
  

Serveur Académique Lausannois SERVAL serval.unil.ch 

Author Manuscript 
Faculty of Biology and Medicine Publication 

This paper has been peer-reviewed but does not include the final publisher 

proof-corrections or journal pagination. 

Published in final edited form as:  

 

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains 

an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. 
 

Title: Six new loci associated with body mass index highlight a 

neuronal influence on body weight regulation. 

Authors: Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, 

Berndt SI, Elliott AL, Jackson AU, Lamina C, Lettre G, Lim N, Lyon HN, 

McCarroll SA, Papadakis K, Qi L, Randall JC, Roccasecca RM, Sanna S, 

Scheet P, Weedon MN, Wheeler E, Zhao JH, Jacobs LC, Prokopenko I, 

Soranzo N, Tanaka T, Timpson NJ, Almgren P, Bennett A, Bergman RN, 

Bingham SA, Bonnycastle LL, Brown M, Burtt NP, Chines P, Coin L, 

Collins FS, Connell JM, Cooper C, Smith GD, Dennison EM, Deodhar P, 

Elliott P, Erdos MR, Estrada K, Evans DM, Gianniny L, Gieger C, Gillson 

CJ, Guiducci C, Hackett R, Hadley D, Hall AS, Havulinna AS, Hebebrand 

J, Hofman A, Isomaa B, Jacobs KB, Johnson T, Jousilahti P, Jovanovic Z, 

Khaw KT, Kraft P, Kuokkanen M, Kuusisto J, Laitinen J, Lakatta EG, Luan 

J, Luben RN, Mangino M, McArdle WL, Meitinger T, Mulas A, Munroe 

PB, Narisu N, Ness AR, Northstone K, O'Rahilly S, Purmann C, Rees MG, 

Ridderstråle M, Ring SM, Rivadeneira F, Ruokonen A, Sandhu MS, 

Saramies J, Scott LJ, Scuteri A, Silander K, Sims MA, Song K, Stephens J, 

Stevens S, Stringham HM, Tung YC, Valle TT, Van Duijn CM, 

Vimaleswaran KS, Vollenweider P, Waeber G, Wallace C, Watanabe 

RM, Waterworth DM, Watkins N, Wellcome Trust Case Control 

Consortium., Witteman JC, Zeggini E, Zhai G, Zillikens MC, Altshuler D, 



Six new loci associated with body mass index highlight a
neuronal influence on body weight regulation

Cristen J Willer1,77,78, Elizabeth K Speliotes2,3,77,78, Ruth J F Loos4,5,77,78, Shengxu
Li4,5,77,78, Cecilia M Lindgren6,78, Iris M Heid7,78, Sonja I Berndt8, Amanda L Elliott9,10,
Anne U Jackson1, Claudia Lamina7, Guillaume Lettre9,11, Noha Lim12, Helen N Lyon3,11,
Steven A McCarroll9,10, Konstantinos Papadakis13, Lu Qi14,15, Joshua C Randall6, Rosa
Maria Roccasecca16, Serena Sanna17, Paul Scheet18, Michael N Weedon19, Eleanor
Wheeler16, Jing Hua Zhao4,5, Leonie C Jacobs20, Inga Prokopenko6,21, Nicole Soranzo16,22,
Toshiko Tanaka23, Nicholas J Timpson24, Peter Almgren25, Amanda Bennett26, Richard N
Bergman27, Sheila A Bingham28,29, Lori L Bonnycastle30, Morris Brown31, Noël P Burtt9,
Peter Chines30, Lachlan Coin32, Francis S Collins30, John M Connell33, Cyrus Cooper34,
George Davey Smith24, Elaine M Dennison34, Parimal Deodhar30, Paul Elliott32, Michael R
Erdos30, Karol Estrada20, David M Evans24, Lauren Gianniny9, Christian Gieger7,
Christopher J Gillson4,5, Candace Guiducci9, Rachel Hackett9, David Hadley13, Alistair S
Hall35, Aki S Havulinna36, Johannes Hebebrand37, Albert Hofman38, Bo Isomaa39, Kevin B
Jacobs40, Toby Johnson41,42,43, Pekka Jousilahti36, Zorica Jovanovic5,44, Kay-Tee Khaw45,
Peter Kraft46, Mikko Kuokkanen9,47, Johanna Kuusisto48, Jaana Laitinen49, Edward G
Lakatta50, Jian'an Luan4,5, Robert N Luben45, Massimo Mangino51, Wendy L McArdle52,
Thomas Meitinger53,54, Antonella Mulas17, Patricia B Munroe55, Narisu Narisu30, Andrew R
Ness56, Kate Northstone52, Stephen O'Rahilly5,44, Carolin Purmann5,44, Matthew G Rees30,
Martin Ridderstråle57, Susan M Ring52, Fernando Rivadeneira20,38, Aimo Ruokonen58,
Manjinder S Sandhu4,45, Jouko Saramies59, Laura J Scott1, Angelo Scuteri60, Kaisa
Silander47, Matthew A Sims4,5, Kijoung Song12, Jonathan Stephens61, Suzanne Stevens51,
Heather M Stringham1, Y C Loraine Tung5,44, Timo T Valle62, Cornelia M Van Duijn38,
Karani S Vimaleswaran4,5, Peter Vollenweider63, Gerard Waeber63, Chris Wallace55,
Richard M Watanabe64, Dawn M Waterworth12, Nicholas Watkins61, The Wellcome Trust
Case Control Consortium76, Jacqueline C M Witteman38, Eleftheria Zeggini6, Guangju
Zhai22, M Carola Zillikens20, David Altshuler9,10, Mark J Caulfield55, Stephen J Chanock8, I
Sadaf Farooqi5,44, Luigi Ferrucci23, Jack M Guralnik65, Andrew T Hattersley66, Frank B
Hu14,15, Marjo-Riitta Jarvelin32, Markku Laakso48, Vincent Mooser12, Ken K Ong4,5, Willem
H Ouwehand16,61, Veikko Salomaa36, Nilesh J Samani51, Timothy D Spector22, Tiinamaija
Tuomi67,68, Jaakko Tuomilehto62, Manuela Uda17, André G Uitterlinden20,38, Nicholas J

© 2009 Nature America, Inc. All rights reserved.

Correspondence should be addressed to J.N.H. (joelh@broad.mit.edu), G.R.A. (goncalo@umich.edu), I.B. (ib1@sanger.ac.uk), M.
Boehnke (boehnke@umich.edu) or M.I.M. (mark.mccarthy@drl.ox.ac.uk)..
AUTHOR CONTRIBUTIONS
The writing team consisted of G.R.A., I.B., M.B., I.M.H., J.N.H., S.L., C.M.L., R.J.F.L., M.I.McC., E.K.S. and C.J.W. Full author
contributions and roles are listed in the Supplementary Note.
76A full list of members is provided in the Supplementary Note online.
77These authors contributed equally to this work.
78Members of the writing team.
79These authors jointly directed the project.
80All authors are members of the Genetic Investigation of ANthropometric Traits (GIANT) Consortium.

