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Food intake carries many potential risks which may impair an animal’s reproductive success
not only in the current breeding cycle, but also for the rest of its lifetime. We examine the
lifetime trade-off between the costs and benefits of food intake by presenting a simple animal
foraging model, where each unit of food eaten carries with it a risk of mortality. We show
that the optimal food intake rate over an animal’s lifetime, for both semelparous and
iteroparous animals, is not maximal. Instead, animals are required to strike a balance
between the immediate reproductive benefits of gathering food and the future reproductive
costs incurred by the food’s mortality risk. This balance depends upon the lifespan of the
animal as well as the nature of the risk. Different mortality risks are compared and it is
shown that a mortality risk per unit time spent foraging is not, in general, equivalent to a
mortality risk per unit of food consumed. The results suggest that a mortality risk per unit of
food consumed, such as that presented by the presence of a toxin or of a parasite in the diet,
has important consequences for feeding behaviour and is a possible factor involved in food
intake regulation.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

For all animals, the consumption of food
provides the raw materials for growth, survival
and reproduction and is, therefore, a major
determinant of an animal’s fitness. Evolutionary
theory tells us that a behaviour will persist in a
population if it tends to maximize fitness over an
animal’s lifetime. This clearly implies that it
is the lifetime feeding behaviour of an animal
wAuthor to whom correspondence should be addressed.
E-mail: j.yearsley@mluri.sari.ac.uk
yCurrent address: Liverpool School of Tropical Medicine

Pembroke Place, Liverpool L3 5QA, U.K.

0022-5193/02/$35.00/0
which should be of evolutionary importance,
despite the fact that food intake is commonly
thought of on the much shorter time-scale of
hours or days (Stephens & Krebs, 1986). In the
past, the majority of theoretical studies on food
intake behaviour considered only the short,
behavioural time-scale (e.g. Gilliam & Fraser,
1987; Johnson et al., 1995). In this paper we
consider a model of optimal food intake strategy
which combines both the short, behavioural and
the long, life history time-scales. We assume that
foraging carries an evolutionary cost, and
compare the effects of a cost per unit time spent
foraging (e.g. predation) against a cost per unit
r 2002 Elsevier Science Ltd. All rights reserved.
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food consumed (e.g. toxins or metabolic costs).
In such a model food intake is generally optimal
rather than maximal. This optimum applies on
the time-scale of one breeding cycle, implying
that short-term intake may fluctuate to a certain
extent, but ultimately it must be regulated in
accordance with the optimum. Including a
mortality cost of food intake is therefore
important to consider, because it offers the
possibility that food intake is not maximal. If
mortality costs of food can be shown to play a
r #ole in the regulation of intake, any research field
concerned with food intake (e.g. human health
and animal production systems) will be pre-
sented with a new direction for research, which
will see food intake much more as an adaptive
behaviour. Studying the mortality cost of food
offers the possibility of improving our under-
standing of feeding behaviour and the factors
underlying food intake.
At present there are two popular hypotheses

for short-term food intake regulation: food
intake is maximized subject to unavoidable
constraints, such as digestion capacity, cognitive
ability, or detoxification capacity (Stephens &
Krebs, 1986; Allen, 1996) and food intake is
sufficient to satisfy an animal’s requirements,
also subject to constraints (Emmans, 1989, 1997;
Ward, 1992). Under both of these hypotheses
there need be no distinction between a short-
term regulation strategy and a lifetime strategy,
because neither hypothesis requires food intake
to be costly, implying that a short-term strategy
holds no long-term detriment for an animal.
Farm animals, such as cows, hens and pigs, are
generally observed to eat sufficient for their
requirements and no more (Emmans, 1989,
1997; Whitemore et al., 2001), although such
feeding behaviour may reflect a response to
artificial selection. In these intensive agricultural
systems requirement models of food intake work
well, but their extension to food intake regula-
tion in more natural environments holds many
challenges (Yearsley et al., 2001). Observational
support for short-term intake maximization also
exists (Illius et al., 1999), and constraints have
been shown to be important (Weeks, 1996).
However, there is also evidence to suggest that
food intake rate need not always be the
maximum permitted by some constraint. For
example, studies have shown that animals are
capable of increasing their intake rate in
response to decreases in available feeding time
or increases in energetic demands (Kyriazakis &
Emmans, 1991; Owen-Smith, 1994; Friggens
et al., 1999; Iason et al., 1999), and others have
shown that animals do not always feed up to
their maximum capacity (Schmid-Hempel et al.,
1985; L !opez-Calleja et al., 1997; Josens et al.,

