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Chapter 1

Introduction

In many aspects of our everyday lives, uncertainty is at play, and when this concerns the
occurrence of an event that may have adverse consequences, one talks about risk. Once
identified, a risk can be managed. This process is called risk management, and in broad
terms it consists of:

(a) Quantifying the likelihood and consequences of the risk.

(b) Responding accordingly, by either avoiding, mitigating, transferring or accepting
the risk.

In the insurance and banking industry, within large companies and among certain public
administration sectors, this process is performed explicitly and extensively, with a variety
of tools, which often includes a probabilistic analysis. The present thesis follows this
wake, and contributes to topics related to both (a) and (b), with a focus on so-called tail
risk.

Hereafter, we recall some concepts that will be useful in the remainder, and we sum-
marize the main contributions of this thesis.

1.1 Risk modelling

In risk management, a probabilistic analysis usually starts with treating the risk under
consideration as a random variable, say X, which one then assumes to follow some prob-
ability distribution or model F'(x) = P(X < z). In the remainder, larger values of X
denote more adverse scenarios, so for instance X may represent some annual insurance
claim amount, the loss of value of an asset, or the severity level of a natural disaster, such
as the magnitude of an earthquake or a wind-speed measure during a hurricane.

The distribution of a risk can then serve to calculate some measures of risk and other
summarizing quantities (such as the value-at-risk, expected shortfall, or simply the mean,
variance or skewness), which are subsequently used to take decisions on pricing, mitiga-
tion or transfer of that risk, to perform an allocation of resources (capital), or to compare
the risk with some other risks.

17



18 CHAPTER 1. INTRODUCTION

1.1.1 Model selection

In most cases the distribution of a risk is unknown, and for determining (estimating) it
one may consider a variety of sources of information, such as

* The knowledge of the random mechanism generating the risk. For example, if the
risk is known to result from the aggregation (multiplication) of a sufficiently large
number of independent random factors, then, under some conditions, as a result of
the central limit theorem, its distribution will be reasonably well approximated by
a (Log)Normal distribution.

* Some characterizing properties. For instance, if the risk is continuous (discrete)
and satisfies the memoryless property P(X > z 4+ u|X > u) = P(X > x) for
all x,u > 0 (x,y € Np), then it necessarily follows an Exponential (Geometric)
distribution. Another example of a characterizing property would be invariance of
the distribution under a change of scale (i.e. scale invariance), which points towards
power laws, such as the Pareto distribution.

* Some available data (observed past realizations of the risk), which may be analysed
with statistical tools such as quantile-quantile or mean-excess plots, and used to fit
a suitable distribution (see e.g. the books by McNeil et al. [62], Beirlant et al. [11]
and Albrecher et al. [1] for details).

For illustration purposes, we recall some well-known continuous and discrete distribu-
tions in Table 1.1 and 1.2.

1.1.2 Estimated and predictive distributions

When resulting from a finite amount of data, an estimated (fitted) distribution will likely
differ from the true distribution. From a risk management perspective, the potential error
in the estimation of a distribution constitutes an additional source of risk (epistemic un-
certainty), which can be treated as different from the original risk (aleatoric uncertainty)
and shall be considered (for some background on the dichotomy between aleatoric and
epistemic uncertainty, see e.g. Der Kiureghian and Ditlevsen [29], Aven and Zio [7] and
Scherer and Stahl [72]). For instance, assume that limited resources must be allocated to
two independent risks with identical estimated marginal distributions, but one of them has
been obtained with significantly less data than the other. In this situation, the epistemic
uncertainty inherent to each of these two risks evidently differs, and it is intuitive that one
shall allocate unequal resources to them, despite their estimated marginal distributions
being identical.

There exist several methods allowing to build a distribution that accounts for the epis-
temic uncertainty relative to a risk. In the Bayesian framework, a distribution of this type
is referred to as a predictive distribution (or posterior predictive distribution), which can
be seen as an “average distribution” (the average of several possible distributions, with
averaging probabilities being influenced by the data), by contrast to an estimated (fitted)
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Distribution Probability density function f(z) = $-F () Parameters
Uniform(a, b) =, T € [a,b] a,be R, witha <b
Normal(p, o) - 12ﬂe_%(%)2, reR peR, o>0
LogNormal(y, o) M\l/ﬁe_% B 20 peR, o>0
Exponential () Ae x>0 A>0
Pareto(T, o) arr™* x> 1 T, >0

Table 1.1: Some well-known continuous distributions.

distribution, which tends to rather be a “modal distribution” (the “most likely” true dis-
tribution given the data). For contributions on the relevance of predictive distributions
in the context of risk management, see e.g. Cairns [19], Gerrard and Tsanakas [47] and
Bignozzi and Tsanakas [12, 13].

