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Predictors of elevational biodiversity gradients change
from single taxa to the multi-taxa community level
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The factors determining gradients of biodiversity are a fundamental yet unresolved topic in

ecology. While diversity gradients have been analysed for numerous single taxa, progress

towards general explanatory models has been hampered by limitations in the phylogenetic

coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a

3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity

gradients and evaluate predictors of diversity from single taxa to a multi-taxa community

level. While single taxa show complex distribution patterns and respond to different envir-

onmental factors, scaling up diversity to the community level leads to an unambiguous

support for temperature as the main predictor of species richness in both plants and animals.

Our findings illuminate the influence of taxonomic coverage for models of diversity gradients

and point to the importance of temperature for diversification and species coexistence in

plant and animal communities.
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T
he search for the primary factors that determine the
distribution of biodiversity on earth has challenged
naturalists for more than two centuries1–3. The main

hypotheses for explaining broad-scale diversity gradients are: (1)
the ‘temperature hypothesis’, relating higher species richness to
higher rates of biotic processes and interactions, or higher
evolutionary diversification rates4–6; (2) the ‘water availability
hypothesis’, focusing on direct or indirect (via effects on net
primary productivity (NPP)) constraints of water for the
maintenance of biodiversity7,8; (3) the ‘productivity hypothesis’,
emphasizing the positive effect of resources on population
persistence and species coexistence9–11; (4) the ‘area
hypothesis’, assuming greater opportunities for the maintenance
of richness and speciation in larger areas of land (or sea)12–14; (5)
the ‘geometric constraints hypothesis’, focusing on spatial
constraints for the distribution of species ranges, predicting
geographic gradients in species richness even in the absence of
environmental drivers15,16; and (6) the ‘plant diversity
hypothesis’, relating consumer richness to the species richness
of plant resources17,18. While numerous studies on the diversity
of individual taxa along different environmental gradients found
support for one or the other hypothesis, comparative cross-taxon
studies along the same environmental gradients are scarce,
impeding consensus on the determinants of broad-scale diversity
gradients2,19.

A persistent shortcoming in published gradient studies is that
trends in species richness were mostly studied for organismic
groups at a narrow taxonomic level (for example, for taxa such as
ferns, ants or birds) but not for the multi-group communities of
animals and plants which coexist and share resources in
ecosystems. However, as species and clades tend to retain their
niches and related ecological traits over evolutionary time (niche
conservatism), narrowly defined taxa can be more strongly
constrained to specific biotic and abiotic conditions along larger
environmental gradients than communities composed of multi-
ple, phylogenetically largely independent taxa20,21. Patterns of
species richness of a specific taxon may, therefore, be
idiosyncratic rather than congruent to patterns in other taxa or
to those of the community as a whole. Along large environmental
gradients, taxonomically diverse communities have larger
opportunities for diversification and the use of niche space than
a single taxon. For example, while bee species are typically
restricted to warm environments and their species richness peaks
in hot climates, syrphid flies have their highest density at
considerably cooler temperatures, such that the thermal niche
space used by pollinators in total is much larger than the thermal
niches of the individual taxa22,23. Broadening the taxonomic
scope may therefore lead to changes in the importance of some
potential drivers of diversity over others. In particular, energy
variables like temperature and NPP have been predicted to
increase in importance for more broadly covered species
communities6,11,24. However, to our best knowledge, the
influence of taxonomic coverage for the extrapolation of broad-
scale drivers of diversity has hitherto not been tested.

We used a novel, multi-taxa perspective to study patterns and
drivers of species richness along a 3.7 km elevational gradient
(871–4,550 m above sea level (a.s.l.)) of natural habitat on the
southern slopes of Mt. Kilimanjaro (Supplementary Fig. 1).
Tropical mountains with a dry base, such as Mt. Kilimanjaro, are
particularly suitable to test large-scale drivers of biodiversity
because, in contrast to most terrestrial latitudinal gradients, their
temperature and primary productivity gradients are largely
uncorrelated (Supplementary Fig. 2). We assessed species richness
of eight vascular plant taxa (that is, all vascular plants), and 16
major animal taxa synchronously on the same study sites. The
studied taxa were phylogenetically highly diverse, covered

multiple trophic levels and represented significant proportions
of diversity found in terrestrial plant and animal communities25

(Fig. 1a).
We, firstly, analysed congruence in the patterns and predictors

of elevational diversity among single taxonomic groups, that is,
for taxonomic groups which are typically studied in macroecol-
ogy. Secondly, we analysed how increasing the taxonomic
coverage towards the community level modifies patterns of
elevational diversity and the support for hypotheses explaining
them. Here we show that disparate factors drive the distributions
of individual taxa. However, scaling up diversity to the
community level leads to a monotonic decline of species richness
with elevation and provides a strong support for temperature as
the major predictor of plant and animal species richness. Our
study reveals high variation in diversity gradients of narrowly
defined taxa and underscores the significance of taxonomically
complex data sets for understanding the broad-scale drivers of
biodiversity.

Results
Elevational species richness of single taxa. We detected a variety
of elevational patterns in species richness among plant and animal
taxa (Fig. 1b). Approximately half of the plant and animal taxa
exhibited monotonic declines in species richness with increasing
elevation (Fig. 1b and Supplementary Figs 3–4). The other half had
hump-shaped or more complex (for example, bimodal) distribu-
tion patterns. While the plant censuses were complete and the
species richness in each study site was accurate, incomplete
sampling, a regular problem in studies of tropical commu-
nities18,26, could have had biased patterns of elevational diversity in
animals (Supplementary Table 1). Estimates of sample coverage, a
measure of sampling completeness27, of most animal taxa were
high (mean sample coverage 40.80, s.d. o0.17) but values in four
taxa (in spiders, parasitoid wasps, other aculeate Hymenoptera and
moths) were moderate to low (mean sampling coverage: 0.54–0.72,
s.d.¼ 0.21–0.38). This suggested that further sampling could have
significantly increased estimates of species richness (Supple-
mentary Table 1). As sample coverage was significantly positively
correlated with elevation in some animal taxa (Collembola, true
bugs, bees, other aculeate Hymenoptera; Pearson’s product
moment correlation, r¼ 0.37–0.85, Po0.05) we checked
if incomplete sampling could have biased elevational diversity
patterns. We calculated for all animal taxa estimates of asymptotic
species richness with the non-parametric Chao1 index27,28 and
compared diversity trends to those detected in the observed data.
Patterns of elevational diversity based on estimated asymptotic
species richness were highly similar to those derived from
the observed data (mean±s.d. of Pearson’s r¼ 0.96±0.09,
Supplementary Table 2).

