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Summary. Pricing of catastrophe bonds leads to integrals with discontinuous and
formally infinite-dimensional integrands. We investigate the suitability of Quasi-
Monte Carlo methods for the numerical evaluation of these integrals and develop sev-
eral variance-reduction algorithms. Furthermore, the performance of Quasi-Monte
Carlo sequences for asymptotically efficient rare event simulation is examined. Var-
ious numerical illustrations are given.
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1 Introduction

In the last decade securitization of risk gained considerable importance in
catastrophe risk management of insurance companies. The high level of world-
wide insurance losses both in severity and frequency due to natural catastro-
phes and the under-capacity of traditional reinsurance encouraged the devel-
opment of so-called insurance linked securities. These are financial products
that transfer some of the insurance risk to the financial market. A survey on
existing products and on the history of this alternative to classical reinsurance
may be found e. g. in Doherty [8], Gorvett [10] or more recently Muermann
[17]. One of the key issues to popularize these products among capital investors
is to develop fast algorithms for the correct valuation of their fair prices. Since
typically the underlying models are too complex to allow for analytical pricing
formulae, efficient numerical methods are of major importance.

In this paper we will focus on the pricing of catastrophe-linked bonds (Cat
bonds for short), for which the issuer has the right to default on parts of
the principal and/or coupon if a predefined index of insurance losses due
to natural catastrophes exceeds a given threshold. This loss index is usually
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constructed as a weighted average of the losses of individual insurance com-
panies. For the determination of fair Cat bond prices, the step of modeling
the stochastic behavior of this loss index is crucial. In [1], the performance
of Quasi-Monte Carlo methods for the pricing of Cat bonds in a model with
a compound Poisson loss index process in the presence of stochastic interest
rates and default risk of the issuing company was analyzed. Here, we will con-
sider a more complex loss index model recently proposed by Dassios and Jang
[6] and investigate the potential of Quasi-Monte Carlo techniques to evaluate
the resulting high-dimensional integrals.

In contrast to Monte Carlo methods, the error of Quasi-Monte Carlo (QMC)
techniques is deterministically bounded above by the Koskma-Hlawka inequal-
ity: Let {zn}1<n<n be a point sequence in [0,1)%, V(f) < oo be the variation
of f in the sense of Hardy and Krause and D%, (x,,) denote the star discrepancy
of (x1,...,2N), then

1 & )
| /[0’1]3 f(x)dx o N ; f(l‘z) < V(f) DN(xn), (1)

separating the integration error into a factor only depending on the integrand
f and a factor depending on the point sequence (z1,...,zy) only. Since the
best known sequences (so-called low discrepancy sequences) have a discrep-
ancy of order O(log®(N)/N), QMC techniques are at least asymptotically
superior to Monte Carlo simulation, the probabilistic error of which is known
to be of order O(1/v/N). For an introduction to QMC integration and the
construction of low discrepancy sequences we refer to Niederreiter [18]. Al-
though there exist functions for which the bound (1) is attained, it turns out
to be a rather conservative bound in most cases. In a seminal paper, Paskov
and Traub [19] showed empirically that there are extremely high dimensional
problems (s = 360 and more) occurring in mathematical finance, where QMC
methods outperform Monte Carlo algorithms by far. Since then there has been
intensive empirical and theoretical research to classify types of integrands that
are particularly well suited for QMC integration. The concept of tractability
(cf. Sloan and Wozniakowski [20]) and the effective-dimension approach (cf.
Wang and Fang [23]) provide partial explanations to these aspects, but the
problem is still not perfectly understood.

In this paper we investigate the performance of QMC techniques for inte-
grands occurring in the price determination of Cat bonds. From the view-point
of Quasi-Monte Carlo methodology, the valuation of these financial products
leads to several interesting phenomena: At least formally, the involved inte-
grands are infinite-dimensional, but have moderate effective truncation dimen-
sion (a rigorous definition of the concept of truncation dimension can be found
in [23]). One is also faced with integrands with jumps (discontinuities), which
are in general not parallel to the axes, so that the variation of the integrands



QMC techniques for CAT bond pricing 3

is unbounded and the Koksma-Hlawka bound becomes useless. We will use a
transformation of the integrands to smooth the jumps and compare the con-
vergence behavior with and without smoothing. Moreover, since in practical
situations the threshold for the forgiveness trigger of the Cat bond is usually
rather high, the QMC evaluation of the corresponding integrals amounts to a
sampling of rare events. Rare event sampling is well established using Monte
Carlo sequences (see e.g. Asmussen and Glynn [3] and the references therein).
This paper aims to analyze the performance of QMC algorithms combined
with an asymptotically efficient rare event technique, which applies for light-
tailed claim sizes. In case of heavy-tailed distributions, efficient rare event
simulation is still not sufficiently developed from a theoretical point of view
(cf. [2]). However, for our integrands, we illustrate how solutions of light-tailed
problems might be used as control variates for heavy-tailed problems to im-
prove the convergence significantly.

