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Abstract 

Purpose: To implement a fluorine-19 (19F) chemical shift encoding (CSE) approach for the 

sensitive imaging of molecules with multi-resonance spectra in order to remove their chemical 

shift displacement (CSD) artifacts, and to characterize its sensitivity versus established pulse 

sequences. 

Methods: The feasibility of CSE spoiled gradient echo (GRE) and balanced steady-state free 

precession (bSSFP) was first demonstrated in a phantom study. The dependence of the 

sensitivity of CSE-bSSFP on several pulse sequence parameters was then established, after 

which the occurrence of out-of-plane excitation was assessed for 2D and 3D techniques. Next, 

the sensitivity (in mm-3s-0.5) of both CSE techniques was compared to bSSFP ultrashort-echo-

time (bSSFP-UTE) imaging and multi-chemical-shift-selective turbo spin echo (MCSS-TSE) in a 

second phantom study. Finally, the sensitivity of the CSE-bSSFP, bSSFP-UTE and MCSS-TSE 

pulse sequences was compared in a preliminary in vivo mouse study.  

Results: Both CSE approaches were successfully implemented and resulted in negligible 

residual CSD artifacts, while large-volume 3D acquisitions should be considered to reduce 

problems related to out-of-plane excitation. CSE-bSSFP was shown to have a higher sensitivity 

than the bSSFP-UTE and MCSS-TSE pulse sequences (15.8±1.3 vs. 11.7±1.0 vs. 13.3±0.9mm-

3s-0.5, respectively, P<0.001), while the CSE-GRE technique had a lower sensitivity (4.8±1.1mm-

3s-0.5). 

Conclusion: CSE 19F MR imaging enables the unambiguous visualization of compounds with 

complex spectra, and provides high sensitivity both in vitro and in vivo.  



Introduction 

Fluorine-19 (19F) MR imaging of perfluorocarbons emulsions (PFCs) is increasingly used for cell 

tracking and inflammation imaging in preclinical research (1,2). Since fluorine has a very low 

natural abundance in the body, 19F MRI enables direct and highly specific visualization of the 

PFC distribution. PFCs are furthermore biologically inert and are cleared from the tissue when 

their carrier cells die, which allows 19F MRI to be used for cell tracking and monitoring over time 

(3). This technique has for example been used to track specific in-vitro-labeled immune cells 

(4,5) and stem cells (6,7), while it has also been used to image non-specific immune cell 

recruitment in animal models of such diseases as myocardial infarction (8), arthritis (9), 

myocarditis (10), and inflammatory bowel disease (11).   

Several clinical trials that use 19F MRI to track cell populations in patients have recently also 

been initiated (12). One of the most significant challenges for the initiation of such clinical trials 

is the requirement that PFCs have to have been proven to be safe and biocompatible. Several 

perfluorocarbons, such as perfluorooctyl bromide (PFOB) and perfluorodecalin, already passed 

such trials as oxygen carriers and blood volume expanders (13), and their use would thus 

encounter fewer hurdles for 19F MR-driven trials. Unfortunately, the PFCs with the most 

promising biocompatibility profile (14), i.e. the ones that are retained for the shortest time in the 

liver and spleen such as PFOB, have complex MR spectra with multiple resonances. These 

resonances are often spread over a broad frequency range (up to 10,000Hz at 3T) and create 

chemical shift displacement (CSD) artifacts that “dilute” the signal over multiple voxels. This 

decreases the already low signal-to-noise ratio (SNR) and confounds image interpretation. In 

order to address this challenge, several techniques have been described for the removal of 

CSD artifacts in 19F MRI. Most of these techniques are based on spectroscopic imaging (15), 

which is slow since it needs to encode an extra dimension, a deconvolution filter in the image 

domain (16,17) that forces a regularization that can remove fine details, spectrally selective 



excitation (18-20) that does not exploit all 19F atoms to generate the signal, or a combination of 

these (21).  

Instead of attempting to suppress the additional resonances or to selectively excite a subset of 

resonances, we propose a multi-echo chemical shift-encoded (CSE) approach that combines a 

multi-echo acquisition with prior-knowledge-constrained image reconstruction. CSE can in 

principle be used with any pulse sequence in which the echo time TE can be varied in small 

increments (on the order of 0.05-0.5ms) in a series of acquisitions. 

