unconnected fracture distributions for Rayleigh wave group veloc-536

ity, at a frequency of ∼0.2 Hz, and Figure 10d shows the maximum relative difference537

for Rayleigh wave phase velocity, at a frequency of ∼0.3 Hz. We note that, when con-538

sidering FPD effects, the difference between connected and unconnected cases is already539

significant for lower fracture densities and increases progressively with increasing frac-540

ture density. Conversely, in the absence of FPD effects, the difference between the con-541

nected and unconnected cases remains largely negligible for all fracture densities con-542

sidered. Overall, these results suggest that disregarding FPD effects in a velocity anal-543
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ysis, that is, considering the high frequency elastic representation, may lead to an over-544

estimation of the fracture density changes required to explain a given velocity change.545

Finally, we consider variations in the thickness and the depth of the fractured gran-546

ite layer in our canonical model (Figure 2, Table 2) in order to assess whether and to what547

extent such changes affect the sensitivity to variations in fracture connectivity. Figure548

11 shows the effects of varying the depth and thickness of the fractured layer for a frac-549

ture density of 0.50% (Table 3). Figures 11a and 11d document the Rayleigh wave phase550

and group velocities after increasing the thickness of the surficial sandstone layer from551

2500 m to 3500 m, while keeping the thickness of the fractured layer unchanged. Fig-552

ures 11b and 11e show the results for reference model without modifications. For a deeper553

location of the fractured layer (Figures 11a and 11d), we observe that the maximum rel-554

ative differences between the connected and unconnected cases shift towards lower fre-555

quencies, as longer wavelengths are sensitive to greater depths. We also see that the mag-556

nitude of the relative difference decreases, as the increase of the thickness of the over-557

laying formation diminishes the impact of the reservoir on the Rayleigh wave dispersion.558

Figures 11c and 11f show the results after reducing the thickness of the fractured layer559

from 700 m to 350 m. We observe no appreciable frequency shift but there is, as expected,560

an important decrease of the relative differences, which, nevertheless, remain relevant561

when compared to corresponding field evidence (e.g., Obermann et al., 2015; Taira et562

al., 2018).563

4 Discussion564

We employed a numerical upscaling procedure based on the assumption of quasi-565

static poroelasticity, which does not account for inertial effects to obtain the effective body566

wave velocities of fractured samples. The transition frequency, at which inertial effects567

become relevant, depends on the material properties. For all scenarios of practical in-568

terest in the given context, this frequency is much higher than the frequency range used569

in passive seismic exploration in general and Rayleigh wave studies in particular and,570
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Figure 10. (a) Effective P- and (b) S-wave velocities as functions of fracture density for dif-

ferent degrees of fracture connectivity considering a stochastic distribution of the fracture lengths

(Equation 12, Figure 7). Dashed lines correspond to a frequency of 1 Hz, which is representative

for passive seismic studies, while solid lines are computed using a frequency of 106 Hz, thus re-

sulting in elastic behaviour of the probed samples. Maximum relative difference for (c) Rayleigh

wave group and (d) phase velocities between the connected and unconnected distributions com-

puted for the elastic and poroelastic scenarios.
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Figure 11. Effects of variations in the depth and thickness of the fractured layer in our

canonical model (Figure 2, Table 2) for a fracture density of 0.50% and considering a stochastic

distribution of lengths (Equation 12, Figure 7). (b, e) Phase and group velocities for the refer-

ence case (Table 3). Phase and group velocities (a, d) when the fractured layer is located 1000 m

deeper and (c, f) for fractured layer with a thickness of 350 m as compared to one of 700 m used

for the reference model.
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hence, the poroelastic upscaling procedure used in this study is valid as long as fracture571

sizes remain much smaller than the predominant wavelength.572

The observed fracture connectivity effects on Rayleigh wave velocities are signif-573

icantly higher than the velocity variations reported from passive seismic monitoring of574

geothermal sites (Obermann et al., 2015; Taira et al., 2018). This is likely due to the fact575

that in a natural environment, changes of fracture connectivity are likely to be small and576

gradual, while we are considering the end-member scenarios of entirely unconnected and577

connected fracture networks. Moreover, 2D simulations tend to overestimate FPD ef-578

fects on the seismic response of the samples (Hunziker et al., 2018). Another point of579

discrepancy may be the thickness of the fractured reservoir of our model, as natural and580

enhanced fractured reservoirs are likely to be thinner than 700 m. In addition, to com-581

pute Rayleigh wave dispersion curves, we adopted a model consisting of isotropic and582

homogeneous layers. It is known that in the case of fractures with preferential orienta-583

tions, FPD effects have significant impact on the velocity anisotropy of the probed sam-584

ples (Rubino et al., 2017). The corresponding effects in surface wave dispersion, in ad-585

dition to more complex model geometries including lateral variations of the material prop-586

erties and layer thicknesses should be addressed in future works.587

We also considered distributions of fractures with constant aperture and material588

properties, and while the resulting aspect ratio distribution of the fractures is realistic589

