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Abstract

This paper proposes a model of asset-market equilibrium with portfolio del-
egation and optimal fee contracts. Fund managers and investors strategically
interact to determine funds’ investment profiles, while they share portfolio risk
through fee contracts. In equilibrium, their investment decisions, fee sched-
ules, and stock price feed back into one another. The model predicts that (1)
stock market’s expected return and volatility increase as more investor capital
is intermediated by funds, (2) fund’s expense ratio is stable despite volatile
market, (3) aggregate fund flow is positively (inversely) related to subsequent
(past) market return, and (4) funds provide investors with a volatility hedge
by adjusting market exposure counter-cyclically.
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1 Introduction

The fund management industry has grown significantly in the past few decades.1 Reflect-

ing that, recently more and more papers have analyzed economic implications of delegated

portfolio management. While some have considered asset-pricing implications and others

have considered contracting implications, few have studied both in a unified model. The

goal of this paper is to develop a tractable model of such a kind and draw empirical

implications from the equilibrium relations of delegation and asset prices.

Our model has two distinguishing features compared to the existing ones. First, fund

fees are determined in optimal contracting problems and interact with equilibrium stock

prices. The fee arrangement serves as an optimal scheme of sharing portfolio risk among

fund managers and fund investors, linking the principal-agent relationship in portfolio

delegation and the stock market performance. Second, our model incorporates strategic

behavior of both fund managers and fund investors in an asset-pricing model. This feature

creates a feedback loop between both of these agents’ optimal investment decisions and

the stock market performance, allowing us to derive a rich set of predictions on the time

variation of stock returns, fund returns, fund fees, fund flows, and investment strategies.

Specifically, we consider a discrete-time, infinite-horizon model with a risky stock and

a riskless asset. The stock yields a normally distributed dividend each period, and the

price is determined by market clearing. The riskless asset has an infinitely elastic supply

at an exogenous rate of return and is freely accessible to all agents. There are three types

of agents: direct investors, fund investors, and fund managers. All of them are risk-averse

(CARA) price takers who live for two periods, constituting overlapping generations. The

direct investors can access the stock on their own, whereas the fund investors cannot.

To invest in the stock, the fund investors need to delegate capital to a fund manager

who manages a portfolio of the assets on their behalf. This delegation is subject to an

agency problem: potentially, each manager can abscond with the fund investors’ assets.

To prevent it from happening, the fund investors offer to the manager a fee contract

that is attractive enough for him to continue running the fund rather than abscond. The

model’s key endogenous variables are (1) fund size, measured by assets under management

1Cuoco and Kaniel (2011) report that in the U.S. as of 2004, mutual funds managed assets more than
$8 trillion, hedge funds managed about $1 trillion and pension funds more than $12 trillion. According
to Investment Company Institute (2014), in the U.S., the number of households owning mutual funds
has increased from 23.4 million in 1990 to 56.7 million in 2013. In 2012, 23% of households’ financial
assets are managed by registered investment companies (household holdings of ETFs, closed-end funds,
unit investment trusts, and mutual funds), while that proportion was only 3% in 1980.

2



(AUM), (2) fund’s risk exposure, measured by the number of shares of the stock held per

dollar of investor capital, (3) fund’s fee schedule, which we allow to be any function of

the fund’s investment profit (i.e., the proceeds from the fund portfolio in excess of the

riskless component), and (4) the stock price.

The model’s equilibrium involves a feedback loop among these endogenous variables:

fund investors and managers take into account the fee schedule when choosing the capital

allocation and the fund’s risk exposure, while the fee schedule depends on these agents’

choices, and the stock price adjusts to make certain all these actions are consistent with

market clearing. Due to the CARA-normal specification, the optimal fee schedule is (not

surprisingly) in an affine form. The stock price, the fund’s risk exposure, and AUM are

all stochastically time varying, reflecting random shocks to the stock supply. This feature

allows us to study issues of significant interest such as stock price volatility, time variations

of fund trading strategies and fund flows, and their interactions with stock market return.

All solutions are obtained in simple closed form.