1.1.3 Model and parameter uncertainty

In practice, the estimation of a distribution is often performed according to a parametric
approach, which can be summarized as follows. In a first step the risk under considera-
tion is assumed to follow a distribution (or model) that belongs to a family of distributions
indexed by a parameter (possibly a vector ; see Table 1.1 and 1.2 for examples of para-
metric distributions). The value of that parameter is then estimated from the data, and one
checks if the corresponding distribution provides a satisfying fit. If so, then that distribu-
tion is considered as the “correct” one, and otherwise the process may be repeated with
another parametric distribution family. As a result, under a parametric approach the epis-
temic uncertainty can be decomposed into the potential error in the selection of the model
(model uncertainty) and in the estimation of the parameter (parameter uncertainty). In
many situations this distinction turns out to be useful (notably when building a predictive
distribution), e.g. because it allows to reflect the eventual different degree of uncertainty
one may have regarding the selected model and estimated parameter.

1.2 The body and the tail of a distribution

When modelling risks, it is often relevant to distinguish the body (or bulk, central part) of
the distribution, from its tails (left and right). Loosely speaking, the body of a distribution
F' consists of a (limited) interval of values within which that distribution concentrates
most of its probability mass, and hence where most occurrences of the risk X will fall.
By contrast, the left-tail and right-tail of a distribution constitute less likely values of the
risk, which deviate (potentially by far) from the body, by being respectively smaller and
larger. Since here larger values of X denote more adverse scenarios and we adopt a risk
management standpoint, we will focus on the right tail of /', which we will simply refer
to as the tail of the distribution.
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Distribution Probability mass function P(X = z) Parameters
Bernoulli(p) p*(1—p)'~*, z € {0,1} p€0,1]
Binomial(n, p) (M)p*(1—p)" ™, 2 €{0,...,n} | neNypel0,1]
NegativeBinomial(r, p) (”;_1)])“3(1 —p), x € Ny re Ny, pel0,1]
Poisson(\) ’\m;—A, r €N A>0

Table 1.2: Some well-known discrete distributions.

There are several reasons for distinguishing the body and tail of a distribution, which
include:

* In practice, the body and tail of the distribution of a risk often turn out to exhibit
behaviours of a different kind, which may therefore be better modelled separately.
For instance, most data points of an observed sample may cluster according to some
Normal shape, and at the same time the largest observations (order statistics) may
signal some heavy-tail behaviour.

* The data will by definition be scarcer in the tail of a distribution than in its body, and
different statistical methods may therefore be appropriate for these two regions. For
example, one may be reluctant to extend a fitted distribution into the tail, beyond
the largest observation, and therefore rely on some alternative technique to model
that part of the distribution.

* The purpose of risk modelling may be the calculation of some quantity that depends
solely on the tail of distribution, such as the value-at-risk (quantile) or expected
shortfall of X at some high level.

1.2.1 Types of tails

The tail of a distribution encapsulates crucial information regarding the behaviour of a
risk. The study of the tail behaviour is therefore an important topic in risk management,
and one may distinguish several categories.

Heavy- and light-tailed distributions

Let F(z) = 1 — F(x) = P(X > x) be the survival function of X. Then X is said to have

a heavy tail if its survival function decreases slower than that of an Exponential random
variable, i.e. o
F

lim (z)

z—00 AT

= 00, forall A > 0.

Otherwise X is said to have a light tail. Heavy-tailed distributions have the ability to pro-
duce much larger deviations than light-tailed distributions. For instance, if X has a heavy
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tail, then its expectation E[ X | may or may not be finite, but if it has a light tail, then E[X]
is necessarily finite.

Another important quantity is the so-called mean-excess function. Let x be the right
endpoint of /' (note that since the right endpoint of the Exponential distribution is infinite,
by the above definition a heavy-tailed distribution F' implies xr = 00). The mean-excess
function of X is defined as ex(u) = E[X|X > u], for u < xp, i.e. the expectation of X
given that X exceeds the threshold w. If X has a heavy tail and E[X]| < oo, there exists
some threshold z* < xp such that ex(u) is strictly increasing for all © > x*, meaning
that at some point, the larger the threshold u, the larger X is expected to be. In terms of
risk, this opens the door to catastrophes (“the worse it has been, the worse it is expected
to be”). By contrast, if X is light-tailed, then there exists a * < xp such that ex (u) is
strictly decreasing for all u € (z*, zr), and the mean-excess function of an Exponential
random variable is constant. Note that E[X] = oo implies ex (u) = oo, for all w.