In the next step we quantified the support for different
hypotheses to explain species richness data at the level of single
taxa using information-theory based multi-model averaging29,30.
As potential predictors of diversity we used temperature (in
animals: mean annual temperature, MAT; and in plants: mean
minimum temperature, MMT31), mean annual precipitation
(MAP, water availability hypothesis), net primary productivity
(NPP; productivity hypothesis), land area within an elevation belt
of 300 m above and below the level of the study sites (area
hypothesis), predictions of a mid-domain effect (MDE) resulting
from multiple random arrangements of species ranges within the
elevation boundaries on Mt. Kilimanjaro (geometric constraints
hypothesis) and in case of species richness of animals, plant species
richness (PSR, plant diversity hypothesis) (Supplementary Fig. 2).

Species richness was best predicted by sets of variables which
differed among the individual taxonomic groups (Table 1 and
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Supplementary Table 3). Temperature (MMT and MAT) was an
important predictor of species richness in most taxa, having
significant positive effects in 11 plant and animal taxa and a
negative effect in one taxon. NPP was significantly correlated to
species richness in eight plant and animal groups. However,
positive and negative effects of primary productivity were equally
common. Six taxa exhibited significant positive, and three
taxa negative relationships to MAP. Richness of phylogenet-
ically basal plant lineages (Lycopodiopsida, ferns, conifers) tended

to increase, while richness of more modern lineages (for example,
monocots) tended to decrease at elevated levels of MAP
(Table 1). Significant positive effects of land area and geometric
constraints (that is, the MDE) were only observed in two taxa
(millipedes and Orthoptera). In moths and gastropods, two
animal groups with completely or largely herbivorous diet,
significant, positive correlations with PSR were detected. Other
animal taxa did not strongly respond to the variation in plant
richness.
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Figure 1 | Patterns of elevational species richness of single taxa. (a) Phylogenetic distribution of studied taxonomic groups among major terrestrial plant

and animal lineages. (b) Patterns of elevational species richness for vascular plants (orange) and animals (blue). Dots represent original measurements on

study sites (plants: N¼ 30; animals: N¼ 30, except for Collembola (N¼ 29), ground-dwelling beetles (N¼ 29) and amphibians (N¼ 17)). Trend lines were

calculated using generalized additive models; all trends were significant (Po0.05). For trend lines of additional plant groups with low numbers of species

see Supplementary Fig. 3. The plant and animal images used in the figure are licensed for use in the Public Domain without copyright, except for the images

used for monocots (F. & K. Starr, modified), bats (O. Peles and Y. Wong), Collembola, ground-dwelling beetles (B. Lang), Orthoptera, other aculeate wasps,

bees (M. Menchetti), gastropods (G. Monger) that are licenced under a Creative Commons Attribution 3.0 Unported licence (https://

creativecommons.org/licenses/by/3.0). Oliver Niehuis kindly provided the permission to use the image of the parasitoid wasp.
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Elevational species richness of multi-taxa communities.
Enhancing the taxonomic coverage of the data from one to eight
(in plants) or 16 taxa (in animals) increased the explained variation
of statistical models (that is, of species richness as a function of
elevation) and lead to an increasing linearization of elevational
species richness patterns in both plants and animals (Fig. 2). At the
full multi-taxa community level (that is, species richness calculated
by summing species richness values of all studied plant or animal
taxa), species richness declined linearly with elevation in plants and
quasi-linearly in animals (Fig. 3) with high levels of explained
variation (generalized additive models; plants: explained
deviance¼ 77%, estimated degrees of freedom (edf)¼ 1, F¼ 94.4,
Po0.001; animals: explained deviance¼ 92%, edf¼ 2.34, F¼ 105,
Po0.001). The decline of biodiversity with elevation was also
evident but less pronounced when analysing richness of higher
taxonomic levels (Fig. 3b,d): the number of orders and families (the
latter only in plants) remained relatively constant up to mid-ele-
vations and strongly declined at higher elevations.

Increasing the taxonomic coverage of the data from single taxa
to the multi-taxa community level revealed an increasing

importance of MMT and MAT as the main predictors of
diversity, while the support for NPP, area and other predictor
variables declined (Fig. 4). At the highest level of taxonomic
coverage, MMT and MAT were the only significant predictors of
species richness (Table 1), explaining 79 and 94% of the total
variation in plant and animal species richness, respectively.
Community level results were highly robust against the exclusion
of single or multiple taxa (Fig. 4) and to differences in sampling
intensity among taxa (Supplementary Fig. 5).

To document the relationships among predictor variables and
to disentangle direct from indirect effects we calculated path
models (Fig. 5). As suggested by analyses along other broad-scale
gradients32, precipitation and temperature were strongly linked to
the NPP of ecosystems. The direct effects of tempe-
rature on PSR were much stronger than the indirect effects via
temperatures’ positive influence on NPP. Similarly, in path
analyses including animal species richness as the final
endogenous variable, the direct effect of temperature on animal
richness was much stronger than the indirect effects mediated via
its positive influences on NPP and PSR.

Table 1 | Synthesis models explaining species richness of plant (a) and animal taxa (b) derived by multi-model averaging.