Note: Supplementary information is available on the Nature Genetics website.

COMPETING INTERESTS STATEMENT
The authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://
www.nature.com/naturegenetics/.

Reprints and permissions information is available online at http://npg.nature.com/ reprintsandpermissions/

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2009 July 01.

Published in final edited form as:
Nat Genet. 2009 January ; 41(1): 25–34. doi:10.1038/ng.287.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.nature.com/naturegenetics/
http://www.nature.com/naturegenetics/
http://npg.nature.com/reprintsandpermissions/


Wareham4,5, Panagiotis Deloukas16, Timothy M Frayling19, Leif C Groop25,69, Richard B
Hayes8, David J Hunter9,14,15,46, Karen L Mohlke70, Leena Peltonen9,16,71, David
Schlessinger72, David P Strachan13, H-Erich Wichmann7,73, Mark I McCarthy6,21,74,78,79,
Michael Boehnke1,78,79, Inês Barroso16,78,79, Gonçalo R Abecasis18,78,79, and Joel N
Hirschhorn3,11,75,78,79 for the GIANT Consortium80

1Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
48109, USA. 2Division of Gastroenterology, Massachusetts General Hospital, Boston,
Massachusetts 02114, USA. 3Metabolism Initiative and Program in Medical and Population
Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston,
Massachusetts 02142, USA. 4Medical Research Council Epidemiology Unit, Addenbrooke's
Hospital, Cambridge CB2 0QQ, UK. 5Institute of Metabolic Science, Addenbrooke's Hospital,
Cambridge CB2 0QQ, UK. 6Wellcome Trust Centre for Human Genetics, University of Oxford,
Oxford OX3 7BN, UK. 7Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter
Landstr. 1, 85764 Neuherberg, Germany. 8Division of Cancer Epidemiology and Genetics,
National Cancer Institute, National Institutes of Health, Department of Health and Human
Services, Bethesda, Maryland 20892, USA. 9Program in Medical and Population Genetics, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. 10Department of Molecular
Biology, Massachusetts General Hospital, Cambridge, Massachusetts 02144, USA. 11Program in
Genomics and Divisions of Endocrinology and Genetics, Children's Hospital, Boston,
Massachusetts 02115, USA. 12Medical Genetics/Clinical Pharmacology and Discovery Medicine,
King of Prussia, Pennsylvania 19406, USA. 13Division of Community Health Sciences, St.
George's, University of London, London SW17 0RE, UK. 14Department of Nutrition, Harvard
School of Public Health, Boston, Massachusetts 02115, USA. 15Channing Laboratory,
Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
16Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 17Istituto di
Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari 09042, Italy.
18Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor,
Michigan 48109, USA. 19Genetics of Complex Traits, Peninsula Medical School, Exeter EX1 2LU,
UK. 20Department of Internal Medicine, Erasmus MC, PO Box 2400, NL-3000-CA Rotterdam, The
Netherlands. 21Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford,
Churchill Hospital, Oxford OX3 7LJ, UK. 22Department of Twin Research and Genetic
Epidemiology, King's College London, London SE1 7EH, UK. 23National Institute of Aging,
Clinical Research Branch Longitudinal Studies Section, Baltimore, Maryland 21225, USA. 24MRC
Centre for Causal Analyses in Translational Epidemiology, Department of Social Medicine,
University of Bristol, Bristol BS8 2PR, UK. 25Lund University Diabetes Centre, Department of
Clinical Sciences, Lund University, 20502 Malmö, Sweden. 26DRL, OCDEM, Churchill Hospital,
Headington, Oxford OX3 7LJ, UK. 27Physiology and Biophysics, University of Southern California
School of Medicine, Los Angeles, California 90033, USA. 28MRC Dunn Human Nutrition Unit,
Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK. 29MRC Centre for Nutritional
Epidemiology in Cancer Prevention and Survival, Cambridge CB1 8RN, UK. 30National Human
Genome Research Institute, Bethesda, Maryland 20892, USA. 31Clinical Pharmacology Unit,
University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK. 32Department of
Epidemiology and Public Health, Imperial College London, St. Mary's Campus, Norfolk Place,
London W2 1PG, UK. 33British Heart Foundation Glasgow Cardiovascular Research Centre,
Faculty of Medicine, University of Glasgow, Glasgow G12 8TA, UK. 34MRC Epidemiology
Resource Centre, University of Southampton, Southampton General Hospital, Southampton
SO16 6YD, UK. 35Yorkshire Heart Centre, Leeds General Infirmary, Leeds LS1 3EX, UK. 36KTL-
National Public Health Institute, FI-00300 Helsinki, Finland. 37Department of Child and Adolescent
Psychiatry, University of Duisburg-Essen, Virchowstr. 174, 45147 Essen, Germany. 38Department
of Epidemiology, Erasmus MC, PO Box 2400, NL-3000-CA Rotterdam, The Netherlands.
39Folkhalsan Research Center, Malmska Municipal Health Center and Hospital, FIN-00014