Section 2 introduces the loss-index model and the valuation methodology, Sec-
tion 3 specifies the details of the proposed simulation techniques and numerical
illustrations of its performance are given Section 4. Section 5 concludes.

2 A shot noise process for the loss dynamics

In the model of Dassios and Jang [6], the claim index is governed by a doubly
stochastic compound Poisson process. A shot noise process defines frequency
and impact of catastrophic events and determines the corresponding claim
intensity of the Poisson process generating the claims relevant for the index
in a given time interval. Models of this type allow to incorporate reporting
lags of the occured claims (see also [11]).

Let M; be the number of catastrophic events in [0,¢] induced by a homoge-
neous Poisson process with intensity p. Denote the time of the i-th catastrophe
by t; and let Y; with ¢ = 1,..., M; be independent random variables describ-
ing the impact of each catastrophe. The shot noise process is then defined

as
My

A= doe %+ Ve (> 0), (2)
=1

where ¢ denotes the decay rate of the reporting intensity, i.e. low ¢ indicates
long reporting lags. Finally, the loss index is specified by

Ny
Cr=Y_Xj,
j=1

where the number of claims V; is Poisson distributed with parameter fot A du.
The random variables X; may be interpreted as single claims or groups of
claims and are assumed to be iid with distribution function H. Dassios and
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Jang [6] provide closed-form solutions for I'-distributed claims and exponen-
tially distributed impact variables Y;. We will use this specific case as a per-
formance check of our algorithms (but in principle our algorithm can also be
used for heavy-tailed Y;). Note that it is assumed that the process \; started
sufficiently far in the past, so that at time 0, the asymptotic distribution of
Ao may be used, from which it follows for exponentially distributed Y; (with
parameter «) that \g is I'(p/d, 1/a)-distributed.

The Cat bond is now assumed to have the payoff at maturity time T

Poat(T) = Itcp<iy + 0 Licr>k)

where I denotes the indicator function, K is the trigger value and p denotes
the fraction of the principal that has to be paid in case the loss index is above
the trigger at time T'. For simplicity, we will always normalize the principal to
1 and set the coupon rate equal to 0, so that the price of the Cat bond at time
t < T will always be less than 1. According to general asset pricing theory,
the fair price Poq:(t) at time ¢ of such an asset is given as the discounted
expectation of its payoff under a suitable risk-neutral measure ). The correct
choice of this risk-neutral measure @ has been debated in the literature, here
we follow Merton’s approach [15] identifying the forward measure with the
physical measure P (see also [5, 12]) so that

Peat(t) =Pr E[1+ (p—1) Iicpary]

where P, 1 is the price of a risk-free bond with maturity 7" at time ¢. In this
case the probability generating function of N can be determined (cf. [6]):

(1—-0)p
—6T

e s} ae @s245(1—0)
E(0N7) =Y "6 ]P’(NT:j):< )) )
Jj=0

a+ 1%50(1 — e 0T

Then the price of the Cat bond at time 0 with maturity T is given by

Pcat(0) = Por E[1+ (p— 1) Iicrs> k]

p+(1—p) ZP(Nsz)F*j(K)], (4)
j=0

=DPyr

where F*/(K) = Pr(X; + ...+ X; < K) denotes the j-th convolution of the
claim size distribution F'.