The model yields a number of testable predictions. It predicts that the expected

stock market return and the stock price volatility increase with the extent of delegation

as measured by the proportion of fund investors. The intuition is as follows. As more

investors delegate capital to funds, the AUM per fund also increases. Consequently, each

fund manager is exposed to a larger market risk because he receives a fee proportional to

the fund’s investment profit that increases with the AUM and varies with the stochastic

stock-market performance. To compensate this risk bearing, each manager demands a

larger risk premium, leading to a higher expected stock market return in equilibrium.

Moreover, as the AUM increases, each fund’s demand for the stock becomes less price-

elastic because the manager tries to reduce the variation of the fund’s stock holding to

counterbalance his personal risk bearing. In equilibrium, the aggregate demand with

lower price elasticity, being equated to a random supply, yields a market-clearing price

with higher volatility. To see the intuition, consider the classical demand-supply diagram

with price on the vertical axis and quantity on the horizontal axis. Low price elasticity

means that the slope of the downward-sloping demand curve is steep. Thus, as the vertical

supply curve fluctuates due to the supply shocks, the resulting market-clearing price at

the intersection of these two curves exhibits large volatility.

Furthermore, the model provides explanations to the empirical observations such as

(1) a positive relation between aggregate fund flows and subsequent stock returns and a

negative relation between returns and subsequent flows (Warther 1995), and (2) mutual

funds’ counter-cyclical volatility timing, that is, they decrease their market exposure when
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market volatility is high (Busse 1999; Giambona and Golec 2009). Also, we distinguish

market return and fund return, identify their distributions, and offer new testable impli-

cations on their equilibrium relations: (1) the expected fund return is less volatile than

the expected market return, and (2) the fund return volatility comoves negatively with

the market return volatility, that is, funds provide investors with a volatility hedge.

Last, we study a model with infinitely-lived agents. While the analysis is less tractable

due to the agents’ hedging considerations, we show that all the qualitative results obtained

in the overlapping-generations model still carry through in such a setting.

This paper relates to the growing literature that discusses equilibrium implications

of delegated portfolio management (Allen and Gorton 1993; Shleifer and Vishny 1997;

Vayanos 2004; Malliaris and Yan 2012; Basak and Pavlova 2012; Vayanos and Woolley

2013; Sato 2014). The following papers especially relate to this paper.

Buffa, Vayanos, and Woolley (2014) is most closely related, as they also study the joint

determination of fund fees and asset prices. They focus on fund managers’ contractual

incentives and their impact on fund strategies, and do not study investors’ endogenous

capital allocation (i.e., AUM). In contrast, in our model both contractual incentives and

AUM play critical roles. It is key for our results that investors’ strategic choices of AUM

and managers’ choices of fund strategies interact with each other.2

He and Krishnamurthy (2012) study the relation between portfolio delegation and

asset prices in a dynamic setting. In their model, the intermediary’s capital scarcity in

the “crisis” situation is central to the equilibrium characterization. In contrast, all of

our results hold in non-crisis situations; the driving forces are fee contracts and strategic

interactions between fund investors and managers, both of which are absent in their model.

Like our paper, Kaniel and Kondor (2013) study equilibrium asset prices and trading

strategies of fund managers with concern for fund flows. While the investors’ capital

provision is exogenous in their paper, in ours it is one of the main endogenous variables for

which we draw empirical implications. Also, their model does not discuss the optimality

of fees or the volatility of asset prices, which are main focus of our paper.

Cuoco and Kaniel (2011) relates to our paper in that they also study the asset pricing

implications of delegated portfolio management. While the fee structure in their model

is exogenously imposed, it is optimal in ours. Also, while investors’ capital provision and

fee payment occur only once in their model, in ours they take place continually; thus, we

can study the time variation of fund flows and fees.

2Moreover, while Buffa, Vayanos, and Woolley (2014) assume an affine form of fees and determine
the optimal parameter values, in ours the affine form is endogenously obtained.
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Ou-Yang (2003) is related to ours, as he also derives a fee contract in a portfolio

delegation problem. In his model, asset prices are exogenously given, whereas they are

endogenous in ours; studying the equilibrium interaction between asset prices and fees is

the primary purpose of our paper. Also, his model takes the investor’s capital provision

as exogenous and does not discuss the fund’s asset size, which is our focus in this paper.

