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A B S T R A C T   

An accurate evaluation and detection of awareness after a severe brain injury is crucial to a patient’s diagnosis, 
therapy, and end-of-life decisions. Misdiagnosis is frequent as behavior-based assessments often overlook subtle 
signs of consciousness. This study aimed to identify brain MRI characteristics of patients with residual con
sciousness after a severe brain injury and to develop a simple MRI-based scoring system according to the findings. 

We retrieved data from 128 patients and split them into a development or validation set. Structural brain MRIs 
were qualitatively assessed for lesions in 18 brain regions. We used logistic regression and support vector ma
chine algorithms to first identify the most relevant brain regions predicting a patient’s outcome in the devel
opment set. We next built a diagnostic MRI-based score and estimated its optimal diagnostic cut-off point. The 
classifiers were then tested on the validation set and their performance compared using the receiver operating 
characteristic curve. 

Relevant brain regions predicting negative outcome highly overlapped between both classifiers and included 
the left mesencephalon, right basal ganglia, right thalamus, right parietal cortex, and left frontal cortex. The 
support vector machine classifier showed higher accuracy (0.93, 95% CI: 0.81–0.96) and specificity (0.97, 95% 
CI: 0.85–1) than logistic regression (accuracy: 0.87, 95% CI: 0.73 – 0.95; specificity: 0.90, 95% CI: 0.75–0.97), 
but equal sensitivity (0.67, 95% CI: 0.24–0.94 and 0.22–0.96, respectively) for distinguishing patients with and 
without residual consciousness. 

The novel MRI-based score assessing brain lesions in patients with disorders of consciousness accurately de
tects patients with residual consciousness. It could complement valuably behavioral evaluation as it is time- 
efficient and requires only conventional MRI.   

1. Introduction 

Severe brain injuries often result in disorders of consciousness 
(DOC), in which the main components, wakefulness and awareness, are 
altered (Posner et al., 2007). The majority of DOC patients first fall into 
coma after brain lesion (Dikmen et al., 2003) and may then gradually 
recover consciousness by transitioning through ascending levels of 

arousal and awareness. The patient is clinically diagnosed with unre
sponsive wakefulness syndrome (UWS) when the sleep-wake cycles and 
autonomic and motor reflexes are present but no behavioral signs of 
awareness of self or environment are evidenced (Monti et al., 2010). The 
patient may transition into a minimally conscious state (MCS), whereby 
minimal and inconsistent, but definite behavioral signs of awareness are 
observed, e.g., following simple commands, or noxious stimuli 
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localization (Giacino et al., 2002). The emergence from the MCS is 
diagnosed once a patient functionally communicates or uses objects 
(Giacino et al., 2002). 

The detection of consciousness in a severely brain damaged patient 
presents a major clinical challenge. Although bedside neurobehavioral 
assessment remains the gold standard, misdiagnosis occurs in up to 40% 
(Schnakers et al., 2009; Andrews et al., 1996)of cases due to fluctuating 
arousal, evaluation bias, comorbidities or other accompanying factors 
that limit the patient’s interaction (Seel et al., 2010; Pincherle et al., 
2021). Currently, the most sensitive scale discriminating between DOC 
subtypes is the JFK Coma Recovery Scale Revised (CRS-R) (Seel et al., 
2010; Giacino et al., 2004). However, as its criteria rely rigorously on 
motor behavior, it may fail to detect consciousness in patients with 
sensorimotor, communication, or drive deficits (Gill-Thwaites, 2006; 
Majerus et al., 2009). Recently, we developed an observational instru
ment, the Motor Behavior Tool-revised (MBT-r) (Pignat et al., 2016) to 
detect subtle signs of conscious motor behavior, which are overlooked 
by the CRS-R assessment. MBT-r was able to discriminate patients with a 
cognitive motor dissociation condition (CMD) from true DOC patients 
(Pincherle et al., 2021, 2019; Jöhr et al., 2020) and had a superior 
outcome predictability than the CSR-R alone (Pignat et al., 2016; Jöhr 
et al., 2020). 

CMD was first described by Owen et al. in 2006 in their pioneering 
functional magnetic resonance imaging (MRI) approach, where they 
reported a patient diagnosed with UWS who nevertheless, showed 
command-following brain activity modulation through mental imagery 
in a neuroimaging task (Owen et al., 2006). Consequently, CMD was 
proposed as a separate category from DOC, defining patients who are 
behaviorally unresponsive or minimally responsive due to a blocked 
motor efferent system, but who show command following in neuro
imaging paradigms (Chapter, 2015; Schiff, 2015; Edlow et al., 2017). 
The estimated prevalence of CMD among DOC patients is 15% (Kond
ziella et al., 2016). 

Task-dependent neuroimaging and electrophysiological methods 
detecting covert consciousness are not always applicable as they require 
a patient’s wakefulness, collaboration, and understanding of the in
structions, and the patient’s vigilance fluctuation and language function 
impairment in the acute phase may hinder their performance. Moreover, 
the methods are time-consuming and have certain contraindications 
(Chapter, 2015). Nevertheless, early detection of consciousness is 
crucial as the presence of residual awareness has better outcome pre
diction (Pincherle et al., 2019; Jöhr et al., 2020; Di et al., 2008; Stender 
et al., 2014)and important implications for accurate diagnosis, prog
nosis and life-death decision management (Pincherle et al., 2021; Königs 
et al., 2018). 

Here, we present an MRI-based scoring system constructed on the 
MBT-r diagnosis for use as a radiology tool accompanying the neuro
behavioral assessment of DOC patients. We developed two classifiers 
using logistic regression (LR) and support vector machine (SVM) to 
discriminate between patients with and without residual consciousness 
based on their brain lesion patterns. We report their classification per
formance, compare it to the CRS-R classification, and discuss the 
possible clinical application. 

2. Methods 

2.1. Participants 

This retrospective study was conducted in compliance with the 
ethical standards of the declaration of Helsinki. The local ethics com
mittee (CER-VD, reference number: 142/09) approved the study pro
tocol. Informed consent to participate in the study was obtained from 
each patient’s legal representative. 