3 Simulation methodology

Since in general there are no closed-form expressions for (4) available, one has
to develop efficient simulation techniques. Let us for convenience restrict to
the case of exponentially distributed Y; and first consider the crude Monte
Carlo algorithm:
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Crude Monte Carlo Algorithm

1. Forj=1,...,ndo

a) Generate a I'(p/0,1/a)-distributed variable Ag.

b) Generate catastrophe times ¢; by adding up Exp(p)-distributed ran-
dom variables until ¢; > T. Set My =i — 1.

c) Fori=1,..., My generate Exp(«)-distributed random variables Y;.

d) Calculate Zr = fOT Audu according to (2).

e) Generate a Pois(Zr)-distributed random variable determining the
number Nt of claims.

f) For k = 1,..., Nr generate independent H-distributed random vari-
ables X}.

g) Set BU) = [{C;j)SK} +p I{C(Tj>>K}, where Céf) SDINP. ¢
2. The final estimate is given by
; Por N~ )
Poar(0) = —= > BY. (5)
j=1

Here, all non-uniform random variables are generated by standard inversion
techniques (possibly by using approximations of the inverse distribution func-
tion, see e.g. [7]) and the uniform pseudo-random numbers are obtained using
the Mersenne twister [14].

Formally, the involved integrands are not well suited for QMC integration. The
dimension of the problem as well as the variation of the integrands is infinite,
so that the Koksma-Hlawka bound is useless. In the following, we discuss the
non-standard obstacles faced when designing a corresponding QMC algorithm:

Effective dimension

The two (Poisson) variables M and Ny may become arbitrarily large, which
formally leads to an infinite dimension of the integration problem. However,
the probability of large My, resp. Np, is very small and thus their impact
is negligible, so that one can safely limit these variables at some large value
without causing relevant errors (i.e. the effective dimension of the problem
is moderate). Wang and Fang [23] proposed an algorithm to estimate the ef-
fective truncation dimension of integration problems based on the ANOVA
decomposition of the (square-integrable) integrand. We will first order the
variables due to their importance for the integration on a heuristic basis and
then apply the algorithm of Wang and Fang to assess the number of relevant
variables for the integration for this particular ranking. This procedure helps
to understand the performance of QMC methods for our integrands (cf. Sec-
tion 4).
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Another aspect of the importance of knowing at least approximately the rank-
ing of importance of the variables shows the following refined version of the
Koksma-Hlawka inequality:

zlvif(y") —/[01

s

s—1
<3OD D (W) VeI, ()

=0 F;

fu)du
]S

where the second sum is extended over all (s — [)-dimensional faces Fj of the
form y;, = --- =y;, = 1, the discrepancy D}*V(y,(LFL)) is computed in the face

of [0, 1]* containing (yT(lF’)), and V=D (f(F)) is the variation (in the sense of

Vitali) of the restriction f(F1) of f to Fj (see e.g. [9]).

Thus, the integration error can be kept low by assigning the first dimensions
of the QMC sequences (which in most constructions have a lower discrep-
ancy in the lower-dimensional faces, see e.g. [18]) to those variables which are
responsible for most of the integrand’s variation.

Variation and jumps

Due to the involved characteristic functions, our integrands have discontinu-
ities that are not parallel to the axes. This implies infinite variation of the
integrands in the sense of Hardy and Krause (see [18]), even when we fix the
maximum number of claims. Literature on QMC algorithms for integrands
with jumps is scarce. Due to a result of Zaremba (cf. [18]), for any point set
wn = {z1}i=1,...~N, x; € U® and convex set C' C U®, we have

N
¥ X J@)= [ f@ieds <)+ 1)) Inw)

i=1l,xz,€C

where f(z) is a function of bounded variation V(f) on U® and Jy(w) de-
notes the isotropic discrepancy of w. A similar bound can be given for the
set of Jordan measurable sets, but the best known sequences in terms of the
isotropic discrepancy lead to an upper bound O (N —1/slog N ) for the conver-
gence order, which is much worse than Monte Carlo. Based on computational
experiments and heuristical arguments, Berblinger et. al [4] and Morokoff and
Caflish [16] conjecture a convergence rate of O (N~/271/2%) for integrands
with discontinuities.

Wang [22] proposes several techniques to ”smooth away” jumps. We will use
conditional Monte Carlo to smooth the jumps. For fixed N, write

E [I{CT>K}] =PX1+...+ Xn, > K)
= E(P(Xl —|——|—XNT > K‘Xl,...,XNT_l))

:Ell_H(K_NgXi)]. G
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Note that this step smoothes the integrand and saves one dimension. More-
over, as a conditional Monte Carlo estimator, the variance of (7) is reduced.