The paper proceeds as follows. Section 2 presents the model. Section 3 characterizes

the benchmark case without delegation. Section 4 analyzes the equilibrium with dele-

gation. Section 5 discusses the empirical implications. Section 6 studies a model with

long-lived agents. Section 7 concludes. The proofs and robustness checks are in the online

appendix.

2 Model

Time t is discrete and runs from zero to infinity. There is a single consumption good

referred to as a dollar. There is a risky stock and a riskless asset. The riskless asset has

an infinitely elastic supply at an exogenous rate of return r > 0 and is freely accessible

to all agents.3 There are three types of agents: fund investors, direct investors, and fund

managers. All of them are risk averse and competitive (i.e., price takers). They live

for two periods and constitute overlapping generations.4 The fund investors can access

the stock only through fund managers, who collect fees from the investors. The direct

investors access the stock on their own. The fee schedule, the investors’ capital allocation,

the managers’ portfolio choice, and the stock price are determined endogenously.

2.1 Stock

In each period t = 1, 2, ..., the stock yields a dividend δt per share, which is i.i.d. across

time, normally distributed with mean δ̂ > 0 and variance σ2 > 0. The stock is traded in

the market at market-clearing price Pt. The stock’s supply St stochastically evolves over

time as St = St−1 + εt, where noise εt is normally distributed with mean 0 and variance

3It is standard in the literature to assume an exogenous, constant riskless rate in models with CARA-
normal asset-pricing models (see, for example, Wang 1993, Spiegel 1998, Watanabe 2008, Banerjee 2011,
and Vayanos and Woolley 2013). Moreover, Sundaresan (1983) provides a justification for a constant
interest rate in a general equilibrium model with CARA agents. In Appendix G.1, we endogeneize the
risk-free rate in the fixed supply case and show that our main result still carries through.

4The assumption of overlapping generations simplifies the analysis and allows us to obtain intuitive
closed-form solutions. But the assumption is not critical to our main results. Section 6 presents a model
with infinitely-lived agents and shows that all of our qualitative results still go through.
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σ2
s ≥ 0.5 Due to the stochastic nature of St, the price and agents’ actions will be time

varying in equilibrium.6 We denote the stock’s excess return per share of the stock by

Rt+1 ≡ δt+1 + Pt+1 − (1 + r)Pt. (2.1)

2.2 Agents

In each period t, a continuum with mass one of investors and a continuum with mass

β > 0 of fund managers are born (“generation t”). Each investor is endowed with W > 0

dollars. An exogenous proportion α ∈ (0, 1) of investors are fund investors, and the rest

are direct investors. Each manager has zero endowment and runs an investment fund. Two

parameters (α, β), representing the extent of portfolio delegation in the economy, are key

comparative statics parameters in the following analysis. The letters “f ,” “d,” and “m”

are used to represent fund investors, direct investors, and fund managers, respectively.

The generation-t agents make investment decisions in period t and derive utility from

their terminal wealth in period t + 1. Each agent has a utility function ui(W i
t+1) =

− exp(−γiW i
t+1), i ∈ {f,m, d}, where W i

t+1 is her/his terminal wealth and γi > 0 is a

coefficient of absolute risk aversion. When α → 0 and β → 0, the equilibrium of our

model converges to that of Spiegel (1998) where delegation is irrelevant.

2.3 Portfolio management

For simplicity, we assume that fund investors are equally allocated across funds, that is,

each fund has a mass α/β of investors.7 Each fund investor allocates Xt ≥ 0 dollars of

capital to the fund in period t, where Xt is an endogenous variable. Given Xt dollars

of capital, the manager purchases θtXt shares of the stock, where θt ∈ (−∞,∞) is also

endogenously determined. We refer to θt as the fund’s risk exposure. The rest of the

5The assumption that St is a random walk simplifies the analysis but is stronger than necessary. Any
AR(1) process St = a0 + a1St−1 + εt, where a0 ≥ 0 and a1 ∈ [0, 1] are constants and εt is a normally
distributed noise, would preserve all the results qualitatively. See Appendix G.2 for details.