1998).
A further possible intake rate regulation

hypothesis, is that food intake itself carries a
fitness cost. When an animal’s feeding behaviour
incurs an evolutionary cost as well as a benefit,
the short-term optimal strategy need no longer
be the same as the long-term, lifetime optimal
strategy. This is true even if an animal is thought
of as using a short-term ‘‘rule of thumb’’, since
the consequences of the ‘‘rule of thumb’’ can
approximate a long-term optimal strategy. When
food intake is viewed over an animal’s lifetime,
the immediate benefit of increasing food intake
can be offset by a cost which may only manifest
itself sometime later in the animal’s life. Fora-
ging in the wild commonly carries a risk of
predation (Lima, 1998), and each morsel of food
may carry a risk of parasitic infection (Lozano,
1991; Lafferty, 1992; Hutchings et al., 1999,
2000), a toxin load (Duncan & Gordon, 1999;
Stapley et al., 2000; Sherman & Flaxman, 2001)
or a risk of injury. A broad range of evidence for
various food intake costs exists in the literature:
energy expenditure, either through foraging
activity or food digestion, carries fitness costs
(Deerenberg & Overkamp, 1999), food storage
can also be costly (Witter & Cuthill, 1993),
reproductive effort carries its own fitness costs
(Bell, 1980; Partridge, 1987; Deerenberg et al.,
1997), the ingestion or production of free-
radicals can have a highly damaging effect upon
the body (Finkel & Holbrook, 2000) and
reducing food intake has been shown to have
fitness benefits (Masoro, 1995; Sohal & Wein-
druch, 1996). The fact that animals balance these
costs against lifetime reproductive benefits is
supported by studies on a range of animals, such
as birds (Ghalambor & Martin, 2000, 2001) and
insects (Scrimgeour & Culp, 1994; Stoks &
Johansson, 2000). These and other costs can be
classified as either a cost per unit time spent
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foraging, or a cost per unit of food consumed.
We shall call these two classes of cost the
‘‘background mortality risk whilst foraging’’
and the ‘‘mortality risk of consumption’’,
respectively. In addition, there can be a third
mortality risk whilst the animal is not foraging.
For example, there may be a predation risk
whilst an animal is resting, or a risk of injury due
to territorial defence. We will call this risk the
‘‘background mortality risk whilst not fora-
ging’’. The mortality risk of consumption should
be particularly relevant to foraging theory. Such
a mortality does not depend upon the time spent
foraging, but rather the amount of food con-
sumed. Possible examples being the ingestion of
parasites, toxins or free-radicals.
The effect of predation risk upon foraging

behaviour has been extensively studied (Lima,
1998), and the mortality risk of consumption has
been investigated in relation to free-radical
production (Ketelaars & Tolkamp, 1992a,b;
Tolkamp & Ketelaars, 1992; Emmans & Kyr-
iazakis, 1995), but despite the relevance of
lifetime fitness to the question of foraging
behaviour, the majority of theoretical studies
have not explicitly investigated foraging beha-
viour over a lifetime, concentrating instead upon
more or less instantaneous effects, lifetime
averages (e.g. Abrams, 1991) or a daily, seasonal
or yearly routine, such as the over-winter
survival strategy of birds (Bednekoff & Houston,
1994). There has also been an emphasis upon the
background mortality risk whilst foraging and
the regulation of time spent foraging (Lima,
1998), as opposed to the mortality risk of
consumption and the regulation of food intake
rate whilst foraging. The exception are models
which incorporate an animal’s state, which have
looked at more general mortality risks (Houston
& McNamara, 1999).
In this paper, we describe a simple model

which considers an animal’s food intake over its
entire lifetime. We explicitly consider different
mortality risks by including a mortality risk of
consumption, a background mortality risk whilst
foraging and a background mortality risk whilst
not foraging, and show that changes in these
mortality risks lead to different responses in the
optimal food intake. Finally, we consider how
optimal food intake is predicted to change as an
animal ages and approaches the end of its
reproductive life.

Methods

In order to concentrate on the evolutionary
aspects of foraging, we develop a simple,
abstract model animal. We assume that evolu-
tionary forces have adapted an animal’s foraging
behaviour to maximize its fitness. We consider a
large population of identical animals whose
feeding behaviour is not limited by the avail-
ability of resources. If the population density is
stable and regulated through changes in lifetime
offspring production then an evolutionary stable
strategy maximizes an animal’s lifetime repro-
ductive effort (Mylius & Dickmann, 1995). We
therefore take as a measure of fitness an animal’s
lifetime reproductive effort, which is the total
energy invested in reproduction during its
lifetime (Metz et al., 1992; Koz"owski, 1999). If
population size were regulated through some
other mechanism then lifetime reproductive
effort may no longer be a valid measure of
fitness.
We examine two cases, semelpary and iter-