In Table 1.1, the LogNormal and Pareto distributions are heavy-tailed, and the Exponen-
tial and Normal distributions are light-tailed. The Uniform distribution is also light-tailed,
as any other distribution F' with xp < oc.

Sub-exponential distributions

Another way to classify distributions according to their tail behaviour is the concept of
sub-exponentiality. Let X1, ..., X,, be n > 2 mutually independent and identically dis-
tributed (iid) positive random variables with common distribution F' and xp = oo, and
consider the sum S,, = X; + ... + X, for n > 1. The distribution of S,, is

F(x)=P(S, <z)= / F(z —v) dF*”_l(y),
0
with F*! = F, and F*™ is the n'" convolution of F with itself.

The sum .S, may be large because two or more X; are relatively large, or only one (i.e.
its maximum M,, = max{ Xy, ..., X,,}) is large. When the latter option is far more likely
than the former, i.e. P(S,, > z) ~ P(M,, > z) as x 1 oo, S,, shall have roughly n times
more chances to exceed some large threshold than an individual X;. That property can be
formalized in mathematical terms as
Iz

tim @), (1.1)
in which case F' is said to belong to the class S of sub-exponential distributions (Teugels
[76]), and we write F' € S. Chistyakov [23] proved that (1.1) for n = 2 already implies
Fes.

It is clear that from a risk management viewpoint, the tail of a distribution /' € S can
be considered dangerous, since it has the ability to produce not so rarely some realiza-
tions that exceed by far most others. Also, note that all sub-exponential distributions are
heavy-tailed, but the converse it not true, see e.g. Embrechts et al. [32].
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Extreme value index

Another approach to characterize the tail of a distribution is provided by extreme value
theory. Let X3, ..., X,, be n iid random variables X with marginal distribution F'. The
latter has right endpoint xr < oo and is assumed to be ultimately continuous. Consider
now the maximum M,, = max{ Xy, ..., X, }. In that setting, the Fisher-Tippett-Gnedenko
theorem [40, 48] states that if one can find some normalising constants ¢,, > 0 and d,, € R
such that

M, —
lim P(n—dn < x) = lim F(c,x +d,)" = G(z)
n—00 Cn n—00

for some non-degenerate distribution G, then G is necessarily of one of the following

forms:

0 <0
Fréchet: ®,(z) =< =0 s 0,
exp(—x~%), x>0,

Gumbel: A(z) =exp(—e™®), x € R, (1.2)

exp(—(—x)%), =<0,

, a>0,
1, x> 0,

Weibull: V¥, (z) = {
and we say that F' is in the max-domain of attraction (MDA) of G, which we write
F € MDA(G).

The Fisher-Tippett-Gnedenko theorem is one of the two main theorems of extreme value
theory, the other being the Pickands-Balkema-de Haan theorem [8, 69], which concerns
the limit distribution of (X — u|X > wu) as u — zp. For classical textbooks on that
topic, we refer to Embrechts et al. [32], Beirlant et al. [11] and de Haan and Ferreira
[28]. Since we are interested in the classification of tails here, it is sufficient to notice that
the Fisher-Tippett-Gnedenko theorem establishes a class of distributions (those resulting
in a non-trivial asymptotic behaviour of lim,,_, ., M, after a proper linear normalisation),
which splits into the Fréchet, Gumbel and Weibull MDAs. Those three sub-classes can
then be shown to have some specific properties (see [32] for details):

» € MDA(®,) < o = oo and F can be written as F(x) = ((x)z~%, where /(x)
is a slowly varying function, i.e.

l(t
lim (tz)

o) =1, forallt > 0.

So if F' is in the Fréchet MDA, then it has an infinite right endpoint and a Pareto-
type tail, with parameter .