Willer et al. Page 2

Nat Genet. Author manuscript; available in PMC 2009 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Jakobstad, Finland. 40Bioinformed Consulting Services, Gaithersburg, Maryland 20877, USA.
41Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland.
42University Institute for Social and Preventative Medicine, Centre Hospitalier Universitaire
Vaudois (CHUV), CH-1005 Lausanne, Switzerland. 43Swiss Institute of Bioinformatics, CH-1005
Lausanne, Switzerland. 44University of Cambridge Metabolic Research Laboratories,
Addenbrooke's Hospital, Cambridge CB2 0QQ, UK. 45Department of Public Health and Primary
Care, Institute of Public Health, University of Cambridge, Cambridge CB2 0SR, UK. 46Program in
Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts
02115, USA. 47Department of Molecular Medicine, National Public Health Institute, FIN-00300
Helsinki, Finland. 48Department of Medicine, University of Kuopio, 70210 Kuopio, Finland.
49Finnish Institute of Occupational Health, Aapistie 1, Fin-90220 Oulu, Finland. 50Laboratory of
Cardiovascular Science, Gerontology Research Center, National Institute on Aging, Baltimore,
Maryland 21224, USA. 51Department of Cardiovascular Sciences, University of Leicester, Clinical
Sciences, Glenfield General Hospital, Leicester LE3 9QP, UK. 52Avon Longitudinal Study of
Parents and Children (ALSPAC), Department of Social Medicine, University of Bristol, Bristol BS8
1TQ, UK. 53Institute of Human Genetics, Helmholtz Zentrum München, Ingolstaedter Landstr. 1,
85764 Neuherberg, Germany. 54Institute of Human Genetics, Technical University Munich,
D-81765, Munich, Germany. 55Clinical Pharmacology, The William Harvey Research Institute,
Bart's and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square,
London EC1M 6BQ, UK. 56Department of Oral & Dental Science, University of Bristol, Bristol BS1
2LY, UK. 57Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden.
58Department of Clinical Chemistry, University of Oulu, Fin-90220 Oulu, Finland. 59Savitaipale
Health Center, FIN-54800 Savitaipale, Finland. 60Unitá Operativa Geriatria, Istituto Nazionale
Ricovero e Cura Anziani, Rome 00189, Italy. 61Department of Haematology, University of
Cambridge/NHS Blood & Transplant, Cambridge CB2 2PR, UK. 62National Public Health Institute,
Department of Epidemiology and Health Promotion, Mannerheimintie 166, FIN-00300 Helsinki,
Finland. 63Department of Internal Medicine, BH-10 Centre Hospitalier Universitaire Vaudois
(CHUV), 1011 Lausanne, Switzerland. 64Department of Preventive Medicine, Division of
Biostatistics, Keck School of Medicine, University of Southern California, CHP-220, Los Angeles,
California 90089, USA. 65Laboratory of Epidemiology, Demography, and Biometry; Gerontology
Research Center, National Institute on Aging, Bethesda, Maryland 20892, USA. 66Peninsula
Medical School, Exeter EX5 2DW, UK. 67Department of Medicine, Helsinki University Central
Hospital, FIN-00290 Helsinki, Finland. 68Research Program of Molecular Medicine, University of
Helsinki, FIN-00014 Helsinki, Finland. 69Department of Medicine, Helsinki University, FIN-00029
Helsinki, Finland. 70Department of Genetics, University of North Carolina, CB #7264, Chapel Hill,
North Carolina 27599, USA. 71Institute of Molecular Medicine, University of Helsinki, FIN-00014
Helsinki, Finland. 72Laboratory of Genetics, US National Institutes of Health Biomedical Research
Center, National Institute on Aging, Baltimore, Maryland 21224, USA. 73Institute of Medical
Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University München,
Marchioninistr. 15, 81377 München, Germany. 74National Institute for Health Research, Oxford
Biomedical Research Centre, University of Oxford, Old Road, Headington, Oxford OX3 7LJ, UK.
75Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body
mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15
genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14
additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional
loci (P < 5 × 10−8): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb
deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly
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expressed or known to act in the central nervous system (CNS), emphasizing, as in rare
monogenic forms of obesity, the role of the CNS in predisposition to obesity.

Obesity is a major public health problem, resulting in increased morbidity and mortality and
severe economic burdens on health-care systems1,2. Excessive energy intake and
diminished physical activity contribute to the increasing prevalence of obesity, but genetic
factors strongly modulate the impact of the modern environment on each individual. Indeed,
family and twin studies have shown that genetic factors account for 40–70% of the
population variation in BMI3,4. BMI is the most commonly used quantitative measure of
adiposity, and adults with high values of BMI (>30 kg/m2) are termed obese.

Until recently, genetic variants known to influence BMI were largely restricted to mutations
in several genes that cause rare, often severe monogenic syndromes with obesity as the main
feature5. Mutations in these genes are thought to act through the CNS, and in particular the
hypothalamus, to influence energy balance and appetite, thereby leading to obesity.
However, it is not known whether genetic variation in similar pathways is also relevant to
the common form of obesity and population variation in BMI.

In the past year, large-scale searches for genetic determinants of BMI revealed previously
unreported associations with common variants at two loci, FTO and MC4R6-10. Common
variants at these loci are associated with modest effects on BMI (0.2–0.4 kg/m2 per allele)
that translate into odds ratios of 1.1–1.3 for obesity (defined as BMI ≥ 30 kg/m2)6-10.
Common variation in PCSK1 has been strongly associated with the risk of extreme
obesity11, but this association has not yet been independently replicated.

Together, common variants at FTO and MC4R and rare variants known to cause obesity
explain only a small fraction of the inherited contribution to population variation in BMI. To
expedite the identification of alleles associated with variation in BMI, obesity and other
anthropometric traits, we formed the GIANT (Genetic Investigation of ANthropometric
Traits) consortium to facilitate large-scale meta-analysis of data from multiple genome-wide
association studies (GWAS). Here, we report a meta-analysis of 15 GWAS totaling 32,387
individuals and test for association between BMI and ~2.4 million genotyped or imputed
SNPs. We then follow up 35 SNPs drawn from the most significantly associated loci by a
combination of de novo genotyping in up to 45,018 additional individuals and analysis of
these SNPs in another 14,064 individuals already genotyped as part of other GWAS. These
studies show that variants at six previously unreported loci in or near TMEM18, KCTD15,
SH2B1, MTCH2, GNPDA2 and NEGR1 are reproducibly associated with BMI.

RESULTS
Initial meta-analysis of GWAS studies of BMI (stage 1)

We carried out a GWA meta-analysis of a total of 32,387 individuals of European ancestry
from 15 cohorts of 1,094 to 5,433 individuals using two parallel analytic strategies
(Supplementary Fig. 1 and Supplementary Tables 1–3 online). First, we carried out a
weighted z-score–based meta-analysis combining P values from cohort-specific analysis
strategies. Second, we also performed an inverse-variance meta-analysis using regression
coefficients and their standard errors obtained by applying a uniform analysis strategy across
all studies. The results for these two strategies were highly congruent (Supplementary Fig. 2
online). Here we report results of the weighted P value analysis, as it was completed first
and used to select SNPs for follow-up genotyping.

SNPs that reached P < 5 × 10−8 (a threshold that corresponds to P < 0.05 after adjusting for
~1 million independent tests) in this stage 1 analysis all mapped within the FTO gene
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(association peak at rs1421085, P = 2.6 × 10−19), were in linkage disequilibrium (LD) with
each other (r2 > 0.51), and strongly confirm previous reports of association at this locus6-8.
A locus located near MC4R (rs17782313, P = 3.9 × 10−7) and recently associated with
BMI9,10 was the fourth most significant region in the stage 1 data (Fig. 1). Even after
excluding SNPs in these two established BMI loci, we observed an excess of SNPs with
small P values compared to chance expectations, suggesting that some of the remaining loci
with strong but not definitive evidence of association in stage 1 are truly associated with
BMI (Fig. 1b).