Rare events

If, as in realistic situations, the trigger K is very large, the event {Cr > K}
is rare. Crude Monte Carlo algorithms then have poor performance (e.g. the
relative error defined by standard deviation of the estimate over the required
quantity is not bounded). Thus we adopt an asymptotically efficient impor-
tance sampling algorithm of [2] and analyze its performance in combination
with QMC methods. The combination of QMC and rare event techniques
seems to be new and deserves an empirical analysis. We will use exponential
tilting of our distributions: for fixed Np, replace

Nt

P(Cr > K) = ‘/1{x1+.4.+xNT>K} HdH(SUi) (8)
i=1
69(r1+...+mNT) N N

= /1 —— | | dH (%),
[T L ! (LD
whereAH' (t) is the moment generating function of H andeﬁI (z;)/dH(x;) =
e % [ (). So we now sample from the new distribution H. Asymptotic effi-
ciency can then be achieved by choosing 6 in such a way that E;[Cr| ~ K.
This approach requires the existence of the moment-generating function of H.

An additional way to reduce the variation for problems with general claim
distribution H is to use exact solutions for some simple cases (provided in
our case by Dassios and Wang [6]) as control variables. In particular when
the correlation between the control variate and the required estimate is high,
this leads to a significant additional variance reduction of the problem (cf.
Example 3 in Section 4).

Since in situations where the number of function evaluations is not too high,
Quasi-Monte Carlo methods are especially competitive for low dimensions, the
best numerical performance can be obtained by implementing hybrid Monte
Carlo techniques, i.e. QMC sequences for the initial dimensions and the re-
maining dimensions are then simulated by crude Monte Carlo (cf. [21]). The
ranking of the dimensions is done on a heuristic basis with (6) in view. In our
analysis we used 50 dimensions of QMC sequences.

As an alternative to the deterministic Koksma-Hlawka bound (which as men-
tioned earlier is not helpful for our application) for the integration error,
one can obtain probabilistic error bounds by randomizing quasi-Monte Carlo
methods, usually at the expense of some of the convergence speed (see e.g.
[13]). For the purpose of comparison, we will include a random-start Halton
algorithm proposed by Hickernell and Wang [24] in our set of QMC techniques
applied in Section 4.
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4 Numerical analysis

In this part we present numerical illustrations for the proposed algorithms,
comparing importance sampling, smoothing and control variate effects for
Monte Carlo and QMC techniques in three examples. In the first two exam-
ples exact solutions are available for comparison. For simplicity, we assume
that the interest rate is zero during the lifetime of the Cat bond (a positive
interest rate would only effect the term Py and is thus not of interest for
the present study). First, we try to analyze the effect of discontinuities of the
integrand on the convergence speed of the algorithm.

Example 1: For the model in Section 2, let p = 0.5, = 1.5, p =2, a = 2.
Thus the mean number of claims N within a year is 8/3. Furthermore, we
assume that the maturity of the Cat bond is one year (I' = 1) and the claims
X; are exponentially distributed with mean 5. In this case exact solutions for
the Cat bond price can be approximated by using a series expansion of (3)
and the fact that the nth convolution F*™ is I'(n, 1/5)-distributed. The series
in (4) is then truncated after sufficiently many terms so that the significant
digits are exact (see Table 1 below).

Note that the crude Monte Carlo algorithm presented in Section 3 induces
two types of non axes-parallel jumps in the corresponding integrand, namely
during the evaluation of Mr and N7 and those due to the characteristic func-
tions. In this example we will circumvent the former by using the probability
distribution of Ny (determined by a series expansion of (3)) and obtaining Ny
by inversion from a uniform random variate. This simplifies the algorithm and
allows to solely study the effect of jumps due to the characteristic functions.
Utilizing (7) we then construct a smoothed algorithm with bounded variation
and compare its converge speed with the original algorithm. Since here it is
easily possible to rank the variables according to their contribution to the
variance, we are able to compute the effective truncation dimension of the
problem. Table 2 shows the results for both crude and smoothed algorithm as
a function of K.

