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Background: MMP-9 cell surface activity promotes tissue remodeling.
Results: Fibroblast cell surface recruitment of MMP-9 via its fibronectin-like domain (EN) by lysyl hydroxylase 3 (LH3) induces

TGE-B activation and myofibroblast differentiation.

Conclusion: We identify a novel mechanism of MMP-9 recruitment to stromal cells that can be modulated by recombinant EN.
Significance: Recombinant FN may allow selective MMP-9 blockade in tumor-associated tissue remodeling.

Solid tumor growth triggers a wound healing response. Simi-
lar to wound healing, fibroblasts in the tumor stroma differen-
tiate into myofibroblasts (also referred to as cancer-associated
fibroblasts) primarily, but not exclusively, in response to trans-
forming growth factor- (TGF-B). Myofibroblasts in turn
enhance tumor progression by remodeling the stroma. Among
proteases implicated in stroma remodeling, matrix metallopro-
teinases (MMPs), including MMP-9, play a prominent role.
Recent evidence indicates that MMP-9 recruitment to the
tumor cell surface enhances tumor growth and invasion. In the
present work, we addressed the potential relevance of MMP-9
recruitment to and activity at the surface of fibroblasts. We show
that recruitment of MMP-9 to the fibroblast cell surface occurs
through its fibronectin-like (FN) domain and that the molecule
responsible for the recruitment is lysyl hydroxylase 3 (LH3).
Functional assays suggest that both pro- and active MMP-9 trig-
ger a-smooth muscle actin expression in cultured fibroblasts,
reflecting myofibroblast differentiation, possibly as a result of
TGEF-B activation. Moreover, the recombinant FN domain
inhibited both MMP-9-induced TGF-f activation and
a-smooth muscle actin expression by displacing MMP-9 from
the fibroblast cell surface. Together our results uncover LH3 asa
new docking receptor of MMP-9 on the fibroblast cell surface
and demonstrate that the MMP-9 FN domain is essential for the
interaction. They also show that the recombinant FN domain
inhibits MMP-9-induced TGF-f activation and fibroblast dif-
ferentiation, providing a potentially attractive therapeutic re-
agent toward attenuating tumor progression where MMP-9
activity is strongly implicated.

Tumor cell interactions with host tissue stroma play a key
role in determining tumor progression that culminates in met-
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astatic growth. It is well established that malignant tumor
growth initiates a wound healing response that maintains a
state of tissue remodeling, which favors tumor survival, inva-
sion, and dissemination. Orchestration of tumor-associated tis-
sue remodeling is mediated in part by tumor cells and in part by
a variety of recruited host tissue cells, including various leuko-
cyte subsets and mesenchymal cell subtypes ranging from mes-
enchymal stem cells to myofibroblasts (1-3). Most of these cells
participate in generating soluble mediators that include a pleth-
ora of cytokines, chemokines, growth factors, and enzymes.
Among the proteolytic enzymes implicated in tumor-host
cross-talk are matrix metalloproteinases (MMPs),” a large fam-
ily of zinc-dependent extracellular matrix (ECM)-degrading
endopeptidases that play a key role in tissue remodeling during
development and repair (4). The majority of MMPs are
secreted, but at least a fraction of their proteolytic activity is
observed at the cell surface where they can be anchored by a
variety of cell surface receptors to provide controlled degrada-
tion of the ECM and activation of a variety of latent growth
factors (5). Whether or not cell surface anchoring of secreted
MMPs occurs exclusively in autocrine fashion in the context of
tissue remodeling or whether it may also occur in paracrine
fashion whereby MMP-anchoring cells are distinct from MMP-
secreting cells remains to be clarified.

MMP-9, also known as gelatinase B, has been shown to play a
prominent role in the progression of numerous tumor types by
promoting tumor cell invasion and angiogenesis (6, 7). Similar
to other MMPs, MMP-9 is synthesized as an inactive zymogen,
or pro-MMP-9, composed of a propeptide, a catalytic domain
containing fibronectin-like (EN) repeats, a linker region or
hinge domain, and a C-terminal hemopexin-like (HEX) domain
thought to be necessary for substrate recognition (4). The FN

2The abbreviations used are: MMP, matrix metalloproteinase; LH3, lysyl
hydroxylase-3; FN, fibronectin-like; a-SMA, a-smooth muscle actin; ECM,
extracellular matrix; HEX, hemopexin-like; TMLC, transformed mink lung
epithelial cells; HSF, human skin fibroblasts; Ni-NTA, nickel-nitrilotriacetic
acid; PLA, proximity ligation assay; PLOD3, procollagen-lysine, 2-oxogl-
utarate 5-dioxygenase 3.
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domain, which is found only in MMP-9 and MMP-2, is com-
posed of three tandem fibronectin type II-like motifs that form
a collagen-binding domain critical for the positioning of sub-
strates for subsequent cleavage (8). The collagen-binding
domain of MMP-9 has been shown to bind gelatin (9), elastin,
and both native and denatured types I, IL, I, IV, and V collagen
(8, 10). Each fibronectin type II-like module displays binding
specialization, which generates exosites specific for other
ligands degraded by the protease (10). Cooperation among col-
lagen binding sites within these three modules increases sub-
strate specificity and thereby has the potential to localize the
enzyme to collagen either in the extracellular matrix or on the
cell surface (11).

MMP-9 expression is low or absent in normal quiescent tis-
sues but is strongly induced under conditions that trigger tissue
remodeling, including development, wound healing, and tumor
invasion. MMP-9 is produced by tumor-associated host tissue
cells, including endothelial cells, various leukocytes, and tumor
cells themselves, and is thought to promote tumor growth and
metastasis (4, 6, 12—14). Several secreted MMPs, including pro-
MMP-9, can at least transiently be anchored to the cell surface,
which directs their proteolytic activity toward pericellular sub-
strates and may provide protection from natural inhibitors.
However, the mechanisms that underlie their association with
the cell membrane appear to be diverse and remain to be fully
explored (5, 15, 16). Thus far, MMP-9 has been shown to use
among others the cell surface hyaluronan receptor CD44 as a
docking molecule in certain tumor cell types and keratinocytes
(17). This association stabilizes MMP-9 proteolytic activity at
the cell surface to facilitate controlled collagen IV degradation
and to promote invasion (17). In addition, CD44-associated
MMP-9 as well as MMP-2 can cleave and activate latent
TGEF-B1 and -2 (18). Thus, coordination of CD44, MMP-9, and
TGE-B function may provide a physiological mechanism of tis-
sue remodeling that can be adopted by malignant cells to pro-
mote their own growth and dissemination (18, 19). As key reg-
ulators of ECM turnover, fibroblasts may include MMP-9 in
their arsenal of tissue remodeling reagents. However, mecha-
nisms that govern putative MMP-9 association with the surface
of normal stromal cells, including fibroblasts, remain to be elu-
cidated. Fibroblasts produce low amounts of MMP-9, suggest-
ing that they may recruit tumor cell or leukocyte-derived
MMP-9 to their own cell surface to promote ECM remodeling
by harnessing its proteolytic activity.