Additional analysis of the strongest associations (stage 2)
To validate potential associations with BMI, we designed a pool of 35 variants for further
genotyping, drawn from among the most strongly associated independent loci (for technical
reasons, these SNPs do not correspond perfectly to the top 35 loci; see Methods). We
genotyped these SNPs in up to 45,018 additional individuals of European ancestry from nine
stage 2 samples (Supplementary Fig. 1, Supplementary Tables 1 and 4 and Supplementary
Note online). We also obtained in silico association results for these SNPs from five BMI
GWAS on 14,064 additional individuals of European ancestry (Supplementary Fig. 1,
Supplementary Tables 1 and 4 and Supplementary Note). Meta-analysis of these stage 2
results combined with stage 1 data revealed SNPs from five previously unreported loci near
TMEM18, KCTD15, SH2B1, MTCH2 and GNPDA2 that are strongly associated with BMI
(P < 5 × 10−8; Table 1, Fig. 2 and Supplementary Table 5 online). Two additional loci,
represented by rs2815752 (near NEGR1) and rs10769908 (near STK33) had supporting
evidence in stage 2 samples but did not reach the P < 5 × 10−8 threshold (P = 6.0 × 10−8 and
P = 1.3 × 10−6, respectively). Among these two, rs2815752 also showed a highly significant
independent association with severe obesity in a pediatric cohort (P = 2.2 × 10−7;
Supplementary Table 6 online), strongly suggesting that this variant represents a sixth newly
discovered locus influencing BMI. For each of the six loci, multiple SNPs showed highly
significant association in the stage 1 data (Fig. 2), and the associations were observed across
multiple cohorts genotyped on different platforms (Supplementary Table 7 online),
suggesting that idiosyncratic genotyping artifacts are unlikely to explain our results.
Furthermore, the consistent association signals across different European-ancestry samples,
each with low genomic control inflation factors (Supplementary Table 3), also suggest that
population structure is unlikely to account for these associations. Finally, five of the six
associated variants (near TMEM18, KCTD15, SH2B1, MTCH2 and NEGR1, but not
GNPDA2) had Illumina proxies in high LD (r2 > 0.66) with our best SNPs that were
included in an independent GWAS by Thorleifsson et al.12; for all five, they observed
confirmatory evidence of association with BMI (Table 1), providing strong validation of
these newly discovered associations.

Of the variants showing strong association with BMI, only rs9939609 (in FTO) showed
nominally significant evidence of heterogeneity across cohorts (P = 0.02, Supplementary
Table 5), and none of the associations showed significantly different effects by sex (P >
0.16, Supplementary Table 5). We did not observe any significant evidence supporting the
recently reported BMI associations with SNPs near INSIG2 (rs7566605, P = 0.98) and
CTNNBL1 (rs6013029, P = 0.34)13,14. We did observe modest evidence for association
between BMI and variation in PCSK1 (rs6232, P = 0.03 in the appropriate direction), which
has previously been associated with severe obesity11.

Impact on BMI, obesity, related traits and complications
The effects of the associated variants on BMI were estimated using data solely from
genotyped stage 2 samples, to lessen the impact of the ‘winner's curse’; they ranged from
0.06 kg/m2 to 0.33 kg/m2 per allele, corresponding to a change of 173–954 g in weight per
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allele in adults who are 160–180 cm tall (Table 1). In our stage 2 samples, the six newly
discovered loci together account for 0.40% of the variance of BMI, and in conjunction with
the known associations at FTO and MC4R account for 0.84% of the variance (Table 1). We
also estimated the allelic odds ratios for these six newly discovered variants on the risk of
being overweight (BMI ≥ 25 kg/m2) or obese (BMI ≥ 30 kg/m2) compared to non-
overweight controls (BMI < 25 kg/m2). According to data from the newly genotyped stage 2
samples, the allelic odds ratios for being overweight for each of the six variants ranged from
1.03 to 1.14, and for being obese from 1.03 to 1.25 (Supplementary Table 8 online).

To estimate the combined impact of these variants on BMI, we examined our largest
population-based stage 2 sample (the EPIC–Norfolk cohort), analyzing the 14,409
individuals who had no missing genotypes for associated SNPs at any of the eight validated
loci (TMEM18, KCTD15, SH2B1, MTCH2, NEGR1 and GNPDA2, plus FTO and MC4R).
We calculated a genotype score for each individual, weighting the number of BMI-
increasing alleles by their relative effect sizes (so that FTO alleles had the largest weight and
MTCH2 alleles the smallest). In this cohort, the 1.2% (n = 178) of the sample with 13 or
more ‘standardized’ BMI-increasing alleles across these eight loci is on average 1.46 kg/m2

(equivalent to 3.7–4.7 kg for an adult 160–180 cm in height) heavier than the 1.4% (n = 205)
of the sample with ≤3 standardized BMI-increasing alleles, and 0.59 kg/m2 (1.5–1.9 kg for
an adult 160–180 cm in height) heavier than the average individual in our study (Fig. 3).

Further follow-up of the confirmed SNPs in a large geographically based cohort of children
(ALSPAC Study, n = 4,951 children with BMI information at age 11) showed significant
and directionally consistent associations between BMI and the variants near TMEM18 (P =
3.4 × 10−5), KCTD15 (P = 0.0010) and GNPDA2 (P = 0.018) (Supplementary Table 6).
Comparison of extreme childhood obesity cases (n = 1,308, SCOOP-UK) to all children in
the ALSPAC cohort (n = 8,369 in the full cohort) revealed an increased risk of extreme
childhood obesity for the BMI-increasing alleles near TMEM18 (OR = 1.41, P = 7.9 ×
10−7), GNPDA2 (OR = 1.20, P = 1.5 × 10−4) and NEGR1 (OR = 1.29, P = 2.2 × 10−7). The
absense of significant associations with childhood BMI or extreme childhood obesity for the
variants near MTCH2 and SH2B1 could reflect the relatively smaller sample sizes and lower
statistical power of our childhood cohorts, or perhaps a differential effect of these variants
on the risk of childhood and adult-onset obesity.