Therefore, the overall goal of this work was to develop and evaluate a CSE approach for 19F 

MRI of PFCs with complex spectra. This development was performed in two steps. 1) As a 

proof-of-concept, we implemented the CSE approach with spoiled gradient echo (GRE) 

imaging. CSE-GRE is relatively simple to implement and model, and enables assessment of 

image quality and sensitivity. However, GRE acquisitions typically have relatively low SNR 

efficiency; an implementation of CSE with higher-SNR pulse sequences is therefore highly 

desirable. 2) For these reasons, we extended the proposed CSE technique to balanced steady-

state free precession (bSSFP) imaging. Due to the off-resonance signal modulation of bSSFP 

pulse sequences, CSE-bSSFP requires more careful signal modeling than CSE-GRE. However, 

CSE-bSSFP may provide substantial improvements in SNR and sensitivity, as well as broader 

applicability. Finally, in this study we aimed to characterize the sensitivity of CSE-GRE and 

CSE-bSSFP relative to several other recently reported sensitive 19F MRI techniques. 

Theory 

We here describe the proposed reconstruction for a CSE acquisition in the presence of multiple 

19F resonances with different frequency shifts   . Unlike in common 1H MRI applications, the 

large frequency shifts    observed in 19F MRI can result in substantial CSD (and therefore 

image degradation) even in Cartesian acquisitions with high receiver bandwidth. To avoid these 



CSD artifacts, the reconstruction can be formulated as a direct least-squares fit in k-space. 

Assuming prior knowledge about the spectral and relaxation properties of the compound of 

interest, the parameter map estimate        that best fits the acquired k-space data 

                can be reconstructed(22). The k-space signal obtained with a CSE 2D 

Cartesian pulse sequence can be modeled as: 

                 

                                 
                                      

,  (1) 

where x and y are the phase-encoding and readout directions respectively, TE is the echo time, 

t is the time relative to the center of the current readout (i.e. relative to TE),   is the overall 

signal amplitude composed of M resonances with relative amplitudes    and chemical shifts    

(in this study, M=1-7 was used), while    describes additional known pulse-sequence-specific 

signal modulations. When a GRE pulse sequence is used,    can be well modeled as: 

                    
  ,        (2) 

where    is the relative radiofrequency (RF) pulse amplitude at chemical shift   . No RF phase 

modulation is assumed here, but this could be easily added if needed. When a bSSFP pulse 

sequence is used,    can be calculated for each time point      and chemical shift    

through Bloch equation simulations, for which the RF excitation angle α, the T1 and T2 

relaxation times, and the repetition time TR are used as input. In this work, the reconstruction is 

formulated as a linear least-squares fitting problem using Eq. 1 as the signal model. Because 

the phase-encoding direction is not affected by CSD artifacts, the reconstruction can be solved 

separately for each location  .  



Methods 

Implementation 

All experiments were performed on a 3T clinical MR scanner (Magnetom Prisma, Siemens 

Healthcare, Erlangen, Germany) with a 35-mm-diameter transmit/receive birdcage RF coil 

(Rapid Biomedical, Rimpar, Germany) that is tunable to both the 19F and 1H frequencies. A 

PFOB emulsion was prepared as described previously (14) at a 19F concentration of 23.85M 

(i.e. a PFOB concentration of 1.40M). A phantom was constructed from five 1ml syringes filled 

with PFOB that was diluted 4, 8, 16, and 32 times in 2%w/v agar (Sigma-Aldrich, St. Louis, MO, 

USA). The last syringe contained only 2%w/v agar and no PFOB. These syringes were then 

placed in a plastic 50ml centrifuge tube with 2%w/v agar.  

We implemented a prototype two-dimensional (2D) CSE GRE pulse sequence to acquire 7 

images with TEs from 3.28 to 3.88ms and increment ΔTE=0.1ms (one echo acquired per TR), 

TR=8.1ms, acquisition bandwidth BW=300Hz/pixel, α=8°, matrix size 256×256, voxel size 

V=0.5×0.×5×2mm3, 64 averages and total scan time Tacq=15min29s. A similar three-dimensional 

(3D) version with matrix size 256×256×32, and 2 averages was also implemented to 

demonstrate the equivalence of the 3D application of CSE.  