In the present work, we show that MMP-9 produced by
tumor cells is recruited to the fibroblast surface and that
recruitment requires the FNII repeats or collagen-binding
domain of MMP-9. We demonstrate that the structure that
mediates MMP-9 docking to the fibroblast surface is provided
by lysyl hydroxylase 3 (LH3), which displays lysyl hydroxylase as
well as galactosyl- and glucosyltransferase activity (20). LH3 is
expressed in the endoplasmic reticulum but is also associated
with the plasma membrane via collagenous proteins (21). We
show that LH3-mediated MMP-9 recruitment contributes to
TGEF-B activation, which stimulates fibroblast differentiation
into myofibroblasts. Tumor cells and leukocytes may thus pro-
vide a source of MMP-9 that fibroblasts can recruit and use to
activate TGF-f and stimulate their own differentiation.
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Experimental Procedures

Cell Lines—Human embryonic kidney (HEK) 293T, fibrosar-
coma (HT1080), transformed mink lung epithelial cells
(TMLC), glioblastoma (U251), osteosarcoma (U20S), breast
adenocarcinoma (MDA-MB231), human skin fibroblasts
(HSF), human lung embryonic fibroblasts (MRC-5), and Chi-
nese hamster ovary (CHO) cells were cultures in DMEM sup-
plemented with 10% fetal bovine serum.

Chemical Compounds—Chemical compounds used included:
4-aminophenylmercuric acetate (164610, Calbiochem), Com-
plete Mini EDTA-free protease inhibitors (11836170001,
Roche Applied Science), FcR blocking reagent (130-059-901,
Miltenyi Biotec), FuGENE 6 Transfection Reagent (E2692, Pro-
mega), Interferin (409-01, Polyplus Transfection), Sulfo-SBED
Biotin Label Transfer Reagent (33034, Pierce), SuperSignal
West Pico Chemiluminescent Substrate (34080, Thermo Sci-
entific Pierce), human TGF-B1 (100-B-001, R&D Systems),
Duolink IT PLA Probe Anti-Mouse PLUS (DU092001, Sigma-
Aldrich), Duolink II PLA Probe Anti-Rabbit MINUS
(DUO092005, Sigma-Aldrich), Duolink In Situ Detection
Reagents Red (DUO92008, Sigma-Aldrich), and procollagen-
lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) (human; three
unique 27-mer siRNA duplexes) (SR305927, Origene).

Antibodies—Antibodies used were as follows: anti-HA-aga-
rose matrix (11 815 016 001, Roche Applied Science), anti-
LH3 (11027-1-AP, ProteinTech), anti-MMP-9 (MS-817-P0,
Thermo Scientific), anti-a-SMA (A2547, Sigma), anti-tubulin
(CP06, Calbiochem), anti-transferrin receptor (13-6800, Invit-
rogen), anti-TGF-£1,2,3 (MAB1835, R&D Systems), anti-v5
(R960-25, Invitrogen), donkey anti-mouse Alexa Fluor 488
(A21202, Invitrogen), Ni-NTA-agarose beads (30210, Qiagen),
streptavidin-agarose beads (DAM1467561, Millipore), anti-v5-
agarose beads (A7345, Sigma), horseradish peroxidase (HRP)-
conjugated sheep anti-mouse (NA931V, GE Healthcare), and
goat anti-rabbit (P0448, Dako).

Expression Constructs—Wild type (WT) pro-MMP-9 and the
different MMP-9 constructs, including the catalytically dead
protein containing the E402Q mutation, the FN domain com-
posed of the fibronectin type II-like motifs (FN223-389), the
hemopexin homology domain (HEX520-707), the AFN or
MMP-9A223-389 mutant lacking the FN domain, the AHEX or
MMP-9A520-707 mutant lacking the hemopexin homology
domain, and CD5, were inserted into the pLIVC vector, derived
from the pLVTHM lentiviral vector by the removal of the
shRNA cassette and GFP gene and insertion of a phosphoglyc-
erate kinase-puromycin cassette. All constructs were 3’ tagged
with sequences encoding 6 histidines and the v5 peptide.

Virus Production—60% confluent HEK293T cells in a
100-mm dish were transfected with 1.25 ug of pMD2G (enve-
lope plasmid), 3.75 ug of pPCMVs (packaging plasmid), and 5 ug
of pLIVC (transfer vector) containing MMP-9 or the different
mutants using FUGENE 6 Transfection Reagent at a ratio of 1:3
and incubated at 37 °C. Lentiviruses were collected after 48 h,
filtered through 0.45-um filters, and concentrated by
ultracentrifugation.

Retroviral Infection—Target cells (CHO, U20S, HT1080,
and MRC-5) at 40% confluence in 6 wells were washed with PBS
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and infected in two rounds of 8-h intervals with lentiviruses
using Polybrene (1:1000) overnight at 37 °C. Cells were then
washed with PBS and transferred to a 100-mm dish with fresh
medium. On the following day, cells were selected with puro-
mycin (1 ug/pl for CHO and U20S and 2 pg/ul for MRC-5).

His Tag Purification—Stable transfectants of each His-tagged
construct were established in U20S and CHO cells. Purifica-
tion was performed using the histidine tag and high affinity
nickel beads as follows. The supernatant of CHO cells provided
by Evitria (Zurich, Switzerland) was incubated with Ni-NTA-
agarose beads (2 ml of beads for 1 liter of sample), which were
then washed with PBS and in washing solution (5 mm imidaz-
ole, 20 mm Tris-HCI, pH 7.5, and 200 mm NaCl). Purified pro-
teins were eluted in 20 mM and 200 mm imidazole, and fractions
were concentrated with Amicon centrifugal filters (Millipore)
depending on the molecular weight (50,000 nominal molecular
weight limit for pro-MMP-9 and AFN and 3000 nominal
molecular weight limit for FN). Protein concentration was
determined by densitometry using Image].

Pro-MMP-9 Activation—Activation of pro-MMP-9 was per-
formed directly on nickel beads using 4-aminophenylmercuric
acetate. 35 mg of 4-aminophenylmercuric acetate was dissolved
in 10 ml of 0.1 m NaOH and diluted in TTC reaction buffer (50
mwMm Tris-HCl, pH 7.5, 1 mm CaCl,, and 0.05% Triton X-100) to
obtain a 2.5 mm solution. Pro-MMP-9 bound to Ni-NTA-aga-
rose beads was incubated with this solution at 37 °C for 3 h and
eluted as described before.

Recruitment Assay—Tumor cell lines and fibroblasts were
incubated overnight at 37 °C with filtered conditioned medium
from U20S cells stably expressing recombinant MMP-9 or its
different mutants or with 0.5 ug/ml purified peptides. The fol-
lowing day, cells were lysed using lysis buffer (10 mm Tris-HCl,
pH 7.5, 150 mm NaCl, and 1% Triton X-100) containing Com-
plete Mini EDTA-free protease inhibitors. Immunoblotting of
conditioned medium and cell lysates was performed using
anti-v5 antibody, and the Image] program was used for recruit-
ment quantification.