Although BMI is a well accepted and commonly used measure of obesity, it is an indirect
and approximate measure of adiposity. BMI has two components, weight and height, and
can also be influenced by lean and/or fat mass. To determine which aspect(s) of BMI are
influenced by the variants we identified, we analyzed their association with the different
anthropometric components of BMI, and also with a more direct measure of adiposity,
percentage fat mass. All of the variants had much stronger associations with weight than
with height (Supplementary Tables 6 and 8), with the exception that for KCTD15 and
MTCH2 the small effects on BMI in stage 2 samples limited our ability to dissect the effect
on BMI into its constituent components. Variation at MC4R was significantly associated
with adult height, as previously reported9. To measure more directly the effects on
adiposity, we tested these variants for association with percentage fat mass in a meta-
analysis of three cohorts of adults in which percent fat mass was assessed (EPIC-Norfolk,
Botnia PPP and METSIM; total n = 18,279), and also in the children from ALSPAC in
whom percent body fat mass was measured at age 11 (n = 4,876). As was seen previously
for FTO and MC4R7,9, the BMI-increasing alleles at all new loci were also associated with
or trended with increased fat mass in both the combined samples of adults and the childhood
cohort (Supplementary Tables 6 and 8; each variant had a P value <0.1 in the appropriate
direction in either adults, children or both). Thus, the associations with BMI are largely
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driven by effects on weight rather than height, and seem to act at least in part through an
effect on adiposity.

We used publicly available results of GWAS for known obesity complications, including
type 2 diabetes15, lipid levels16 and coronary artery disease (CAD)17,18, to assess the
impact of the newly discovered obesity loci on these traits. Two of the loci were associated
with diabetes15: GNPDA2 (P = 6.6 × 10−5) and TMEM18 (P = 7.5 × 10−4) (Supplementary
Table 8). Most of the BMI-associated variants were not significantly associated with these
BMI-related traits, most likely because of low power to detect very small effects in the
public datasets and the incomplete correlation between BMI and these traits19.

Impact of copy number polymorphism (CNP) on BMI
A large fraction of human copy number variation arises from common, diallellic
polymorphisms20. Most of these CNPs are in LD with adjacent SNPs, so their contribution
to phenotypes can be assessed via these SNPs20. We used these SNP–CNP LD relationships
to assess the extent to which this subset of human copy number variation might influence
BMI (see Methods). The distribution of BMI association P values in stage 1 samples for
CNP-tagging SNPs conforms closely to the distribution expected under the null hypothesis,
except for a single SNP (rs2815752, P = 9.3 × 10−6) (Fig. 4a).

We noticed that this SNP is the most strongly associated variant at one of our six validated
loci, NEGR1. To understand better common patterns of structural variation at NEGR1, we
analyzed hybridization data from 270 HapMap samples, finding that two distinct genomic
segments upstream of NEGR1 are copy number variable (Fig. 4b). Haplotype analysis
indicated that two deletion polymorphisms—a 10-kb deletion and a 45-kb deletion—are
segregating at the locus on distinct haplotypes (Fig. 4c). The two most significantly BMI-
associated SNPs immediately flank the 45-kb deletion and are in perfect LD with it (r2 =
1.0) across all HapMap analysis panels. Indeed, what initially seemed to be a long associated
haplotype (the 47.3 kb spanned by these SNPs on the reference genome sequence) is in fact
a short haplotype whose major feature is the absence of 45.6 kb of the reference sequence
(Fig. 4c). The 45-kb deletion is therefore a strong candidate to explain the association signal
at NEGR1. Although the deletion region consists entirely of noncoding sequence, the
deletion allele lacks several conserved elements upstream of NEGR1 that are present on the
other structural haplotypes at the locus (Fig. 4c).

Possible role in the CNS of genes near associated variants
The newly discovered variants showing strong associations with BMI lie in or downstream
of KCTD15, SH2B1, TMEM18, MTCH2 and GNPDA2, and upstream of NEGR1 (Fig. 2).
SH2B1 is a strong prior candidate for regulating body weight. SH2B1 is implicated in leptin
signaling21, and Sh2b1-null mice are obese21. Notably, the obesity in Sh2b1-null mice can
be reversed by targeted Sh2b1 expression in neurons21, suggesting that the effects of this
gene on obesity are mediated through the CNS. KCTD15, TMEM18 and GNPDA2 have
unknown functions, whereas MTCH2 encodes a putative mitochondrial carrier protein that
may function in cellular apoptosis22,23, and NEGR1 has a role in neuronal outgrowth24,25.
Although fine mapping and other experimental approaches will be required to identify and
confirm the causal variant(s) and gene(s) for each locus, we note that, with the exception of
SH2B1, our newly associated loci do not include obvious or previously studied candidate
genes26. Thus, a large sample size and an unbiased genome-wide approach has not only
increased the number of known obesity loci, but also highlighted new aspects of the biology
of body weight regulation.
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To provide additional data on where these genes may function, we measured the expression
of the genes nearest to our best SNP association signals in a panel of different human
tissues. We found that, in our data, all genes except MTCH2 were highly expressed in the
brain and/or hypothalamus (Supplementary Fig. 3 online). Additionally, MTCH2 mRNA
expression is observed in the brain in publicly available expression data27, and in these data,
variant rs17788930 (r2 = 1 with lead SNP rs10838738) was associated (P = 1.3 × 10−6) with
MTCH2 mRNA levels (Supplementary Table 8). These expression data suggest that, as is
seen in monogenic forms of obesity, inherited variation influences common human obesity
through effects in the CNS, although effects in other tissues for at least some of these genes
remain possible.

DISCUSSION
Through meta-analysis of GWA data from >32,000 samples, followed by additional large-
scale follow-up, we have identified six new loci that show compelling associations with
adult BMI. Four of these loci (TMEM18, GNPDA2, SH2B1 and NEGR1) also show
compelling evidence of association with obesity in adults or children. In general, definitive
identification of the specific mechanisms through which these loci influence BMI and
obesity will require detailed fine mapping and subsequent functional characterization. With
the exception of SH2B1, the genes most strongly implicated on the basis of colocalization
with the association signal have limited prior candidacy.

We compared our results with those obtained in another large GWAS of BMI, described in
an accompanying manuscript by Thorleifsson et al.12. For the five of our six newly
identified loci where a comparison was possible (those that had strongly correlated proxies
on the Illumina 317K genotyping platform at TMEM18, KCTD15, SH2B1, MTCH2 and
NEGR1), the data of Thorleifsson et al. also showed strong evidence of association (Table
1); for GNPDA2, no adequate proxy was available. None of the other top SNPs for which
we attempted replication and which had adequate proxies showed evidence of associations
in the study by Thorleifsson et al. (Supplementary Table 5; results provided by U.
Thorsteinsdottir, G. Thorleifsson and K. Stefansson on behalf of Thorleifsson et al.). After
the six validated loci (and SNPs in LD with them) were removed from our analysis, we no
longer observed a clear excess of P values smaller than expected by chance (Fig. 1c). One
might conclude from this that few detectable BMI loci remain to be found. However, we are
encouraged in further pursuit because among the remaining data are two additional loci
reported by Thorleifsson et al. (BDNF and ETV5); both of these loci show strong
confirming evidence for association in our stage 1 meta-analysis (P values of 0.00035 and
0.00043).