* FFe MDA(A) & xp < oo and there exists some z < x g such that F can be written
as

F(x):c@)exp(_/j%dt), s <w <,
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where lim,_,,, ¢(z) = ¢ > 0 and lim,_,, . g(x) = 1, and a(z) is a positive and con-
tinuous function such that lim, ., a’(x) = 0. Note that the above representation
is not unique, and a possible choice of a(z) is a(x) = ex(z), i.e. the mean-excess
function of X. A distribution F' that belongs to the Gumbel MDA may therefore
have a finite or infinite right endpoint, and its asymptotic tail behaviour mixes that
of the Exponential distribution, with the respective behaviours of functions a(x),

c(x) and g(z).

« I € MDA(Y,) & o < oo and F(xp — 271) = ((x)z™%, ie. if F is in the
Weibull domain, then it necessarily has a finite right endpoint, and in the limit its
tail behaves like a bounded power law.

After up to a multiplication of their argument by a constant, the three distributions in (1.2)
can be assembled into the so-called Generalized Extreme Value (GEV) distribution

_ Jexp(=(14£€x)7H), if€#0,
Helz) = {exp(— exp(—x)), if&=0,

where 1 + &x > 0, and € € R is called the extreme value index. It can then be shown that
(again, see [32])

F € MDA(®,) <« F € MDA(H,), withé =a™' > 0,
F e MDA(A) & F e MDA(H,), with £ =0,
F e MDA(V,) < F e MDA(H,), withé = —a~! <0,

so the GEV puts distributions in the Fréchet, Gumbel and Weibull MDA into a continuum,
where they are characterized by their extreme value index &. The latter index may then
finally be interpreted as ranking those distributions according to their “dangerousness”,
since

e £ > 0: F has a Pareto-type tail with parameter o = ¢!, and the larger &, the
heavier the tail,

e £ < 0: F has a tail that is lighter than a Pareto-type tail, and for £ < 0, the smaller
&, the lighter the tail.

However, the Gumbel domain (¢ = 0) includes a large variety of distributions, with
both heavy tails (e.g. the LogNormal distribution) and light tails (such as the Normal
distribution, or any distribution with ¢ = 0 and xr < 00). Also, some distributions with
¢ = 0 and xp < oo may have a lighter tail than some distributions with £ < 0.

1.3 Risk measures

In risk management, the purpose of a probabilistic analysis is often to summarize the
risk under consideration through a scalar quantity, which is referred to as a risk measure.
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That quantity then typically serves to calculate some performance measure, an amount of
resource (e.g. capital) to hold for backing the risk, or to compare risks among each other.
The common notation for a risk measure associated with a random variable X is p[X],
where p denotes a functional mapping the distribution of X to R.

1.3.1 Coherent risk measures

In their influential paper, Artzner et al. [4] established the following list of four desirable
properties of risk measures (and call a risk measure satisfying all of them, a coherent risk
measure):

* Translation invariance: p[X + b] = p[X] + b, for any constant b € R. Adding a
constant value to the risk shall change its measure by the same amount.

* Positive homogeneity: plaX]| = ap[X], for any constant @ > 0. The measure of a
risk shall be proportional to its size.

* Monotonicity: P(X; < X5) = 1 = p[X;] < p[Xs]. A risk X; that almost surely
has a smaller realization than another risk X, shall be measured smaller.

* Sub-additivity: p[X; + Xo] < p[Xi]+ p[X2]. Two risks held together shall be mea-
sured smaller than separated, i.e. p shall reflect the diversification effect of pooling
risks together.

Note that some of these properties may not be desirable in some contexts. For instance, in
insurance the positive homogeneity property may not always be justified (scaling up risks
could lead to non-linear changes for a risk measure, see e.g. the discussion on premium
principles in Albrecher et al. [1]). Dhaene and al. [31] pointed out that under sub-additive
risk measures, merging risks leads to potentially larger shortfall, which is not so desirable
from a regulatory viewpoint, when the risk measures serve to calculate capital require-
ments.

1.3.2 Value-at-risk and expected shortfall

We now recall and discuss two risk measures that are frequently considered in risk man-
agement: the value-at-risk (VaR) and the expected shortfall.

The VaR of a random variable X at level p is defined as
VaR,[X] = inf{x € R: F(z) > p}, p € [0,1],

and it thus corresponds to the quantile of X at level p. Note that the VaR is not a coherent
risk measure, because it fails to satisfy the sub-additivity property in general (which does
not prevent it to be sub-additive in many instances).
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The VaR arises naturally in case one is interested in the event of a risk exceeding some
threshold. For example, when X denotes the loss of an entity (e.g. an insurance company)
and k its capital, one is typically interested in the ruin event X > k. Accordingly, one may
be willing to determine the amount of capital required to keep the probability of a ruin
at some low target level /3, in which case the capital shall be set at k& = VaR;_g[X]:
If F'is continuous at VaR;_g[X], then by definition the resulting ruin probability is
P(X > VaR;_3[X]|) = (. If not, then VaR;_3[X] is the smallest capital amount that
makes the ruin probability smaller than §. In fact, this approach has even been made
compulsory in the European Union, since the solvency capital requirement of an insur-
ance complying with Solvency II regulation is defined as the VaR at level p = 99.5% of
its net asset position under a one-year time horizon [34].