Cell Fractionation—Cells grown in 2 X 150-mm dishes until
60-70% confluent were washed and scraped in cold PBS and
centrifuged for 5 min at 300 X gat 4 °C. Membranes were sen-
sitized by resuspending cell pellets in 1 ml of homogenization
buffer (250 mm sucrose, 3 mm imidazole, and phosphatase and
protease inhibitor mixtures, pH 7.4). Postnuclear supernatant
was obtained by mechanical disruption of cells with a 22-gauge
needle and centrifugation for 10 min at 600 X g at 4 °C. Post-
nuclear supernatant was subjected to ultracentrifugation for 45
min at 100,000 X g at 4 °C to separate cytosol (supernatant)
from membrane (pellet) fractions. Membranes were washed
twice with homogenization buffer and solubilized using lysis
buffer containing Complete Mini EDTA-free protease
inhibitors.

Western Blot—W estern blotting was performed according to
standard procedures. The following antibody concentrations
were used: anti-v5, 1:5000; anti-transferrin receptor, 1:1000;
anti-LH3, 1:500; anti-a-SMA, 1:5000; anti-tubulin, 1:4000;
anti-MMP-9, 1:200; HRP-conjugated sheep anti-mouse,
1:20,000; and goat anti-rabbit, 1:20,000. ECL was revealed using
SuperSignal West Pico Chemiluminescent Substrate.
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Live Immunofluorescence—MRC-5 fibroblasts were grown
on glass coverslips until they reached confluence. Cells were
treated with pro-MMP-9, FN, E402Q, AFN, and CD5 and incu-
bated with anti-v5 antibody (1:1500) for 1 h at 4 °C, washed with
PBS, and further incubated with secondary anti-mouse Alexa
Fluor 488 antibody (1:1500) for 1 h at 4 °C. Antibodies were
diluted in blocking buffer (PBS and 10% EBS). Cells were then
fixed with 4% paraformaldehyde for 20 min at room tempera-
ture, washed with PBS, and mounted using Immuno-Mount.
DAPI (Roche Applied Science) was used to visualize the nuclei.
Images were acquired with a Leica SP5 AOBS confocal
microscope.

Mass Spectrometry—Confluent MRC-5 cells in square plates
(Nunc) were treated with 50 ug of Sulfo-SBED Biotin Label
Transfer Reagent-labeled MMP-9, FN, and AFN at 37 °C for
4 h. Cells were washed in the dark and cross-linked applying UV
light at 365 nm for 8 min before lysis. Finally, cell lysates were
immunoprecipitated using v5-agarose beads and subjected to
mass spectrometry analysis at the Protein Analysis Facility
(Lausanne, Switzerland).

Luciferase Assay—The luciferase assay system (E1501, Pro-
mega) was used according to the manufacturer’s instructions.
Briefly, TMLC transfected with the plasminogen activator
inhibitor-1 promoter responsive to TGF- £ and linked to a lucif-
erase reporter system were plated at 3 X 10° cells/ml in 24 wells
for 6 h. MRC-5-conditioned medium collected after 3 days was
incubated with TMLC at 37 °C for 20 h. Cells were then washed
with PBS and lysed with 1X lysis buffer for 20 min on ice. 20 ul
of cell lysates was mixed with 90 ul of luciferase substrate.
Luminescence was read at 570 nm using a Synergy MX lumi-
nometer for 2 s with autosensitivity.

Immunoprecipitation—Confluent MRC-5 cells in a 25-cm
dish were treated with 13 g of Sulfo-SBED-labeled v5-tagged
MMP-9, EN, and AFN overnight at 37 °C. The interaction was
cross-linked with UV light at 365 nm for 8 min after which
MRC-5 cells were lysed with lysis buffer. 4 mg of cell lysates was
precleared with HA-agarose matrix for 1 h at 4 °C and then
immunoprecipitated with anti-v5-agarose beads overnight at
4 °C. Beads were washed seven times with lysis buffer and a final
wash with PBS, and proteins were eluted by boiling the beads
for 5 min in sample buffer. Purified complexes were analyzed by
Western blotting using anti-LH3 antibody.

LH3 Knockdown—MRC-5 cells in 6-well plates at 30% con-
fluence were transfected with 1 nm siRNA pool against LH3.
After 4872 h, 0.5 pug/ml purified v5-tagged MMP-9, EN, or
AFN was incubated with control and LH3-depleted MRC-5
cells overnight at 37 °C.

Proximity Ligation Assay (PLA)—MRC-5 cells at 80% conflu-
ence in 6-well plates containing 8-mm coverslips were incu-
bated with primary antibodies mouse anti-MMP-9 (1:300), rab-
bit anti-LH3 (1:50), and mouse anti-v5 (1:1500) for 1 h at room
temperature and then fixed with 4% paraformaldehyde in
PIPES buffer, pH 6.8 for 12 min at room temperature. PLA
amplification was labeled with Alexa Fluor 594. Coverslips were
counterstained with DAPI, mounted, and imaged using a Zeiss
LSM710 confocal fluorescence microscope with a 40X oil
immersion objective. The resulting images were analyzed using
a script written in Image] macro language.

JOURNAL OF BIOLOGICAL CHEMISTRY 13765



MMP-9 Recruitment to the Cell Surface by LH3

&
N

5 2 1 = ——130kDa
Inputs
e 100 kDa

a-v5
Membranes ‘-..A_mkn
a-v5
Membranes _.‘ - ._& ‘_,._u‘ .
a-Trf
e o / \ y o O-
Dse.mue s | (FN FN) 'ﬂa' @ ion @VVQ ‘5\ v“é Q\Q,\‘ b‘z\é ((?Q’\,

™
£402q m/ \ 13002

pﬁe‘ﬁ’t‘;‘e catalytic (FN E N) —— o — 1000:

propeptide

. E402Q
Zn™
c\,s/ \
AN ) inge region
5‘3"_:' propeptide | catalytic
peptice 64 kDa

signal
peptide

| propeptide

Zn™
Bt c;s/ \ s
catalytic (FN FN) 62kDa
' 40kDa
- e =—=25kDs

N HEX
EAQOQ
BN A A _J 24kDa eptide 26kDa a-v5

‘ Inputs Membranes
9 2] o
8 N So S 8 s 3 & e
S $EFES S EFES
130 kD2
s - ——100kD2 b et ® \.’-
e -—
L]
—n80KD2
— - =zsk08 —
a-vs ) a-v5

13766 JOURNAL OF BIOLOGICAL CHEMISTRY ;%@/A\SBMB VOLUME 290+NUMBER 22+-MAY 29, 2015



FACS—MRC-5 cells were incubated with v5-tagged MMP-9
and AFN overnight at 37 °C. Cells were then scraped in PBS,
blocked with FcR blocking reagent (1:10 diluted in PBS) for 30
min at 4 °C, and incubated with anti-v5 or an irrelevant mouse
isotype-matched antibody (1:400) for 3 h followed by anti-
mouse Alexa Fluor 488-conjugated antibody (1:400) for 30 min
at room temperature. DAPI was used to discriminate between
living and dead cells. Cells were sorted using a Beckman Coulter
Gallios flow cytometry system and analyzed using FlowJo_V10.