Many of our associated loci highlight genes that are highly expressed in the brain (and
several particularly so in the hypothalamus), consistent with an important role for CNS
processes in weight regulation. We found that TMEM18, KCTD15, SH2B1, GNPDA2 and
NEGR1 are expressed at high levels in brain and hypothalamus (as are FTO and MC4R;
Supplementary Fig. 3). The remaining gene, MTCH2, has evidence of expression in the
brain in published data27, as does BDNF28, a locus identified by Thorleifsson et al.12.
These results extend and confirm previous observations with respect to FTO and MC4R, and
are consistent with insights derived from monogenic forms of obesity and functional studies.
Disruption in mice of Mc4r, Sh2b1 and Bdnf (all genes that seem to be involved in signaling
in the brain) results in hyperphagia and/or obesity, and both Fto and Sh2b1 show diet- or
obesity-related changes in expression in hypothalamus21,29-34. Further general support for
a neuronal basis for obesity comes from the observation that NEGR1 is thought to affect
neuronal outgrowth24,25. Finally, the effect of variants that map to a gene desert between
GNPDA2 (Supplementary Fig. 3) and GABRA2 (ref. 35) might be mediated by GABRA2,
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which affects addiction behavior36-38. Abundant evidence supports multiple possible roles
of the CNS on body weight regulation, including on appetite, energy expenditure and other
behavioral aspects39. Determining the precise mechanism of action of these loci will require
further experimentation.

Our analyses explicitly interrogate only a minority of common sequence variants in a given
region; we expect therefore that the causal variant is, for some loci at least, yet to be
examined. Although many variants are strongly correlated at each locus, precluding
definitive identification of a causal variant, several loci have intriguing candidates. These
include a large polymorphic deletion in the association interval upstream of NEGR1 (Fig. 4),
and missense variants rs7498665 (A484T) at SH2B1 (r2 = 0.71 to best SNP) and rs1064608
(A290P) at MTCH2 (r2 = 1.0 to best SNP), which also disrupts a predicted SC35 exonic
splicing enhancer site40,41.

We cannot be sure which of the nearby genes are causally involved in influencing BMI. As a
source of additional clues to likely causal mechanisms, we exploited publicly available
eQTL data for lymphocytes42 and brain27, and tested for association between the eight
replicated variants and mRNA levels of the nearby genes (Supplementary Fig. 3 and
Supplementary Table 9 online). Other than variants in the MTCH2 locus (associated with
MTCH2 mRNA levels in brain and NDUFS3 levels in lymphocytes) and in the SH2B1
locus (associated with EIF3C levels in lymphocytes and brain and with TUFM levels in
lymphocytes only), these studies did not yield indications of the likely causal gene(s). The
SH2B1 result also illustrates some of the difficulties in interpreting associations with gene
expression levels, as the presence of a missense SNP in SH2B1 and the strong prior
candidacy of this gene would seem to implicate strongly alteration in SH2B1 function as the
causal mechanism for influencing obesity. One possibility is that the SH2B1 variant has a
causal role but happens to be in LD with a different variant that influences EIF3C and
TUFM mRNA levels; alternatively, regulation of EIF3C or TUFM mRNA levels could have
a causal role, instead of or in addition to variation in SH2B1.

Logistically, one important challenge in executing our study was coordinating analysis
strategies and phenotype modeling across 15 different cohorts, each with specific
genotyping, phenotyping, trait modeling and analytical strategies. Given this challenge, we
decided to start by carrying out a meta-analysis of results from study-specific analyses,
relying only on knowledge of the BMI-increasing allele and P value for each study, before
completing a uniform analysis across all studies. Notably, we found very similar results
between the study-specific analysis, in which different adjustments for covariates and
analytical procedures were performed in different studies, and the uniform analysis, in
which these procedures were harmonized across all studies (Supplementary Fig. 2). Thus, at
least for this phenotype, the association analysis is robust enough to differences in
phenotypic modeling so that differences in study design or analytic strategies do not
preclude discovery of new loci using meta-analysis.

The effect sizes attributable to the associated variants range from 0.06 to 0.33 BMI units per
allele, and each explains only a small proportion of the variance in adult BMI. As might be
expected, given these modest effects and the smaller size of the relevant available datasets,
we did not consistently observe measurable effects on the risk of diseases in which obesity is
one of several contributing factors (such as type 2 diabetes). It is also possible that some of
these variants influence BMI but have negligible effects on the downstream risk of obesity-
related disease. Despite these small effects on BMI, when we combined information from
the eight validated loci, we were able to identify small groups of individuals who differ
appreciably with respect to mean BMI. However, at the population level, the value of these
signals in predicting obesity remains quite limited (Supplementary Fig. 4 online).
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These results raise the question as to why the variants detected in this large study only
explain a small fraction of the inherited variability in BMI. There are several possible
explanations, which require further experimentation to explore. First, there may be many
more loci with common variants that influence BMI. We can predict that additional loci will
be discovered by similarly sized studies in new samples: because we had only 5–10% power
to detect variants such as those at KCTD15, MTCH2 and NEGR1, dozens of additional
variants with comparable effect sizes likely remain unidentified. The number of common
variants with smaller effects, and which might be detected with larger samples, is harder to
predict, as this depends on the allelic architecture; if the number of causal variants increases
as effect sizes decrease, then increasing sample size will be especially productive.
Modifying effects such as interactions with environmental factors, other genetic variants,
age, sex or other variables may, if substantial, also diminish apparent effect sizes, so detailed
analyses of interaction with validated variants may be informative. Finally, other than the
MC4R coding region, these loci have not yet been explored thoroughly for additional rare
(or common) variants. As such, it is not known whether additional variants at these loci
(those causal for the index association or those representing independent causal events)
could explain a greater fraction of BMI variation. There are a growing number of examples,
including at MC4R, where genes containing common variants associated with a particular
phenotype also harbor lower-frequency, higher-penetrance variants with more severe
phenotypic consequences16,43-46. Comprehensive sequencing studies in these and other
loci (perhaps in individuals with extreme obesity) may represent a path to finding such
variants and beginning to explore the relative contributions of common and rare variation to
BMI. Discovering additional variants will slowly increase predictive power. However, a
greater immediate impact of these studies is the identification of previously unsuspected loci
that participate in the biology of body weight regulation, and which may help guide the
development of new therapies.