We screened the hospital database for adult patients (age ≥ 16 
years), with severe brain injury who were admitted to the Acute Neuro- 
rehabilitation Unit in the period between 01. 11. 2011 and 05. 11. 2019. 

All admitted patients were evaluated with the CSR-R (Giacino et al., 
2004) scale at entry and at weekly follow-up during their stay in the unit 
as part of the standard clinical protocol. This assessment was com
plemented with the MBT-r (Pincherle et al., 2019) tool, administered on 
admission to the unit. The MBT-r tool was designed to detect subtle 
behavioral signs of preserved consciousness in behaviorally unrespon
sive patients according to the CSR-R scale, and might indicate a possible 
CMD. The tool consists of seven items that assess the presence of various 
motor signs (ocular, facial, limb, or oral) as an intentional response to 
stimulation or environment, and spontaneous non-reflexive movements. 
The MBT-r evaluation score is based on a non-cumulative binary clas
sification: the presence of residual cognition is identified as soon as one 
positive sign is observed. Experienced neurologists and neuropsychol
ogists carried out all clinical evaluations. 

The initial search in the unit’s database yielded 171 patients. 
Twenty-four patients were diagnosed as non-DOC and 3 with locked-in 
syndrome; they were omitted from the analyses. We further excluded 16 
patients due to unavailable MRI scans. The final sample consisted of 128 
patients (46 MCS and 82 coma/UWS as classified by the CRS-R), who 
were split in two groups based on the MBT-r category: patients with 
signs of residual cognition were included in the CMD group (n = 111), 
while patients without detected positive signs were included in the DOC 
group (n = 17). The patient selection flowchart is shown in Fig. 1. 

2.2. MRI acquisition 

The MRI data were acquired during the patient’s stay in the Acute 

Fig. 1. Patient selection flowchart. Flowchart showing the selection procedure 
and number of included patients in each step of the procedure based on the 
clinical criteria. 
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Neuro-rehabilitation Unit, at the latest at patient discharge. The mean 
time between the initial injury and MRI scan was 32.1 ± 56.9 days 
(range: 0 – 418). The MRI scans were acquired on a 3 T Siemens scanner 
(TrioTim, Skyra or Prisma, Siemens Healthcare, Erlangen, Germany) 
situated in our institution (Lausanne University Hospital, Lausanne, 
Switzerland). The standard imaging protocol included a 3D T1-weighted 
magnetization-prepared rapid acquisition gradient echo (MPRAGE) or a 
sagittal T1-weighted gradient echo sequence, a T2 axial spin-echo or a 
3D fluid attenuated inversion recovery sequence, a T2 gradient echo or a 
susceptibility weighted sequence, a diffusion weighted sequence of the 
entire brain, and a 3D T1 MPRAGE when clinically relevant. The MR 
images were reviewed and evaluated on the institutional PACS viewing 
software (VuePacs, Carestream, Rochester, NY, USA). 

2.3. MRI lesion evaluation 

An experienced/senior neuroradiologist, blinded to the patients’ 
clinical assessments and diagnoses, evaluated the patients’ MRI scans by 
visual inspection. Four peripheral (frontal, temporal, parietal, and oc
cipital lobe) and five deep (basal ganglia, thalamus, mesencephalon, 
pons and cerebellum) regions were evaluated bilaterally, resulting in 18 
regions. Each region was given a binary score, as follows: 0, if the region 
was not affected or with only a small focal lesion, and 1, if diffuse 
(hemorrhagic traumatic axonal injury seen on susceptibility-weighted 
images or anoxic injury seen on diffusion-weighted images) or a large 
lesion (lesion volume ≥ 30% of the region) was observed. To note, the 
term “diffuse lesion” should not be confused with the term “widespread 
injury”, also used in the text and referring to the number of affected 
brain regions. 

The volume cut-off was defined based on the previous studies, which 
found that lesions affecting 30% or more of the lobar (Broderick et al., 
1993) or basal ganglia volume (Rohaut et al., 2019) are significant 
predictors of a negative outcome in patients suffering from intracerebral 
hemorrhage. One half of the MRI data (n = 64 patients) was re-analyzed 
by a second neuroradiologist to estimate the inter-rater reliability. The 
same MRI data subset was re-evaluated by both neuroradiologist after 6 
months to estimate the intra-rater reliability. Examples of diffuse and 
large brain lesions are shown in Fig. 2. 

2.4. Statistical analyses 

All statistical analyses were conducted with the R statistical software 
(version 4.0.0, R Foundation for Statistical Computing, Vienna, Austria). 
Continuous variables are presented as mean ± standard deviation (SD) 
and categorical variables as number or percentage. The MBT-r was 
considered as the standard of reference to classify patient outcome as 
CMD or DOC. The sample (n = 128), was randomly divided into two 
datasets with a 2:1 ratio: a dataset to develop the prediction model 
(development group, 84 patients) and a dataset to validate the model 
(validation group, 44 patients). The ratio of CMD and DOC patients was 
comparable between both groups. 2-tailed Fisher’s exact test and Wil
coxon’s unpaired test were conducted to test for the statistical differ
ences between the development and validation groups for the most 
relevant clinical and demographic characteristics. Intra- and inter-rater 
reproducibility of the scoring was estimated with the Gwet’s agreement 
coefficient1 index (Gwet, 2008) to overcome Cohen’s kappa test para
doxes due to marginal distribution considerations (Wongpakaran et al., 
2013). 

The aim of the analyses was to build classification models and 
identify patients with possible residual cognition based on their brain 
lesion pattern. We used LR and SVM classifiers to select the most rele
vant brain regions predicting the patient’s outcome. An MRI scoring 
system with an optimal cut-off score was created based on the selected 
predictors of each statistical method, and their classification perfor
mance was compared. We used the Caret (Kuhn, 2008) and e1071 
(Dimitriadou et al., 2009) R packages for the development of predictive 

models, and the pROC package (Robin et al., 2011) for the receiver 
operating characteristic (ROC) analyses. 

