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Abstract 1 

When exposed to parasites, hosts often mount energetically expensive immune responses, and 2 

this may alter resource allocation between competing life history traits including other 3 

components of the immune system. Here, we investigated whether a humoral immune 4 

challenge towards a vaccine reduces or enhances the cutaneous immune responses towards an 5 

injection of lipopolysaccharid (LPS, innate immunity) and phytohaemagglutinin (PHA, T-cell 6 

immunity) in nestling tawny owls in interaction with the degree of plumage melanin-based 7 

colouration. The humoral immune challenge enhanced the response to LPS similarly in 8 

differently coloured nestlings. In contrast, the same humoral immune challenge enhanced 9 

immune response to PHA in dark reddish melanic nestlings while reducing it in pale reddish 10 

melanic nestlings. Our results highlight that both antagonistic and synergistic interactions can 11 

take place among branches of immune system, and that the sign and magnitude of these 12 

interactions can vary with immune responses involved and the degree of melanin-based 13 

coloration. 14 

 15 

Keywords: colour polymorphism, immunology, melanin-based coloration, trade-offs, 16 

vaccination. 17 
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Introduction 1 

When exposed to parasites, hosts often mount energetically expensive immune 2 

responses (Sheldon & Verhulst, 1996), and the cost of immunity have been repeatedly 3 

demonstrated to alter resource allocation between competing life history traits such as growth 4 

(Martin, 2005) and reproduction (Bonneaud et al., 2003, Uller et al., 2006). Interestingly, 5 

Martin et al., (2006a) have recently shown that activation of one immune response negatively 6 

affect a second immune response. This study suggests that trade-offs can occur within the 7 

immune system itself and mounting a specific immune response may preclude the ability to 8 

mount another component of the immune system if these two immune responses rely on the 9 

same resources to be efficient (antagonistic interaction, Goüy de Bellocq et al., 2006, Martin 10 

et al., 2006a). However, the immune system is an interconnected system and reverse 11 

predictions can also be made (Janeway et al., 2005). A specific immune challenge may 12 

stimulate other components of the immune system if resisting the spread of parasites 13 

necessitates a battery of immune responses for which the benefits outweighs the costs 14 

(synergistic interactions, Zuk & Johnsen, 1998; Janeway et al., 2005). In agreement with this 15 

idea, chicken artificially selected for low antibody responses to sheep red blood cells (i.e. low 16 

humoral immune response) show also lower innate and T-cell mediated immune responses 17 

(Parmentier et al., 1998). This experimental result provides good evidence that synergistic 18 

interaction can take place among branches of immune system. Depending on immune 19 

responses involved, it is therefore possible to observe that a first immune challenge could 20 

repress (antagonistic) or prime (synergistic) the second one. Until now, little attention has 21 

been given to potential interactions (antagonistic vs. synergistic) among different immune 22 

responses in natural population (Zuk & Johnsen, 1998). In particular, genetic factors have not 23 

yet been investigated as potentially mediating interactions between immune parameters. This 24 

raises the interesting possibility that genotypes may react differently after a first immune 25 
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challenge. For instance, an immune challenge may stimulate subsequent immune responses in 1 

one set of genotypes, while it may suppress other immune responses in another set of 2 

genotypes. In this context, melanin-based coloration is a good candidate to investigate 3 

potential associations between genotypes and variation in resource allocation strategies 4 

between different immune responses. Indeed, melanin-based colors have commonly a strong 5 

underlying genetic basis (but see Griffith et al., 1999), and evidence is accumulating that 6 

genes coding for melanin pigmentation can pleiotropically regulate energy homeostasis and 7 

immune functions (Ducrest et al., 2008). In agreement with this, different studies reported 8 

covariations between the degree of melanin-based coloration and resource allocation towards 9 

immune responses (Roulin et al., 2000; Roulin et al., 2001; Galeotti & Sacchi, 2003; 10 