METHODS
Study design

This study is comprised of two stages. Stage 1 is a meta-analysis of GWA studies comprised
of 32,387 individuals of European ancestry. This meta-analysis allowed us to select 35 loci
for detailed examination in stage 2, which included direct genotyping in 45,018 European-
origin individuals from nine studies and in silico comparisons with results from 14,064
European-origin individuals from five studies with GWA data (Supplementary Fig. 1 and
Supplementary Table 1).

Stage 1 samples and genotyping
The GIANT consortium currently encompasses 15 study cohorts with 32,387 individuals of
European ancestry informative for adult BMI (Supplementary Fig. 1 and Supplementary
Table 1). The 15 study cohorts, including between 1,094 and 5,433 individuals each, were
genotyped using the Affymetrix 500K Mapping Array Set (11 cohorts, n = 25,394), Illumina
HumanHap300 BeadChip (2 cohorts, n = 2,385), Illumina HumanHap300+240 (1 cohort, n
= 2,235) or Illumina HumanHap 550 BeadChip (1 cohort, n = 2,265) (Supplementary Tables
2 and 3). To allow for meta-analysis across different marker sets and to improve coverage of
the genome, we performed imputation of polymorphic HapMap CEU SNPs (Supplementary
Note and Supplementary Table 3) using either MACH (Y. Li, C.J.W., J. Ding, P.S. and
G.R.A., unpublished data) or IMPUTE47.

Association analysis with BMI and meta-analysis of association results
First, each study performed GWA analyses for BMI assuming an additive model
implemented in either MACH2QTL (Y. Li, C.J.W., J. Ding, P.S. and G.R.A., unpublished
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data), Merlin48,49 or SNPTEST47. Covariates, trait transformation and strategies for
excluding outliers or accounting for family relatedness varied according to each study's
original design (Supplementary Tables 2 and 3), but the main results were essentially
unchanged when we repeated meta-analysis after imposing a uniform set of analyses and
procedures across the 15 study cohorts. For those samples based around case-control designs
(such as those from FUSION and from the type 2 diabetes, coronary artery disease, and
hypertension components of the Wellcome Trust Case Control Consortium), cases were
analyzed separately from controls. To allow for relatedness in the SardiNIA and FUSION
samples, regression coefficients were estimated in the context of a variance component
model that modeled background polygenic effects49.

Next, we carried out meta-analysis using a weighted z-score method, which accounts for the
direction of association relative to a consistent reference allele. In this method, P values for
each study are first converted to z scores. Then, a weighted sum of z scores is calculated
where each statistic is weighted by the square root of the sample size for each study. The
resulting sum is divided by the square root of the total sample size to obtain an overall z
statistic, which can be used to evaluate the overall evidence for association. The method
takes direction of effect across studies into account by reversing the sign of the z score for a
study if the effect is in the opposite direction. We obtained similar results when we analyzed
each cohort using a uniform protocol (which involved a quantile transformation to
approximate normality and adjusting for age and age2 in men and women separately) and
combined the results using the regression coefficients and standard errors estimated from
each study (Supplementary Fig. 2; Pearson correlation r = 0.91). Both meta-analysis
procedures were implemented in the freely available METAL software package. The
genomic control parameter λ was 1.10 in our initial meta-analysis without using genomic
control correction in any study except SardiNIA, which, given our large sample size,
suggests only a modest impact of unmodeled relatedness or population stratification in our
results. The P values we report have all subsequently been corrected for this unmodeled
relatedness or population stratification by application of a genomic control correction to all
input studies as well as to the meta-analysis results.

Selection of SNPs for follow-up
For follow-up analyses (stage 2), we genotyped 35 SNPs drawn from the most significantly
associated independent loci. We defined signals at two SNPs to be independent of each other
if the SNPs were in low LD (r2 < 0.3) or if they were >1 Mb apart. In some cases, the SNP
with the strongest signal of association at a locus could not be genotyped for technical
reasons, and we substituted another SNP that was strongly correlated with the original SNP
in the HapMap CEU sample (Supplementary Note). Because SNP selection was based on an
earlier version of the meta-analysis and because some SNPs failed primer design, not all of
the top signals were represented among the 35 SNPs. Among the SNPs that were followed
up, the highest stage 1 P value was 6.9 × 10−4.

Stage 2 samples and genotyping
We genotyped 35 SNPs in a total of 45,018 individuals of European ancestry from nine
study cohorts using Sequenom iPLEX or TaqMan (Supplementary Note). Individuals were
eliminated from analysis if <80% of SNPs were called successfully. Among successfully
typed individuals, genotype frequencies were in Hardy-Weinberg equilibrium (P > 10−6),
call rates were >94%, and concordance of duplicate genotypes was >99% in each of the
follow-up study cohorts.

For in silico replication, we also obtained association results for 35 SNPs from 14,064
individuals of European ancestry from five studies (Supplementary Table 1). The five study
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cohorts, each including 856 to 5,373 individuals, were genotyped using the Illumina
HumanHap 550, 300 or Illumina Human CNV370 DUO (Supplementary Tables 2 and 3).
To allow for meta-analysis across different marker sets and to improve coverage of the
genome, we carried out imputation of polymorphic (minor allele frequency >1%) autosomal
HapMap SNPs (Supplementary Note and Supplementary Table 3) using either MACH or
IMPUTE with the HapMap CEU sample as a reference panel. We accounted for uncertainty
in each genotype prediction in the analysis of imputed genotype data by using either the
dosage information from MACH or the genotype probabilities from IMPUTE. Stage 1 and 2
results for FTO and MC4R are not presented directly in the main text but are shown for
comparison in Supplementary Table 5 and Supplementary Figure 5 online.

Association analyses with BMI and secondary analyses
Association with BMI was tested as in stage 1, assuming an additive model. Logistic
regression analysis was used to test for association with the risk of being overweight
(defined as BMI ≥ 25 kg/m2) or obese (BMI ≥ 30 kg/m2), with adjustment for age, age2, and
sex, testing for SNP effects in an additive genetic model. Evidence for association between
our replicating SNPs and type 2 diabetes15, lipidlevels16 and coronary artery disease17,18
was extracted from publicly available datasets. The effect of the replicating SNPs on
expression of nearby genes was determined from publicly available eQTL GWA studies
from lymphocytes42 and brain tissue27.

Gene expression studies
Adult human RNA samples were obtained from Clontech either as poly(A) purified RNA
(hypothalamus and adipocyte) or as total RNA (cerebellum, cortex, spleen, pancreas, lung,
kidney, liver, testes and total brain). The total RNAs were purified to poly-A RNA using the
Micro-Poly(A)Purist kit (Ambion) according to manufacturer's instructions. We used 20 ng
of poly(A) RNA in a random-primed first-strand cDNA synthesis using SuperScript II
(Invitrogen) according to manufacturer's instructions. The resulting cDNAs were diluted
fourfold, and 5 μl of each sample were used in 12 μl reaction with SYBR Green PCR
Master Mix kit (Applied Biosystems). Quantitative PCR reactions were done in triplicate on
an ABI 7900HT (Applied Biosystems). We calculated expression levels from their average
crossing points and expressed relative to the control gene EEF2 (elongation factor 2) and
normalized to levels of gene-specific expression in total brain.