6It is standard to study price volatility by assuming random stock supply. See Spiegel (1998), Watan-
abe (2008), and Banerjee (2011) for overlapping generations models, and Campbell and Kyle (1993) and
Wang (1993) for infinitely lived agent models. We could alternatively assume a fixed stock supply k > 0
and a stochastic demand (k − St) from noise traders.

7This assumption is micro-founded in Appendix G.3. We allow fund investors to choose funds to
which to allocate capital, and show that they flow in and out of funds until each fund has accommodated
a mass α/β of investors. Moreover, Appendix G.3 shows that fund managers are “perfectly competitive”
in attracting investors in the sense that each manager takes the mass of fund investors choosing his fund
as given, as he cannot strategically influence the investors’ choices of funds through his actions.
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Figure 1: Timeline of portfolio management (generation-t fund).

investor capital, (Xt−PtθtXt) dollars, is invested in the riskless asset.8,9 Since the fund’s

portfolio holding (given Pt) is described completely by θt and Xt, we refer to the pair

(θt, Xt) as the fund’s investment profile.10 In period t+ 1, the fund receives dividend δt+1

and then sells the stock in the market (to the agents of generation t + 1) at price Pt+1.

Thus, the total proceeds from the fund portfolio (per investor) is

Yt+1 ≡ Πt+1 + (1 + r)Xt (2.2)

dollars, where

Πt+1 ≡ Rt+1θtXt (2.3)

is the proceeds in excess of the riskless component (1+r)Xt that each fund investor could

have obtained on her own without delegation.11 We refer to Πt+1 as the fund profit.

8If 1 > Ptθt, the manager buys the riskless asset, while if 1 < Ptθt, he sells the asset (i.e., borrows
funds) to finance the purchase of the stock.

9In reality, there are a number of passively managed funds, such as index funds, in which the managers
do not have discretion over portfolio choice. In such funds, the managers commit to choose θt = 1/Pt
and do not buy the riskless asset. In Appendix G.4, we show that these passive funds would coexist with
our model’s funds, even if each fund investor is allowed to choose a fund to which to allocate capital.

10We implicitly assume that the managers are not allowed to invest their own capital (borrowed at
rate r) in their funds. However, as shown in Appendix G.5, even if they were allowed to do so, they would
choose not to invest any capital. The reason is as follows. Suppose that a manager can invest Zt ≥ 0
dollars in his fund. Then, given Xt, he has two choice variables, θt and Zt, to control the fund’s stock
holding, θt(Xt +Zt). From the manager’s perspective, choosing Zt > 0 entails a borrowing cost, whereas
choosing θt > 0 is costless. Thus, he optimally sets Zt = 0, and uses only θt to control the stock holding.

11Yt+1 is computed as follows. In period t, each fund investor invests Xt dollars in the fund. The
manager buys θtXt shares of the stock (i.e., pays PtθtXt dollars for the purchase) and invests (Xt−PtθtXt)
dollars in the riskless asset. In period t+1, per investor, the fund receives δt+1θtXt dollars of payoff from
the stock, Pt+1θtXt dollars from selling that stock in the market, and (1 + r)(Xt − PtθtXt) dollars from
the riskless asset. Thus, the total proceeds from the fund portfolio per investor is Yt+1 = δt+1θtXt +
Pt+1θtXt + (1 + r)(Xt − PtθtXt) = Rt+1θtXt + (1 + r)Xt = Πt+1 + (1 + r)Xt.
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2.4 Fee contract

In period t, in each fund, the generation-t fund investors collectively offer a fee contract

to the manager in a take-it-or-leave-it manner. The contract specifies the fee payment

schedule contingent on the fund profit Πt+1, denoted by Ft(Πt+1), where Ft(·) can be any

function. The agents determine Ft(·) and (θt, Xt) simultaneously (Figure 1).12

The assumption that the fee depends only on Πt+1 is stronger than necessary. In

Appendix G.6, we show that all the results, including the fee schedule itself, would be

identical to those of this model even if we allow for a larger contract space that includes

not only Πt+1 but also Rt+1 and Yt+1.
13

We model an agency friction between the fund manager and investors as follows. In

period t, after Ft(·) is determined and the fund portfolio is formed, the manager can

choose whether to continue running the fund or abscond with a part of the fund portfolio