Bortolotti et al., 2006; Gasparini et al., 2009, Piault et al. in press). Thus, one hypothesis is 11 

that melanin pigmentation can be used as a phenotypic marker of genotypes and resource 12 

allocation strategies, including investments in immunity. 13 

In the present study, we investigated the relationship between melanin-based coloration 14 

and resource allocation towards two different immune responses following a humoral immune 15 

challenge in nestling tawny owls. Melanin-based plumage coloration in the tawny owl vary 16 

continuously from dark to pale reddish melanic and is strongly heritable (h2 = 0.93; Gasparini 17 

et al., 2009; see also Brommer et al., 2005). In a Swiss population, we exchanged eggs 18 

between pairs of nests in order to allocate randomly genotypes across environments and thus 19 

disentangle environmental from origin-related effects (i.e. genetic and pre-hatching maternal 20 

effect) on phenotypic traits. Twelve days after hatching we injected a vaccine in half of 21 

nestlings to induce a humoral immune response and in the other half we injected a saline 22 

solution as a control. Ten days later, we compared the cutaneous immune response against the 23 

mitogens lipopolysaccharid (LPS) and phytohaematogglutinin (PHA) between non-vaccinated 24 

nestlings and individuals having previously mounted a humoral immune response against the 25 
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vaccine. A first immune challenge may stimulate or repress the cutaneous immune response 1 

to LPS and PHA as compared to control. We used LPS and PHA because they are inducing 2 

innate and T-cell mediated immune responses, respectively (Parmentier et al., 1998; Smits et 3 

al., 1999; Tella et al., 2008). We therefore examined whether a humoral challenge prime or 4 

not two different immune responses, namely innate and T-cell mediated immune responses. 5 

Different interactions could be expected between these pairs of immune responses, an effect 6 

that may depend on the individual melanin-based coloration (Gasparini et al., 2009; Piault et 7 

al. in press). Because a priori predictions on the direction of interactions are difficult to do, 8 

we tested the hypothesis that interactions between immune challenges (i.e. synergistic vs. 9 

antagonistic) are colour-specific in this bird species without formulating specific predictions.  10 

  11 

Materials and methods 12 

Experimental procedure  13 

Fieldwork was carried out in western Switzerland in 2005 in a woodland area of 911 km2 14 

where we fixed 366 nest-boxes on trees between November 2004 and February 2005. In 15 

March 2005, we visited nest-boxes to exchange complete clutches between 51 pairs of nests 16 

based on the criteria that clutches were laid on a similar date (Pearson correlation: r = 0.88, P 17 

< 0.0001) and counted a similar number of eggs (r = 0.36, P = 0.008). In this way, nestlings 18 

were all raised by foster parents and each nest contained nestlings of a single origin. Within 19 

pairs of nests used to cross-foster eggs, foster and biological parents did not resemble each 20 

other with respect to plumage coloration (female: r = -0.04, n = 51, P = 0.81, male: r = 0.18, n 21 

= 33, P = 0.31, we captured 81 males over 102 experimental nests and for 18 pairs of nests at 22 

least one of the two males was not captured), and thus we successfully randomized genotypes 23 

among environments. Given that plumage coloration is explained by origin-related factors and 24 

not by the rearing environment (Gasparini et al., 2009), in our experiment any covariation 25 
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between nestling coloration and immunity should result from pre-hatching maternal effects or 1 

genetic factors rather than from post-hatching parental effects. In our population in 2005, 2 

pairing was not significantly assortative with respect to coloration (r = 0.16, n = 81 pairs, P = 3 

0.13). Using the 84 nests (over 102) for which at least one offspring hatched, we visited nest-4 

boxes when nestlings were 11.5 days ± 2.9 days of age (mean ± SD, range: 2-19) to blood 5 

sample them with a heparinised capillary (Microvette CB 300 LH, Sarstedt, Switzerland). 6 

Immediately after, half of the brood was injected subcutaneously in the neck with 0.1 mL 7 

vaccine solution (n = 138 TETRAVAC-nestlings) (TETRAVAC© vaccine, Aventis Pasteur 8 

MSD, Switzerland) while the other half was injected with 0.1 mL of phosphate buffer saline 9 

(PBS, n = 144 control-nestlings). Our experimental design ensured that we created two groups 10 

of nestlings differing in the intensity of humoral immune stimulation (challenged vs. non-11 

vaccinated). At the time of injection, TETRAVAC- and control-nestlings did not differ in 12 

terms of hatching date, body mass, wing length, tarsus length and coloration (mixed model 13 

ANOVA with nest as a random effect, all P-values > 0.75). Furthermore, male nestlings were 14 

vaccinated with TETRAVAC as often as female nestlings (χ2
1 = 0.36, P = 0.55).  15 