2.5. Logistic regression 

We developed a logistic regression model for the patient’s neuro
logical outcome after brain injury (CMD or DOC) using the brain regions 
with large/diffuse lesions as independent predictors. The outcome was 
defined as the probability that a patient has no residual consciousness, i. 
e. has a true DOC. Using a univariable selection approach, we first 
performed univariate logistic regressions on the development group for 
each of the 18 brain regions. Statistically significant brain regions (p <
0.05) were then further analyzed with a multivariate regression. In favor 
of a richer predictive model, we used odds ratios (ORs) of all the pre
dictors in the multivariate model to build the MRI score. We chose un
adjusted odds ratios to account for an independent contribution of each 
selected brain region to the neurological outcome. A brain region with a 
large/diffuse lesion was assigned a weighted score based on its odds 
ratio in the following manner (Guédon et al., 2018): one point if 1.5 ≤
OR < 2.5, two points if 2.5 ≤ OR < 4, 3 points if 4 ≤ OR < 6, and 4 points 
if OR ≥ 6. 

We used the Youden’s index (Youden, 1950) to estimate the optimal 
diagnostic cut-off point for the resulting cumulative scores. Patients 
whose cumulative score was equal or higher than the cut-off point were 
classified as mrDOC and patients with the score below the cut-off point 
as mrCMD. We then tested the logistic regression scoring system on the 
validation group, and evaluated its classification performance with ROC 
analyses. 

2.6. Support vector machine (SVM) with recursive feature elimination 

SVM is a machine learning method used to classify multidimensional 

Fig. 2. Diffuse and large brain lesion examples. In a patient admitted after 
cardiac arrest, axial T2 weighted image (a) and diffusion (b) demonstrated 
bilateral diffuse (a and b) anoxic injury of the temporal, frontal, parietal lobes 
and of the basal ganglia (arrows) but not of the thalamus (asterisk). In a patient 
admitted for a malignant stroke complicated by hemorrhage, axial T2 weighted 
image (c) and T2 gradient echo (d) demonstrated a large lesion of the left 
frontal and temporal lobes and of the left basal ganglia involving>30% of their 
volumes. The left thalamus (asterisk) was not injured. 
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data by finding the best hyperplane to maximize the margin between 
two classes (Cortes and Vapnik, 1995). It is particularly suitable for 
clinical data as it does not require a linear relationship and indepen
dence between variables (Unnikrishnan et al., 2016), and is less sensitive 
to unbalanced data (Lin and Chen, 2012), as observed in our sample. To 
develop a predictive model, a set of optimal predictors was selected 
through recursive feature selection (Kuhn, 2008) using a linear SVM. To 
prevent model over fitting, we used a 5-fold cross-validation re-sampling 
with 5 repetitions. In each repetition, the development data set was 
divided in 5 equal parts. Each part was used once to validate the model, 
while the remaining 4 served for the model training. With this method, a 
full model with 18 predictors (brain regions) was entered in the itera
tion. For each fold, the most relevant subset of predictors was selected 
through backward elimination, where the subsets were ranked accord
ing to their classification accuracy derived from the validation part. The 
final set of predictors was determined based on the average rank of 
classification accuracy for all cross-validation folds. 

The weights (w) of the predictors in the final model were trans
formed to construct the MRI scoring system: each weight value was 
multiplied by 10 and rounded to the nearest whole number. The patients 
in the validation group were then classified into mrCMD or mrDOC 
according to the cut-off score, estimated with the Youden’s index. The 
classification performance was evaluated with the ROC curve. 

2.7. Classifier performance comparison 

We compared the LR and SVM classification performances on the 
validation dataset as well as on the whole dataset. The statistical dif
ferences were tested with the DeLong’s test for 2 correlated ROC curves. 
The differences were considered significant at p < 0.05. 

2.8. Including age, sex, and brain injury etiology in the predictive models 

To account for a possible contribution of age, sex, and brain injury 
etiology to the classification accuracy, we included these variables to the 
LR and SVM model construction as described above and compared the 
accuracy of the extended models. 

2.9. Classification based on the CRS-R diagnosis 

We verified if a similar classification of brain lesion profiles could 
also be made based on the CRS-R diagnosis. We grouped the patients 
into coma/UWS, and MCS groups. As for the MBT-r, the CRS-R classi
fication was used to train the LR and SVM classifiers on the development 
data set. The performance of the classifiers was inspected with the ROC 
curve analyses. 

3. Results 

3.1. Demographic and clinical characteristics of the patients 

Overall, 128 patients were included (77 males, mean age = 51.1 ±
17.2 years). 48 patients suffered from traumatic brain injury, 33 from 
anoxia/ischemic stroke, 38 from brain hemorrhage, and 9 from other 
etiology (brain tumor, encephalopathy, and meningoencephalitis). The 
development and validation group did not significantly differ between 
the male to female ratio (p = 0.58), mean age (p = 0.67) and brain injury 
etiology distribution (p = 0.14). The mean elapsed time between the 
brain injury and the MRI exam was longer in the development group (p 
= 0.03). The groups did not differ in the mean elapsed time between the 
brain injury and the MBT-r evaluation (p = 0.50). The proportion of 
CMD and DOC patients did not differ between groups (p > 0.99), nor did 
the coma/UWS to MCS ratio, as diagnosed by the CRS-R (p = 0.70). On 
average, the DOC patients had a higher number of large/diffuse brain 
lesions, i.e. more widespread brain injury than the CMD patients in the 
development (DOC: mean = 6.9 ± 2.8, CMD: mean = 2.9 ± 2.4, p <

0.001) and validation groups (DOC: mean = 6.7 ± 4.1, CMD: mean =
2.2 ± 1.6, p = 0.005). In contrast, no differences in the number of lesions 
were found between the coma/UWS and MCS patients as diagnosed by 
the CRS-R in the development (coma/UWS: mean = 3.7 ± 2.8, MCS: 
mean = 3.3 ± 2.8, p = 0.44) and validation groups (coma/UWS: mean =
3.3 ± 1.2, MCS: mean = 2.0 ± 3.0, p = 0.21). More extensive statistical 
comparisons of the demographic and clinical data are reported in 

Table 1 
Demographic and clinical data for the development and validation data sets.   