Based on the 2D and 3D CSE GRE versions, 2D and 3D CSE bSSFP acquisitions were 

implemented with TE=3.1-3.7ms, ΔTE=0.1ms, TR=6.7ms, α=60°, and a total scan time 

Tacq=12min15s. After 1H scout scanning and shimming, the three pulse sequences were 

acquired centered on the same slice in the phantom. The relaxation times of the PFOB 

resonances were obtained from Colotti et al. (23). Image reconstruction from the k-space data 

was performed in Matlab (the MathWorks, Natick, MA, USA). 



Pulse Sequence Characterization 

Given that bSSFP is subject to off-resonance banding artifacts that vary with TR (24) and might 

thus suppress signal from some of the PFOB resonances, the influence of the TR (from 6 to 

8ms as well as from 3 to 8ms with twice the sampling bandwidth) on the total signal was 

characterized through Bloch equation simulations. In order to normalize and compare the 

obtained signal at different TRs of the simulations, the sensitivity S was defined as the 

simulated signal divided by the square root of the TR. 

In a second characterization study in the previously mentioned phantom, the influence of ΔTE 

on the sensitivity S in the bSSFP version of CSE was explored for a range of ΔTE from 0.05 to 

0.5ms and for 1 to 5 echoes. In this phantom study, the sensitivity was defined as: 

              .          (3) 

Since a birdcage volume coil was used without any acceleration techniques, the SNR of a 

region of interest (ROI) was defined as the ratio of the average signal of the ROI divided by the 

standard deviation of the noise in an ROI in the background well outside any object. 

In order to determine to what degree the different resonances cause signal from outside the 

intended slice to be excited, a 2D 19F bSSFP image with the abovementioned parameters, the 

shortest TE, and a 5mm slice thickness was acquired in the PFOB phantom. The slice was 

placed through the syringe without PFOB and at 5mm distance from the other syringes, such 

that the image slice itself should contain no 19F signal and to avoid excitation of the other 

syringes caused by a poor RF profile. To demonstrate the influence of the slice selection 

gradient on extent of the out-of-slice excitation, three different sinc RF pulses that require 

different slice selection gradients (9.2, 12.2, and 17.5mT/m) were then used to acquire the same 

slice. A 3D 19F bSSFP version with 32 slices of 5mm thickness that easily covered the entire 

phantom was also acquired at the same position and with the fastest RF pulse. 



Comparison of Sensitivity  

The sensitivity of the abovementioned 2D and 3D CSE- GRE and bSSFP protocols was 

compared to two previously published sensitive multi-resonance imaging techniques at 3T in the 

PFOB phantom. The first was ultrashort-echo-time imaging with a bSSFP readout (bSSFP-UTE) 

and a phyllotaxis 3D radial trajectory (25), which has the advantage that it can be used to 

acquire all the CF2 resonances before they dephase through J-coupling (19). The acquisition 

was performed with TE=90µs, TR=2.6ms, acquisition bandwidth BW=405Hz/pixel, α=30°, matrix 

size 1283, V=1×1×1mm3, 125,952 lines, no averaging, and Tacq=4min30s. The second technique 

was 3D multiple-chemical-shift-selective turbo spin echo (MCSS-TSE), which uses the waiting 

time of a 3D TSE sequence to selectively excite and image the different resonances, thus 

avoiding J-coupling in all except the central γ-δε-ζ multiplet (20). The acquisition was performed 

with TE=13.7ms, echo train length 14, TR=1700ms, acquisition bandwidth BW=150Hz/pixel, a 

sinc RF pulse with an excitation bandwidth of 260Hz, matrix size 256×256×8, V=0.5×0.5×2mm3, 

no averaging, and Tacq=5min21s. 

The compared pulse sequences used a different readout bandwidth, which also has an 

influence on the SNR. However, all bandwidths were the lowest possible at the used 

resolutions, except in the case of the bSSFP-UTE, where an even lower bandwidth would have 

resulted in undesirable increases of TE. 

In Vivo Validation 

To demonstrate the sensitivity of CSE in vivo, the three most sensitive pulse sequences were 

repeated in mice. All animal experiments performed in this study were approved by the regional 

animal ethics committee. Four adult female apolipoprotein-E-knockout (apoE-/-) mice (which 

express an elevated degree of inflammation (26)) were injected intraperitoneally with 300µl of 

PFOB. After a 24h waiting period to allow the PFOB to accumulate in the liver and spleen, 

anatomic 1H MRI was performed in a sagittal orientation and centered on the liver, and was 



followed by localized shimming. 19F MRI was performed centered on the same location with 

CSE-bSSFP, bSSFP-UTE, and MCSS-TSE, with the same pulse sequence parameters as 

described earlier.    