Statistical Analysis—Graphs and statistical analysis were car-
ried out using GraphPad Prism® 6.0 software. Results represent
mean values £S.E. in all graphs. p values were as follows: ns, p >
0.05; %, p = 0.05; **, p =< 0.01; ***, p =< 0.001; ****, p < 0.0001.

Results

Pro-MMP-9 Is Recruited to the Fibroblast Cell Surface—To
compare association of MMP-9 with the surface of tumor ver-
sus stromal cells, we incubated HEK293T, HT1080 (fibrosar-
coma), TMLC, U251 (glioblastoma), U20S (osteosarcoma),
MDA-MB231 (breast carcinoma), and immortalized HSF as
well as MRC-5 (human fetal lung fibroblasts) in conditioned
medium of U20S cells engineered to secrete v5-tagged pro-
MMP-9. Following overnight incubation, cell membranes were
isolated by cell fractionation, and protein recruitment was
assessed by anti-v5 antibody blot analysis. We observed pro-
MMP-9 to be more markedly recruited to fibroblast mem-
branes (HSF and MRC-5) than to those of the different tumor
cell lines (Fig. 1A4). Cell fractionation analysis confirmed that
pro-MMP-9 is recruited to fibroblast membranes.

The FN Domain of MMP-9 Is Necessary and Sufficient for Its
Recruitment to the Fibroblast Cell Surface—Pro-MMP-9
recruitment to the cell surface has been proposed to be medi-
ated by its HEX domain (13). However, it is possible that differ-
ent MMP domains may be responsible for MMP-9 docking to
the surface of different cell types. Accordingly, we asked
whether the HEX or other domains of MMP-9 mediates its
recruitment to the fibroblast cell surface. We therefore engi-
neered a series of deletion mutants corresponding to defined
MMP-9 domains tagged with sequences encoding 6 histidines
and the v5 peptide. The mutants included a catalytically dead
protein containing the E402Q mutation within the catalytic
domain, AFN lacking the FNII repeat collagen-binding domain,
AHEX lacking the hemopexin homology domain; FN com-
posed of fibronectin type II-like repeats (FN223-389) only, and

MMP-9 Recruitment to the Cell Surface by LH3

HEX composed of the hemopexin homology domain
(HEX520-707) only (Fig. 1B). All mutants were inserted into
the pLIVC retroviral vector and stably produced in CHO cells.
Each mutant was compared with v5-tagged pro-MMP-9 for
recruitment to fibroblasts by incubating MRC-5 cells in the
corresponding CHO cell-conditioned medium overnight at
37 °Cand subsequently performing Western blot and immuno-
fluorescence analysis of MRC-5 membrane fractions and intact
cells, respectively. Anti-v5 antibody Western blot analysis of
membrane fractions showed that all proteins encoded by con-
structs containing the FN domain (pro-MMP-9, FEN, AHEX,
and E402Q) were recruited to MRC-5 fibroblasts, whereas
those lacking the FN domain were not (Fig. 1C). Immunofluo-
rescence analysis using anti-v5 antibody confirmed the obser-
vation that both pro-MMP-9 and the inactive E402Q mutant
are recruited to the MRC-5 cell surface. The FN domain alone
was also , whereas constructs lacking the FN motifs, including
AFN and CD5, used as a negative unrelated protein control
were not (Fig. 1D). The observation that AHEX is less strongly
detected than functional or catalytically dead MMP-9 on the
fibroblast cell surface as assessed by Western blot analysis sug-
gests that the presence of the hemopexin domain may help
optimize recruitment. However, we did not observe cell surface
recruitment of the HEX domain alone. To further reinforce the
notion that MMP-9 binds to the cell surface via its FN domain,
FACS analysis of non-permeabilized MRC-5 cells incubated
with v5-tagged MMP-9 or the AFN mutant was performed. The
results clearly indicate that MMP-9 but not the AFN mutant is
recruited to MRC-5 cell surface membrane (Fig. 2). Together,
these observations indicate that it is primarily the FN domain of
MMP-9 that recognizes structures on the fibroblast cell surface.

MMP-9 Activity Promotes Latent TGF-[3 Activation and
Induces a-SMA Expression in Resting Fibroblasts—To address
the physiological significance of MMP-9 recruitment to the
fibroblast cell surface, we first determined whether the active or
only the precursor form of MMP-9 is recruited to the MRC-5
cell surface. Recombinant pro-MMP-9 from conditioned cul-
ture medium of stably transfected CHO cells was activated
using 4-aminophenylmercuric acetate on nickel beads during
the His tag purification step. Incubation of MRC-5 cells with
pro-MMP-9, active MMP-9, and AFN and subsequent anti-v5
antibody blot analysis of cell lysates revealed that both pro- and
active MMP-9 are recruited to the fibroblast cell surface (Fig.

FIGURE 1. Pro-MMP-9 is preferentially recruited via its FN domain to fibroblasts than to the surface of a panel of diverse tumor cell lines. A, cells were
incubated in U20S-conditioned medium containing v5-tagged pro-MMP-9 (Inputs), and equal amounts of corresponding membrane fractions (Membranes)
were loaded onto gels. A representative anti-v5 antibody immunoblot of membrane preparations from the indicated tumor cell lines as well as HSF and MRC-5
fibroblasts from three independent experiments is shown. Transferrin receptor (Trf) was used as a membrane equal loading control. B, MMP-9 and its mutants.
Shown is a schematic representation of wild type pro-MMP-9; the catalytically dead mutant carrying the E402Q substitution within the catalytic domain; AFN,
which lacks the FN domain; AHEX, which lacks the hemopexin homology domain; FN, which is composed of the fibronectin Il domain (FN223-389) only; and
HEX, which is composed of the hemopexin homology domain (HEX520-707) only. All constructs were tagged at their 3’ extremity with sequences encoding
6 histidine residues and the v5 peptide. All cDNAs were inserted into the pLIVC retroviral vector and stably expressed in CHO cells. Immunoblots of v5-tagged
mutants expressed in U20S transfectant-conditioned culture media are shown (right panel). Cand D, the FN domain of MMP-9 is necessary and sufficient for its
recruitment to the fibroblast cell surface. C, MRC-5 cells were incubated in conditioned culture media from U20S cells engineered to express recombinant
v5-tagged pro-MMP-9 or the different mutants (FN, AHEX, AFN, HEX, and E402Q (Inputs)) and lysed, and equal amounts of cell lysates were loaded onto gels.
Arepresentative anti-v5 antibody immunoblot of MRC-5 cell membranes from three independent experiments shows that pro-MMP-9 and mutants containing
the FN domain (FN, AHEX, and E402Q) are recruited to the MRC-5 cell surface, whereas those lacking the FN domain (AFN and HEX) are not at all or weakly so.
D, MRC-5 cells were incubated in conditioned culture medium of U20S cells expressing recombinant v5-tagged pro-MMP-9 or the different mutants (FN,
E402Q, and AFN) and CD5, which was used as negative control, and anti-v5 antibody reactivity with intact cells was assessed by immunofluorescence. Only
pro-MMP-9 and mutants containing the FN domain (FN and E402Q) are recruited to the MRC-5 cell surface. DAPI (blue) was used to visualize nuclei.
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FIGURE 3. MMP-9 activity promotes latent TGF-f activation and induces a-SMA expression in cultured fibroblasts. A, active MMP-9 is recruited to
fibroblast cell surface. MRC-5 cells were incubated in conditioned culture media (SN) containing 0.5 wg/ml of purified pro- or active MMP-9 or the AFN mutant,
and equal amounts of corresponding cell lysates (CL) were loaded onto gels. Recruitment to the MRC-5 cell surface was verified by anti-v5 antibody immuno-
blotting. B, MMP-9 activity promotes TGF-8 activation in cultured MRC-5 cells. Conditioned culture medium of MRC-5 cells incubated for 72 h with 0.5 ug/ml
pro-MMP-9, active MMP-9, E402Q, AFN, or TGF-B1 (10 ng/ml) was collected for luciferase assays using TGF-B-responsive TMLC. Luminescence reflecting TGF-3
activity was quantified by relative light units (RLU). C, MMP-9 induces a-SMA expression in resting MRC-5 cells. MRC-5 cells were incubated for 72 h with 0.5
ng/ml pro-MMP-9, active MMP-9, E402Q, AFN, or TGF-B1 (10 ng/ml). A representative anti-a-SMA antibody immunoblot of equal amounts of MRC-5 cell lysates
from four independent experiments (upper panel) is shown. Analysis of a-SMA expression from four independent experiments (lower panel) is shown. Expres-
sion quantification was normalized to tubulin (tub). Results represent mean values *+S.E. (error bars). *, p =< 0.05; **** p < 0.0001.