It is worth mentioning that VaR as a risk measure has been criticised by several authors.
For instance, Artzner et al. [4] argued that since VaR is not sub-additive in general, it
might discourage diversification. Also, VaR focuses on one point of the distribution, and
hence it may measure two risks equally despite their respective tails being possibly very
different. In not well regulated or constrained environments, this may create incentives
for worsening the potential shortfall (“Apres nous, le déluge”). See e.g. Embrechts et al.
[33] for a recent contribution on that, in a context of solvency capital optimization.

The expected shortfall at level 3 of a random variable X is defined as

1 1
ES,[X] = —— [ VaR,[X]dv, p€[0,1).
I—-pJ,
It is interesting to note that it can alternatively be expressed as
P(X = VaR,[X])
L—=p

and hence for F' being continuous at VaR,[X| we have

ES,[X] = E[X|X > VaR,[X]] +

VaR,[X], p€[0,1),  (1.3)

ES,[X] = E[X|X > VaR,[X]], p € [0,1),

the right term being the so-called conditional tail expectation at level p, which is yet
another risk measure. Also, from Equation (1.3) we can further write

P(X = VaR,[X])
lL—p
which exhibits the connection between the expected shortfall and the mean-excess func-

tion (see e.g. Pflug and Romisch [68]).

ES,[X] = VaR,[X] + ex(VaR,[X]) + VaR,[X], p € [0,1),

The expected shortfall is a coherent risk measure, and in contrast to the VaR, it ac-
counts for the whole tail behaviour of X. This is usually seen as an advantage, but it
also makes the expected shortfall being potentially more sensitive to the choice of the
model, and hence less robust against model uncertainty. Also, note that E[X] = oo yields
ES,[X] = oo, for all p € [0, 1). The expected shortfall is therefore not useful to measure
risk for infinite mean models.
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1.4 Reinsurance

Reinsurance is a particular type of risk-transfer mechanism, under which an insurer (the
reinsured, or first-line insurer, cedent) cedes to another insurer (the reinsurer) a part of his
risks, and pays in exchange a reinsurance premium. There are several motivations for an
insurer to buy reinsurance, such as

* Reducing the probability to suffer losses that are hard to digest.

Stabilizing business results.

Reducing required capital.

* Increasing underwriting capacity.

Accessing benefits from larger diversification pools.

For a detailed discussion of the above motivations, and more generally, an extensive treat-
ment of topics related to reinsurance, we refer to Albrecher et al. [1].

1.4.1 Choice of reinsurance

From a mathematical point of view, the relationship between an insurer and a reinsurer
can be represented (and simplified) as follows: The insurer sells one or more insurance
contracts to its policyholder, after which he bears the total risk X, but has collected the
total premium Py. The insurer may then purchase a reinsurance cover, under which he
will cede the portion R = r(X) (the ceded loss) of X to the reinsurer, and in turn pay the
corresponding reinsurance premium Pr = w|R]. The function r denotes the ceded loss
function, i.e. the pre-defined rule that determines the amount to be paid by the reinsurer,
depending on the realization of X. And the functional 7 is the premium principle, i.e.
the risk measure that the reinsurer applies to 2 for determining the reinsurance premium
Pr. Under a reinsurance cover, the part of X and Py being retained by the insurer are
thus D = X — R (the retained loss) and Pp = Px — Pg (the retained premium), and the
reinsurer has the net position P — R.

The insurer can usually choose » among a set of candidates proposed by the reinsurer,
say C, and each choice of 7 will then result in a potentially different reinsurance premium
7[r(X)], the premium principle 7 being chosen by the reinsurer. In this setting, the best
choice of r arises as an interesting problem, which can typically be tackled by considering
some optimization problem, e.g.

r* = arg max ¢[r(X)], (1.4)

reC

where ¢ is some functional representing an appropriate objective for the insurer.