opary. An animal has a breeding cycle with a
fixed length of one time unit, where the choice of
time unit depends upon the animal under study.
For example, the breeding cycle could refer to an
animal which reproduces yearly, monthly or
daily, or even an animal which reproduces
immediately after each gestation period. The
average feeding rate of an animal whilst feeding
is denoted by i; measured in units of an animal’s
maintenance costs, and the proportion of time
spent feeding during one breeding cycle is
denoted by p: The probability that an animal
survives from the start until the end of one
breeding cycle is P ðiÞ: It is assumed that the
available energy gathered over one breeding cycle
(the energy gathered minus the maintenance
costs for one breeding cycle) is ‘‘converted’’ into
offspring at the end of that cycle. Therefore, at
the end of one breeding cycle, the average energy
available for reproduction, per individual in the
population, gðiÞ; is given by the function

gðiÞ ¼ ðip � 1Þ P ðiÞ; ð1Þ

where all quantities are in dimensionless units.
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The mortality risks are described by dividing
each breeding cycle into N periods, of which nf
are times when the animal is feeding, and the rest
are times when the animal is not feeding. One
way to describe the survival probability, P ðiÞ; is
as the polynomial,

P ðiÞ ¼ 1� p
ir þ a
nf

� �nf

� 1� ð1� pÞ
b

N � nf

� �N�nf

; ð2Þ

where r is the mortality risk of consumption
per unit food consumed (which in the model’s
units is equal to the mortality risk associated
with eating to maintain live weight), a and b are
the background mortality risks per unit time
whilst feeding and not feeding, respectively. The
functional form of eqn (2) was chosen for
simplicity and because it encompasses both the
linear case (nf ¼ 1) and the case when survival is
a Poisson process (nf ¼ N). If survival is a
Poisson process then an increase in food intake
causes a decrease in survival which is indepen-
dent of the current food intake [i.e.
P ði1 þ i2Þ ¼ P ði1Þ P ði2Þ]. This type of mortality
risk could represent the case when a prey’s
chances of escaping predation remain unaffected
by the number of times it has been attacked or
when the probability of surviving a parasitic
infection is strictly proportional to the number
of parasites in the host. If 0onfoN in eqn (2),
which includes the linear case nf ¼ 1; then the
risks from food intake are not independent, so
that the survival probability is decreased if there
have been preceding risks due to food intake [i.e.
P ði1 þ i2ÞoP ði1Þ P ði2Þ]. For example, this type of
mortality risk could represent the case when a
prey’s chances of escaping from a predator are
decreased by continued predation, or when the
deleterious effects of a toxin are only felt above a
critical threshold. The robustness of our conclu-
sions to the form of eqn (2) will be discussed
later.
When the survival probability is a linear

function of the food intake rate (nf ¼ 1), then
eqn (2) simplifies down to

P ðiÞ ¼ ð1� ip r � a pÞ B; ð3Þ
where B ¼ ½1� ð1� pÞb=ðN � 1Þ	N�1 is the sur-
vival probability whilst not feeding. If an animal
breeds for a maximum of Nc breeding cycles, the
lifetime reproductive effort, LRE; is the sum of
the expected number of offspring from each
breeding cycle

LRE ¼
XNc

y¼1

gðiyÞ P ðiyÞ
y�1; ð4Þ

where iy is the feeding rate during breeding cycle
y: The optimal feeding rate over each breeding
cycle, #iy ; is found by maximizing the lifetime
reproductive effort with respect to the feeding
rate. The maximum lifetime reproductive effort
can be analytically calculated in two extreme
cases; when the survival probability is a linear
function of food intake rate (nf ¼ 1), and when
survival probability is a Poisson process
(nf ¼ N). In the rest of this paper we shall
concentrate upon the former case where nf ¼ 1;
which implies that mortality risk is proportional
to the amount of food eaten during one breeding
cycle. The case of a Poisson survival process,
where each feeding bout’s mortality risk is
independent, is presented in Appendix A since
the results are qualitatively very similar to
nf ¼ 1: Realistic survival functions are likely to
lie somewhere between these two extremes. The
behaviour of the model to values of nf between
these two extremes is intermediate.

SEMELPARY

A semelparous animal has one breeding cycle
in its lifetime (Nc ¼ 1). In this case, the lifetime
reproductive effort is simply the energy available
for reproduction at the end of one breeding cycle

LRE ¼ gðiÞ: ð5Þ

Optimal food intake is found by maximizing
eqn (5).

ITEROPARY

An iteroparous animal can reproduce for
an indeterminate number of breeding cycles
(Nc > 1). In this case, the lifetime reproductive
effort is the sum of the expected number of
offspring from all breeding cycles. If we assume



LIFETIME FORAGING AND MORTALITY 389
that the feeding rate is independent of the
breeding cycle (an assumption which will be
relaxed in the following section), then the
lifetime reproductive effort can be written as

LRE ¼
XN
y¼1

gðiÞ P ðiÞy�1

¼
gðiÞ

1� P ðiÞ
: ð6Þ

Optimal food intake is found by maximizing
eqn (6).