K 5 15 20 25 35 50
Pc4q+(0)]0.688000{0.828120(0.875373(0.910710|0.955471{0.985153

Table 1. Exact Cat bond prices for some triggers K in Example 1

We tested the crude and the smoothed algorithm with Halton, Sobol, Faure,
randomized Halton and crude Monte Carlo sequences and compared the re-
sults with the available exact solution. Figure 1 shows least-squares fits of
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Crude Algorithm |Smoothed Algorithm
L L
KI|1|2|3]| 5|8 10123 |5 | 8|10
5 |/60|85/96]/99.9| 100|100 {{91{98(99.7| 100 | 100 {100
15 {[52]66(80| 96 (99.9]100||70|84| 93 [99.2]|100 [100
20 {|49]60{73| 93 [99.7| 100 ||65|78| 88 | 98 | 100|100
25 ||46]55(66| 87 [99.7]100 ||62|71| 83 | 96 [99.8|100
35 (|40]47|57| 76 | 96 [99.9]|53|61| 71 | 88 |98.7|100
50 {[33]38]42| 59 | 87 | 95 ||40(49| 56 | 74 | 93 | 98

Table 2. Cumulated variance of the L most important variables in Example 1 (in
% of total variance, 100 denotes values larger than 99.94)

the absolute simulation errors of the various methods in a double-logarithmic
diagram for four values of K (for randomized Halton and Monte Carlo, we
used the arithmetic average of the absolute errors of 25 independent runs).
The slopes of these lines reflecting the convergence rate of the algorithm are
given in Table 3.

Crude Algorithm Smoothed Algorithm

K| MC| S H |RH| F |MC| S H |RH | F

5 ||—0.49/—-0.69|—0.70|—0.70{—0.74|—0.51|—0.98|—0.98|—0.84|—0.80
15 ||—0.52|—0.47|—0.44|—0.63|—0.69|—0.54|—0.80|—0.98|—0.76|—0.85
20 ||—0.52|—0.68|—-0.72|—0.62|—0.59|—0.53|—0.73|—0.93|—0.72|—0.67
25 ||—0.50|—0.66|—0.56|—0.57|—0.75|—0.52|—0.77|—0.74|—0.71|—0.71
35 ||—0.49|-0.60|—0.60|—0.55|—0.74|—0.50|—0.82|—0.61{—0.61{—0.75
50 ||—0.47|—0.52|—0.61|—0.56|—0.75|—0.45|—0.67|—0.64|—0.57|—0.78

Table 3. Exponents z of the empirical convergence rate O (N®) of the various
simulation algorithms in Example 1.

As expected, for low-effective dimension problems, QMC algorithms clearly
outperform Monte Carlo in terms of convergence speed. This effect becomes
weaker for larger values of K (and thus larger effective dimension). Whereas
the improvement of smoothing is less pronounced for the Monte Carlo algo-
rithm, one observes that smoothing has a considerable effect on the conver-
gence rate for QMC sequences. This is due to the fact that in addition to
bounding the variation of the integrand, smoothing significantly lowers the
effective truncation dimension of the problem (cf. Table 2). Both effects are
more pronounced for (randomized) Halton sequences than for the Sobol case.
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Fig. 1. Least square fits of the simulation error as a function of N in Example 1
for various values of K (topdown: K = 5,20, 35, 50)
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Example 2: Let us now consider a set of parameters also used in [6],
namely p = 0.5, « = 1,0 = 0.3,p = 4and T = 1 and X; ~ Exp(1). Thus
EN; = 13.33. Analogously to Example 1, it is possible to derive the exact
price of the Cat Bond in this case. However, in contrast to the preceding
example, for the simulation here we do not calculate the distribution of Np
explicitly, but use the original algorithm proposed in Section 3 (since the dis-
tribution of Ny will in general not be available). The purpose of this example
is to illustrate the efficiency of importance sampling. Table 5 compares the
performance of the crude algorithm with the importance sampling algorithm
based on (9). Absolute and relative errors (defined as the error of crude Monte
Carlo over the error of the alternative method) for various values of N and K
are given. Figure 2 depicts the corresponding log-log plots and also includes
the performance of the corresponding smoothed algorithms.

The question of assigning the individual dimensions of the QMC variates to
the random variables of the problem turns out to be crucial in this case. We
have chosen the ordering on a heuristic basis (including the implementation
of several good candidates and comparisons) to keep the effective truncation
dimension as low as possible.

Due to the larger number of claims and the additional requirement of (quasi-)
random variates in the evaluation of Np, one faces a higher effective trunca-
tion dimension than in Example 1 (see Table 4). Again, for small K, QMC
sequences clearly outperform Monte Carlo sequences due to low effective trun-
cation dimension, and this effects diminishes as K and thus the effective di-
mension of the problem increases. For large K, the randomized Halton turns
out to be the best crude algorithm. Smoothing is not really beneficial in this
example, but importance sampling, originally designed for Monte Carlo appli-
cations, turns out to work very well for QMC sequences (note the improvement
of the convergence speed for large K, which is the rare event situation). One
also observes that the importance of the first few variables is dramatically in-
creased. The combination of Sobol sequences and importance sampling seems
to be by far the best for this example.