Development 
group 

Validation group p value 

N 84 44  
Age (years)      
Range (Mean ± SD) 17 – 83 (51.5 ±

17.8) 
20 – 78 (50.3 ±
16.0) 

0.667a 

Sex (male/female) 49/35 28/16 0.576 
N (%) of patients with 

lesioned brain region* 
CMD DOC CMD DOC N/A 

Frontal lobe left 27 
(37%) 

8 
(73%) 

10 
(26%) 

5 
(83%)  

Frontal lobe right 32 
(44%) 

9 
(82%) 

12 
(32%) 

5 
(83%)  

Temporal lobe left 20 
(38%) 

6 
(55%) 

7 
(18%) 

3 
(50%)  

Temporal lobe right 25 
(34%) 

8 
(73%) 

10 
(26%) 

2 
(33%)  

Parietal lobe left 16 
(22%) 

4 
(36%) 

4 
(11%) 

4 
(67%)  

Parietal lobe right 12 
(16%) 

7 
(64%) 

4 
(11%) 

4 
(67%)  

Occipital lobe left 6 (8%) 2 
(18%) 

3 (8%) 3 
(50%)  

Occipital lobe right 10 
(14%) 

3 
(27%) 

3 (8%) 3 
(50%)  

Basal ganglia left 12 
(16%) 

4 
(36%) 

5 
(13%) 

2 
(33%)  

Basal ganglia right 12 
(16%) 

6 
(55%) 

4 
(11%) 

2 
(33%)  

Thalamus left 3 (4%) 1 (9%) 0 (0%) 2 
(33%)  

Thalamus right 7 
(10%) 

4 
(36%) 

1 (3%) 1 
(17%)  

Mesencephalon left 7 
(10%) 

6 
(55%) 

3 (8%) 1 
(17%)  

Mesencephalon right 8 
(11%) 

3 
(27%) 

4 
(11%) 

1 
(17%)  

Pons left 3 (4%) 2 
(18%) 

5 
(13%) 

0 (0%)  

Pons right 3 (4%) 1 (9%) 4 
(11%) 

0 (0%)  

Cerebellum left 4 (5%) 1 (9%) 2 (5%) 1 
(17%)  

Cerebellum right 7 
(10%) 

1 (9%) 1 (3%) 1 
(17%)  

Elapsed time (days)    
Brain injury to MRI exam    
Range (Mean ± SD) 0 – 418 (36.4 ±

61.5) 
1 – 314 (23.9 ±
46.4) 

0.028c 

Brain injury to MBT-R exam    
Range (Mean ± SD) 3 – 281 (31.5 ±

41.0) 
4 – 77 (25.1 ±
15.9) 

0.495c 

MBT-R classification    
CMD 73 38 >

0.999 
DOC 11 6  
CRS-R classification    
MCS 29 17 0.704 
Coma/UWS 55 27  
Coma/UWS with CMD 45 21 0.551 
MCS identified as DOC 1 0 >0.999 

*Considered when a diffuse lesion or large lesion affecting at least 30% of the 
region volume was present. The comparisons were performed using the Fisher’s 
exact test, except for when we used a) Mann-Whitney U test: W = 1931.5, b) Х2 

test: df = 3, Х2 = 5.45, and c) Mann-Whitney U test: W = 2287.5, W = 1984.5, 
respectively. N/A = not applicable. 
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Table 1. The intra-rater reproducibility, re-assessed on a subset of 64 
patients after a period of 6 months, was 0.95 [95% CI: 0.93, 0.96] for the 
first neuroradiologist and 0.82 [95% CI: 0.79, 0.85] for the second 
neuroradiologist. The overall inter-rater reproducibility was 0.76 [95% 
CI: 0.72, 0.80]. 

3.2. Logistic regression 

Separate univariate logistic regressions showed that diffuse or large 
lesions in the left frontal cortex (p = 0.04), right frontal cortex (p =
0.03), right temporal cortex (p = 0.02), right parietal cortex (p = 0.002), 
right basal ganglia (p = 0.01), right thalamus (p = 0.02), and left 
mesencephalon (p = 0.001) were statistically significant predictors of a 
negative outcome (DOC), i.e. the absence of any signs of consciousness 
as identified by the MBT-r. A multivariate logistic analysis based on 
these seven statistically significant brain regions showed that lesions in 
the left mesencephalon (adjusted OR: 29.0 [95% CI: 2.3–361.9], p =
0.01) and in the right basal ganglia (adjusted OR: 26.2 [95% CI: 
1.8–392.7], p = 0.02) are significant independent predictors for DOC as 
identified by the MBT-r. Detailed statistical results for all brain regions 
are presented in Table 2. 

The odds ratios of the significant brain regions used for the con
struction of the MRI scoring system are shown in Table 3. The CMD 
patients (score range: 0 – 17, mean = 5.4 ± 4.9) had a significantly lower 
score than the DOC patients (score range: 4 – 21, mean = 14.8 ± 5.1; 
Wilcoxon unpaired test: W = 79.5, p < 0.001). 

The optimal diagnostic cut-off point based on Youden’s index cor
responded to a score of 10. Patients with a score equal to or higher than 
the cut-off point were classified as without residual consciousness 
(DOC), and patients below the cut-off as CMD. The accuracy of the 
classification was 0.81, sensitivity for predicting DOC 0.91, and speci
ficity 0.80. The classifier also correctly recognized 39 out of 45 patients 
diagnosed as unconscious (UWS or coma) by the CRS-R, but recognized 
as CMD by the MBT-R. 

When applied to the validation data set, the accuracy of the logistic 
regression classifier increased to 0.87, the sensitivity decreased to 0.67, 
and the specificity increased to 0.90. The classifier correctly detected 19 
out of 21 CMD patients with the coma/UWS diagnosis by the CRS-R in 
the validation group. Detailed ROC performance parameters of the 
training and validation groups are displayed in Table 4. 