Conditional standardized estimates††

Taxon #models† MMT NPP MAP Area MDE

0.320.631164Ferns 0.40 –0.62 0.42

Magnoliids 9 8 0.34 0.21 0.72 –0.28 0.11

Monocots 106 6 0.92 –0.55 –0.40 –0.11 –0.28

Other eudicots 26 4 0.15 0.80 –0.95 0.08 –0.19

Rosids 158 8 0.88 –0.28 –0.18 0.03 –0.31

Asterids 189 6 0.55 –0.05 –0.09 0.16 –0.05

All vascular plants 557 10 1.08 –0.22 –0.17 –0.42 –0.19

Conditional standardized estimates††

Taxon #species*

#species*

#models† MAT NPP MAP Area MDE PSR

Gastropods 45 7 0.23 0.01 0.03 0.27 0.77 0.39

Millipedes 14 6 –1.37 0.57 0.57

–0.51

1.53

–0.73

–0.23 0.31

0.560.340.590.013052Spiders

Collembola 23 11 –1.03 1.04 0.48 1.03 –0.75 –0.44

Orthoptera 114 9 0.57 –0.05 –0.30 0.74 0.01 –0.13

True bugs 44 16 0.81 –0.20 –0.19 –0.21 –0.20 ~0.00

Parasitoid wasps 223 13 0.36 0.45 0.50 0.47 0.03 –0.19

Ground–dwelling ants 38 20 1.00 –0.33 –0.21 0.47 –0.17 –0.24

652Bees 1.08 –0.42 –0.09 –0.05 0.18 –0.11

Other aculeate Hym. 45 12 1.13 –0.57 –0.14 –0.56 –0.04 0.27

Dung beetles 56 18 1.09 –0.28 –0.22 0.62 –0.01 –0.36

Ground–dwelling beetles 122 27 –0.41 0.58 0.04 –0.25

–0.79

0.34 0.37

–0.020.261.0816199Moths –0.38 0.54

Hoverflies 19 13 –0.02 0.04 0.63 0.37 0.34 0.02

7122Birds 0.87 0.78 0.07 –0.66 –0.68 0.29

Aerial insectivorous bats 16 15 0.93 0.27 –0.13 –0.25 ~0.00 –0.22

All animals 1184 6 0.96 –0.01 –0.02 0.02 –0.03 0.06

Shown are standardized parameter estimates for all predictor variables derived from weighted averaging of parameter estimates over best-fit models. Colours indicate significant (Po0.05) positive
(blue) or negative (red) effects from multi-model averaging analyses. Results for two additional plant groups with low numbers of species are presented in Supplementary Table 3.
*Total number of detected species/morphospecies for each taxon.
wNumber of best-fit models (DAICo4) used for inference on parameter estimates and variable importance.
wwStandardized estimates (standardized beta) over all best-fit models including the respective predictor variable.
Other aculeate Hym., other aculeate hymenoptera; MAT, mean annual temperature; MAP, mean annual precipitation; MDE, mid-domain effect prediction; MMT, mean minimum temperature; NPP, net
primary productivity; PSR, plant species richness.
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Discussion
Despite decades of ecological research there is little consensus
concerning the determinants of diversity gradients13,19. Our study
of species richness patterns of multiple plant and animal taxa
along the same environmental gradient on Mt. Kilimanjaro,

Tanzania, revealed that there is no general model for explaining
diversity gradients across separately analysed taxonomic groups.
Instead, patterns and predictors of elevational diversity appear to
be idiosyncratic rather than uniform among taxa as they depend
on taxon-specific resource requirements and adaptations to the
environment. However, we found that the importance of
potential drivers of diversity depends on the taxonomic
coverage of analyses with taxonomic upscaling unambiguously
revealing temperature as the single, well-supported predictor of
species richness for taxonomically broad communities. Our
results suggest multi-taxa community diversity as a new
approach to develop more general models to explain trends in
biodiversity: while past studies focused on congruence across
different taxonomic groups, a predictor may be seen as having
higher generality if it explains trends in diversity for
taxonomically more inclusive species communities. Even
though former studies already assessed biodiversity of several
plant or animal taxa along the same elevational gradient33–36, our
study is unprecedented in terms of taxonomic coverage allowing
generalizations and conclusions which could not be achieved with
former data sets.

A monotonic decrease of species richness with elevation, as
found at the highest level of taxonomic coverage, appears to
contrast with former meta-analyses37,38 finding unimodal
patterns of elevational diversity in a majority of studies.
However, all of the individual studies on animals and many of
those on plants reanalysed in meta-analyses are based on
taxonomically restricted data sets, that is, these meta-analyses
are based on taxonomic groups as used in our single taxa
analyses. Analyses at this taxonomic level revealed also for the
Kilimanjaro region a high percentage of unimodal patterns
(in 44% of all tested taxa diversity patterns were unimodal).
However, with increasing taxonomic coverage of plant and
animal communities, unimodal patterns disappeared and the
elevational diversity patterns shifted towards a monotonic decline
of richness. This unification of diversity patterns with increasing

0.0

0.2

0.4

0.6

0.8

1.0

Number of taxa included

C
om

pl
ex

ity
 o

f p
at

te
rn

111 13 15

0.0

0.2

0.4

0.6

0.8

1.0

Number of taxa included

E
xp

la
in

ed
 d

ev
ia

nc
e

3 5 7 9 111 13 153 5 7 9

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Hump-shaped
or more complex

Linear

Exponential
decline

0.0

0.2

0.4

0.6

0.8

1.0

Hump-shaped
or more complex

Exponential
decline

Linear

a

b

c

d

Figure 2 | Elevational species richness patterns with increasing taxonomic coverage. (a,b) The explained deviance of generalized additive models

increased with increasing taxonomic coverage of plant (orange: a,c) and animal (blue: b,d) communities. (c,d) While single taxonomic groups showed a

variation of elevational species richness patterns (that is, linear decline, exponential decline or hump-shaped distributions) increasing the taxonomic coverage

unambiguously led to patterns of linear decline in both plants and animals. In individual box-and-whisker-plots, bold lines indicate the median, boxes the

interquartile range. Whiskers extend to the maximum and minimum values but end at 1.5� the interquartile range. More extreme data are plotted as single

dots.