’ HCrude Algorithm IS Algorithm

L L

K || 5(10]15|20| 25 5110(15]20|25
5 (|46(65|86(92| 99 ||45|65|87(92|99
25 ||31|37]45(56| 60 ||49|53|57|60|64
35 [[16|25]26(27| 35 ||34]|41|47|50|58

Table 4. Cumulated variance of the L most important variables in Example 2 (in
% of total variance)



12 Hansjorg Albrecher, Jiirgen Hartinger, and Robert F. Tichy

Logyeerr

“2k — Crude Monte Carlo
Smooth Monte Carlo

IS Monte C.

Sobol

Smooth Sobol

IS Sobol

Halton

Smooth Halton

IS Halton

Rand. Halton

Smooth. Rand. Halton

IS Rand. Halton

Crude Monte Carlo
Smooth Monte Carlo
IS Monte C.

Sobol

Smooth Sobol

IS Sobol

Halton

Smooth Halton

IS Halton

Rand. Halton
Smooth. Rand. Halton
IS Rand. Halton

Log,qerr
-3 — Crude Monte Carlo
Smooth Monte Carlo
ffffffffffff IS Monte C.
SSPSsse TeS  T eeee Sobol
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Fig. 2. Least square fits of the simulation error as a function of N in Example 2
for various values of K (topdown: K = 5,25,35.)
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Crude Algorithm Importance Sampling Algorithm
N 212 [ 514 [ 516 [ 218 [ 220 512 [ 514 [ 216 [ 218 [ 520
K=5 Exact value = 0.53214
Monte Carlo |1.6E-3|7.2E-4| 4.8E-4 |1.8E-4|1.0E-4|2.0E-3|7.6E-4| 3.8E-4 |1.5E-4|9.1E-5
1 1 1 1 1 0.81 0.94 1.26 1.14 1.22

Sobol 4.6E-5|4.2E-4| 5.8E-4 |1.0E-4|2.0E-5|2.9F-4|3.4E-4| 6.8E-4 [2.6E-5|7.3E-6
34.06 | 1.71 0.83 1.68 5.29 5.33 2.07 0.72 6.68 | 13.88
Halton 2.5E-3|9.7TE-4| 1.1E-4 (1.0E-4|1.7E-5|2.6E-3|1.2E-3| 1.2E-4 |6.9E-5|3.4E-5
0.62 0.74 4.33 1.78 5.90 0.60 0.61 4.05 2.58 2.97
Rand. Halton|7.7E-4|4.7TE-4| 2.2E-4 |8.9E-5|4.2E-5|7.6E-4|5.0E-4| 1.9E-4 |8.8E-5|4.0E-5
2.00 1.54 2.22 2.00 2.50 2.02 1.44 2.51 2.04 2.50
Faure 3.0E-4|4.8E-4| 1.4E-3 |3.2E-3|7.5E-5|8.7TE-4|7.6E-5| 1.5E-3 |3.6E-4|1.0E-4
5.21 1.49 0.34 0.55 1.36 1.77 9.48 0.31 0.50 0.96

K =25 Exact value = 0.97671
Monte Carlo (1.4E-3|8.4FE-4| 3.8E-4 |1.3E-4|8.3E-4|1.2E-3|4.7TE-4| 2.6e-4 |1.1E-4|6.7TE-5
1 1 1 1 1 1.21 1.80 1.43 1.11 1.23