Ten days after vaccination, the 84 experimental nests were visited again to collect a 16 

second blood sample to quantify antibody production towards the vaccine. On the same day, 17 

nests were randomly allocated into two groups that did not differ in terms of hatching date, 18 

brood size, mean body mass, wing length, tarsus length and nestling coloration (Student’s t-19 

tests performed on means per nest, all P-values > 0.29). In the first group of nests (n = 44), all 20 

nestlings were injected subcutaneously in the wing web with 20 µg of polysaccharides (LPS, 21 

from degenerated cell walls of Escherichia coli 055:B5, Sigma, L2880, Switzerland) mixed in 22 

0.02 mL of phosphate buffer saline (PBS). We measured the cutaneous immune response to 23 

LPS (Leshchinsky & Klasing, 2001) as the difference in thickness (to the nearest 0.1mm) 24 

before and 4.28 ± 0.39 hours after LPS had been injected. This delay corresponds to the peak 25 
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of the innate immune response following an injection of LPS in chicken (Parmentier et al., 1 

1998; Leshchinsky & Klasing, 2001). Indeed, 24 hours after LPS injection, the wing web 2 

response in chicken was found to be not different to control individuals and did not correlate 3 

with wing web response 4 hours after injection (Parmentier et al., 1998). In the second group 4 

of nests (n = 40), all nestlings were injected in a similar way with 10 µg of 5 

phytohaemagglutinin (PHA, Sigma, L1668, Switzerland) mixed in 0.02 mL of PBS to 6 

measure the cutaneous immune response to PHA (Martin et al. 2006b; Smits et al. 1999). We 7 

measured this cutaneous response as the difference of wing web thickness before and 25.03 ± 8 

0.18 hours after injection (Smits et al., 1999). In chicken, wing web response to PHA 9 

injection after 4 and 24 hours were both significantly different to control individuals and were 10 

strongly inter-correlated (Parmentier et al., 1998); the strength of the response was similar at 4 11 

and 24 hours post-injection. We nevertheless measured PHA-response one day post-injection 12 

because this is the usual method in the field of immuno-ecology to measure T-cell mediated 13 

immunity (Tella et al., 2008). The injected dose of LPS and PHA has been chosen according 14 

to previous studies (LPS: Parmentier et al., 1998; PHA: Smits et al., 1999). We obtained a 15 

sample of 138 TETRAVAC-nestlings (74 from 45 LPS-nests and 64 from 40 PHA-nests) and 16 

144 control-nestlings (78 from 44 LPS-nests and 66 from 40 PHA-nests).  17 

During this second visit, we also collected two feathers on the back of each nestling to 18 

quantify the degree of melanin-based coloration. Briefly, feathers were photographed and 19 

pictures imported in the software Adobe Photoshop to measure coloration. We obtained a 20 

coloration score by calculating mean hue, saturation and brightness values. As they were 21 

highly inter-correlated, we extracted the first component (PC1) of a principal components 22 

analysis which explained 78% of the total variance (loading factors for hue, saturation and 23 

brightness were 0.61, -0.61 and 0.50, respectively) (for further details see Gasparini et al., 24 

2009 and Piault et al. in press). Low and high PC1 scores stand for dark and pale reddish 25 
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melanic coloration, respectively. PC1 values are strongly correlated with colour morphs 1 

assigned in the field (r = 0.89) and with reflectance spectra (r = -0.85). Mean sibling 2 

coloration did not correlate with brood size (Pearson correlation, r = - 0.03, n = 84, P = 0.82), 3 

hatching date (r = -0.10, n = 84, P = 0.34), coloration of foster parents (r = -0.19, n = 76, P = 4 

0.09, foster father coloration was lacking for 8 over 84 nests). Coloration at the nestling stage 5 

and at adulthood were highly correlated in 41 individuals (r = 0.71, n = 41, P < 0.0001) 6 

indicating that coloration measured at the nestling stage is a good surrogate of coloration at 7 

adulthood. Within each experimental treatment (TETRAVAC-PHA, TETRAVAC-LPS, PBS-8 

PHA, PBS-LPS) age at which nestlings were injected with TETRAVAC or PBS was not 9 

associated with nestling plumage coloration (four mixed model regressions, P-values > 0.10). 10 

At each nest visit, we weighed nestlings (to the nearest 1 g) and measured the length of one 11 

wing (1 mm) and one tarsus (0.1 mm). These measures were useful to investigate whether 12 

mounting a humoral immune challenge affects growth parameters. Nestling blood samples 13 

were immediately centrifuged, plasmas placed at -20°C until antibody analyses in autumn 14 

