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Apart from efficacy and toxicity, many drug development fail-
ures are imputable to poor pharmacokinetics and bioavailabil-
ity. Gastrointestinal absorption and brain access are two phar-
macokinetic behaviors crucial to estimate at various stages of
the drug discovery processes. To this end, the Brain Or Intesti-

naL EstimateD permeation method (BOILED-Egg) is proposed as
an accurate predictive model that works by computing the lip-

ophilicity and polarity of small molecules. Concomitant predic-

tions for both brain and intestinal permeation are obtained
from the same two physicochemical descriptors and straight-

forwardly translated into molecular design, owing to the
speed, accuracy, conceptual simplicity and clear graphical

output of the model. The BOILED-Egg can be applied in a varie-
ty of settings, from the filtering of chemical libraries at the

early steps of drug discovery, to the evaluation of drug candi-

dates for development.

Any input to support the critical daily choice of which com-

pound to synthesize, test, and promote is of utmost impor-
tance to identify those compounds with the highest probabili-

ty of overcoming all obstacles in drug discovery and develop-

ment, and to ultimately become a marketed medicine for the
patient’s benefit. Apart from efficacy and toxicity, many failures

during drug development are related to pharmacokinetics, i.e. ,
the fate of the compound in the organism.[1] Nowadays, by

monitoring physicochemical profiles of lead compounds it is
possible to increase the quality of clinical candidates.[2] The in-
dividual consideration of absorption, distribution, metabolism

and excretion (ADME) behaviors at the early stages of drug dis-
covery has decreased the fraction of global pharmacokinetics-
related failures in later phases of development. As a conse-
quence, today, drug candidates reach the market more effi-

ciently.[3]

Although there are different routes of drug administration,

oral dosing is highly preferred for the patient’s comfort and
compliance. Early estimation of oral bioavailability, i.e. , the frac-

tion of the dose that reaches the bloodstream after oral ad-

ministration, is a key decision-making criterion at various steps
of the discovery process. Bioavailability is highly multifactorial,

but is primarily driven by gastrointestinal absorption.[4]

The large number of molecules and the small physical

sample amount at initial stage of medicinal chemistry projects,
together with the need to limit animal testing, prevent system-

atic recourse to experiments. This has fostered computational

models that are able to predict pharmacokinetic parameters,
especially bioavailability.[5] The eminent rule-of-five by Lipinski

and co-workers provides physicochemical margins outside of
which the probability for a molecule to become an oral drug is

low.[6] Despite criticism, often due to over-interpretation, the
rule-of-five shed light on the relationship between bioavailabil-

ity and physicochemical properties, settling the concept of

drug-likeness, and inspired many simple rule-based models.
Later, more sophisticated and precise models based on ma-

chine-learning methods were built. However, these latter share
the severe drawback of being “black boxes” difficult to inter-

pret and to translate into molecular design.[7]

An elegant compromise between these two types of models

was proposed by Egan et al. ,[8] who developed a descriptive

representation to discriminate between well-absorbed and
poorly absorbed molecules based on their lipophilicity and po-

larity, described by the n-octanol/water partition coefficient
(log P) and the polar surface area (PSA). The delineation exists

in a region of favorable properties for gastrointestinal absorp-
tion on a plot of two computed descriptors : ALOGP98[9] versus

PSA.[10] Because the region most populated by well-absorbed

molecules is elliptical, it was called the Egan egg. The advan-
tages of this representation are related to its simple concept,
straightforward interpretation, and direct translation into mo-
lecular design (unlike machine-learning methods). In contrast

to rule-based models and thanks to its 2D graphical nature, it
not only provides thresholds, but also a clear picture of how

far a molecular structure is from the ideal physicochemical
region for good absorption. As lipophilicity and polarity are
often inversely correlated properties, the sometimes-tricky

chemical modifications simultaneously impacting log P and
PSA are efficiently supported by the model, which is rapid

enough to allow trial-and-error iterations. These practical bene-
fits make the Egan egg widely used in industrial and academic

contexts, as indicated by its implementation in commercial

packages (e.g. , Discovery Studio, Dassault SystÀmes BIOVIA,
San Diego, CA, USA) and numerous citations of the seminal ar-

ticles.[8, 11] Successful applications include, for example, the dis-
covery and development of the groundbreaking drug against

hepatitis C, telaprevir,[12] and a detailed pharmacokinetic analy-
sis leading to anti-tuberculosis agents.[13]
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However, Egan’s method comes with some concerns. Al-
though routinely applied as a prediction tool, it was developed

as a delineation, merely descriptive and without evaluation of
predictive power. Indeed, the computation of the ellipse took

into account well-absorbed molecules but neglected poorly
absorbed molecules. The resulting confidence region merely

depicts the dispersion of properties related to good absorption
and lacks an assessment of accuracy. Additionally, several

points hinder the reproducibility of the published methodolo-

gy: the dataset was not fully disclosed; the values of
ALOGP98[9] were obtained through a closed-source commercial
implementation; and the details of PSA calculations relying on
tridimensional geometries were not described.