(Figure 1). If he chooses to continue, he will receive fee Ft(Πt+1) from each of his fund’s

investors in period t+ 1. Since there is a mass α/β of investors in each fund, his terminal

wealth in this case is

Wm
t+1 =

α

β
Ft(Πt+1). (2.4)

Each fund investor’s terminal wealth in this case is

W f
t+1 = Yt+1 − Ft(Πt+1) + (1 + r)(W −Xt), (2.5)

where the first two terms on the right-hand side (RHS) are the after-fee proceeds from

the fund, and the third term is the proceeds from the riskless asset she bought on her

own. If the manager chooses to abscond, he can do so with a fraction ξ ∈ (0, 1) of the

fund portfolio, where ξ measures the degree of agency friction. His terminal wealth in

12The timing of the choices of Ft(·) and (θt, Xt) is not important. When solving for the equilibrium in
Section 4, we will first determine the optimal Ft(Πt+1) for an arbitrary (θt, Xt); then, taking this Ft(Πt+1)
as given, determine the optimal (θt, Xt). Hence, our solutions coincide with those of an alternative setting
in which each period t has the following two stages. In the first stage, the investors determine a fee schedule
Ft(Πt+1, θt, Xt), which is contingent on not only Πt+1 but also on (θt, Xt) that will be determined in the
second stage. The manager decides whether to accept the schedule. If he accepts it, the agents proceed
to the second stage and determine (θt, Xt).

13The intuition is simple: since Rt+1, Πt+1, and Yt+1 are perfectly correlated, assigning different
weights on these variables in a fee arrangement would not affect risk sharing. As we shall see, an optimal
fee arrangement has two properties. The first is the optimal risk sharing between the fund investors and
the manager. The second is that the investors, who have full bargaining power, extract maximum surplus.
Regardless of which of the three variables (Rt+1,Πt+1, Yt+1) we allow the fee to depend on, as long as it
satisfies these two properties, it would result in exactly the same form of contract, and consequently all
the other results would be also identical.
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this case equals the proceeds from the fund portfolio that he absconded with, i.e.,

W̃m
t+1 = ξ

α

β
Yt+1. (2.6)

Each fund investor’s terminal wealth in this case is the sum of the proceeds from the

remaining fund portfolio and the riskless asset: W̃ f
t+1 = (1− ξ)Yt+1 + (1 + r)(W −Xt).

14

2.5 Optimization problems

Each generation-t fund investor chooses capital allocation Xt ≥ 0 to the fund and in-

vestment in the riskless asset to maximize the expected utility derived from her terminal

wealth (given that the manager will not abscond), (2.5). When offering Ft(·) to the man-

ager, the fund investors make sure that it maximizes the expected utility of each of them

and that the manager is willing to continue running the fund rather than abscond, that

is, it satisfies the manager’s incentive compatibility constraint:

Et

[
um(Wm

t+1)
]
≥ Et

[
um(W̃m

t+1)
]
. (2.7)

Since the manager has zero initial wealth, his participation constraint is Et

[
um(Wm

t+1)
]
≥

Et

[
um(0)

]
. In the following, we omit this constraint because it is implied by (2.7).

Each generation-t fund manager determines the fund’s risk exposure θt ∈ (−∞,∞) to

maximize the expected utility from his terminal wealth (given that he will not abscond),

(2.4). He also decides whether to continue running the fund or abscond, though the fee

schedule in equilibrium ensures that he will choose to continue.

Each generation-t direct investor purchases Kt ∈ (−∞,∞) shares of the stock and

invests the rest of her endowment, (W − PtKt) dollars, in the riskless asset to maximize

the expected utility from her terminal wealth, W d
t+1 = Rt+1Kt + (1 + r)W, which is the

sum of the proceeds from the stock and those from the riskless asset.