2005, and red blood cells were used for molecular sexing (see Py et al., 2006 for the method). 15 

To check whether the vaccine triggered the production of specific antibodies, we measured 16 

anti-TETRAVAC antibody concentration in blood plasmas using a sandwich ELISA as 17 

described in Gasparini et al. (2009). Optical density (OD) obtained by ELISA provided us 18 

with a relative measure of anti-TETRAVAC antibody. The antibody production was 19 

estimated as the difference of OD values in blood samples collected ten days apart. For two 20 

samples, the amount of collected blood was too low to quantify anti-TETRAVAC antibody 21 

concentration, and thus we have a sample of 280 nestlings for which we measured antibody 22 

production. 23 

 24 

Statistical analyses 25 
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We investigated whether the humoral immune challenge (TETRAVAC vs. PBS) affected 1 

differentially cutaneous responses to LPS and PHA with mixed model ANCOVAs. The 2 

intensity of the response to LPS and PHA was included as a dependent variable in separate 3 

models, the treatment (injection of TETRAVAC vs. PBS) as a factor, and nestling coloration, 4 

nestling body mass at the second injection (PHA/LPS), brood size and nestling age at the time 5 

when TETRAVAC or PBS was injected as three covariates. We controlled for the non-6 

independence of siblings sharing the same nest by incorporating nest identity as a random 7 

factor. Statistical analyses were performed using the SAS system (version 9.1; SAS Institute 8 

Inc, Cary, NC, USA). Means are quoted ± s.e., statistical tests are two-tailed and P-values less 9 

than 0.05 are considered significant. 10 

 11 

Results 12 

The present study relies on the assumption that our immune treatments did not alter melanin-13 

based coloration in nestlings. Accordingly, nestlings of the four treatments did not differ in 14 

plumage coloration (mixed model ANOVA with nest as a random effect: F3,194 = 0.28, P = 15 

0.84). 16 

Vaccinated nestlings produced higher amount of anti-TETRAVAC antibodies (0.076 ± 17 

0.003) than PBS-nestlings (0.008 ± 0.003; mixed model ANOVA with nest as a random 18 

categorical variable: F1,195 = 420.14, P < 0.0001). In vaccinated nestlings, anti-TETRAVAC 19 

antibody production was not associated with nestling coloration (mixed model ANCOVA 20 

with nest as a random categorical variable, coloration: F1,52 = 0.08, P = 0.78) or biological 21 

parent coloration (mother: F1,51 = 0.18, P = 0.67; father: F1,46 = 0.05, P = 0.82). We did not 22 

detect any effect of the TETRAVAC treatment on nestling tarsus and body mass growth alone 23 

or in interaction with nestling coloration (all P-values > 0.47). 24 
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Cutaneous immune response to LPS was more pronounced in TETRAVAC- than in 1 

control-nestlings (Table 1, Figure 1). Mounting a cutaneous response against LPS did not 2 

covary with nestling coloration (no effect of coloration alone or in interaction with 3 

TETRAVAC treatment, Table 1). Conversely, mounting a cutaneous response to PHA was 4 

significantly explained by the interaction between nestling coloration and TETRAVAC 5 

treatment (Table 1). When injected with TETRAVAC dark reddish melanic nestlings 6 

mounted a stronger cutaneous response to PHA than pale reddish ones (similar mixed model 7 

ANCOVA as in Table 1, F1,21 = 5.78, P = 0.03, β ± se = -0.066 ± 0.027; Figure 2), a 8 

relationship that was not detected in PBS-nestlings (F1,24 = 0.90, P = 0.35, β ± se = 0.025 ± 9 

0.027). Similar statistical models where coloration of biological or foster parents were entered 10 

as a covariate in place of nestling coloration showed that cutaneous responses to LPS and 11 

PHA were neither significantly correlated with coloration of biological and foster parents 12 

alone nor in interaction with the TETRAVAC treatment (biological parents: P > 0.06; foster 13 

parents: P > 0.08).  14 

 15 

Discussion 16 

Most studies that have investigated the synergy between immune components have shown 17 

that investment in a second immune response is penalized by investment in a previous 18 

immune challenge (e.g. Goüy de Bellocq et al., 2006; Martin et al., 2006a; Forsman et al., 19 