For instance, let L, = D — Pp = X — r(X) — Px + w[r(X)] be the potential loss
of the insurer under ceded loss function r (so —L, is the corresponding potential profit).
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Let further p[L,] be the solvency capital that the insurer must hold to cover L,. Then
examples of the objective ¢[r(X)] are

* Total cost or total risk exposure (Cai and Tan [18]): ¢[r(X)] = p[L, + Px], so in
that case [r(X)] is to be minimized.

* Expected profit (Kull [59] and Albrecher and Cani [2]): ¢[r(X)] = E[-L,] —
ﬁ p|L.], for p being translation invariant, and ¢ denotes some cost-of-capital rate.

* Return on risk adjusted capital (RORAC): ¢[r(X)| = E[—L,]/p[L.].

Many variants of problem (1.4) have been considered, e.g. with a budget constraint for
the reinsurance premium (Cheung et al. [20]), with some non-insurable (background)
risk standing besides X (Dana and Scarsini [26]), when the insurer and reinsurer have
heterogeneous beliefs regarding the distribution of X (Boonen [16]), and when the choice
of reinsurance is to be made simultaneously for several risks (Zhu et al. [83]), to cite a
few (for an overview, see Albrecher et al. [1] and Cai and Chi [17]).

1.4.2 Reinsurance forms and premium principles

For illustration purposes, we list three examples of ceded loss functions that are often
considered, both in practice and in the actuarial literature:

* Quota-Share (QS): 7(x) = ax, where a € (0, 1) denotes the proportionality factor.
Under a Quota-Share, the insurer thus shares a portion a of X to the reinsurer, i.e.
R=aX.

* Stop-Loss (SL): r(z) = (x — d), where d > 0 is called the deductible. So under a
SL cover, only the part of X exceeding d is ceded to the reinsurer.

* Bounded Stop-Loss (BSL): 7(z) = min{(z — d)4, ¢}, with d > 0 being again the
deductible, and ¢ > 0 is called the limit or layer. As its name indicates, a BSL is
simply the bounded version of a SL, i.e. the reinsurer will not pay more than .

Finally, we further mention three instances of premium principles:

* Expected value principle: 7[R] = (1 + 0)E[R], where § > 0 is some safety loading
factor.

* Standard-deviation principle: 7|[R] = E[R] + 3S[R], where 5 > 0 is again some
loading factor, and S[R] denotes the standard-deviation of R.

* Risk-adjusted or Wang principle: 7[R] = [° w(P(R > z)) dz, with w(u) being a

non-negative increasing and concave function such that w(0) = 0 and w(1) = 1.

For more examples of both reinsurance forms and premium principles and instructive
discussions about these topics, we again refer to Albrecher et al. [1].
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1.5 Contributions of this thesis

This thesis contains results in the field of risk modelling, both with and without parameter
and model uncertainty, as well as reinsurance, with applications that are mostly related to
tail risk. The article on which Chapter 5 is based has already been published in Insurance:
Mathematics and Economics.

In Chapter 2, we consider the problem of risk estimation under parameter and model
uncertainty. For so-called transformed location-scale distribution families, we prove that
when only parameter uncertainty is involved, a special type of predictive distribution can
be built and used to calculate a capital that yields a targeted solvency probability, despite
parameter uncertainty. This extends some of the results in Gerrard and Tsanakas [47] to
a more general framework. These results are then used to derive an explicit and simple
analytical formula for the capital estimator of a Pareto random loss, which can be used
even in the particular case where the data consists of consecutive order statistics rather
than a complete random sample. Afterwards, we test the robustness of this capital estima-
tor against potential model misspecification, for distributions with a Pareto-type tail. As
a by-product, we also provide a new explanation of the connection between Bayesian and
fiducial inference.

By accounting for epistemic uncertainty, predictive distributions tend to reflect risk bet-
ter than estimated distributions. This naturally makes them more conservative, which
is sometimes viewed as a drawback: At the end of the risk assessment process, limited
resources (e.g. capital) are available, and by being too conservative one may not be ef-
fective. While this objection is a valid concern, we believe that it does not account for
an important (and often implicit) aspect of many risk management decision processes:
The assessment of risk often serves to ultimately perform some kind of trade-off between
several competing risks for allocating limited resources, rather than determining absolute
resource amounts to isolated risks. In such a situation, since anyway limited resources
are available, if each risk is modelled with a predictive distribution, the conservative as-
pect likely ceases to be an issue. Correspondingly, since predictive distributions tend to
reflect risk better tha