1,000 2,000 3,000 4,000

0

20

40

60

80

100

1,000 2,000 3,000 4,000 1,000 2,000 3,000 4,000

S
pe

ci
es

 r
ic

hn
es

s

50

0

100

200

150

Elevation (m a.s.l.)
1,000 2,000 3,000 4,000

50

0

100

200

150

0

20

40

60

80

100

T
ax

on
 r

ic
hn

es
s Species

Families
Orders

Species

Orders

Families

a c

b d

Figure 3 | Elevational species richness at the community level. Species

richness of vascular plants (a) and animals (c) along the elevational

gradient of Mt. Kilimanjaro. Lower panels show trend lines for the number

of species, families and orders of vascular plants (b) and animals (d) along

the elevational gradient. All trend lines were calculated using generalized

additive models (N¼ 30 and N¼ 29 in plants and animals, respectively; all

trends were significant at Po0.001). Please see Fig. 1 for credits to the

authors of the original plant and animal images.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13736 ARTICLE

NATURE COMMUNICATIONS | 7:13736 | DOI: 10.1038/ncomms13736 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


taxonomic scale was also observed within some clades, for
example, in beetles and Hymenoptera. Future studies on other
mountains and along other environmental gradients will
be valuable to proof the generality of our findings in other
biogeographic and climatic regions.

Taxonomic groups like birds, ants or terrestrial gastropods
strongly differed in their elevational diversity distributions and
their species numbers were best predicted by different sets of
predictor variables. In approximately 50% of the taxa temperature
was the strongest predictor of species richness, but for the other
half other variables appeared to be of higher importance. This
idiosyncratic response of taxa to environmental gradients is
best explained by niche conservatism, that is, the tendency of
lineages to retain their niches and related ecological traits over
evolutionary time20,39–41, leading to phylogenetic autocorre-

lation in elevational distributions (Supplementary Fig. 6) and
clade-specific species distributions patterns42,43 (Fig. 1b). Strong
constraints in the evolution of niche space (and of related traits
and resource use) may result in a low fit of diversity to energy
variables in narrowly defined taxa6,11. However, the fit may
increase when extending the taxonomic coverage of communities
(Table 1 and Fig. 4).

The integration of multiple taxonomic groups in analyses
unequivocally revealed that community level diversity is mainly
predicted by temperature. The increasing importance of tem-
perature on diversity for taxonomically more broadly covered
communities was driven by two effects: Even though temperature
was neither the most important nor a consistently significant
predictor variable across plant and animal taxa, its effect was
positive, reaching from subtle to strong, in the majority of taxa
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Figure 4 | Statistical support for predictors of species richness in relationship to taxonomic coverage. Box-and-whisker-plots show the variation in

measures of variable importance (a,c) and standardized beta (b,d) in relationship to the taxonomic coverage of plant (a,b) and animal communities (c,d)

(values correspond to the left y axis). Bold curved lines give the percentage of all possible taxa combinations in which a variable had the highest variable

importance or standardized beta value (extending from 0 to 100%, right y axis). Variable importance is defined as the sum of the Akaike weights of all best-

fit models which include the respective predictor variable. Standardized beta values are standardized parameter estimates derived from conditional

weighted averaging of parameter estimates over best-fit models. MMT, mean minimum temperature; MAT, mean annual temperature; NPP, net primary

productivity; MAP, mean annual precipitation; MDE, mid-domain effect prediction; PSR, plant species richness.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13736

6 NATURE COMMUNICATIONS | 7:13736 | DOI: 10.1038/ncomms13736 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


(Table 1). In addition, many of the taxa exhibiting strong positive
temperature–diversity relationships (for example, monocots,
rosids, asterids; Orthoptera, all groups of aculeate Hymenoptera,
birds, moths) were more diverse, contributing more species to the
local species communities, than taxa with negative or weak
relationships (for example, magnoliids, millipedes, Collembola;
but note that there were also exceptions, for example, the diverse
group of ground-dwelling beetles). The largely positive effect of
temperature on species richness (Table 1) was independent of
differences in sampling intensity among taxa (Supplementary
Fig. 5) and contrasts with the heterogeneous effects of other
predictor variables: NPP was a well-supported predictor variable
only for some single taxa but not for the multi-taxa community44.
This was because positive and negative effects of NPP on species
richness were equally common in single-taxa analyses. Species
richness of most taxonomic groups and of the animal and plant
communities as a whole was highest in the dry savannah where
primary productivity and precipitation is rather low, suggesting

that even low levels of primary productivity and temporal aridity
do not principally put major limitations to the diversification or
species coexistence of plant or animal assemblages as a whole.
High levels of statistical support for the MDE, which is often used
to explain unimodal patterns of elevational diversity15,16, was rare
for single taxa and the support decreased with increasing
taxonomic coverage. The species richness of a large number of
taxa peaked at the lowest elevation and, even in taxa exhibiting
unimodal distributions of species richness, the highest richness
values were not generally observed at the middle of the domain
but at variable elevations (Fig. 1 and Supplementary Fig. 4). These
observations suggest a limited role of this type of geometric
constraints for the elevational distribution of plant or animal
diversity on Mt. Kilimanjaro. However, even though the MDE has
often been used to explain patterns of diversity on other
mountains which do not extend to the sea level45,46, its
application to these systems is debated15. Moreover, recent
studies proposed to refine the MDE models by including
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Figure 5 | Path models showing direct and indirect effects of predictor variables on species richness. For plants (a) and animals (b), the path model

with the lowest Akaike information criterion (AICc) is presented as solid lines. Interrupted lines indicate potential paths used for the construction of

competing models (all models with DAICco3 identified by multi-model inference) but which were excluded from the final path model. For all paths of the

final path model, arrow width is proportional to the relative strength of standardized path coefficients. Orange and black arrows indicate negative and

positive effects, respectively. For each endogenous variable the relative amount of explained variance is given. n.s., not significant.
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midpoint attractors, that is, peaks of favourable environmental
conditions, in models to improve predictions of diversity
gradients47. The area available to species populations is
regarded as a major determinant of local and regional species
richness12,13. However, land area was a poor predictor of plant
and animal species richness on Mt. Kilimanjaro, where significant
positive effects were only found for millipedes and Orthoptera.
PSR received high statistical support as a predictor of animal
species richness only in terrestrial gastropods and moths.
Particularly, moths are well known for their specialization on
certain food plants which probably facilitates strong associations
between herbivore and plant diversity48.