THE PROPORTION OF A BREEDING CYCLE

SPENT FEEDING

In our simple model, there are two time-scales
over which food intake can be measured:
the intermediate time-scale corresponding to
intake over one breeding cycle, and the short
time-scale corresponding to intake whilst
foraging. If the proportion of spent time
foraging in each breeding cycle (p) is assumed
to be constant, then these two measures of food
intake are equivalent. Whenever this is the case
for our results, the optimal food intake over one
breeding cycle will be presented. However,
p may itself be the result of adaptive behaviour,
in which case our model can be used to
determine the optimal proportion of time spent
feeding, #p: In this case the two measures of food
intake are not equivalent. If #p is close to zero
then short-term food intake may be constrained
even if the food intake over a breeding cycle is
optimized.
To investigate an adaptive feeding time

we maximized the lifetime reproductive output
of a semelparous animal [eqn (5)] and
an iteroparous animal [eqn (6)] with respect
to p; assuming that the food intake over
the breeding cycle (ip) was already at its optimal
value. Since the optimal value of p was found to
depend upon the functional form of the survival
probability whilst not feeding (B), we present
results for the simple case where B is a linear
function of p; such that B ¼ 1� b ð1� pÞ (i.e.
N � nf ¼ 1). Simulations where B took a variety
of functional forms (i.e. N � nf > 1) gave quali-
tatively similar results.
CHANGES IN FOOD INTAKE THROUGHOUT

AN ANIMAL’S LIFETIME

There is no reason to expect an animal’s
feeding behaviour to remain constant through-
out its lifetime. Instead, it is expected that
adaptive behaviour early on in the life cycle will
be influenced by future reproductive possibilities
(Engen & Stenseth, 1989). Analytical solutions
to life history strategies of optimal foraging have
been studied by Abrams (1991) and Engen &
Stenseth (1989), with the conclusion that older
individuals are more likely to pursue dangerous
food types.
Using the techniques of dynamic program-

ming (Mangel & Clark, 1988; Houston &
McNamara, 1999), optimal intake rate can be
calculated as a function of an animal’s breeding
cycle. If the future reproductive success of an
animal is denote by V ; then the optimal food
intake during a breeding cycle, given the
possibility of this future reproductive success,
can be calculated to be

#ip ¼
1

2
1� V þ

1

r
ð1� apÞ

� �
; ð7Þ

where we have used the linear survival prob-
ability [eqn (3)]. If the future reproductive
success is zero (V ¼ 0), then eqn (7) reduces to
the result for a semelparous animal [eqn (8)].
However as the probability of future reproduc-
tive success increases the optimal food intake for
the current breeding cycle decreases.
Equation (7) can be used to calculate how

optimal food intake should vary throughout an
animal’s lifetime. If an animal has a maximum
number of breeding cycles in its lifetime, after
which its reproductive life ceases (in reality
fecundity is most likely to gradually decrease
over a number of breeding cycles, making the
above scenario a rather extreme example, but
one which nevertheless conveys the basic idea),
then for this final breeding cycle we can set
V ¼ 0; and calculate the optimal food intake. It
is then possible to use this result to calculate the
future reproductive success for the previous
breeding cycle. By working backwards through
an animal’s lifetime it is possible to calculate its
optimal food intake as a function of age.
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Fig. 1. The optimal food intake rate over one breeding
cycle, #i p; in units of maintenance requirements. (a) ( )
and ( ) show results for semelpary, and iteropary,
respectively, with a linear survival function (nf ¼ 1) whilst
the ( ) line shows the result for semelpary with survival
a Poisson process (nf ¼ N). a is held constant at 0:2: (b)
Results are only for nf ¼ 1; and r is held constant at 0:2:
The probability of mortality whilst feeding incorporates
both the mortality risk of consumption and the background
mortality risk whilst feeding, and is given by #i p r þ a p
(nf ¼ 1), or 1� expð�#i p r � a pÞ (nf ¼ N). The back-
ground mortality risk whilst feeding is a: The background
mortality risk whilst not feeding is 1� B where B ¼
1� ð1� pÞ b=ðN � 1Þ

 �N�1

(nf ¼ 1) or expð�bÞ (nf ¼ N),
where b and N are constants. These results assume that
intake rate is constant throughout an animal’s lifetime.
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Results

SEMELPARY

The food intake rate which maximizes this
lifetime reproductive effort, #i; can be calculated
from eqn (5) as

#ip ¼
nf

1þ nf
1þ

1

r
1�

ap
nf

� �� �
: ð8Þ

This equation states that if there is a mortality
risk of consumption then maximization of intake
rate does not maximize fitness. Instead, fitness is
maximized when the food intake rate over a
breeding cycle has a finite value of #i: The optimal
food intake rate for a semelparous animal over
its breeding cycle, as a function of both the
consumption mortality risk and the background
mortality risk whilst feeding (which is called the
mortality risk whilst feeding and can be written
as #i p r þ a p), is shown as the dotted line in
Fig. 1(a). Increases in the consumption mortality
risk (r) and the background mortality risk whilst
feeding (a), both have the effect of increasing the
probability of mortality whilst feeding, which
reduces the optimal feeding rate [Fig. 1(a)].
However, the background mortality risk whilst
not feeding (b) does not appear in eqn (8), and
has no effect upon an animal’s optimal food
intake rate.