3A). This observation suggests that the proteolytically active
form of MMP-9 can be retained at the cell membrane as a result

reporter gene (22). MRC-5 fibroblasts were treated for 24
or 72 h with purified recombinant MMP-9, its different

of interactions mediated by its FN domain.

MMP-9 has been shown to play a prominent role in tumor
growth and invasion in part by activating latent TGF-8 in a
functional complex with CD44 at the surface of keratino-
cytes and selected tumor cells (18). Hence, we asked whether
the presence of cell surface-anchored pro-MMP-9 and its
active form might induce TGEF-f activation in MRC-5-con-
ditioned culture medium. Accordingly, we performed a
functional TGEF-B assay using TMLC stably transfected with
the plasminogen activator inhibitor-1 promoter, which is
responsive to active TGF-B and linked to the luciferase

mutants, or TGF-B1 (10 ng/ml) used as a positive control.
MMP-9 derivatives included pro-MMP-9, active MMP-9,
the catalytically inactive E402Q mutant, and AFN. The cor-
responding MRC-5-conditioned media were used for lucif-
erase reporter assays in TMLC. We observed that both pro-
and active MMP-9 induce TGF-B activation in cultured
MRC-5 fibroblasts, whereas the inactive mutants E402Q and
AFN do not enhance baseline MRC-5-derived TGF- activ-
ity (Fig. 3B). Moreover 24- and 72-h exposure to recombi-
nant MMP-9 and TGF-8 resulted in roughly comparable
induction of luciferase reporter expression. These observa-

FIGURE 2. FACS analysis of v5-tagged MMP-9 variant recruitment to living MRC-5 cells. A, live MRC-5 cells incubated with v5-tagged MMP-9 were stained
with mouse anti-v5 or an irrelevant mouse isotype-matched antibody followed by anti-mouse Alexa Fluor 488-conjugated antibody. Single cells (69.9) were
gated after doublet exclusion, and DAPI-negative cells (42.5) were considered to be live. The shift in the histogram between isotype-matched (0.7) and anti-v5
antibody (29.0) profiles shows MMP-9 presence on the MRC-5 cell surface. B, live MRC-5 cells incubated with v5-tagged AFN were stained with anti-v5 or an
irrelevant mouse isotype-matched antibody followed by Alexa Fluor 488-conjugated anti-mouse antibody. No shift between isotype-matched (0.83) and
anti-v5 antibody peaks (5.89) is observed. C, superposition of isotype-matched (orange) and anti-v5 antibody (AFN, blue; MMP-9, green) staining profiles. SS-A,
side scatter area; FS-A, forward scatter area; FS-W, forward scatter width.
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FIGURE 4. The FN domain behaves as a competitive inhibitor of pro-MMP-9 docking and blocks both TGF-p activation and a-SMA expression in
cultured fibroblasts. A, recombinant FN domain abrogates MMP-9-induced TGF- activation in MRC-5 cells. Conditioned culture media of MRC-5 cells
incubated for 72 h with 0.5 wg/ml pro-MMP-9, FN, pro-MMP-9 with an anti-TGF-3 antibody (proMMP-9:aTGF-[3), pro-MMP-9 with an excess of the FN domain
(proMMP-9:FN 1:10 or 1:34 molar ratio), or TGF-B1 (10 ng/ml) were subjected to luciferase assays using TGF-B-responsive TMLC. Luminescence reflecting TGF-
activity was quantified by relative light units (RLU). B, recombinant FN domain blocks MMP-9-dependent a-SMA expression in cultured MRC-5 cells. MRC-5 cells
were incubated for 72 h with 0.5 pwg/ml pro-MMP-9, FN, pro-MMP-9 with an anti-TGF-B antibody (proMMP-9:aTGF-B), pro-MMP-9 with an excess of the FN
domain (proMMP-9:FN 1:10), or TGF-B1 (10 ng/ml). A representative anti-a-SMA antibody immunoblot of equal amounts of MRC-5 cell lysates from four
independent experiments (upper panel) is shown. Analysis of a-SMA expression from three independent experiments (lower panel) is shown. Expression

quantification was normalized to tubulin (tub). Results represent mean values *S.E. (error bars). *, p = 0.05; **, p = 0.01; ***, p < 0.001.

tions support the notion that the increase in TGF-8 activa-
tion is due to catalytic MMP-9 activity.

TGEF-B is a potent inducer of fibroblast differentiation into
myofibroblasts. We therefore addressed the possibility that
MMP-9 activity at the surface of MRC-5 cells may facilitate
their differentiation into myofibroblasts. Differentiation was
assessed by incubating resting MRC-5 cells for 72 h with puri-
fied pro-MMP-9, active MMP-9, the catalytically inactive
E402Q mutant, AFN, or TGF-B1 (10 ng/ml) as a positive con-
trol. Cells were then lysed, and expression of a-SMA, a reliable
myofibroblast marker that is weakly expressed in MRC-5 cells,
was assessed. Incubation with pro- and active MMP-9 led to an
increase in a-SMA expression in cultured MRC-5 fibroblasts
(Fig. 3C), whereas incubation with E402Q and AFN mutants
failed to do so. These observations support the notion that
MMP-9 activity promotes differentiation of fibroblasts into
myofibroblasts.