The large support for MMT and MAT as the major predictors
of multi-taxa species richness suggests a high importance of
temperature-driven mechanisms facilitating the origination and
maintenance of biodiversity24,49. While recent studies emphasize
the positive effect of temperature on speciation rates2,50,51, the
young age of Mt. Kilimanjaro (o2 Mio years) and the fact that
the trends were found for diversity estimates taken at local rather
than regional spatial scales (study sites of 50� 50 m) suggest
the additional importance of ecological mechanisms, such as
positive effects of temperature on rates of negative-density
dependence52,53 or positive effects on resource exploitation and
other biological rates23,49.

While species richness data for many different taxonomic
groups were assessed and sampling effort for most taxa was high,
several species-rich animal groups were not studied and
additional sampling would probably yield more species in local
communities. Nonetheless, several points underpin that our
results are robust against the inclusion of additional taxonomic
groups or increased sampling effort: (i) No taxon considered in
this study was included based on an a priori expectation of a
certain elevational species richness pattern, and the taxa studied
were phylogenetically highly diverse and represent much of the
terrestrial plant and animal phylogenetic diversity25 (Fig. 1a).
(ii) The sampling resembled a stratified random sampling
approach (first strata: sampling of larger taxa, second strata:
sampling of species within taxa), which provides comparative
estimates of community level diversity even under incomplete
sampling of taxa and species (Supplementary Fig. 7). (iii) Patterns
for all taxonomic groups remained consistent when controlling
for differences in sampling completeness (Supplementary
Table 2) and analyses restricted to taxa sampled with high
effort did not change resulting patterns (Fig. 4). (iv) Moreover,
community-level analyses in which we applied a rarefaction
approach to standardize sampling effort across animal taxa lead
to the same conclusions regarding the importance of temperature
as the major predictor of species richness (Supplementary Fig. 5).
(v) Last, analysing only a fraction of the full data set of taxa
unambiguously revealed temperature as the most important
predictor of plant and animal species richness in terms of both
variable importance and effect strength (Fig. 4).

While our study was extensive in terms of studied taxonomic
diversity, it was, however, restricted to a single mountain with a
specific geological, climatic and biogeographic context. For
example, patterns of elevational diversity have been shown to
depend on the extent of the elevational gradient38. Even though
the lowest elevations studied at Mt. Kilimanjaro form the natural
base of the mountain (as the Mt. Kilimanjaro region and
most parts of East Africa are situated at high elevations),
equatorial mountains extending to the sea level could provide
even more extreme environmental gradients and could
show distinct elevational patterns. In addition, our inter-
pretation of the importance of temperature and other predictor
variables is based on hypotheses-driven correlative analyses of
species distribution data. It will be highly interesting to evaluate

the support for drivers of multi-taxa diversity with both
correlative and experimental approaches on other mountains,
differing in age, climate, degree of isolation and biogeographic
context.

In conclusion, our study revealed that a broad taxonomic
coverage in macroecological studies provides new insights into
the drivers of broad-scale diversity gradients. Whereas upscaling
from regional to global patterns significantly enhanced the
perception of the major drivers of diversity8,13,44, increasing the
phylogenetic coverage of studies may be another axis to consider
on the way to generalization and causal understanding. While
geometric constraints, area, water and productivity variables were
of importance only for predicting richness of few groups of
low taxonomic level, temperature gained consistent, increasing
support as a main predictor of species richness with increasing
taxonomic coverage of communities. Identifying the ecological
and evolutionary mechanisms by which temperature governs the
distribution of biodiversity will be of fundamental importance for
understanding global gradients of diversity and the long-term
consequences of global warming.

Methods
Time and area of study. All data were collected from December 2011 through
January 2014 on the southern and south-eastern slopes of Mt. Kilimanjaro
(Tanzania, East Africa; 2�450-3�250S, 37�000-37�430E). Mt. Kilimanjaro has a
northwest-southeast diameter of B90 km and rises from the savannah plains at
700 m elevation to a snow-clad summit at 5,895 m a.s.l. Precipitation is bimodal
with the main rainy season occurring from March through May and the more
variable short rains around November. The MAT decreases in a quasi-linear
manner with elevation having an overall lapse rate of B0.56 �C per 100 m
starting with 25 �C at the foothills and decreasing to � 8 �C at the top of the
mountain54. Vertical precipitation distribution shows an unimodal pattern, with
600–900 mm year� 1 at the base of the mountain, B2,500–3,000 mm year� 1 at
2,200 m a.s.l. and o500 mm year� 1 in the Afroalpine zone at the highest
elevations54,55. Because of a long history of human impact, natural habitats in the
lowlands were largely cleared54,55. Habitats above 1,800 m a.s.l. are protected as a
national park (Mt. Kilimanjaro National Park).

Phylogenetic tree. To demonstrate the distribution of studied taxa across the
whole phylogenetic diversity of free-living land plant and animals we constructed a
phylogenetic tree of all major plant and animal taxa. Here only the major taxa, that
is, taxa with more than 1,000 described species, were considered. For identifying
the plant and animal taxa with more than 1,000 described species we used
Chapman25. We filtered out all predominately aquatic taxa (for example, most
animal phyla nearly exclusively occur in marine environments). Taxonomic and
phylogenetic data in http://en.wikipedia.org (accessed 25 July 2014), Trautwein
et al.56 and Misof et al.57 was used to construct a phylogenetic tree of the major
terrestrial taxa using the R package ape with branch length computation based on
Grafen58. Please note that while the topology of the tree well represents current
knowledge, branch lengths are, however, arbitrary and not indicative of clade ages
or rates of molecular evolution. We consider this approach as sufficient because the
tree is solely used for demonstrating the phylogenetic distribution of studied taxa
and was not used for any statistical inference.