ITEROPARY

For an iteroparous animal, the optimal food
intake rate which maximizes the lifetime repro-
ductive success can then be calculated by
substituting eqn (3) into eqn (6), giving the
optimal food intake rate as

#ip ¼
1

Br

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bðr þ ap � 1Þ

p
þ B� 1� a p B

� 	
;

ð9Þ

where B ¼ ð1� ð1� pÞb=ðN � 1ÞÞN�1; is the
probability of surviving whilst not feeding.
Equation (9) gives the feeding rate which
maximizes the lifetime reproductive success of
an iteroparous animal. As for the semelparous
result of eqn (8), maximizing the lifetime
reproductive effort does not lead to maximal
food intake rate.
The optimal food intake rate as a function of
mortality risk whilst feeding is shown in
Fig. 1(a). As the mortality risk increases
(#i p r þ a p-1), then the optimal food intake
rate given by eqn (9) approaches the result for
semelpary [eqn (8)] with nf ¼ 1: As survival
approaches a Poisson process [Fig. 1(a) and
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Fig. 2. The optimal food intake rate over one breeding
cycle, #i p; in units of maintenance requirements, given by
eqn (9), showing the general dependence of the solution on
the parameters r; a; and B: (a) B is held constant at 1: (b) r is
held constant at 0:1: The background mortality risk whilst
feeding is a; the background mortality risk whilst not
feeding is 1� B; where B ¼ ½1� ð1� pÞ b=ðN � 1Þ	N�1; and
b and N are constants. These results assume that intake rate
is constant throughout an animal’s lifetime.

LIFETIME FORAGING AND MORTALITY 391
Appendix A] the optimal food intake rate
increases for both semelpary and iteropary.
The survival function given by eqn (2) predicts
the largest food intake rate for a Poisson process
(N ¼ nf ¼ N) because it has the property that
changes in food intake rate have the smallest
effect upon mortality.
It is important to realize that the background

mortality whilst feeding (a) is not equivalent to
the consumption mortality risk (r). Firstly, a
background mortality risk alone would have
always predicted food intake rate maximization.
Secondly, increases in the consumption mortal-
ity risks always lead to decreases in optimal food
intake rate, whilst increases in background
mortality (both a and 1� B) can result in either
increasing or decreasing optimal food intake rate
[Figs. 1(b) and 2]. As the survival function
approaches Poisson (nf ¼ N), the background
mortality risk predominantly increases optimal
food intake rate [eqn A.5].

THE PROPORTION OF A BREEDING CYCLE

SPENT FEEDING

The results presented above consider the
optimal food intake averaged over a breeding
cycle (#ip), and assume that the proportion of
time spent feeding per breeding cycle is constant.
If instead it is assumed that the proportion of
time spent feeding per breeding cycle (p) is
adaptive, then we can calculate the optimal value
of p: For a semelparous animal the optimal
proportion of time spent foraging can be
calculated explicitly to be

#p ¼
2

3
1�

1

b

� �
þ

1� r
3a

; ð10Þ

where realistic values for #p must lie in the range
from zero to one. If the value of #p calculated
from eqn (10) lies outside this range then #p is set
to the value of the nearest bound. The optimal
value of p for an iteroparous animal, which does
not have a simple analytical solution, was
calculated numerically and is shown in Fig. 3
along with the results of eqn (10).
In general, Fig. 3 shows that optimal food

intake on the short-term (#i) as well as the
intermediate-term (#i #p) need not be maximal.
Our results are intuitively obvious, in that the
optimal feeding time is predicted to decrease as
the mortality risk from feeding increases relative
to the mortality risk from not feeding. Therefore,
at low consumption mortality risks it is optimal
to spend all the available time feeding ( #p ¼ 1),
implying time maximization and non-maximal
short-term intake rate. At high consumption
mortality risks it is optimal to spend as little time
feeding as possible ( #p ¼ 0), implying time mini-
mization and short-term intake maximization.
The transition from #p ¼ 1 to 0 causes the short-
term food intake (#i) to increase, despite
the decrease in food intake over a breeding
cycle [Fig. 3(b)]. Short-term food intake will,
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Fig. 3. (a) The optimal proportion of a breeding cycle
spent feeding, #p; and (b) the corresponding optimal food
intake per breeding cycle, #i #p as a function of the
consumption mortality risk (r). The ( ) are for an
Semelparous animal, the (—) lines are for a iteroparous
animal [eqn (8) and (10)]. Lines marked with i show the
optimal food intake rate whilst foraging, lines marked with
ip show the optimal food intake over one breeding cycle.
The survival probability is given by eqn (3) with N ¼ 2 and
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Fig. 4. The optimal food intake rate over each breeding
cycle, #i p; in units of maintenance requirements for an
animal that stops reproducing after ten breeding cycles. The
three lines corresponding to r ¼ 0:1; 0:2 and 0:5 are shown,
where r is the consumption mortality risk when an animal’s
food intake rate just covers maintenance requirements. In
each run r is held constant. All results assume no
background mortality risk (a ¼ b ¼ 0). The ( ) and
( ) show the optimal food intake rate over one breeding
cycle for an iteroparous animal with no maximum number
of breeding cycles and a semelparous animal, respectively.
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therefore, be at its lowest for intermediate
mortality risks.