2008 but see also Lindström et al., 2004). In contrast, our results suggest that a humoral 20 

immune challenge activates the cutaneous immune response to LPS (Figure 1). Cutaneous 21 

response to LPS mainly involves the innate immune response and its enhancement following 22 

a humoral immune challenge appears to be adopted by all nestlings independently of their 23 

coloration. Therefore, melanogenesis is not associated with the synergistic interaction 24 

between the humoral challenge and innate immunity. To our knowledge, this result provides 25 
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the first example in a natural population of the synergistic action between humoral and innate 1 

immunity, a well known physiological mechanism coming from immunological studies 2 

(Janeway et al., 2005). When considering the cutaneous response to PHA, this synergistic 3 

action only prevailed in dark reddish melanic individuals for whom the cutaneous response to 4 

PHA was higher in TETRAVAC- than control-nestlings (Figure 2). In contrast, pale reddish 5 

melanic individuals showed reduced intensity of the cutaneous immune response to PHA after 6 

a first humoral immune challenge. Cutaneous response to PHA mainly involves the T-cell 7 

part of the immune system (Tella et al., 2008) and in our owl population the degree of 8 

melanin-based coloration is associated with allocation towards this component of the immune 9 

system, dark and pale reddish melanic individuals increasing and decreasing, respectively, the 10 

intensity of T-cell immune response after a humoral immune challenge. Because we cross-11 

fostered eggs to allocate genotypes randomly among environments (as shown by the absence 12 

of correlation between coloration of foster and biological parents), we suggest that the link 13 

between melanin-based coloration and the allocation of resources in cutaneous response to 14 

PHA following a humoral immune challenge is due to pre-hatching maternal or genetic 15 

factors. We temptingly exclude that this link is due to a maternal transfer of egg components 16 

(pre-hatching maternal factor) associated with melanin-based coloration because we did not 17 

find any significant interaction between parental coloration and pre-immune challenge on 18 

cutaneous immune response to PHA. Our results are rather consistent with linkage 19 

disequilibrium between melanin-based coloration and energy reallocation towards the T-cell 20 

mediated immunity after a humoral immune challenge.  21 

Such association is interesting in the light of the field study performed by Galeotti & 22 

Sacchi (2003) who reported that in Italian tawny owls the level of blood parasites increased 23 

with the degree of melanic reddishness. Two alternative scenarios may explain this 24 

relationship. First, reddish owls have a weaker immune system and thereby they become more 25 
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intensely infected by parasites. Alternatively, reddish owls exploit environments where 1 

parasites are more abundant, and as a consequence these owls have evolved a potent immune 2 

system. In agreement with this alternative scenario, a recent study showed that after an 3 

immune challenge dark reddish breeding females mount a stronger and prolonged humoral 4 

immune response vaccination at the cost of body mass maintenance when compared to pale 5 

reddish conspecifics (Gasparini et al., 2009). This suggests that the degree of reddishness is 6 

associated with adaptation to resist parasite attacks. Assuming that dark reddish individuals 7 

exploit environments where parasites are particularly abundant or virulent, they may invest 8 

more resources in their immune system, and thus a first infection may trigger defence 9 

mechanisms in prevision of subsequent parasite attacks. In contrast, when individuals are only 10 

occasionally exposed to parasites, as it might be the case for pale reddish individuals, down-11 

regulation of the immune system may be adaptive to save energy for other demanding 12 

activities such as growth particularly when food resources are limited (Piault et al., in press). 13 

Assuming that parasite exposure varies in space and time even at small scale (May & 14 

Southwood, 1990), both strategies may coexist within the same population. Altogether results 15 

of the present study and of Gasparini et al. (2009) and Galeotti & Sacchi (2003) are consistent 16 

with the hypothesis that the degree of melanin-based coloration is positively associated with 17 

investment in the immune system at the expense of body maintenance. Studies where 18 

differently coloured owls are experimentally exposed to parasites are required to validate this 19 

scenario.  20 

In conclusion, our study suggests that mounting a humoral immune response can 21 

stimulate another component of the immune system in all individuals or only in a subset of 22 

genotypes as revealed by melanin-based coloration, a trait for which the expression is under 23 

strong genetic control in the tawny owl (Gasparini et al. 2009). Synergistic and antagonistic 24 

interactions between branches of the immune system can take place in a natural population 25 
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depending on immune branches (synergistic interaction for humoral and innate immunity) and 1 

individual genotypes (synergistic interaction in dark reddish melanic nestlings for humoral 2 

and T-cell immunity; antagonistic interaction in pale reddish melanic nestlings for humoral 3 

and T-cell immunity). In addition, these results re-enforce the recent hypothesis proposing 4 

that melanin-based coloration is associated with a continuum of resource allocation strategy in 5 

key fitness components including immunity. 6 

 7 

Acknowledgments 8 

The study was supported by grants of the Swiss National Science Foundation (PPOOA-9 