Study design. We established thirty 50� 50 m study sites, which spanned an
elevational gradient of 871–4,550 m a.s.l. Lower elevations are scarcely found in the
East African highland region, where Mt. Kilimanjaro is located, and the lowest
elevations incorporated in our studied elevational gradient can be considered as a
typical, natural base of the mountain (within a square of 2�� 2� (B222� 222 km)
with the Kibo peak of Mt. Kilimanjaro in the centre, 100% of the area is 4500 m
a.s.l., 99% 4600 m a.s.l., 94% 4700 m a.s.l. and 83% 4800 m a.s.l.). The
study sites were equally distributed over the six major types of natural habitats
found along the south-eastern slope of Mt. Kilimanjaro: savannah woodland
(B800–1,150 m a.s.l.), submontane and lower montane ‘Newtonia’ forest
(B1,150–2,050 m a.s.l.), ‘Ocotea’ forest (B1,800–2,800 m a.s.l.), ‘Podocarpus’
forest (B2,700–3,200 m a.s.l.), ‘Erica’ forest and bushland (B3,200–4,000 m a.s.l.),
and alpine ‘Helichrysum’ shrub vegetation (B3,850–4,600 m a.s.l.). Five study sites
per habitat type were distributed to reflect a within-habitat type elevation gradient
to detect fine scale changes in biodiversity with changing elevation. Spatial
distances among study sites were in all cases larger than 300 m. If possible,
study sites were established in core zones of larger areas of the respective habitat
type, so that effects of transition zones were minimized.
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Species richness data. For each taxonomic group, standardized approaches were
used to collect species richness data on all 30 study sites. For taxonomic groups
where the sampling effort per site was the same, we calculated species richness as
the total (cumulative) number of species per study site. These included all groups of
vascular plants, terrestrial gastropods, millipedes, spiders, true bugs, Collembola,
parasitoid wasps, ants, bees, other aculeate Hymenoptera, ground-dwelling beetles
(without dung beetles), dung beetles and birds. Where sampling effort per site
varied we used the following approaches: For moths and bats, species richness per
site was calculated by averaging the species richness values of the single surveys.
For frogs, Zancolli et al.59 aimed at sampling complete assemblages and therefore
sampling effort per site was adjusted to measure asymptotic species richness.
The same was true for Orthoptera60,61. In both taxa, we used the total number
of species per site detected by the authors. In hoverflies numbers of samples varied
among study sites. Initially, we reduced the number of samples on sites to a
common number and calculated the cumulative species richness from the reduced
data set. However, as many species were missing in this data set and the number of
species per site was generally low, we run the analysis with the full (unequally
sampled) data set and compared the patterns to those of the reduced data set:
The pattern was very similar but the variation was much smaller. Therefore, for
hoverflies we used the full data set. Details on the sampling procedures for all taxa
are described in the Supplementary Methods.

Temperature and precipitation. All study sites were equipped with temperature
sensors that were installed B2 m above the ground. Coated plastic funnels were
used for radiation shielding. The temperature sensors measured temperatures in
5 min intervals for a time period of B2 years. We subsequently calculated the MAT
as the average of all measurements per study site and the MMT as the average over
all monthly temperature minima per study site. On six study sites data loggers were
repeatedly stolen and we had to estimate temperature data for these study sites.
On the basis of the observed MAT and MMT data we calculated a linear model
with MAT/MMT as the response and elevation and habitat type as additive
explaining variables (R2¼ 0.99, N¼ 24, Po0.01 for both temperature variables).
Using this model we predicted the missing six temperature values based on the
elevation and habitat type of study sites. MAP was interpolated for every study site
using a co-kriging approach based on a 15-year data set from a network of about 70
rain gauges on Mt. Kilimanjaro55.

Net primary productivity. We used the normalized difference vegetation index
(NDVI) as a proxy for NPP. Because of the negative biases due to sensor degra-
dation of MODIS Terra62, NDVI estimations were exclusively based on MODIS
Aqua product MYD13Q1 with a horizontal resolution of 250 m� 250 m. Cloud
contamination is a very prominent feature on Mt. Kilimanjaro and problematic
with regard to realistic estimations of NDVI. To address this issue we first
identified all pixels with a MYD13Q1 quality flag of three and deleted these
together with the eight adjacent surrounding pixels. Afterwards, we followed the
approach proposed by Atzberger and Eilers63 using the ‘Whittaker smoother’ based
on three iterations with a lambda of 6,000. We then calculated the overall mean
NDVI for the 10-year period 2003–2012 and extracted the pixel values
corresponding to the locations of our study sites. A comparison of NDVI data with
on-site measurements of the leaf-area index conducted during the growing season
revealed a high level of correlation (r¼ 0.84, Po0.001).

Area. We calculated for each study site the available land area within a range of
300 m above and below the elevational level of study sites. This area data was
derived from a digital elevation model of Mt. Kilimanjaro with a resolution of 30 m
of the following extent: 37.00074�–37.75602�E, 3.507533�–2.750183�S.

Mid-domain effect. We determined for each species the elevational range, which
is defined by its minimal and maximum elevation of occurrence. Incomplete
sampling routinely underestimates range sizes64, with the most extreme case being
species recorded from only a single elevation (which was the case for many species
found) which thus would have an observed elevational range of 0 m. To adjust
range underestimation we followed the approach used by Brehm et al.16 and
added 265 m to each end of each recorded range (for all ranges), which corresponds
to half the maximum elevational distance between any two adjacent sampling
elevations. We then systematically reassigned the location of each of the inter-
polated, augmented ranges within the domain (606–4,815 m) at random (sampling
without replacement) and then recorded the predicted richness for the elevation of
each study site. This procedure was repeated for 200 times after which the mean
predicted richness for each study site was calculated by averaging over the 200
predicted richness values of the individual repeats.