3.3. Support vector machine (SVM) with recursive feature elimination 

Six brain regions (left frontal cortex, left mesencephalon, right 

parietal cortex, right basal ganglia, right thalamus, and left temporal 
cortex) were selected through recursive feature selection as the optimal 
subset of predictors of the MBT-r category (RMSE = 0.34, R2 = 0.14). 
The MRI scoring system, constructed on the basis of weights of the 
selected predictors in the final SVM model is shown in Table 3. The CMD 
patients (score range: 0 – 22, mean = 6.4 ± 6.1) had a significantly lower 
MRI score than the DOC patients (score range: 5 – 24, mean = 18.5 ±
5.5; Wilcoxon unpaired test: W = 62.5, p < 0.001). 

The Youden’s index cut-off point was estimated at a score of 15. The 
classification accuracy at this cut-off point was 0.86, the sensitivity for 
predicting the negative outcome 0.91, and specificity 0.85. Classifica
tion of patients in the validation group according to the cut-off point 
resulted in an increase in accuracy to 0.93, whereas sensitivity 
decreased to 0.67, and specificity increased to 0.97. The classifier was 
able to correctly classify 40 out of 45 CMD patients with the coma/UWS 
diagnosis by the CRS-R in the development group, and 20 out of 21 CMD 
patients in the validation group. The detailed performance parameters 
of the SVM classifier are shown in Table 4. 

3.4. Classifier performance comparison 

The performance of the LR and SVM classifiers did not significantly 
differ in the validation group (Z = − 1.8, p = 0.08), whereas the SVM 
classifier showed statistically superior performance in the entire cohort 
(validation and training set combined, Z = − 2.1, p = 0.03). The ROC 
curves showing the LR and SVM MRI scores and the optimal cut-off 
classification performances are presented in Fig. 3. The scatter plot of 
the two MRI scoring systems is shown in Fig. 4. 

3.5. Including age, sex, and brain injury etiology in the predictive models 

Univariate logistic regressions showed that age significantly pre
dicted the outcome (β = − 0.83, z = − 3.3, p < 0.001, OR = 0.92 [95% CI: 
0.88, 0.97]), whereas sex and etiology were non-significant predictors 
(p > 0.5). Before including age as a factor in the extended logistic model, 
we discretized the continuous variable into a binary factor using OneR 
package (von Jouanne-Diedrich, 2017) in order to have comparable 
scales between all the predictors. As such age was dichotomized with a 
resulting cut-off point that was optimally aligned with the target 
outcome (39 years). The odds ratio of binarized age factor (OR = 13.6 
[95% CI: 3.14, 58.61) were transformed into points (4 points) and added 
to the MRI scoring system. The optimal cut-off point for classification 
based on Youden’s index was 14. When validated on the test data set, 
this classification resulted in accuracy of 0.89 [95% CI: 0.75, 0.96], 
sensitivity of 0.67 [95% CI: 0.22, 0.96], and specificity of 0.92 [95% CI: 
0.79, 0.98]. However, when comparing the extended LR model (AUC =
0.79) to the initial LR model (AUC = 0.78), the increase in the AUC was 
not statistically significant (DeLong’s test: z = 1, p = 0.32). 

Furthermore, we added age, sex, and etiology to the 18 brain regions 
in the SVM recursive feature selection with backward elimination. The 
final SVM model was built based on the most relevant subset of 

Table 2 
Results of the univariate logistic regression analysis.  

Brain region Univariate logistic regression analysis  

Coefficient p – value 

Frontal lobe left  1.51  0.035 
Frontal lobe right  1.75  0.032 
Temporal lobe left  1.16  0.080 
Temporal lobe right  1.63  0.023 
Parietal lobe left  0.71  0.301 
Parietal lobe right  2.19  0.002 
Occipital lobe left  0.91  0.307 
Occipital lobe right  0.86  0.257 
Basal ganglia left  1.07  0.129 
Basal ganglia right  1.81  0.008 
Thalamus left  0.85  0.481 
Thalamus right  1.68  0.023 
Mesencephalon left  2.43  < 0.001 
Mesencephalon right  1.11  0.150 
Pons left  1.65  0.093 
Pons right  0.85  0.481 
Cerebellum left  0.55  0.641 
Cerebellum right  − 0.06  0.958  

Table 3 
MRI DOC scoring system for LR and SVM classifiers.  

Logistic regression Support vector machine 

Predictor OR Score Predictor w Score 

Mesencephalon left 11.31 4 Frontal left  0.77 8 
Parietal right 8.90 4 Parietal right  0.66 7 
Basal ganglia right 6.10 4 Basal ganglia right  0.64 6 
Frontal right 5.77 3 Mesencephalon left  0.45 5 
Thalamus right 5.39 3 Thalamus right  0.26 3 
Temporal right 5.12 3 Temporal left  0.17 2 
Frontal left 4.54 3 —  — — 
Total score 24 Total score 31 
Youden’s cut-off point 10 Youden’s cut-off point 15 

OR = odds ratio, LR = logistic regression, SVM = support vector machine 
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predictors selected (RMSE = 0.33, R2 = 0.21). The final model thus 
included age (dichotomised, w = 0.85), left mesencephalon (w = 0.73), 
right parietal lobe (w = 0.21), right basal ganglia (w = 0.62), right 
thalamus (w = 0.17), and left temporal lobe (w = 0.23). The weights of 
the final model were transformed into points, which were then used to 
construct the MRI scoring system, with the Youden index-based cut-off 
point at 13. Validating this classification on the test set resulted in ac
curacy of 0.82 [95% CI: 0.67, 0.92], sensitivity of 0.17 [95% CI: 0, 0.64) 
and specificity of 0.92 [95% CI: 0.79, 0.98). The performance of the 
alternative SVM predictive model including age as a factor (AUC = 0.54) 
was significantly worse than the initial SVM model (AUC = 0.82; 
DeLong’s test: z = − 2.4, p = 0.02). 