CNV analyses
We previously typed 1,350 copy number polymorphisms (CNPs) in the HapMap analysis
panels; 360 of these CNPs were found to be common (minor allele frequency >5%) in
individuals with European ancestry (HapMap CEU), explaining more than 80% of the copy
number differences between any two individuals. 323 common CNPs seemed to be diallelic,
and of these 261 were in strong LD with HapMap SNPs that are close to, but do not overlap,
the CNPs20. For the current work, for each of these common, diallelic CNPs, we identified
(from among the SNPs successfully typed or imputed in the GIANT meta-analysis) the SNP
that best captured each CNP via LD in HapMap CEU. This formed the set of 261 ‘CNP-
tagging SNPs’ that were used for analysis here; we used the GIANT meta-analysis P values
for these SNPs.

At the NEGR1 locus, we found that the 10-kb deletion, the 45-kb deletion and the reference
structural allele at NEGR1 each have perfect tagging SNPs (r2 = 1.0) in the HapMap CEU
sample. In constructing Figure 4c, we colored each SNP according to which of these
structural-allele-tagging SNPs it showed the strongest LD with in HapMap CEU. Locations
of conserved elements were obtained from the phastConsElements17way track of the UCSC
Genome Browser. A threshold score of 300 was set for inclusion in this figure.
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URLs
MaCH, http://www.sph.umich.edu/csg/abecasis/mach/. METAL, http://www.sph.umich.edu/
csg/abecasis/metal/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genome-wide association results for GIANT (stage 1). (a) Manhattan plot showing the
significance of association of all SNPs in the stage 1 GIANT meta-analysis with BMI. SNPs
are plotted on the x axis according to their position on each chromosome; association with
BMI is indicated on the y axis (as −log10 P value). SNPs previously reported to show
association with BMI are shown in blue, signals examined but not confirmed in stage 2
samples are shown in red and the six new regions described here are highlighted in green.
(b) Quantile-quantile plot of SNPs after stage 1 GIANT meta-analysis (black) and after
removal of any SNPs within 500 kb of FTO- or MC4R-associated SNPs (blue). (c) Quantile-
quantile plot of SNPs in the stage 1 GIANT meta-analysis for association with BMI (black)
and after removal any SNPs surrounding FTO, MC4R and the six new loci reported here
(green).

Willer et al. Page 16

Nat Genet. Author manuscript; available in PMC 2009 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2.
Regional association plots showing signals in stage 1 samples for replicating loci around
TMEM18, GNPDA2, SH2B1, MTCH2, KCTD15 and NEGR1. (a–f) SNPs are plotted by
position on chromosome against association with BMI (−log10 P value). The figures
highlight the most significant SNP after stage 1 meta-analysis (in purple) and the SNP
selected for follow-up (diamond) in stage 2 analyses, labeled with its combined P value
(stage 1 + stage 2). In most cases, the SNP followed up is the most significant SNP in the
region (therefore, a purple diamond). Otherwise, the LD between the followed-up SNP and
the most significant SNP in the region is indicated by the color of the diamond. Estimated
recombination rates (from HapMap) are plotted in cyan to reflect the local LD structure. The
SNPs surrounding the most significant SNP (purple diamond) are color-coded to reflect their
LD with this SNP as in the inset (taken from pairwise r2 values from the HapMap CEU
database). Genes and the position of exons, as well as the direction of transcription, are
noted below the plots (data from UCSC genome browser) with a gray area marking the
extent of the region that includes any SNP with r2 ≥ 0.3 relative to the most significant SNP
(purple diamond). Hashmarks represent SNP positions on each genotyping array used by
any individual study and also show SNP positions after imputation. In e, rs11084753 was
selected as the reference SNP for the KCTD15 region and shows essentially identical results
to rs415237. The two SNPs are virtually superimposed on the association plot.

Willer et al. Page 17

Nat Genet. Author manuscript; available in PMC 2009 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3.
Combined impact of risk alleles on average BMI in the population-based EPIC-Norfolk
cohort. All eight confirmed SNPs were successfully genotyped in the EPIC-Norfolk cohort
(14,409 individuals with complete genotype data). For each individual, the number of risk
alleles (0,1,2) per SNP was weighted for their relative effect sizes estimated from the stage 2
cohort data only. Subsequently, the weighted risk alleles were summed for each individual,
and the overall individual sum was rounded to the nearest integer to represent the
individual's risk allele score. Along the x axis, individuals in each risk allele category are
shown (grouped ≤3 and ≥13 at the extremes), and the mean BMI (± s.e.m.) is plotted (y axis
on right), with the line representing the regression of the mean BMI values across the risk
allele scores. The histogram (y axis on left) represents the number of individuals for each
risk-score category.
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Figure 4.
Contribution of copy number polymorphism to BMI. (a) Quantile-quantile plot of the
−log10 P values for SNPs (n = 261) that tag copy number polymorphisms (r2 > 0.8) in the
stage 1 genome-wide meta-analysis data. The data generally conform to the uniform
distribution expected under the null hypothesis of no association, with the exception of a
strong association to the CNP-tagging SNP rs2815752 (near NEGR1). (b) Copy number
variation in the NEGR1 association region near rs2815752. Heat map representation of the
hybridization intensity of copy number probes (SNP 6.0 array) across the NEGR1
association region in 90 HapMap CEU samples. Darker shades of red indicate reduced
hybridization intensity. The data indicate two regions of copy number variation (pale green
and pink rectangles in lower panel) upstream of NEGR1. (c) Structural haplotypes and BMI
association signal in the NEGR1 region. Two deletion polymorphisms (a 10-kb and a 45-kb
deletion affecting nonoverlapping sequences upstream of NEGR1) segregate on distinct
haplotypes. Both deletions remove conserved elements upstream of NEGR1 (top panel). In
the bottom panel, the color of each SNP indicates the structural haplotype with which it is in
strongest LD; the size of each circle indicates the strength of this LD. The 45-kb deletion is
immediately flanked and perfectly tagged (r2 = 1.0) by the two most strongly BMI-
associated SNPs; these SNPs are separated by 47.3 kb on the reference genome sequence but
by only 1.7 kb on the BMI-associated deletion haplotype (red). These SNPs flank but are not
contained within the copy number variable region.
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