The FN Domain Behaves as Competitive Inhibitor of MMP-9
and Decreases Both TGF-[3 Activation and a-SMA Expression
in Resting Fibroblasts—Given that the FN domain is necessary
and sufficient for MMP-9 recruitment to the fibroblast cell sur-
face, we interrogated its ability to compete with MMP-9 for cell
membrane docking and to inhibit MMP-9-induced TGF-$
activation. We therefore incubated MRC-5 cells for 72 h with
active MMP-9, pro-MMP-9, the EN domain only (Fig. 44, FN),
pro-MMP-9 with anti-TGF-B antibody (proMMP-9:aTGE-f3),
pro-MMP-9 with a 10-fold excess of the FN domain (proMMP-

13770 JOURNAL OF BIOLOGICAL CHEMISTRY

9:FN 1:10) that corresponds to a molar ratio of 1:34, or TGF-81
(10 ng/ml) as a positive control and assessed the corresponding
conditioned culture media for luciferase reporter induction.
Whereas the FN domain alone had no effect on TGF-f3 activa-
tion (Fig. 44) and displayed no catalytic activity as assessed by
gelatin zymography (data not shown), a 34-fold molar excess of
the FN domain in the presence of pro-MMP-9 decreased
TGF-f activation almost as strongly as a neutralizing anti-
TGF-B antibody. Thus, exogenously added recombinant FN
domain of MMP-9 can inhibit MMP-9 activity as measured by
TGE-f activation.

We next asked whether inhibition of TGF- S activation by the
EN domain could prevent a-SMA expression in resting fibro-
blasts, which would reflect abrogation of their differentiation
into myofibroblasts. As described above, MRC-5 fibroblasts
were treated for 72 h with pro-MMP-9, the FN domain only
(Fig. 4B, EN), pro-MMP-9 in the presence of anti-TGF-f3 neu-
tralizing antibody (proMMP-9:aTGF-B), pro-MMP-9 in the
presence of an excess of the FN domain (proMMP-9:FN 1:10),
or the positive control TGF-B1 (10 ng/ml). Cells remained via-
ble after the 72-h treatment, and cell lysis was performed to
assess a-SMA expression. We observed that a-SMA expression
in MRC-5 treated with the FN domain alone was comparable
with that in untreated MRC-5 (Fig. 4B). However, the FN
domain added in 34-fold molar excess of pro-MMP-9 signifi-
cantly reduced a-SMA expression even more potently so than
the neutralizing anti-TGF- antibody. The fact that MMP-9-
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induced a-SMA expression can be inhibited by neutralizing
anti-TGF-B antibody indicates that MMP-9-mediated differ-
entiation of MRC-5 into a-SMA-expressing myofibroblasts
under our culture conditions occurs in large part through the
TGE-B pathway. Moreover, abrogation by excess recombinant
EN domain of the ability of MMP-9 to induce a-SMA expres-
sion in cultured fibroblasts suggests that the FN domain can
inhibit MMP-9 activity at the fibroblast cell surface.

LH3 Provides the Docking Mechanism for MMP-9 Cell Sur-
face Association via the FN Domain—CD44 has been shown to
be an MMP-9 docking molecule at the surface of TA3 mouse
mammary carcinoma, melanoma cells, and normal keratino-
cytes (17). However, CD44 does not appear to be necessary for
MMP-9 recruitment to the fibroblast membrane (data not
shown), and recruitment therefore occurs by a CD44-indepen-
dent mechanism. To identify candidate MMP-9 docking mole-
cules on the fibroblast cell surface, we performed mass spec-
trometry analysis of an anti-v5 antibody pulldown of MMP-9,
EN, and AEN cross-linked to MRC-5 cells. MRC-5 cells were
incubated with MMP-9, FN, and AFN proteins and labeled with
Sulfo-SBED Biotin Label Transfer Reagent after which the
putative interactions were cross-linked by UV light at 365 nm
for 8 min. Anti-v5 antibody was then used for immunoprecipi-
tation from the corresponding cell lysates (Fig. 5 A), and the
immunoprecipitates were subjected to shotgun mass spec-
trometry. Analysis of the pulldown revealed PLOD3_HUMAN,
also known as LH3, to be a specific candidate binding partner of
MMP-9 and the FN domain (Fig. 5A4).

To verify the interaction between MMP-9 and LH3, we incu-
bated MRC-5 cells with recombinant v5-tagged and Sulfo-
SBED-labeled MMP-9, EN, or AFN for 4 h at 37 °C, cross-linked
the interaction, and collected cell lysates to perform anti-v5 and
anti-FLAG control antibody immunoprecipitation. We used
anti-endogenous LH3 antibody to reveal the interaction. By
immunoblot analysis, we could clearly demonstrate that both
v5-tagged MMP-9 and the FN domain can immunoprecipitate
endogenous LH3, whereas AFN cannot (Fig. 5B). Thus, MMP-9
forms a complex with LH3 via its FN domain.

To further explore this interaction in vivo without resorting
to cross-linking, we performed PLAs. HSF were treated with
v5-tagged MMP-9 or AFN overnight at 37 °C and the following
day incubated with mouse anti-v5 and rabbit anti-LH3 anti-
body prior to paraformaldehyde fixation and subjection to
proximity ligation (see “Experimental Procedures”). We com-
pared v5-tagged MMP-9 and AFN interaction with endogenous
LH3 by quantifying the number of events per cell (reflected by
fluorescence signals) in WT HSF or in HSF depleted of LH3.
We observed a significantly higher number of events in HSF
incubated with MMP-9 than in HSF treated with AFN (Fig. 5C,
left panel), confirming the requirement of the FN domain for
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FIGURE 6. Recruitment of MMP-9 to fibroblast cell surface does not
depend merely on LH3 expression at the cell membrane. Tumor cell lines
and fibroblasts used in Fig. 1A were tested for LH3 expression at their mem-
brane. Equal amounts of corresponding membrane fractions were loaded
onto gels. A representative anti-LH3 antibody immunoblot of membrane
preparations from the indicated tumor cell lines as well as HSF and MRC-5
fibroblasts from three independent experiments is shown.

interaction with LH3. Moreover, interaction was abrogated in
HSF depleted of LH3 as we detected no significant difference
between MMP-9 and AFN when LH3 was down-regulated (Fig.
5C, right panel). These observations support the notion that
LH3 constitutes a hitherto undiscovered MMP-9 docking
structure that specifically recognizes its FN domain. It is note-
worthy that LH3 was expressed by tumor cell lines that did not
recruit MMP-9 (Fig. 6), suggesting that the observed interac-
tion in MRC5 cells may be due to fibroblast-specific post-trans-
lational modifications of LH3.

LH3 Down-regulation Decreases MMP-9 Recruitment to
MRC-5 and Thus MMP-9/LH3 Interaction—By identifying the
interaction between the FN domain of MMP-9 and LH3, we
predicted that down-regulation of LH3 in MRC-5 cells would
decrease MMP-9 recruitment. We therefore depleted MRC-5
cells of LH3 and compared recruitment of v5-tagged MMP-9
with that in control cells containing scrambled siRNA
sequences by anti-v5 antibody Western blot analysis. As
expected, LH3 down-regulation in MRC-5 cells decreased
MMP-9 recruitment (Fig. 7A).