Statistical analysis. Generalized additive models (gam) were used to model the
relationships between species richness and elevation65,66, setting the data family
to Gaussian type and the basis dimension of the smoothing function to five.
We calculated a complexity value to characterize the shape of elevational species
richness patterns with one numeric measure by comparing the explained deviance
of generalized linear models (EDglm) with the explained deviance of generalized

additive models (EDgam) of species richness on elevation: complexity¼
(EDgam� EDglm)/EDgam. Supplementary Fig. 8 exemplifies calculations of
complexity for a pattern with a mid-elevational peak, a linear decline and an
exponential decline. Note that in case of high error variation, EDglm may
theoretically equal EDgam so that complexity values B0 even though no
statistically well supported trend of linear decline is evident. However, in our data
set explained deviance was consistently high (40.3) and all complexity values of
o0.2 were associated with significant negative trends (slopes of glm o0, Po0.05).
To analyse the statistical support for explanatory variables in predicting plant and
animal species richness we used multi-model inference based on information-
theory and ordinary least-square regression (20). Multi-model inference not only
accounted for uncertainty in parameter estimates but also for uncertainty in model
selection29,30,67. Moreover, multi-model inference is a way to objectively deal with
correlated predictor variables as strongly correlated predictor variables with the
same explanatory power will get reduced support in multi-model inference
(Supplementary Fig. 9). In the multi-model inference procedure, two final variables
were calculated: first, variable importance, which is a measure of the relative
support a predictor variable receives over the full model space; second, conditional
model-averaged parameter estimates and significance levels. We z-transformed all
predictor variables before analyses, so that the model-averaged parameter estimates
were standardized beta values. This transformation allowed us to compare the
relative influence on species richness among the set of predictor variables which
were measured at different scales. For multi-model averaging analyses the R
package MuMIn (http://CRAN.R-project.org/package=MuMIn, accessed 25 April
2014) was used.

To analyse elevational species richness patterns and the support for different
predictor variables with increasing taxonomic coverage we conducted the following
steps: (1) we calculated for all combinations of 1–8 plant (N¼ 256) and for all
combinations of 1–16 animal groups (N¼ 65,535; that is, for taxa shown individually
in Fig. 1 and Supplementary Fig. 3) the pooled (cumulative) species richness; (2) we
modelled pooled species richness as a function of elevation using generalized-additive
models and calculated the complexity measure of the elevational species richness
pattern; (3) we calculated MDE predictions for all study sites based on the species
range information of the randomly combined taxa; and (4) we ran a multi-model
inference analysis with pooled species richness as the response and MAT (in animals)
or MMT (in plants), MAP, NPP, land area, the predictions of MDE model and PSR
(for explaining richness of animal taxa) as predictor variables. These analyses were
conducted in the same way as the single taxa analyses.

We validated the influence of incomplete sampling on diversity patterns and
inference on predictor variables using a battery of analyses: first, we calculated
measures of sample coverage for all taxa using the R package iNEXT68 and
analysed their correlation with elevation. To analyse the influence of incomplete
sampling on patterns of elevational diversity, we estimated asymptotic species
richness for all single taxa for which abundance data was available, using a non-
parametric species richness estimator for abundance-based data, that is, the Chao1
index27,28,68. We used generalized additive models to model Chao1-estimated
species richness as a function of elevation and predicted for each study site the
number of species from these models. We correlated the predicted estimates of
asymptotic species richness to the ones predicted by the original model (based on
the observed species richness data) using Pearson’s product moment correlation.
If variation in incomplete sampling significantly biased elevational species richness
patterns, we expected predictions not to be highly correlated.

Moreover, as we counted the species of all animal taxa equal in the pooled
community-level analyses, results of statistical inference could be biased due to
differences in the sampling intensity (that is, here the number of individuals which
were sampled per taxon) among taxa. We therefore analysed patterns of elevational
species richness and the support for predictor variables additionally for a
standardized data set, in which for each animal taxon the number of individuals
was rarefied to the lowest number of individuals observed in any of the taxa (that is,
N¼ 83) and used for the calculation of variable importance and effect strength of
all predictor variables. This procedure was repeated for 5,000 times. From the
results of these analyses of standardized data sets we calculated the mean and 95%
confidence intervals of variable importance and standardized beta for all predictor
variables.

Path analysis69 was used to disentangle the direct and indirect effect of climate
(temperature and precipitation), primary productivity, area, the MDE and plant
richness (the latter only for animal species richness as the response variable) on
pooled plant and animal species richness. All explanatory variables were standar-
dized by z-transformation using the ‘scale’ function in R. On the basis of prior
studies, we hypothesized that temperature (MAT or MMT) and precipitation
(MAP) predict species richness directly and indirectly via their combined
effect on primary production (NPP) and on the species richness of plants
(PSR, that is, for animal richness as the response variable). Therefore, we
pre-selected possible path combinations, by analysing the response variables of
our path models (animal species richness, PSR, primary productivity) with all
explaining variables:

For plants:

NPP � MMTþMAP ð1Þ

PSR � MMTþMAPþNPPþAreaþMDE ð2Þ
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For animals:

NPP � MATþMAP ð3Þ

PSR � MATþMAPþNPPþAreaþMDE ð4Þ

Animal species richness � MATþMAPþNPPþAreaþMDEþ PSR ð5Þ
For each model we used the ‘dredge’ function of the R package ‘MuMIn’ to evaluate
models defined by all possible variable combinations and ranked them by their
AIC-based model weight. As our sample size was relatively low compared with the
number of estimated parameters, we used the AIC with a second-order bias
correction (AICC) for inferring the support of individual models. From the set of
best supported models (D AICCo3) we calculated paths models using the R
package ‘lavaan’70 and ranked them based on their AICC. In Fig. 5 we show paths
coefficients (width of arrows), their statistical significance and multiple coefficients
of determination (R2) of predictor variables of the best supported path models with
the lowest AICC. In addition we indicate paths of competitive models (D AICCo3)
which were not included in the best model.