3.6. Misclassified cases 

We carried out a post-hoc inspection of the misclassified cases in the 
entire cohort. Three DOC patients incorrectly classified as CMD had low 
MRI scores, and were characterized with bilateral lesions in the 
mesencephalon, cerebellum, or frontal lobes. In contrast, misclassified 
CMD patients had higher MRI scores due to more widespread lesions in 
mostly supratentorial regions. Eight out of 21 (38%) misclassified CMD 
patients also had lesions in the mesencephalon, although unilateral. The 
extent of the lesion in the mesencephalon might be an important 

indicator of a negative outcome. In fact, when considering the entire 
cohort, mesencephalon lesions were more frequent in the DOC patients 
(76%, with 24% being bilateral) than in the CMD patients (33%, with 
3% being bilateral). 

3.7. Classification based on the CRS-R diagnosis 

The univariate logistic regressions showed that none of the brain 
regions were a significant predictor of the CRS-R diagnosis (all p >
0.15). An SVM method with recursive feature elimination identified a 
model with only the left basal ganglia as the most relevant predictor 
(RMSE = 0.59, R2 = 0.06). Its weight coefficient was however, of a 
negligible size and with a negative value (− 5.5e− 9). For this reason, we 
did not construct a scoring system, as its classification performance 
would be highly unstable due to a low coefficient value. 

4. Discussion 

The aim of the present study was to build an MRI score for qualitative 
evaluation of brain lesions and classification of patients with residual 
consciousness as defined by the MBT-r. Using LR and SVM classifiers, we 

Table 4 
Classification performance of LR and SVM classifiers on the development group, validation group, and whole data set when using the optimal cut-off score.   

Logistic regression Support vector machine 

Performance parameter (95% CI) Development 
group 

Validation group Whole data set Development 
group 

Validation 
group 

Whole data set 

AUC 0.85 (0.75–0.95) 0.78 (0.57–0.99) 0.83 
(0.73–0.93) 

0.88 (0.78–0.98) 0.82 (0.61–1.00) 0.86 (0.76–0.96) 

Sensitivity 0.91(0.59–1.00) 0.67(0.22 – 0.96) 0.82(0.57–0.96) 0.91(0.57–1.00) 0.67(0.24–0.94) 0.82(0.56–0.95) 
Specificity 0.80(0.68–0.88) 0.90(0.75–0.97) 0.83(0.75–0.89) 0.85(0.74–0.92) 0.97(0.85–1.00) 0.89(0.82–0.94) 
Accuracy 0.81(0.71–0.89) 0.87(0.73–0.95) 0.83(0.75–0.89) 0.86(0.76–0.92) 0.93(0.81–0.96) 0.88(0.81–0.93) 
PLR 4.42(2.72–7.21) 6.33(2.14–18.8) 4.81(3.02–7.66) 6.03(3.39–10.73) 25.3(3.38–190) 7.62 

(4.27–13.58) 
NLR 0.11(0.02–0.74) 0.37(0.12–1.16) 0.21(0.08–0.60) 0.11(0.02–0.70) 0.34(0.11–1.06) 0.20(0.07–0.55) 
PPV 0.40(0.21–0.61) 0.50(0.16–0.84) 0.42(0.26–0.61) 0.48(0.26–0.70) 0.80(0.30–0.99) 0.54(0.34–0.73) 
NPV 0.98(0.91–0.99) 0.94(0.81–0.99) 0.97(0.91–0.99) 0.98(0.90–0.99) 0.95(0.81–0.99) 0.97(0.91–0.99) 
CMD with the coma/UWS detected by the 

classifier 
39/45 19/21 58/66 40/45 20/21 60/66 

AUC = area under the curve, PLR = Positive likelihood ratio, NLR = Negative likelihood ratio, PPV = Positive predictive value, NPV = Negative predictive value, CMD 
= Cognitive Motor Dissociation, 95% CI = 95% confidence interval 

Fig. 3. ROC curve comparison between the MRI scores constructed by the LR 
and the SVM methods. ROC curves of the MRI score classification performance 
estimated from the logistic regression (LR) and support vector machine (SVM) 
classifications. Classification performance is shown for the development group 
(dotted line) and for the validation group (solid line). The dot on each curve 
represents the estimated optimal cut-off point. 

Fig. 4. MRI score and classification by the LR and SVM classifiers on the 
validation group. Scatter plot of the MRI scores of patients in the validation 
group. Each data point corresponds to a patient with the MRI score derived 
from the logistic regression (LR, x-axis) and from the support vector machine 
(SVM, y-axis) classifier. The dashed lines represent the diagnostic cut-offs for 
each MRI score. The data points are randomly jittered (by ± 0.5) for a better 
visual discrimination of the close data points. 
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identified a combination of damaged brain structures with a high rele
vancy to discriminate between patients with and without residual 
cognition. The identified lesions overlapped between the two classifiers 
and included the left mesencephalon, right basal ganglia, right thal
amus, left frontal lobe, and right parietal lobe. Both classifiers showed 
an overall good performance, with the SVM having a higher specificity 
level. 

Our analyses showed that LR and SVM methods both retained high 
classification accuracy when applied to the validation data set. The 
sensitivity level, i.e., correct classification of the patients who were 
identified as DOC by the MBT-r, was identical between both classifiers, 
whereas the SVM model performed better in correctly detecting the 
patients identified as CMD by the MBT-r (specificity level). The classi
fiers’ performances did not statistically differ when they were tested on 
the validation dataset; however, the SVM model demonstrated better 
performance when applied to the entire dataset. This superior perfor
mance was due to a lower number of misclassified CMD patients by the 
SVM method. The two classifiers were comparable in the ability to 
accurately detect the CMD patients who were diagnosed as unresponsive 
by the CRS-R, while showing residual cognition with the MBT-r. 