Statistical analysis 

The significance of all differences in sensitivity was tested with unpaired two-tailed Student’s t-

tests with Bonferroni correction for multiple comparisons where applicable, and with P<0.05 

considered significant. Results are presented as mean ± standard deviation (SD). 

Results  

Pulse Sequence Characterization 

CSE was successfully implemented for both GRE and bSSFP imaging of PFOB. The CSE-GRE 

technique reduced the CSD artifacts from all PFOB resonances to a degree where they were 

indistinguishable from the background noise. The CSE-bSSFP technique similarly eliminated 

the CSD artifact from the CF2Br resonance, while ~4% of the CSD artifact from the CF2 multiplet 

remained (Figure 1). 

The numerical simulations of the influence of the TR on the sensitivity of CSE-bSSFP 

demonstrated that while there is a minor general decrease in sensitivity with the increase of TR 

(~5% over 2ms), there are also clear sensitivity minima where the bSSFP banding artifacts 

cancel out one or more resonances (Figure 2A). The phantom study on the influence of ΔTE on 

the sensitivity similarly demonstrated that after a broad optimal range, an increase in ΔTE 

(which increases TR) leads to a decrease in sensitivity (Figure 2B). At lower echo numbers and 

longer ΔTE there are furthermore more significant residual CSD artifacts. 



An increasing amount of out-of-slice signal was excited with the 2D CSE-bSSFP technique with 

the decreasing slice-selection gradient strengths, while no signal was displaced into the 

equivalent slice within the 3D CSE-bSSFP technique (Figure 3).   

Comparison of Sensitivity 

The 3D versions of CSE-GRE and CSE-bSSFP resulted in the exact same sensitivities as their 

2D counterparts. When reconstructing the MCSS-TSE images for the phantom sensitivity 

comparison, the γ-δε-ζ CF2 resonances were consistently extremely blurred to the degree that 

individual syringes were no longer recognizable, and were thus not included in the summed 

image reconstruction. A minor overall blurring was also observed in the reconstructed bSSFP-

UTE images. For the sake of clarity and since the results were highly similar in the other 

syringes, only the measurements in the syringe with the highest PFOB concentration results are 

reported here. The phantom comparison of the CSE techniques to bSSFP-UTE and MCSS-TSE 

pulse sequences resulted in a slightly higher sensitivity of the CSE-bSSFP technique than of the 

bSSFP-UTE and MCSS-TSE pulse sequences (15.8±1.3 vs. 11.7±1.0 vs. 13.3±0.9mm-3s-0.5, 

respectively, with P<0.001 for all comparisons), while the CSE-GRE technique had a lower 

sensitivity than the other techniques (4.8±1.1mm-3s-0.5, Figure 4).  

In Vivo Validation 

The animal studies resulted in broadly similar sensitivity differences as observed in phantoms 

(CSE-bSSFP: 2.56±0.66, bSSFP-UTE: 2.24±0.51, MCSS-TSE: 1.97±0.53mm-3s-0.5), although 

the differences between the techniques were smaller, and bSSFP-UTE outperformed MCSS-

TSE. Further, there were minor residual CSD artifacts in the CSE-bSSFP images (Figure 5). 

However, no differences were statistically significant (P>0.20 for all, before Bonferroni 

correction). 



Discussion 

In this study, we successfully implemented a chemical shift encoding technique for imaging of 

perfluorocarbons with high sensitivity and free of CSD artifacts. The proposed technique may 

have important applications for cell tracking and inflammation imaging in preclinical research as 

well as in clinical applications, particularly in the presence of perfluorocarbons with complex MR 

spectra (such as PFOB).  