To provide further evidence that the MMP-9/LH3 interac-
tion at the cell surface was indeed impaired by LH3 down-reg-
ulation, we used PLA to compare the interaction between
MMP-9 and LH3 in control HSF versus HSF depleted of LH3.
PLA revealed a significant decrease in the number of events per
cell in LH3-depleted compared with control HSF (Fig. 7B,
upper panel). Moreover, immunofluorescence analysis illus-
trates both that MMP-9/LH3 interaction occurs at the cell sur-
face and that formation of the complex is impaired when LH3 is
down-regulated (Fig. 7B, lower panel). Thus, MMP-9 recruit-
ment to the fibroblast cell surface is selectively mediated by
LH3.

MMP-9 Is Displaced from MRC-5 Cell Surface by Its FN
Domain—We next addressed the possible mechanism whereby
incubation with the recombinant FN domain inhibits both
MMP-9-induced TGF- activation and a-SMA expression. To

FIGURE 5. LH3 provides a cell surface docking mechanism for MMP-9 by recognizing its FN domain. A, mass spectrometry analysis. PLOD3_HUMAN (LH3)
appeared to be specifically pulled down by MMP-9 and the FN domain according to mass spectrometry analysis with 95% probability (140% probability
variance). Coomassie Blue staining of the pulldown of labeled MMP-9, FN, and AFN is shown (right panel). B, MMP-9 interacts with endogenous LH3 at the
fibroblast cell surface via its FN domain. A representative anti-LH3 antibody immunoblot of anti-v5 antibody immunoprecipitates shows that endogenous LH3
is immunoprecipitated with both v5-tagged MMP-9 and its recombinant FN domain (v5 IP MMP-9 and FN), confirming the specificity of the interaction via
fibronectin type Il-like motifs. Anti-FLAG antibody immunoprecipitations (/P) constitute a control. C, interaction between MMP-9 and LH3 decreases upon LH3
depletion. PLA analysis between v5-tagged MMP-9 or AFN and endogenous LH3 in HSF showing specificity of the interaction between LH3 and the FN domain
of MMP-9 (left panel) and impairment of the interaction when LH3 is depleted (KD) (right panel). nb, number. Results represent mean values =S.E. (error bars).

* p=0.05.

13772 JOURNAL OF BIOLOGICAL CHEMISTRY

SASBMB

VOLUME 290-NUMBER 22-MAY 29, 2015



MMP-9 Recruitment to the Cell Surface by LH3

B

>

MMP-9 PLA of MMP-9/LH3 interaction
150 7
497 Fkk
*k -
] )
£ 2100' e o e 397
g g g_ Er
..: 'E ﬂ 3 g ot ¢¢¢¢¢¢¢ Qe
2 £ 504 SR
] - Q B e
8 ‘g‘ i S R
(4 =<G‘ 50 o o % '}_’ e ;'}c-m
—— o) pooree e
i i e . o] 10 % § ﬁ
.-..- .-..- : ¢¢¢¢
: i - - P e
o . 'Q-ln.@l:.':-l:.# 2 e, + .:'
ctl MRCs LH3 KD MRCs o 1 '
HSF LH3 KD HSF
ctl MRC-5 LH3 KD MRC-5
LH3 KD HSF
SN CL SN CL
— -
a-v5
— —-— —
— a-MMP-9 a-MMP-9
a-LH3
C PLA of MMP-9 displacement by the FN domain
*%k
*
60 A *
— *%
To ——
v
—
8 40{ 22
w ey
-+ o
- i :S:-c-o-
% - .Q'Q'Q'
G 20 4 - .Q'W'
© e
0 o
= . ﬁ..
e
-
o REEEE
&
)

MAY 29, 2015+VOLUME 290-NUMBER22  SASBMB JOURNAL OF BIOLOGICAL CHEMISTRY 13773



MMP-9 Recruitment to the Cell Surface by LH3

do so, we asked whether the FN domain alone might compete
with MMP-9 for docking to the fibroblast cell surface and
impair MMP-9-LH3 complex formation by displacing MMP-9
from the cell membrane. MRC-5 fibroblasts were incubated
with v5-tagged MMP-9 in the presence of increasing concen-
trations of the FN domain (MMP-9:FN ratios of 1:1, 1:2, and
1:10 or molar ratios of 1:3.4, 1:6.8, and 1:34) after which MMP-
9/LH3 interaction was assessed by PLA using mouse anti-
MMP-9 antibody, which does not recognize the FN domain,
and rabbit anti-LH3 antibody. We observed an increase in the
number of fluorescence signals in the cells treated with MMP-9
only compared with cells treated with the FN domain only,
confirming that the MMP-9 antibody does not recognize the
FN domain (Fig. 7C). Moreover, we noted a strong decrease of
the MMP-9/LH3 interaction in the presence of a 3.4 molar
excess of FN. Thus, recombinant FN domain prevents LH3-de-
pendent MMP-9 anchoring to the MRC-5 cell surface and pro-
vides a mechanism of inhibition of MMP-9-mediated TGF-
activation and fibroblast differentiation.

Finally, we assessed a-SMA induction in MRC5 cells
depleted of LH3 in response to recombinant MMP-9. Expres-
sion of @-SMA in these cells was not enhanced by addition of
recombinant MMP-9 to the cell culture medium (Fig. 8). How-
ever, induction of a-SMA was rescued by addition of active
TGE-B in the presence or absence of MMP-9. These observa-
tions support the notion that recruitment by LH3 provides a
mechanism for deployment of MMP-9 catalytic activity at the
fibroblast cell surface that promotes TGF-f activation and the
corresponding enhancement of a-SMA expression.

Discussion

MMP-9 can be recruited to the surface of diverse cell types
where it may play an important role in regulating growth factor
activation, receptor processing, and pericellular matrix turn-
over, all of which are highly relevant to tissue remodeling in
both physiological and tumor-associated contexts. Thus far,
the hyaluronan receptor CD44 has been shown to provide a
major docking site for MMP-9 on the surface of a variety of
tumor cells and primary keratinocytes (17), although associa-
tion with other cell surface receptors, including LRP-1, LRP-2,
and membrane-anchored glycoprotein RECK, has been
reported as well (23-25). The MMP-9 structure responsible for
interaction with CD44 resides within the HEX domain (26),
leaving open the possibility that other MMP-9 structures may
be implicated in cell surface docking to different receptors. We
have shown here that MMP-9 can be recruited to the fibroblast
cell surface via its fibronectin type II-like motifs by LH3 where
it activates latent TGF- and induces myofibroblast differenti-
ation as reflected by induction of a-SMA expression. LH3-re-

cruited pro-MMP-9 may become activated and remain at the
cell surface, cleaving latent TGF-f3 in the pericellular matrix (as
observed in certain tumor cells (17)). Alternatively, pro-
MMP-9 may be recruited to the cell surface for proteolytic acti-
vation and then released into the ECM to liberate active TGF-3
from its latency complex.