The brain regions that were selected as relevant predictors in the LR 
and SVM models were highly overlapping. Both classifiers included the 
left mesencephalon, right basal ganglia, right thalamus, right parietal 
cortex, and left frontal cortex. Large or diffuse lesions in these structures 
importantly predicted the negative outcome, i.e. the absence of any 
signs of residual awareness. The selection of these structures agrees with 
the current understanding of the underlying neuroanatomical changes 
in DOC. For example, coma is characterized by lesions to the brainstem 
reticular formation, including the pons and mesencephalon (Posner 
et al., 2007; Parvizi and Damasio, 2003), which regulate arousal levels; 
by bilateral injuries to the thalamic nuclei; and by large or diffuse 
hemispheric grey or white-matter lesions (Rohaut et al., 2019; Parvizi 
and Damasio, 2003; Laureys et al., 2004). On the other hand, while the 
brainstem is usually preserved in UWS, maintaining arousal and auto
nomic functions, the cerebral white and grey matter are extensively 
damaged (Laureys et al., 2004; Kampfl et al., 1998) underlying the loss 
of awareness. A distinctive characteristic of UWS also includes a reduced 
metabolism in the multimodal associative areas, such as the prefrontal 
cortex and parieto-temporo-occipital junction, which are involved in 
most of the higher cognitive functions (Laureys et al., 2004; Laureys, 
2005). A growing number of studies have also demonstrated a critical 
role of thalamo-cortical connections (Maxwell et al., 2004; Fernández- 
Espejo et al., 2011) within the fronto-parietal (Long et al., 2016; Crone 
et al., 2014) and default mode brain networks (Fernández-Espejo et al., 
2012; Vanhaudenhuyse et al., 2009) in the sustenance of awareness. Our 
findings also align with the study of Morozova et al. (2018)., who 
developed a diagnostic MRI scoring system differentiating between the 
chronic UWS and MCS patients based on brain atrophy. The chronic 
UWS was marked by a degeneration of the brainstem and thalamus, 
widespread diffuse cortical atrophy, and degeneration of the corpus 
callosum, pointing to the importance of the preserved integrity of these 
brain regions in the sustenance of consciousness. 

Our findings also demonstrate that the DOC patients showed a more 
widespread injury compared to the CMD patients. Associations between 
the extent of injury and the severity of the outcome in the DOC spectrum 
have been recognized before (Laureys et al., 2004; Laureys, 2005; 
Bodart et al., 2018). As global conscious experience does not depend on 
a single isolated brain region but is thought to rely on a preserved 
functional integrity of a widespread bilateral cortico-thalamo-cortical 
network (Laureys et al., 2004; Laureys, 2005), an extensive structural 
and/or functional disconnection might be a hallmark of DOC. In 
contrast, it has been suggested that CMD is characterized by specific 
damage to the motor execution system, mainly including the ventro
lateral thalamic nucleus and its cortical projections to the motor areas 
(Bardin et al., 2011; Fernández-Espejo et al., 2015). The cortico- 
subcortical connectivity is thus supposedly less impaired in CMD 

patients, presenting a greater capacity of neuroplasticity for functional 
recovery. This is also in line with our clinical observations showing 
better cognitive and functional evolution in the CMD patients, in 
particular after recovery of the lesions in the strategic loci for motor 
planning (Pincherle et al., 2021; Jöhr et al., 2020). 

Mostly, the right-hemisphere brain regions were selected as relevant 
predictors. We believe this finding is mainly driven by the lesion pattern 
characteristic of our DOC sample. Nevertheless, partial impairments of 
self-awareness, such as anosognosia or asomatognosia are often 
observed after lesions to the right hemisphere, mainly located in the 
parietal cortex (Berlucchi and Aglioti, 1997). Further studies with a 
larger proportion of DOC patients are needed to clarify the lesion 
lateralization found in our results. 

In addition, another predictive region, the left frontal cortex, is 
largely specialized in language functions and supports a vast network for 
language comprehension and production (Gernsbacher and Kaschak, 
2003). This network is distributed in the associative zones of the left 
perisylvian cortex and neighboring regions, as well as in other frontal 
regions facilitating motor planning and executive processing. Extensive 
damage to these crucial language and executive regions severely impacts 
an individual’s ability to communicate the content of consciousness and 
to interact with his or her environment. Severely decreased metabolism 
(>50%) in these areas is observed in MCS patients (Laureys et al., 2004), 
and appeared more reduced in MCS− compared to MCS+ (Majerus 
et al., 2009). A disconnection of the Broca’s area essential for spoken 
language formation from the rest of the language processing regions was 
also demonstrated in these patients (Boly et al., 2004). Finally, reduced 
activation to auditory stimuli reflecting residual neural coding without 
superior integration is observed in chronic UWS (Boly et al., 2004). 

To summarize, the brain regions that we identified here with ma
chine learning algorithms to best differentiate between the CMD and 
DOC patients, have often been reported in the literature as important for 
the maintenance of consciousness. In addition, the fact that the MBT-r 
diagnosis based on behavioral signs is well reflected in the neuro- 
structural differences indicates a very probable neural basis for the 
MBT-r classification. This points to an important sensitivity of the MBT-r 
tool. In contrast, when we used the CRS-R diagnosis as a reference, we 
failed to identify brain lesion differences between the coma/UWS and 
MCS patients. Furthermore, these two groups could not be distinguished 
by the number of lesioned brain structures, while the number of 
observed lesions was significantly higher in the DOC patients when the 
patients were grouped according to the MBT-r diagnosis. However, we 
cannot exclude that quantitative lesion volume evaluation would 
improve the ability to accurately classify the patients based on their 
CRS-R diagnosis. 

The present study has several limitations that merit discussion. The 
major limitation of the present research is the unbalanced data as the 
sample size of the DOC patients in our study was relatively low (15%) 
and it may have biased the classifiers’ performance. The small propor
tion in our study reflects the general low prevalence of the DOC patients 
in Swiss healthcare institutions (Stretti et al., 2018) due to the state’s 
policy on the use of limitation of life-prolonging therapies. To minimize 
the bias of data imbalance, we used the SVM method, which was shown 
to be less sensitive to unbalanced classes (Lin and Chen, 2012). Other 
additional methods are also available for managing class imbalance, 
such as for example oversampling the minority class, however they have 
certain disadvantages such as model overfitting (Weiss et al., 2007). 