CSE-GRE was demonstrated to be a relatively robust and simple implementation, but as is 

typical for GRE, it lacked sensitivity. This was addressed with CSE-bSSFP, which had 

substantially higher sensitivity and SNR, but required more complicated modeling, including off-

resonance signal modulations inherent to bSSFP. This higher sensitivity of CSE-bSSFP at 3T 

will most likely be required in future patient applications, where only low concentrations of PFC 

are expected to accumulate in regions of interest. Such patient applications will most likely be 

carried out with more sensitive surface RF coils, whose distance-dependent RF transmission 

and sensitivity should not have an effect on the performance of the CSE approaches until the 

effective RF excitation angle decreases by an order of magnitude. In this case, the CSE 

approaches may thus offer superior depth penetration to TSE-based pulse sequences. 

The numerical simulations of the dependence of the sensitivity of the proposed technique on the 

TR of CSE-bSSFP indicated that the TR should be carefully chosen in order to avoid a ~30% 

drop in sensitivity. In contrast, the phantom study on the influence of ΔTE demonstrated that 

ΔTE can be chosen over a fairly broad range of 0.1-0.3ms. Since an increase in ΔTE causes an 

increase in TR, there is most likely interplay between the two parameters that could be the 

cause of the lower sensitivity of the proposed technique at the lower ΔTE values, although the 

lower ΔTE values might also result in insufficient differences in phase evolution between the 

multi-echo images to properly encode the resonances. It should also be noted that acquiring 

multiple echoes directly after a single excitation could perhaps significantly decrease the 



acquisition time, but it would most likely also result in prohibitively long ΔTE and TR values, 

although this remains to be investigated. 

The observed higher sensitivity at 3T of CSE-bSSFP compared to MCSS-TSE and bSSFP-UTE 

might be explained by several factors. While it is very fast, bSSFP-UTE uses a 3D radial 

readout and half-echoes, which both result in lower SNR.  It furthermore selectively excites the 

CF2 resonances, which means that only 12/17 19F atoms were used to generate a signal (19). 

Conversely, UTE imaging is also subject to a smoothing function due to the influence of minute 

gradient imperfections during the start of the readout (27), which could result in an apparent 

increased SNR that does not reflect the true sensitivity of the pulse sequence. The MCSS-TSE 

pulse sequence most likely performs sub-optimally at 3T due to the challenge in balancing a 

short TE with long RF pulses that can separately excite the close γ-δε-ζ CF2 resonances (23). 

With the RF pulses used in this study (as well as with 5ms sinc pulses that were not reported 

here), the γ and ζ resonances could not be excited separately from the δε resonance, which 

resulted in a very short apparent T2 relaxation time that removed most signal and caused 

extensive blurring. Leaving the γ-δε-ζ resonance out of the reconstruction then resulted in only 

9/17 19F atoms that contributed to the signal. In contrast, the CSE approach was applied to fast 

Cartesian imaging pulse sequences of all 19F atoms in PFOB, which resulted in higher 

sensitivity. The lack of significance in the in vivo experiments is most likely caused by both inter-

animal variability and the low sample number. The obtained phantom and in vivo sensitivity 

results are furthermore specific to the magnetic field strength and 19F compound.  

The presented CSE approach has several drawbacks. First, main magnetic field (B0) and RF 

field (B1) inhomogeneities were not measured or modeled in this implementation, which could 

cause inaccuracies in the proposed reconstruction, and thus residual CSD artifacts and a 

decreased sensitivity. This was likely the cause of the relative decrease in sensitivity of CSE-

bSSFP in vivo. However, both B0 and B1 maps could be obtained through 1H imaging, and 



included in the proposed algorithm in a fairly straightforward manner. Second, related to this, 

because of the possibility of dark band artifacts in bSSFP imaging, 19F signal from the central 

resonance might be cancelled out near regions of interest at higher magnetic field strengths, 

which might be countered by lowering the TR through increasing the sampling bandwidth at the 

cost of sensitivity. Third, by using an RF pulse that excites all resonances, the CF2 resonances 

are J-coupled, which significantly shortens their apparent T2 (23) and thus the sensitivity; this 

effect cannot be avoided with the proposed technique. Finally, as demonstrated, in the case of 

2D CSE imaging, CSD artifacts from perfluorocarbons just outside the slice should also be 

taken into account. 3D versions of these techniques that cover a large volume avoid this 

potential issue, do not come with any SNR penalty, and are thus preferentially to be used.  This 

study was furthermore performed at 3T in light of future clinical applications. However, most 19F 

MR studies are still performed at higher magnetic field strengths, where the efficacy of the CSE 

techniques remains to be demonstrated in future studies. 