Given the undeniable practicality of Egan’s egg and its effec-
tiveness for drug discovery projects, we sought to amend

these methodological aspects, to assess the predictive power

of the model for gastrointestinal passive absorption, and to
complement it with the prediction for brain access by passive

diffusion to finally lay the BOILED-Egg (Brain Or IntestinaL Esti-
mateD permeation predictive model).

We curated recent human intestinal absorption (HIA) data[4]

by literature, patent, and database cross-checks (refer to Meth-

ods S1 in the Supporting Information) to gather 660 small mol-

ecules (567 well- and 93 poorly absorbed) with cleansed struc-
tures and reliable measurements of the fraction absorbed by

human (FA), excluding actively transported compounds. This
HIA dataset is given in Table S1 in the Supporting Information.

All 660 molecular structures were subject to log P and PSA
computation (Figure 1; see Methods S3 in the Supporting In-

formation for details). The log P method developed by Wild-

man and Crippen (WLOGP) was chosen, because it is closely re-
lated to ALOGP98, but with exhaustive chemical description,

which makes its implementation straightforward.[14] Likewise,
we calculated the topological polar surface area (tPSA), a well-

described technique to estimate PSA based on a 2D fragmen-
tal system.[10]

The ellipse that best classifies the 660 molecules of the HIA

dataset was computed by including as many well-absorbed
and as less poorly absorbed compounds as possible on the
WLOGP versus tPSA plot (details in Methods S4, S5, and S6 in
the Supporting Information). Five parameters defining the el-

lipse—the Cartesian coordinates of the foci (x1, x2) ; (y1, y2) and
the major axis (or largest diameter, d)—were submitted to

Monte-Carlo (MC) optimization, evaluated by the Matthews
correlation coefficient (MCC, ranging from ¢1 to 1 for perfect
classification, see Methods S7). After about 100 000 independ-
ent MC runs of 100 000 cycles each, with starting parameters
spanning the desired physicochemical space, the optimal el-

lipse was obtained with an excellent MCC = 0.70 (Figure 1 a
and 1 c, and Data S1 and Figure S1 in the Supporting Informa-

tion). Reasons for misclassification can be attributed to either
technical issues, i.e. , WLOGP or tPSA do not accurately describe
the lipophilicity and polarity of particular compounds, or to
conceptual issues, i.e. , other unrelated properties impact ab-
sorption. These latter properties, if linked to the molecular

structure (e.g. , its charge), could eventually be considered by
additional orthogonal axes. Physicochemical description issues

could explain part of the 26 false positives (structures depicted
in Figure S5), as many of these bear positive charges. In other

cases, the neglected properties are most probably physiologi-
cal. Even a high-quality dataset is influenced by the state of

knowledge at the time of curation. This can explain part of the
20 false negatives, as a given molecule could be considered as

absorbed passively just because its active transporter remains
to be discovered[15] (structures depicted in Figure S6).

Our passive absorption model, with an internal accuracy of

93 %, was further assessed by 10-fold cross-validation. The high
cross-validated MCC, MCCCV = 0.65, and cross-validated accura-
cy of 92 % (see Methods S8 and Table S3 in the Supporting In-
formation) together with the fact that the ten ellipses show

a large overlap (Figure S3) ascertains the robustness of classifi-
cation. Finally, our model confirms and refines the guidelines

for good absorption,[7] the ellipse being encompassed in the

commonly accepted rectangular limits of PSA lower than
142 æ2 and log P between ¢2.3 and + 6.8.

These results encouraged us to extend the approach to
blood–brain barrier (BBB) permeation, which is fundamental

for the distribution of central-acting molecules, or reversely for
limited unwanted effects of peripheral drugs. Similarly to bio-

availability and given the substantial effort to measure BBB

permeation, several computational methods were devel-
oped.[16] Again, they can be divided in “Lipinski-like” rule-based

and in machine-learning models, but so far no “Egan-like” ap-
proach has been published.