(e.g., Vermilye & Scholz, 1995), the length variation ranges and sample sizes are governed590

by computational constraints. This raises the question regarding the scalability and rel-591

evance of our results for realistic fractures, which can be several orders-of-magnitude larger592

than the ones considered in our samples. Following the work of Guo et al. (2017), which593

considers fracture networks composed by two sets of orthogonal equal fractures, the char-594

acteristic frequency of FB-FPD, Ffb, can be expressed as595

Ffb =
8Db

a2f
, (13)596
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where af denotes the length of the fractures and Db the diffusivity of the background597

medium. Db is expressed as598

Db =
MbLbκb

ηLsat
b

, (14)599

where Mb corresponds to the fluid storage coefficient of the background material, Lb and600

Lsat
b are the P-wave moduli for the dry and saturated cases, respectively, κb is the per-601

meability and η is the fluid viscosity. As background properties are not affected by changes602

in fracture size, Ffb is expected to decrease for increasing fracture size (Equation 13).603

On the other hand, the characteristic frequency of FF-FPD effects, Fff , corresponding604

to the maximum attenuation and dispersion due to this process, is given by (Guo et al.,605

2017)606

Fff =
8De

a2f
, (15)607

where De denotes the diffusivity of an effective medium, which considers the fractures608

as the pore space and the background as the solid phase. De is expressed as609

De =
MeLeκfrfd

ηLsat
e

, (16)610

where Me corresponds to the effective medium fluid storage coefficient, Le and Lsat
e are611

the P-wave moduli for the dry and saturated effective medium, respectively, κfr is the612

permeability of the fractures and fd is the fracture density. As can be seen in Equations613

15 and 16, Fff depends on the effective medium diffusivity and the fracture size. Ne-614

glecting possible changes in elastic properties of the fractures and considering that an615

increase in fracture length is associated with an increase in aperture (e.g., Vermilye &616

Scholz, 1995) and, therefore, in permeability (e.g., Brown, 1987), it can be shown that617

the impact of fracture size on Fff tends to be counteracted by the associated increase618

in permeability. For this reason, we expect that the FF-FPD characteristic frequency619

will not be significantly affected by the scale of the fractures. This, together with the620

fact that Ffb decreases with increasing fracture size implies that the frequencies typi-621

cally employed in ambient seismic noise studies are likely to remain in the non-dispersive622

plateau. This, in turn, suggests that the effects of connectivity are expected to remain623
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significant regardless of the scale of the fractures considered. However, further work is624

required in this direction to assess associated scaling characteristics for complex fracture625

distributions and possible fracture compliance changes with scale. This would allow to626

evaluate the corresponding impact not only on the characteristic frequencies but also on627

the magnitude of the fracture connectivity effects.628

5 Conclusions629

We have employed a numerical upscaling procedure together with a Monte Carlo630

approach to obtain effective body wave velocities of a fractured formation. This approach631

allows to account for FPD effects between fractures and their embedding background632

as well as between connected fractures. For the frequency range typical of ambient seis-633

mic noise analysis, we have found that there is no body wave velocity dispersion or at-634

tenuation due to FPD effects for our models. However, the presence of interconnections635

between fractures produces a significant drop of the body wave velocities in comparison636

with the corresponding unconnected scenario. This is an important poroelastic phenomenon,637

which is generally referred to as pore fluid softening/stiffening and which cannot be ex-638

plained from a purely elastic perspective. The effective body wave velocities we obtained639

were employed to determine the effects of fracture connectivity on Rayleigh wave phase640

and group velocities. Based on the prevailing elastic models, changes in Rayleigh veloc-641

ities in fractured environments were so far largely attributed to changes in fracture den-642

sity or aperture. Our results indicate that fracture connectivity plays an important role643

in the seismic response of fractured formations due to FPD effects and that these effects644

are appreciable when performing Rayleigh wave dispersion analysis.645

We compared the results from distributions with constant fracture lengths and frac-646

ture lengths drawn from a power law distribution. We found that, for the range of length647

variations employed, fracture length distribution seems to be of subordinate importance648

with respect to changes in connectivity or fracture density. Our results demonstrate the649

importance of FPD effects for Rayleigh waves in fractured media, and notably, that ne-650
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glecting FPD effects between connected fractures may lead to an overestimation of frac-651

ture density.652
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