Furthermore, in order to simplify the clinical use of the MRI score, we 
constructed our classification models on qualitative brain lesion ana
lyses, where only diffuse lesions or large lesions covering at least 30% of 
the region were considered. As such, we did not account for small focal 
lesions, which may also have an impact on the consciousness outcome 
(Li and Feng, 2009). In addition, the estimation of lesion volumes was 
performed by visual inspection. Despite a good intra- and inter-rater 
reliability, the qualitative approach might have introduced additional 
bias in the current study. This shortcoming could be improved by using 
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quantitative lesion estimation with automated segmentation and 
potentially enable a fully automatized MRI scoring procedure. However, 
due to important brain structural changes in the patients with severe 
brain injury (atrophy, mass effect, and swelling), application of auto
mated lesion segmentation to this patient’s population represents great 
methodological considerations. Next to it, disorders of consciousness 
may occur due to heterogeneous brain injury etiologies and thus result 
in different imaging patterns. Therefore, absolute lesion volume quan
tification could not be performed in a single manner for every patient 
without software developed to this end. 

Moreover, our analyses could not encompass disturbances in the 
connectivity between relevant brain regions, which are otherwise 
important predictors of the DOC outcome (Fernández-Espejo et al., 
2012; Bodart et al., 2018). For the same reason, we were not able to 
identify the pathophysiology underlying the CMD condition as our 
method of qualitative lesion analysis was not designed to detect fine- 
grained structural and connectivity changes. Therefore, further studies 
should aim at investigating the underlying morphological and connec
tivity differences between CMD and DOC patients using multimodal 
neuroimaging technology, for example, functional MRI, diffusion tensor 
imaging, and positron emission tomography. 

We tested whether inclusion of non-radiological factors, i.e. age, sex 
and etiology would contribute to the accuracy of our classifiers. The 
analyses showed that the age was a relevant predictor of the outcome, as 
the DOC group had a lower age average. After including age as a factor 
in the final model, we observed a statistically non-significant increase in 
the specificity of the LR classifier, whereas the sensitivity of the SVM 
classifier significantly decreased. As the present study focused on MRI 
lesion based classification, we have not considered other clinical vari
ables that might be relevant for the detection of patients with residual 
consciousness. Inclusion of a wide range of factors such as different 
patient’s characteristics, details on brain injury and its severity, neuro
logical exam scores, electrophysiological measures and computed to
mography exams, as well as other biomarkers and laboratory variables 
would permit to develop a more comprehensive, multifaceted, and 
possibly more accurate predictive model for classification and prog
nostication of patients with severe brain injury (for reviews see (Lingsma 
et al., 2010; Sandroni et al., 2020)). 

Finally, the use of the present MRI score in a clinical setting should be 
done with caution, as more data is needed to validate it and confirm its 
generalizability. 

The limitations of the present study could be potentially addressed in 
the future research by using deep learning methods. In contrast to 
conventional supervised machine learning algorithms, deep learning 
does not require structured or labeled data in order to parse or classify 
the data. Instead, the unstructured data is passed through multiple 
interconnected layers of networks that are able to discover inherent 
patterns within the data and generate complex, higher-level represen
tations of the initial input (Mazurowski et al., 2019; McBee et al., 2018). 
Thus in the context of the current study, the advantage of deep learning 
over traditional machine learning methods would be the ability to use 
raw imaging data, automatically quantify it based on the variety of 
radiomic features, and thus avoid qualitative lesion assessment and 
feature selection decision-making. The techniques of data augmentation 
within deep learning (Shorten and Khoshgoftaar, 2019) could also 
potentially reduce the class imbalance bias due to low prevalence of 
unresponsive DOC patients. Moreover, the classification could be per
formed over a great number of variables, including non-imaging clinical 
data as well. However, the limitation of this approach is the need of very 
large datasets for training and validation, which necessitates multi- 
center studies and collaborations. As such, application of deep 
learning methods for diagnosing and prognostication of patients with 
disorders of consciousness represents a great challenge for the future 
research. 

4.1. Conclusion 

In conclusion, our findings suggest that the MRI score is a beneficial 
complement to the behavioral assessment of patients with residual 
consciousness by identifying underlying imaging patterns that may help 
to confirm putative damages to the motor efferent system and preserved 
cortico-subcortical connectivity in CMD as opposed to the widespread 
cortico-thalamic damage often observed in true DOC. The advantages of 
the MRI score are that it only requires conventional MRI images without 
preprocessing; it is simple to use and time-efficient, and demonstrated 
good inter- and intra-rater reproducibility. Moreover, the score was 
constructed by training the classification algorithms on the diagnosis of 
the new neurobehavioral tool, MBT-r, which showed a better sensitivity 
than the CRS-R for detection of conscious behavior and accuracy to 
predict a patient’s recovery (Pignat et al., 2016; Pincherle et al., 2019). 

Understanding the neural biomarkers of covert consciousness is 
essential for the improvement of diagnostic accuracy in DOC and 
consequent planning of immediate access to neuro-rehabilitative in
terventions. Finally, since the recognition of neural imprints of residual 
cognition in behaviorally unresponsive patients has a direct implication 
on life-death decisions, the medico-ethical importance of establishing 
reliable and clinically applicable measures remains a large motivator of 
this research. 
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Boly, Mélanie, Faymonville, Marie-Elisabeth, Peigneux, Philippe, Lambermont, Bernard, 
Damas, Pierre, Del Fiore, Guy, Degueldre, Christian, Franck, Georges, Luxen, André, 
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Pincherle, A., Jöhr, J., Chatelle, C., Pignat, J.-M., Du Pasquier, R., Ryvlin, P., Oddo, M., 
Diserens, K., 2019. Motor behavior unmasks residual cognition in disorders of 
consciousness. Ann. Neurol. 85 (3), 443–447. https://doi.org/10.1002/ana.25417. 
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