Data availability. The data that support the findings of this study are available
from the following authors upon request: corresponding author (M.K.P.):
data of geographic coordinates, elevation, land area, mid-domain effect predi-
ctions for study sites, data on Heteroptera, ants, parasitoid and other aculeate
wasps; A.H. (andreas.hemp@uni-bayreuth.de): plant data, mean annual preci-
pitation; T.A. (tim.appelhans@staff.uni-marburg.de): NPP, temperature data;
A.C. (alice.classen@uni-wuerzburg.de): data on bees and hoverflies; S.W.F.
(stefan.ferger@yahoo.de): bird data; S.B.F. (sara.frederiksen@snm.ku.dk):
millipede data; F.G. (friederike.gebert@uni-wuerzburg.de): dung beetle
data; M.H.-B. (m.helbig-bonitz@gmx.de): bat and moth data; C.H.
(claudia.hemp@uni-wuerzburg.de): Orthoptera data; C.N. (cngereza@yahoo.com):
gastropod data; J.R. (juliane.roeder@biologie.uni-marburg.de): data on spiders,
Collembola, ground-dwelling beetles; G.Z. (giulia.zancolli@gmail.com): amphibian
data.
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roof of Africa: unveiling the effects of habitat degradation, altitude and
biogeography. Divers. Distrib. 20, 297–308 (2014).

60. Hemp, C. Annotated list of Caelifera (Orthoptera) of Mt. Kilimanjaro,
Tanzania. J. Orthoptera Res. 18, 183–214 (2009).

61. Hemp, C. Annotated list of Ensifera (Orthoptera) and further records on Caelifera
(Orthoptera) of Mt Kilimanjaro, Tanzania. Zootaxa 3613, 301–342 (2013).

62. Wang, D. et al. Impact of sensor degradation on the MODIS NDVI time series.
Remote Sens. Environ. 119, 55–61 (2012).

63. Atzberger, C. & Eilers, P. H. C. A time series for monitoring vegetation activity
and phenology at 10-daily time steps covering large parts of South America. Int.
J. Digit. Earth 4, 365–386 (2011).

64. Colwell, R. K. & Hurtt, G. C. Nonbiological gradients in species richness and a
spurious rapoport effect. Am. Nat. 144, 570–595 (1994).

65. Crawley, M. J. The R Book (Wiley, 2013).
66. Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman &

Hall/CRC, 2006).
67. Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution.

Trends Ecol. Evol. 19, 101–108 (2004).
68. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and

extrapolation of species diversity (Hill numbers). Methods Ecol. Evol.
doi:10.1111/2041-210X.12613 (2016).

69. Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis,
Structural Equations and Causal Inference (Cambridge Univ. Press, 2004).

70. Rosseel, Y. lavaan: an R package for structural equation modelling. J. Stat.
Softw. 48, 1–36 (2012).

Acknowledgements
We thank the Tanzanian Commission for Science and Technology, the Tanzania Wildlife
Research Institute and the Kilimanjaro National Park authority for their support and for
granting us access to the Kilimanjaro National Park area. We are grateful to all the
companies and private farmers who allowed us to work on their land. We thank the KiLi

field staff for helping to collect data at Mt. Kilimanjaro. This study was conducted within
the framework of the Research Unit FOR1246 (Kilimanjaro ecosystems under global
change: linking biodiversity, biotic interactions and biogeochemical ecosystem processes,
https://www.kilimanjaro.biozentrum.uni-wuerzburg.de) funded by the Deutsche For-
schungsgemeinschaft (DFG).

Author contributions
I.S.-D., A.H., M.F. designed the concept for ecological research at Mt. Kilimanjaro. A.H.,
M.-O.R., M.S., K.B.-G., R.B., E.K.V.K., M.K., T.N., M.T., M.F. and I.S.-D. conceptualized
and supervised single taxa studies. A.H. implemented study sites. M.K.P. and I.S.-D.
conceived the study. M.K.P., A.H., T.A., C.B., A.C., F.D., A.E., S.B.F., S.W.F., F.G., M.H.,
M.H.-B., C.H., W.J.K., E.M., C.N., I.O., J.R., G.R., D.S.C., J.T. and G.Z. collected the data.
J.D., C.D.E., R.S.P. and A.S. identified significant quantities of specimens. A.H., C.H.,
V.K. and J.Z. organized and maintained logistic infrastructure. M.K.P. processed and
analysed the data and wrote the first version of the manuscript with input from I.S.-D.
All authors contributed to the final version of the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Peters, M. K et al. Predictors of elevational biodiversity gradients
change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736
doi: 10.1038/ncomms13736 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13736 ARTICLE

NATURE COMMUNICATIONS | 7:13736 | DOI: 10.1038/ncomms13736 | www.nature.com/naturecommunications 11

http://dx.doi.org/10.1111/2041-210X.12613
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Elevational species richness of single taxa

	Figure™1Patterns of elevational species richness of single taxa.(a) Phylogenetic distribution of studied taxonomic groups among major terrestrial plant and animal lineages. (b) Patterns of elevational species richness for vascular plants (orange) and anim
	Elevational species richness of multi-taxa communities

	Table 1 
	Discussion
	Figure™2Elevational species richness patterns with increasing taxonomic coverage.(a,b) The explained deviance of generalized additive models increased with increasing taxonomic coverage of plant (orange: a,c) and animal (blue: b,d) communities. (c,d) Whil
	Figure™3Elevational species richness at the community level.Species richness of vascular plants (a) and animals (c) along the elevational gradient of Mt. Kilimanjaro. Lower panels show trend lines for the number of species, families and orders of vascular
	Figure™4Statistical support for predictors of species richness in relationship to taxonomic coverage.Box-and-whisker-plots show the variation in measures of variable importance (a,c) and standardized beta (b,d) in relationship to the taxonomic coverage of
	Figure™5Path models showing direct and indirect effects of predictor variables on species richness.For plants (a) and animals (b), the path model with the lowest Akaike information criterion (AICc) is presented as solid lines. Interrupted lines indicate p
	Methods
	Time and area of study
	Phylogenetic tree
	Study design
	Species richness data
	Temperature and precipitation
	Net primary productivity
	Area
	Mid-domain effect
	Statistical analysis
	Data availability

	GastonK. J.Global patterns in biodiversityNature4052202272000BrownJ. H.Why are there so many species in the tropics?J. Biogeogr.418222014FineP. V. A.Ecological and evolutionary drivers of geographic variation in species diversityAnnu. Rev. Ecol. Evol. Sys
	We thank the Tanzanian Commission for Science and Technology, the Tanzania Wildlife Research Institute and the Kilimanjaro National Park authority for their support and for granting us access to the Kilimanjaro National Park area. We are grateful to all t
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