Since techniques similar to the proposed CSE reconstruction algorithm are used for fat-water 

separation (22,28,29), CSE also has the potential to be applied to separate the signals of two 

differently distributed fluorinated compounds through iterative optimization. One possible 

application is the separation of perfluorocarbon signal from that of the anesthetic isoflurane (30), 

which is commonly used in animal studies and contains two fluorinated groups that may 

confound image interpretation (31). A GRE implementation was recently demonstrated (32); a 

bSSFP implementation may be more challenging due to the time-intensive iterative calculations 

that are also sensitive to perturbations.  

In conclusion, we demonstrated the feasibility of a novel 19F MR imaging technique that enables 

the unambiguous visualization of compounds with complex spectra, and demonstrated its high 

sensitivity both in vitro and in vivo. 
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Figure Legends 

 

Figure 1. CSE-bSSFP imaging of PFOB. A) The molecular structure of PFOB. B) A 19F MR 

spectrum of PFOB, with three separate resonance structures. C) An axial 1H reference image of 

the phantom with the numbered tubes; tube 5 does not contain PFOB. D-E) Direct-FFT 19F 

images at the shortest and longest TE of the CSE-bSSFP. The CSD artifacts can be directly 

traced back to the structures of the spectrum (red arrows). Note the negligible signal decrease 



between the two images. F) The CSE-reconstructed image has high SNR and only very faint 

CSD artifacts (4% of the original intensity). 

 

Figure 2. Variation of CSE-bSSFP sensitivity due to parameter choice. A) Bloch equation 

simulations of the sensitivity as a function of the repetition time for two different sampling 

bandwidths. As TR increases, the off-resonance signal nulling bands shift, and the contribution 

of the various resonances changes. While a shorter TR is in general better, certain values see 

several resonances cancelled out and lead up to 35% sensitivity loss. B) Phantom 

measurements of the influence of the echo time increment ΔTE on the sensitivity. There is 

relative broad optimum of 0.1-0.4ms, while a trend of lower sensitivity with higher ΔTE (and thus 

longer TR) can be observed. Note that both graphs have non-zero intercepts; the absolute 

variation is moderate. 
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Figure 3. Demonstration of a chemical shift displacement artifact in the slice selection 

direction. A) Illustration of the different slices that are selected for the three PFOB resonances. 

An RF pulse with a certain bandwidth (dashed horizontal black lines) is combined with a slice 

selection gradient Gss, and excites the intended slice (in grey) for the CF3 resonance. However, 

the same RF frequencies and gradient correspond to shifted locations for the CF2 (blue, ΔωCF2) 



and CF2Br (red, ΔωCF2Br) resonances. Note that this is only signal selection and not spatial 

encoding. B) A transverse 1H image through the phantom shows the location of the individual 

tubes and a 5mm thick slice through tube 5, which contains no PFOB and should thus generate 

no 19F signal. C) The 1H image at this location with tube 5 clearly visible. D-F) 19F images at the 

same location with RF pulses that use different Gss. While the RF pulse profile is the least 

rectangular for the first image, it sees the least out-of-slice signal being included. The images 

acquired with the lower Gss see more off-resonance signal included. Also note that no multiple 

chemical shift ghosts are visible despite the readout direction being left-right, since only a single 

out-of-slice off-resonance is excited and included in the image. G) During a thick-slab 3D 

acquisition, all resonances are excited and correctly spatially encoded by the phase encoding in 

the third dimension, resulting in the absence of signal in this slice. 

 



Figure 4. A comparison of the sensitivity of the four pulse sequences in the phantom 

study. While the CSE-GRE has a low sensitivity, the proposed CSE-bSSFP acquisition has 

higher sensitivity than the established pulse sequences. 

 

Figure 5. In vivo CSE imaging. A) Sagittal 1H GRE image of the mouse chest and abdomen. 

B) The first echo time image of the 19F CSE-bSSFP series. C) 19F CSE reconstructed image. 

Signal can be observed in the liver, thymus and peritoneal cavity below the liver. D) Comparison 

of the sensitivity of the three applied pulse sequences, which had slightly different strengths 

relative to one another when compared to the phantom study. Note that the sensitivity is not 

normalized to the PFOB concentration, and is thus lower than in the phantom study. 
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