2.6 Definition of equilibrium

The equilibrium consists of stock price Pt, fund’s fee schedule Ft(·), fund’s risk exposure

θt, fund investor’s capital allocation Xt, and direct investor’s stock holding Kt such that

14It is not important that the investor can collect (1− ξ)Yt+1 from the fund if the manager absconds.
For example, we would obtain exactly the same results even if we assume that no fund assets are left for
the investor if the manager absconds (i.e., W̃ f

t+1 = (1 + r)(W −Xt)). The reason is that what matters
for the contracting problem is only the manager’s outside option of absconding, (2.6).
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the following statements hold for all t.

1. Given Pt and θt, Xt and Ft(·) maximize each fund investor’s expected utility.

2. Given Pt, Ft(·), and Xt, θt maximizes each fund manager’s expected utility.

3. Given Pt, Kt maximizes each direct investor’s expected utility.

4. The stock market clears.

3 Benchmark: Equilibrium without Delegation

Before analyzing the equilibrium with portfolio delegation, let us characterize a benchmark

case without delegation, in which fund investors access the stock on their own and fund

managers play no roles. This benchmark case is identical to Spiegel (1998) except that

there are two types of investors (fund investors and direct investors) who have different

degrees of risk aversion. We look for a linear equilibrium in which Pt is linear in δ̂ and St.

3.1 Price conjecture

We conjecture and later verify that there exists a constant η > 0 such that, for all t, the

equilibrium stock price is

Pt =
δ̂ − ηSt

r
. (3.1)

Conjecture (3.1) states that the price is the present value of expected future dividends

minus a risk premium that is proportional to St, discounted at the riskless rate. This

conjecture implies that, conditional on t, Rt+1 is normally distributed with mean

R̂t ≡ Et[Rt+1] = ηSt (3.2)

and variance σ2
R ≡ Vart[Rt+1] = σ2 + η2σ2

s/r
2, which is the sum of dividend volatility and

price volatility. Note that (3.1) and (3.2) imply Pt = (δ̂ − R̂t)/r.

3.2 Optimization

Let Kf
t and Kd

t denote the numbers of shares of the stock held by each fund investor

and direct investor, respectively. Their optimal stock holdings given R̂t have usual mean-
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variance forms: for i ∈ {f, d},15

Ki(R̂t) =
R̂t

γiσ2
R

. (3.3)

3.3 Equilibrium

Plugging (3.3) into the stock’s market clearing condition, αKf (R̂t) + (1−α)Kd(R̂t) = St,

we obtain the equilibrium expected excess stock return:

R̂t = Λ(η)St, where Λ(η) ≡ σ2
R

α
γf

+ 1−α
γd

. (3.4)

Reflecting the risk premium, R̂t increases with σ2
R and decreases with the total risk toler-

ance of the economy, measured by α
γf

+ 1−α
γd

(which is the sum of the total risk tolerance of

fund managers α
γf

and that of direct investors 1−α
γd

). Note that Λ is a function of η since

σ2
R ≡ σ2 + η2σ2

s/r
2 depends on η. Recall that we have another expression for R̂t in (3.2),

which is implied by conjecture (3.1). Thus, conjecture (3.1) is correct if and only if (3.2)

and (3.4) are consistent with each other. This requires

η = Λ(η). (3.5)

That is, the equilibrium values of η are determined at the fixed points of Λ(·). Since σ2
R

is quadratic in η, Λ is an increasing quadratic function of η. Moreover, we have Λ(0) > 0.

So, if σs is positive and small enough, (3.5) has two positive roots of η:

η =
r2

2σ2
s

( α

γf
+

1− α
γd

)
±

√(
α

γf
+

1− α
γd

)2

− 4σ2σ2
s

r2

 . (3.6)

It is well known that there are potentially multiple equilibria in overlapping generations

models with infinite time horizon and random stock supply (Spiegel 1998; Watanabe

2008; Banerjee 2011).16 Which of these two equilibria should one focus on? As noted by

15The derivation is straightforward. The mean and variance of each investor’s terminal wealth are, for
∈ {f, d}, Et

[
W i
t+1

]
= R̂tK

i
t +(1+r)W and Vart

[
W i
t+1

]
= Ki2

t σ
2
R. Due to exponential utility, maximizing

Et
[
ui(W i

t+1)
]

amounts to maximizing Et
[
W i
t+1

]
− γi

2 Vart
[
W i
t+1

]
= R̂tK

i
t + (1 + r)W − γi

2 K
i2
t σ

2
R. The

first-order condition for Ki
t is R̂t − γiσ2

RK
i
t = 0, which yields (3.3).