102913 to AR and n° PPOOA-109009 to PB). We thank Alan Juilland for assistance during 10 

the fieldwork and Ismael Galván for helpful comments on previous version of the manuscript. 11 

The experiment was under legal authorization of the ‘service vétérinaire du canton de Vaud’ 12 

(n° 1508). 13 

 14 

References 15 

Bonneaud, C., Mazuc, J., Gonzalez, G., Haussy, C., Chastel, O., Faivre, B. & Sorci, G. 2003 16 

Assessing the cost of mounting an immune response. Am. Nat. 161: 367-379. 17 

Bortolotti, G.R., Blas, J., Negro, J.J. & Tella, J.L. 2006 A complex plumage pattern as an 18 

honest social signal. Anim. Behav. 72: 423-430. 19 

Ducrest, A.-L., Keller, L. & Roulin, A. 2008 Pleiotropy in the melanocortin system, 20 

coloration and behavioural syndromes. Trends Ecol. Evol. 23: 502-510. 21 

Forsman, A.M., Vogel, L.A., Sakaluk, S.K., Grindstaff, J.L. & Thompson, C.F. 2008 22 

Immune-challenged house wren broods differ in the relative strengths of their responses 23 

among different axes of the immune system. J. Evol. Biol. 21: 873-878. 24 



 14 

Galeotti, P. & Sacchi, R. 2003 Differential parasitaemia in the tawny owl (Strix aluco): effects 1 

of colour morphs and habitat. J. Zool. 261: 91-99. 2 

Gasparini, J., Bize, P., Piault, R, Wakamatsu, K, Blount, J., Ducrest, A-L & Roulin, A. 3 

2009 Strength and cost of an induced immune response are associated with a heritable 4 

melanin-based color trait in female tawny owls. J. Anim. Ecol. 78: 608-616. 5 

Goüy de Bellocq, J., Krasnov, B.R., Khokhlova, I.S., Ghazaryan, L. & Pinshow, B. 2006 6 

Immunocompetence and flea parasitism of a desert rodent. Funct. Ecol. 20: 637-646. 7 

Griffith, S.C., Owens, I.P.F & Burke, T. 1999 Environmental determination of a sexually 8 

selected trait. Nature 400: 358-360. 9 

Janeway, C.A, Travers, P., Walport, M. & Shlomchik, M.J. 2005 Immunobiology: the immune 10 

system in health and disease. 6th edn. Garland Science Publishing, New-York. 11 

Leshchinsky, T.V. & Klasing, K.C. 2001 Divergence of the inflammatory response in two 12 

types of chickens. Dev. Comp. Immunol. 25: 629-638. 13 

Lindström, K.M., Foufopoulos, J., Pärn, H. & Wikelski, M. 2004 Immunological investments 14 

reflect parasite abundance in island populations of Darwin’s finches. P. Roy. Soc. B-Biol. 15 

Sci. 271: 1513-1519. 16 

Martin II, L.B. 2005 Trade-offs between molt and immune activity in two populations of 17 

house sparrows (Passer domesticus). Can. J. Zool. 83: 780-787. 18 

Martin II, L.B., Weil, Z.M., Kuhlman, J.R. & Nelson, R.J. 2006a Trade-offs within the 19 

immune systems of female White-footed mice, Peromyscus leucopus. Funct. Ecol. 20: 20 

630-636. 21 

Martin II, L.B., Han, P., Lewittes, J., Kuhlman, J.R., Klasing, K.C. & Wikelski, M. 2006b 22 

Phytohemagglutinin-induced skin swelling in birds: histological support for a classic 23 

immunoecological technique. Funct. Ecol. 20: 290-299. 24 



 15 

May, R.M. & Southwood, T.R.E. 1990 Introduction. In: Living in a patchy environment (B. 1 