Among mammalian MMPs, only MMP-2 and MMP-9 share
fibronectin type II-like repeats that form a collagen-binding
domain located within the catalytic region in the vicinity of the
active site. Fibronectin type II-like motifs are widespread
among extracellular proteins and engage in interactions with
collagens and gelatin (4, 27). MMP EN type Il repeats may have
analogous functions, mediating interactions with diverse dock-
ing structures and regulating MMP activation and correspond-
ing proteolytic activity. They may thereby provide a means for
selective MMP-9 (and possibly MMP-2) targeting in a variety of
pathological conditions.

Selective targeting of individual MMPs has been a major hur-
dle toward therapeutic strategies aimed at blocking MMP-de-
pendent tumor progression as most compounds with potent
inhibitory properties are non-selective and tend to block all or
nearly all MMP activity with adverse consequences (28, 29).
Nevertheless, the continued search for selective means to block
single MMPs or subsets thereof has identified potentially
promising avenues as illustrated by chemical compounds that
target the HEX domain of MMP-9 and that inhibit tumor
cell migration and proliferation by abrogating MMP-9
homodimerization (30, 31). An alternative approach may be to
target structures that are unique to defined MMPs provided
they are shown to play a functionally relevant role in determin-
ing MMP localization and activity. The FN domain appears
particularly attractive in light of our present observations as, in
addition to constituting part of only two MMPs, its delivery in
recombinant form may provide selective inhibition of the effect
of only this subset of MMPs on fibroblast functions that are
highly relevant to tumor progression. Enhanced selectivity of
MMP inhibitors has already been achieved by taking advantage
of differences in secondary substrate binding sites or exosites
within the MMP family (32). Thus, a triple helical peptide that
incorporates an FN type II-like motif-binding sequence selec-
tively inhibits MMP-9 type V collagen-specific activity. Simi-
larly, EN type II motif-mediated MMP-9 interaction with
LH3 provides a targetable event with potentially beneficial
consequences.

Lysyl hydroxylase 3 is a multifunctional protein that localizes
to the endoplasmic reticulum but is also secreted into the extra-
cellular space and is associated with collagenous proteins on the
cell surface (21). Its principal function resides in lysyl hydroxy-

FIGURE 7. Depletion of LH3 decreases MMP-9 cell surface recruitment as does the recombinant FN domain, which displaces MMP-9 from the fibroblast
membrane. A, LH3 down-regulation in MRC-5 decreases MMP-9 cell surface recruitment. Equal amounts of cell lysates (CL) from control (ct/) and LH3-depleted
(KD) MRC-5 incubated with v5-tagged MMP-9 (SN) were loaded onto gels. Recruitment was quantified by densitometry. A representative anti-v5 antibody
immunoblot of equal amounts of MRC-5 cell lysates from three independent experiments (lower panel) and the corresponding anti-LH3 antibody immunoblot
are shown. B, PLA analysis of WT or LH3-depleted HSF treated with v5-tagged MMP-9. The histogram shows interaction between v5-tagged MMP-9 and
endogenous LH3 that is decreased when LH3 is depleted. Lower panels show immunofluorescence images of MMP-9 recruitment (green) to membranes of HSF
with an overlap between MMP-9 and LH3 (yellow) that is decreased by LH3 depletion. C, the FN domain prevents MMP-9/LH3 interaction in a dose-dependent
manner. PLA analysis of MRC-5 cells treated with MMP-9 only, FN only, or MMP-9 with increased concentrations of the FN domain (1:1, 1:2, and 1:10 corre-
sponding to 1:3.4, 1:6.8, and 1:34 molar ratios). The histogram shows interaction between MMP-9 and endogenous LH3 that decreases as the concentration of
FN increases. nb, number. Results represent mean values *+S.E. (error bars). *, p = 0.05; **, p = 0.01; ***, p =< 0.001.
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FIGURE 8. MMP-9 has no effect in a-SMA induction when LH3 is depleted and can be rescued by active TGF-f. Control (ct/) and LH3-depleted (KD) MRC-5
were incubated for 72 h days with 0.5 ug/ml pro-MMP-9, FN, AFN, TGF-, or pro-MMP-9 with TGF-8 (MMP-9:TGF-3). A representative anti-a-SMA antibody
immunoblot of equal amounts of control and LH3-depleted MRC-5 cell lysates from three independent experiments (upper panel) is shown. Analysis of a-SMA
expression from three independent experiments (lower panel) is shown. Expression quantification was normalized to tubulin (tub). Results represent mean

values =S.E. (error bars). *, p =< 0.05; **, p =< 0.01.

lase, galactosyltransferase, and glucosyltransferase activities for
which sequential deployment is required to generate hydroxy-
lysine and its glycosylated forms (33). More recent studies sug-
gest that deficiency of LH3 glycosyltransferase activity in the
extracellular space causes growth arrest, indicating that LH3
glycosyltransferase activity may be important for cell growth
and viability (34). Whether these functions may affect MMP-9
activity and vice versa remain to be explored.

The observation that LH3 expressed in a variety of tumor cell
types fails to recruit MMP-9 to their cell surface may have sev-
eral explanations. One possibility is that LH3 undergoes post-
translational modifications in fibroblasts but not in tumor cells
that enable MMP-9 FN domain recognition. An analogous sit-
uation has been observed regarding CD44 recruitment of
MMP-9 in selected tumor cells and keratinocytes (18). An alter-
native possibility is that glycosyltransferase properties of LH3
modify collagenous proteins with which it interacts on the
fibroblast cell surface, creating a molecular complex that helps
recruit MMP-9. In either case, our observations suggest that at
the very least LH3 may provide an important MMP-9 docking
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mechanism to the fibroblast cell surface that, along with the
corresponding cell surface-localized MMP-9 catalytic activity,
can be blocked by recombinant FN domain.

Our observation that MMP-9-induced TGF-f activation
promotes a-SMA expression in fibroblasts is consistent with
a function that supports tumor progression (2, 35). Although
the role of cancer-associated fibroblasts in tumor progres-
sion is multifaceted as they can inhibit as well as promote
malignant growth depending on their activation state and
secretion repertoire (36), myofibroblasts are generally
believed to support tumor progression by promoting cancer
cell survival proliferation and invasiveness. Targeting fibro-
blasts is thought to be a promising strategy in cancer treat-
ment (37) because they are genetically stable, which reduces
the likelihood of drug resistance, and because they are
responsible for ECM properties that hamper diffusion of
anticancer agents through solid tumors (36). As selective
MMP inhibitors are still scarce (28, 29), recombinant FN
may provide an attractive reagent for the blockade of a can-
didate mechanism of MMP-9 activation within the stromal
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compartment as well as a structural basis for the design of
smaller effective MMP-9 inhibitors.

We report a hitherto undiscovered mechanism of MMP-9
recruitment to the surface of fibroblasts. Cell surface activity of
MMP-9 has been shown to be important for TGF-f activation
whether on the fibroblast surface or in the immediate pericel-
lular fibroblast microenvironment and may play a critical role
in fibroblast differentiation into myofibroblasts, providing a
mechanism that underlies the constitution of at least a subset
of cancer-associated fibroblasts (Fig. 94). Recombinant FN
domain blocks MMP-9-dependent, TGF-B-mediated myofi-
broblast differentiation and thereby abrogates a potentially
important fueling mechanism of tumor progression (Fig. 9B).
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