CHANGES IN FOOD INTAKE THROUGHOUT AN

ANIMAL’S LIFETIME

For an animal with a maximum of ten
breeding cycles, and no background mortality
risk (a ¼ b ¼ 0), the optimal food intake pre-
dicted with dynamic programming is presented
in Fig. 4. This shows that an animal’s optimal
intake rate monotonically increases as the
animal ages. For young animals food intake is
close to the optimal intake rate for an iteropar-
ous animal and as an animal ages intake rate
approaches the result for a semelparous animal.
An animal’s feeding strategy is therefore leading
to an increase in the mortality rate with age.
After ten breeding cycles it is certain that the
animal will never reproduce again, and so the
strategy for an animal in its final breeding cycle
is identical to the strategy of a semelparous
animal. The predicted food intake rate decreases
towards the food intake rate prediction for an
iteroparous animal [eqn (9), and represented by
the solid squares in Fig. 4], as the number of
possible future breeding cycles increases. If
either background mortality risk, or mortality
risk of consumption or maintenance costs
increase, relative to an animal’s intake rate, then
the rate of change of the optimal food intake rate
decreases. Figure 4 shows that increasing con-
sumption mortality risk (r), causes a decrease in
the average gradient of optimal food intake rate
against age. Therefore, the feeding strategy of
animals with either many breeding cycles, or
high maintenance costs or a high mortality risks,
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will be well approximated by eqn (9), which
assumes a constant intake rate throughout an
animal’s reproductive life.

Discussion

It has long been realized that mortality risk is
an important evolutionary force. Mortality has
often been associated with a risk of predation,
and the trade-off between increasing food intake
and the increasing risk of predation through
prolonged foraging has been extensively studied
in relation to patch use and prey choice
(reviewed in Lima & Dill 1990; Lima, 1998).
These studies have tended to concentrate upon a
relatively short time-scale (e.g. a series of
foraging bouts or survival over one winter).
Models which include an animal’s state (e.g. its
levels of energy reserves) have started to look
at feeding behaviour over an extended period
(e.g. daily or seasonal routines) (Houston &
McNamara, 1999). Feeding behaviour over an
animal’s lifetime, which must combine a beha-
vioural time-scale with a longer, life history time-
scale, has received far less attention (Abrams,
1991; Engen & Stenseth, 1989), perhaps because
the long-term consequences of predation are
unclear (Lima, 1998). Abrams (1991) explored
the average foraging life history strategy which
maximizes a population’s growth rate and
looked at how food availability influences the
optimal foraging effort. Abrams found optimal
foraging effort could increase or decrease with
increasing food availability depending upon an
animal’s life history. Engen & Stenseth (1989)
also explored lifetime foraging behaviour and in
particular optimal diets in relation to a food
item’s nutritional value and its mortality risk.
Neither model distinguishes between the differ-
ent mortality risks associated with foraging, nor
specifically addresses the issues of food intake
regulation.
The model presented here considers an ani-