Shorrock & Swingland, I.R. eds), pp 1-22. Oxford University Press, Oxford. 2 

Parmentier, H.K., De Vries Reilingh, G. & Nieuwland, M.G.B. 1998 Kinetic and 3 

immunohistochemical characteristics of mitogen-induced cutaneous hypersensitivity in 4 

chickens selected for antibody responsiveness. Vet. Immunol. Immunop. 66: 367-376. 5 

Piault, R., Gasparini, J., Bize, P., Jenni-Eiermann, S & Roulin A. Phaeomelanin-based 6 

coloration and the ability to cope with variation in food supply and parasitism. Am. Nat. in 7 

press. 8 

Py, I., Ducrest, A-L., Duvoisin, N., Fumagalli, L. & Roulin, A. 2006 Ultraviolet reflectance in 9 

a melanin-based plumage trait is heritable. Evol. Ecol. Res. 8: 483-491. 10 

Roulin, A. 2004 The evolution, maintenance and adaptive function of genetic colour 11 

polymorphism in birds. Biol. Rev. 79: 815-848. 12 

Roulin, A., Jungi, T.W., Pfister, H. & Dijkstra, C. 2000 Female barn owls (Tyto alba) 13 

advertise good genes. P. Roy. Soc. B-Biol. Sci. 267: 937-941. 14 

Roulin, A., Riols, C., Dijkstra, C. & Ducrest, A.-L. 2001 Female plumage spottiness and 15 

parasite resistance in the barn owl (Tyto alba). Behav. Ecol. 12: 103-110. 16 

Smits, J.E., Bortolotti, G.R. & Tella, J.L. 1999 Simplifying the phytohemagglutinin skin-17 

testing technique in studies of avian immunocompetence. Funct. Ecol. 13: 567-572. 18 

Tella, J.L. Lemus, J.A., Carrete, M. & Blanco, G. 2008 The PHA test reflects acquired T-cell 19 

mediated immunocompetence in birds. PLoS ONE: 3, e3295. 20 

Uller, T., Isaksson, C. & Olsson, M. 2006 Immune challenge reduces reproductive output and 21 

growth in a lizard. Funct. Ecol. 20: 873-879. 22 

Zuk, M. & Johnsen, T.S. 1998 Seasonal changes in the relationship between ornamentation 23 

and immune response in red jungle fowl. P. Roy. Soc. B-Biol. Sci. 265: 1631-1635.24 



 16 

Table 1: Mixed model ANCOVAs testing whether a humoral immune challenge against 1 

TETRAVAC affects non-specific (LPS) and T-cell immune response (PHA) in interaction 2 

with nestling melanin-based coloration. Humoral immunisation (TETRAVAC or PBS) 3 

was a factor, and nestling coloration, age and mass at the time when TETRAVAC or PBS 4 

was injected three covariates. The nest identity was included as a random factor to avoid 5 

pseudoreplication. Among nestlings injected with LPS, nestling coloration and the 6 

interaction between treatment and coloration were not significant (P = 0.68 and P = 0.67, 7 

respectively) and therefore removed from the final model. Similarly, brood size and 8 

nestling age at TETRAVAC or PBS injection were not significant and were removed from 9 

final models (P > 0.15 and P > 0.06, respectively). F-values are given for fixed effects and 10 

Wald Z-values for random effects. 11 

 12 

Variable Non-specific immune response 
(LPS) 

T-cell immune response (PHA) 

Source F or Wald Z d.f. P F or Wald Z d.f. P 

Fixed effects    

   

Nestling mass at LPS/PHA injection 7.86 1,106 0.006 5.90 1,86 0.02 
Treatment (TETRAVAC/PBS) 4.83 1,106 0.03 0.25 1,86 0.62 
Nestling coloration  _ _ _ 0.70 1,86 0.41 
Treatment x nestling coloration  _ _ _ 4.83 1,86 0.03 

Random effects    

   

Nest identity 2.18  0.01 2.66  0.004 
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Figure 1: Mean ± s.e. of the response to LPS (mm) in nestling tawny owls previously injected 1 

either with the TERAVAC vaccine or PBS.  2 

 3 

Figure 2: Relationship between residuals of cutaneous immune response to PHA and degree 4 

of melanin-based coloration (PC1) in nestling tawny owls. Residuals were extracted from the 5 

regression of response to PHA on nestling body mass. 6 
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Figure 1 1 
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Figure 2 1 
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