The BBB can be considered as a shield protecting the brain
by a “physical” barrier (e.g. , tight junctions in endothelial cells

preventing paracellular penetration) and a “biochemical” barri-

er consisting of enzymatic activities and active efflux (e.g. , P-
glycoprotein pumping out substrates from central nervous

system (CNS) tissues). Although active transport is important,
passive diffusion is the major route for drugs to access the

brain from the bloodstream.[17] Substantial curation of a recent
dataset[18] supported by specialized databases was required to

build our passive BBB-permeation model (refer to Methods S2

in the Supporting Information). We collected 260 molecules
(156 permeant and 104 non-permeant) with cleansed struc-

tures and reliable measurements of blood–brain partition
(log BB). This BBB dataset is provided in Table S2. The same

methodology as for the absorption classification was applied.
Massively parallelized MC runs yielded the best classifying el-

lipse on the WLOGP versus tPSA graph for BBB permeation
(MCC = 0.79, Figure 1 b and 1 d, and Data S2 and Figure S2 in
the Supporting Information). Our model is in accordance with

and refines the established simple guidelines giving PSA
thresholds for BBB permeation.[16, 19] Indeed, we show that

moderately polar (PSA<79 æ2) and relatively lipophilic (log P
from + 0.4 to + 6.0) molecules have a high probability to

access the CNS. Similarly to the gastrointestinal model, some

of the 22 false positives can be attributed to the limitations of
the WLOGP and tPSA descriptors (Figure S7 in the Supporting

Information). The imperfect current state of knowledge about
active transport for discovery or early development com-

pounds could explain the five false negatives (Figure S8). How-
ever, with an internal classification accuracy of 90 %, our BBB
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permeation model shows a brilliant descriptive ability. A 10-

fold cross-validation returned a MCCCV = 0.75 and a cross-vali-
dated accuracy of 88 % (refer to Table S4 in the Supporting In-

formation). The robustness of our BBB classification model is

further confirmed by the large overlap of the ten ellipses (Fig-
ure S4).

Figure 1. Overview of the BOILED-Egg construction. a) Gastrointestinal absorption and b) brain penetration datasets (HIA and BBB in Tables S1 and S2, respec-
tively) cleansed, neutralized, standardized, converted into SMILES notation were subject to lipophilicity (WLOGP) and polarity (tPSA) computation. Best classifi-
cation ellipse for well- and poorly absorbed molecules (blue points and green squares, respectively, in (c) and Figure S1) as well as for brain penetrant and
non-penetrant molecules (pink points and brown squares, respectively, in (d) and Figure S2). e) Combining both best ellipses yields the BOILED-Egg predictive
model. The white region is the physicochemical space of molecules with highest probability of being absorbed by the gastrointestinal tract, and the yellow
region (yolk) is the physicochemical space of molecules with highest probability to permeate to the brain. Yolk and white areas are not mutually exclusive.
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As an illustration, the 46 non-prodrug new chemical entities
(NCEs) with clear oral bioavailability accepted by the FDA be-

tween January 2014 and September 2015 (FDA dataset in
Table S5) were mapped onto the BOILED-Egg (Figure 2 a). The

vast majority of gastrointestinal absorption predictions are sen-
sible, as indicated by a classification accuracy reaching 83 %.

The same appears true for BBB permeation, as most NCEs with

evidence for brain penetration lie inside the yellow ellipse.
In our practice, the BOILED-Egg is of great support for lead

optimization. The following two cases illustrate how it can
steer property-based lead optimization to improve pharmaco-

kinetics. The first example is the optimization of third-genera-
tion BCR-ABL kinase inhibitors, starting from the lead BCR-ABL-

1 with poor pharmacokinetics, distant from the egg, to finally

obtain the oral anticancer drug ponatinib.[20] Ponatinib correct-
ly lies inside the white ellipse, but inside the BOILED-Egg’s
yolk, too (blue path in Figures 2 b and S9). This agrees with ex-
perimental data suggesting that ponatinib crosses the BBB.[21]

The second example is the optimization of AMPA receptor
modulators to enhance synaptic activity. The optimization

started from an orally bioavailable, but BBB non-permeant lead

AMPA-1. The physicochemical modifications to finally obtain
a brain-penetrant investigational drug[22] correctly located in

the yolk can be followed (pink path in Figures 2 b and S10).
The BOILED-Egg model delivers a rapid, intuitive, easily re-

producible yet statistically unprecedented robust method to
predict the passive gastrointestinal absorption and brain

access of small molecules useful for drug discovery and devel-

opment. The BOILED-Egg is depicted in Figure 1 c, and the co-
ordinates of respective ellipses are given in Figures S1 and S2

in the Supporting Information. Finally, an Excel file is provided
as Data S3 (described in the Supporting Information), including

the Cartesian coordinates of both ellipses’ trace. The user has
the possibility to add the WLOGP and tPSA for up to 100 mole-

cules, and the corresponding points are mapped onto the
BOILED-Egg (detailed protocol in Methods S9).
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