mal’s lifetime food intake regulation, and the
effects of different foraging mortality risks,
assuming that animals have evolved to maximize
their lifetime reproductive effort. The model
predicts an optimal intake rate that balances the
immediate benefits of food intake against the
immediate, and future costs, associated with a
mortality risk. For example, the model could
account for the foraging behaviour of an adult
bird who must provision itself and its clutch of
young. Whilst foraging the bird runs a predation
risk (which we have termed a background
mortality risk whilst foraging) and a risk of
injury during the handling of each prey item
(which we have called the mortality risk of
consumption). In this case, the model predicts
how the bird should balance its needs and the
needs of its young against the costs to itself and
the possible loss of future breeding opportu-
nities. A second example would be a browsing
herbivore such as a deer, or an antelope, where
once again there is a predation risk for each
second spent foraging, and where the mortality
risk of consumption could be the toxic effect of a
plant’s secondary compounds, or the metabolic
costs of digesting the plant. For these and other
scenarios the model makes two general conclu-
sions. Firstly, a mortality risk of consumption
is qualitatively different from a background
mortality risk whilst feeding. Previously, only
the second of these two concepts has been
generally included in foraging models (Lima &
Dill, 1990; Lima, 1998). An increasing mortality
risk of consumption always has the effect of
reducing optimal food intake, whilst the effect of
an increase in the background mortality risk
whilst foraging has no generic effect, and can
lead to an increasing or decreasing optimal food
intake depending upon factors such as the
magnitude of the mortality risk. This implies
that if food intake is optimal then these two
mortalities cannot be used interchangeably.
Secondly, even if food intake is generally
optimal, there will still be regions of the
parameter space where intake is expected to be
maximal, subject to constraints. When mortality
risk is low, or the proportion of time spent
foraging is low, the optimal food intake rate
predicted by the model can be unrealistically
high, at more than 5 times the cost of maintain-
ing live weight (Kirkwood, 1983). In these cases
it is reasonable to assume that intake rate would
be determined by some other regulation mechan-
ism. Since the largest optimal food intake rate is
predicted for semelpary, the results of the model
suggest that semelparous animals are more likely
to be intake rate maximizers. Data from insects
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and birds clearly show that species whose
probability of surviving for more than one
breeding cycle is low have a relatively high
reproductive effort and a low sensitivity to
predation risk (Stoks & Johansson, 2000; Gha-
lambor & Martin, 2001). In contrast, for higher
mortality risks, the model predicts optimal food
intake rates that equate to a reproductive
production of up to two times the cost of
maintaining live weight, which is consistent with
allometric studies where mean metabolic rate in
free-living organisms are generally of the order
of 1.5–4 times maintenance costs, with a max-
imum of five times maintenance costs (Kirk-
wood, 1983). In this situation it is realistic to
envisage an animal as an intake rate optimizer.
Although our model explores mortality risk,

the results could be generalized to any risk which
results in a reduced fecundity or survival. This
could include costs, such as reduced fertility,
somatic damage by free-radicals, reduced prob-
ability of mating or reduced offspring survival.
Although we have chosen a specific functional
form for survival, given by eqn (2), and we have
presented only two cases, where nf ¼ 1 and nf ¼
N ¼ N; the general conclusions of the model are
robust not only to changes in nf and N but also
to more general changes in the survival function.
In particular, consumption mortality risk need
not be a linear function of intake rate. If
consumption mortality is described by an
increasing polynomial of food intake rate, such
that high intake rates are disproportionately
more risky, then optimal food intake rate is
reduced, whilst the qualitative behaviour of the
model is maintained. In the case where low
intake rates are disproportionately more risky,
there may be no optimal intake rate. In general,
therefore, increasing consumption mortality is
predicted to reduce the optimal food intake rate,
and increasing background mortality is pre-
dicted to cause increases in optimal intake rate
at low mortalities and decreases towards higher
mortalities.
The extension of the model to investigate the

variation of food intake over an animal’s lifetime
suggests that, for the majority of an animal’s
lifetime, food intake is close to the predictions
for iteropary and only towards the end of an
animal’s lifetime is food intake predicted to
significantly increase as the future reproductive
effort decreases towards the terminal horizon of
the animal’s lifespan. This result not only agrees
with previous theoretical work (Engen & Sten-
seth, 1989), but is consistent with several feeding
behaviour studies: female mosquitoes (Aedes

aegypti) are observed to take larger blood meals,
at a greater risk to themselves, as they get older
(Xue et al., 1995), and studies on rats show a
decreasing ability to regulate food intake as they
age (Scarpace et al., 2000; Mooradian et al.,

2000).
By proposing a general mechanism where

food intake rate can be optimized, and thus
avoiding the necessity of invoking constraints as
factors limiting food intake, this work proposes
that it is evolution that determines the majority
of constraints seen in nature and not vice versa.
The model shows that optimal food intake may
be expected to show adaptive changes during an
animal’s lifetime as the balances between the
costs and benefits of food intake changes. The
model further highlights that not all mortality
risks result in the same conclusions. In particu-
lar, a mortality risk of consumption, such as
parasitism and toxicity, which have previously
been largely overlooked in foraging studies, may
have important implications for an animal’s
lifetime feeding behaviour. Food intake costs
may play a role in interpreting observed
variations in food intake, such as infection-
induced anorexia (Exton, 1997; Kyriazakis et al.,
1998) or food related parasite avoidance (Hutch-
ings et al., 1999, 2000). Recent work suggests
that animals are aware of the costs of food
intake and can alter their feeding behaviour to
reduce the intake of parasites (Hutchings et al.,
2000). In fact, the effects of the costs of food
intake may be more far-reaching than suggested
by our simple model, since our results assume
that mortality acts immediately, and the effects
are not delayed until future breeding cycles.
With the incorporation of risks such as
parasitism, it is possible that a mortality risk
in one breeding cycle could have a continuing
effect in later breeding cycles, or not be felt until
much later on in the animal’s lifetime. The
importance of these time-delay effects could be
studied using dynamic programming, but is still
to be studied.
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It is obvious that the issues raised by this work
can only be developed by fully quantifying the
costs of food intake over an animal’s lifetime. To
date no work has been able to provide such data,
due perhaps to the considerable difficulties in
working on a life history time-scale. Future
studies, which look at food intake over an
animal’s lifetime and provide a comprehensive
evaluation of the mortality risks associated with
foraging, will undoubtedly progress our under-
standing of food intake regulation and the
factors underlying an animal’s foraging beha-
viour. Success is most likely with studies on
animals such as insects and laboratory mam-
mals, whose lifetime performance and mortality
risks can be evaluated on the time-scale of
months.
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risk which is a Poisson process, implying that the
contribution of additional food intake to the
mortality risk is independent of the current level
of food intake. Whilst the solutions for nf ¼ N