Sobol 5.5E-4|1.6E-4| 1.3E-4 |8.7TE-5|2.6E-5(6.0E-4|1.9E-4| 1.4E-4 |1.4E-5|3.7TE-5
2.63 5.19 2.92 1.48 3.17 | 2.38 4.40 2.56 9.52 2.22
Halton 4.6E-3|6.8F-4|2.6-—4|4.7TE-4|2.3E-4|1.2E-3|8.2E-4|4.2E-—4|1.5E-4|1.3E-5
0.31 1.26 1.48 0.27 | 0.35 1.15 1.04 0.90 0.87 | 6.56
Rand. Halton|1.0E-3|4.0E-4| 2.0E-4 |8.4E-5|5.1E-5|5.4E-4|3.2E-4| 1.3E-4 |1.1E-4|4.0E-5
1.43 2.10 1.80 1.53 1.61 2.64 2.58 2.88 1.21 2.08
Faure 9.1E-3|3.3E-3| 1.2E-3 |1.4E-4|5.3E-7|2.3E-3|1.3E-3| 2.0E-4 |1.1E-4|5.6E-5
0.15 0.24 0.31 0.93 1.55 0.61 0.66 1.87 1.22 1.47

K =35 Exact value = 0.99842
Monte Carlo (4.3E-4|1.8E-4| 7.5E-5 |6.3E-5|3.8E-5|2.1FE-4|1.2E-4| 6.3E-5 |3.0E-5|1.6E-5
1 1 1 1 1 1.98 1.42 1.19 2.10 | 2.41

Sobol 1.9E-4|4.8E-4| 1.1E-4 |9.0E-5|2.5E-5|2.8E-4|1.2E-4| 8.9E-6 |1.4E-5|2.1E-5
2.24 0.38 0.67 0.70 1.49 1.55 1.52 8.39 4.44 1.81
Halton 8.1E-4|7.2E-4| 4.3E-4 |2.1E-4|9.8E-5|1.2E-4|7.9E-5| 9.4E-5 |1.8E-5|2.7TE-5
0.53 0.25 0.17 0.29 0.40 3.45 2.29 0.80 3.41 1.42
Rand. Halton|3.2E-4|1.7TE-4| 7.3E-5 |3.5E-5(2.0E-5(1.7E-5|7.7E-5| 4.0E-5 |2.2E-5|8.9E-6
1.35 1.06 1.02 1.78 1.89 2.49 2.37 1.86 2.82 4.33
Faure 3.1E-4|2.8F-4| 4.8E-4 (1.6E-4|1.9E-5(3.7E-5|2.3E-4| 1.9E-4 |3.9E-5|3.2E-5
1.38 0.65 0.15 0.39 2.09 1.71 0.79 0.39 1.59 1.20

Table 5. Absolute errors for crude and importance sampling algorithms in Example
2 (including the relative error w.r.t. the crude Monte Carlo estimate).

Example 3: Let us consider Example 2 again, but now we assume that
X; ~ LN(—log2/2,1/log2), i.e. the claims have a lognormal distribution
with parameters chosen in such a way that the first two moments coincide
with the exponential distribution of Example 2. In this case exact solutions
are not available any more and are approximated by a Monte-Carlo run with
very large N (N = 50 x 10°%). We investigate the suitability of using the exact
solutions for the exponential claim sizes X; as control variates for our heavy
tailed case. Proceeding in the usual way, the estimate (5) is thus replaced by

. Por — ; ;
Poucv(0) = =237 (B - A(BY' - BY)). (10)
j=1
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Fig. 3. Least square fits of the simulation error as a function of N in Example 3
for various values of K (topdown: K = 5,25,35.)
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where B(Lj) (Bg)) are calculated for lognormal (resp. exponential) claim size
distributions H, and B}, is the known exact value for the exponential case.
The weighting factor [ is chosen such that the variance of (10) is minimized,
that is

- COV(BL, BE)

B Var(BE)

these quantities being themselves estimated from the same simulation.
Figure 3 gives the double-logarithmic plots comparing the least square fits of
the simulation errors with and without control variates as a function of N.
As in the preceding examples, the efficiency improvement of QMC over Monte
Carlo decreases with increasing K. Control variate based algorithms always
outperform their crude counterparts and the QMC-Sobol-Control variate al-
gorithm always performs among the best.

5 Conclusion

We have developed QMC algorithms for the valuation of Cat bonds in a
model recently proposed by Dassios and Jang [6]. Formally, the integrands
involved in the evaluation are not suited for QMC integration as they are
infinite-dimensional and have unbounded variation. Crude QMC algorithms
outperform Monte Carlo only for problems with small effective dimension.
Nevertheless, suitable modifications as smoothing, importance sampling and
control variate techniques lead to QMC algorithms which yield significantly
faster convergence rates than their Monte Carlo counterparts. Furthermore,
we observed that the size of the effective dimension seems to have much more
influence on the simulation performance than the occurrence of discontinuities.
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