are qualitatively similar to those for nf ¼ 1; we
included the details here because realistic scenar-
ios are likely to lie somewhere between these two
cases.
When mortality is described by a Poisson

process the survival probability can be written
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PNðiÞ ¼ e�i p r�ð1�pÞ b; ðA:1Þ

where b ¼ aþ b is the overall background risk
of mortality. This is the limit of eqn (2) as
nf-N:

SEMELPARY

Using eqs (1) and (A.1) gives the lifetime
reproductive effort for a semelparous animal as,

LRE ¼ ði p � 1Þ e�i p r�ð1�pÞ b: ðA:2Þ

The maximum lifetime reproductive effort occurs
when the food intake rate over the breeding
cycle is

#ip ¼ 1þ
1

r
: ðA:3Þ

A more intuitive method of obtaining this result
[eqn (A.3)] is simply to regard foraging as a form
of gambling. An animal must gain enough food
units to meet maintenance requirements (#ip > 1)
as a prerequisite for reproduction. Once this has
been achieved and an animal has accumulated x
units of food over and above maintenance
requirements (x ¼ #ip � 1), its expected loss of
‘‘disposable’’ energy due to a risk of mortality
(i.e. energy available for reproduction) per unit
‘‘disposable’’ food foraged is xr: The animal
should stop foraging when its expected loss due
to the risk of mortality exceeds the gain (i.e.
when xr41), at which point x ¼ 1=r:
The optimal food intake rate, #i; given by

eqn (A.3) is the maximum of all possible optimal
food intakes [eqn (8)]. As shown by the dashed
line in Fig. 1(a), the optimal food intake rate for
a semelparous animal with survival described by
nf ¼ N is always greater than the corresponding
predictions when survival is described by nf ¼ 1:
Reducing the number of feeding bouts in a
breeding season or introducing more than one
breeding cycle both reduce the optimal food
intake rate.

ITEROPARY

When an animal is iteroparous, the lifetime
reproductive effort is given by substituting
eqn (A.1) into eqn (6) to give

LRE ¼
i p � 1

ei p rþð1�pÞ b � 1
: ðA:4Þ

Equation (A.4) is equivalent to a result obtained
by Houston & McNamara (1986) for an animal
foraging in a patchy environment, but here the
environment is the animal’s lifetime and each
patch is a breeding cycle.
The feeding rate, #i; which maximize the lifetime

reproductive effort is given by

#ip ¼ 1þ
1

r
ð1þ W0½�expð�KÞ	Þ ðA:5Þ

where K ¼ 1þ r þ ð1� pÞ b; and W0½x	 is the
principle branch of the Lambert W function
(Corless et al., 1996) evaluated at x: The Lambert
W function has a minimum of �1 when K ¼ 1
and a maximum of 0 when K ¼ N: So the
minimum optimal food intake rate is just
sufficient to meet maintenance requirements, #i ¼
1; whilst the maximum optimal food intake rate
is the same as the result for semelpary
[eqn (A.3)]. The optimal food intake rate given
by eqn (A.5) is a continuously decreasing
function of consumption mortality risk, r; and
an increasing function of background mortality
risk, b ¼ aþ b: This is in contrast to the result
for nf ¼ 1 [eqn (9)], where it was found that
optimal food intake could increase with increas-
ing background mortality risk, a; if a was
sufficiently small, B sufficiently close to unity
and consumption mortality risk was low,
r51 [Figs 1(b) and 2].
Unlike the result for semelpary [eqn (A.3)], the

background mortality risk now affects the
optimal intake rate. When mortality risk is high,
be it due to the background risk or the
consumption risk, the optimal feeding rate under
iteropary approaches the optimal feeding rate for
semelpary. This is because the animal’s first
breeding cycle dominates the lifetime reproduc-
tive effort at high mortality risks. As for
semelpary, the optimal food intake given by
eqn (A.5) is always greater than the optimal food
intake rate when survival is a linear function [eqn
(9)]. This implies that intake rate is more likely to
be maximized, subject to constraints, if survival
is described by a Poisson process.
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