16Each of the two values of η corresponds to a possible self-fulfilling belief of the agents. If they believe
that η is large and thus the price volatility Vart[Pt+1] = η2σ2

s/r
2 is high, each of them tries to balance her

risk bearing by submitting a demand schedule with low price elasticity. The resulting aggregate demand
with low price elasticity is indeed settled by a market-clearing price with a large Vart[Pt+1] (i.e., large η).
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Banerjee (2011), “[t]he choice of which type of equilibrium to study is somewhat arbitrary,

as both types have desirable theoretical and empirical properties.” In the following, we

focus on the smaller root of η because only the equilibrium with the smaller η is stable in

the sense of the following definition, akin to that of Cespa and Vives (2015).

Definition 1. An equilibrium is stable (unstable) if its corresponding value of η is a stable

(unstable) fixed point of Λ(·), that is, if η satisfies |Λ′(η)| < 1 (> 1).

Intuitively, a stable equilibrium is such that after a small perturbation to the agents’ belief

about the value of η, the economy converges back to the original equilibrium through the

best-reply dynamics of the agents’ beliefs and the market-clearing prices.17

The following proposition summarizes the stable equilibrium outcome. For notational

clarity, we append an asterisk to the equilibrium values of the no-delegation case.

Proposition 3.1 (No-delegation benchmark). If fund investors could invest in the stock

directly, the excess stock return Rt+1 is, conditional on t, normally distributed with mean

R̂∗t = η∗St and variance σ∗2R = σ2 + η∗2σ2
s/r

2, where η∗ is the smaller value of (3.6); the

stock price is P ∗t = (δ̂ − R̂∗t )/r.

Note that Rt+1 in Proposition 3.1 is the share return (i.e., the excess return per share

of the stock held) instead of the dollar return (i.e., the excess return per dollar invested).

The next corollary derives the distribution of the dollar return on the stock market, which

will be used in Section 5 where we discuss empirical implications.

Corollary 3.1 (Market return). Let Ωmarket
t+1 ≡ Rt+1/Pt be the market return. Conditional

on t, Ωmarket
t+1 is normal with mean µmarket∗t = R̂∗t /P

∗
t and standard deviation σmarket∗t =

σ∗R/P
∗
t . The Sharpe ratio of Ωmarket

t+1 is SRmarket∗
t = µmarket∗t /σmarket∗t = (η∗/σ∗R)St.

4 Equilibrium with Delegation

This section characterizes the equilibrium with portfolio delegation. As in Section 3, we

look for a linear stable equilibrium. We follow the following steps to solve the model.

17Moreover, the smaller-η equilibrium is more general in the sense that it is well-defined when the
stock supply is constant (i.e., when σ2

s = 0), whereas the larger-η equilibrium is not. As noted by Spiegel
(1998), in the larger-η equilibrium, we have η →∞ (and thus Vart[Pt+1]→∞) when σ2

s → 0; if σ2
s = 0,

then η explodes and the equilibrium is not defined. Also, as shown by Albagli (2015), the smaller-η
equilibrium is more robust in that it can be supported even when the agents’ time horizon is (infinitely)
long, whereas the larger-η equilibrium vanishes when the horizon is long enough.

12



1. We conjecture that the equilibrium stock price Pt is of the form (3.1), and thus R̂t

is given by (3.2), but the value of η is different from (3.6).

2. For arbitrary investment profile (θt, Xt) and R̂t, we obtain fee schedule Ft(·) in the

contracting problem (Section 4.1).

3. Using Ft(·) of step 2, we derive each fund investor’s best-response function X(θt; R̂t),

i.e., her optimal choice of Xt for arbitrary θt and R̂t (Section 4.2).

4. Using Ft(·) of step 2, we derive each manager’s best-response function θ(Xt; R̂t),

i.e., his optimal choice of θt for arbitrary Xt and R̂t (Section 4.3).

5. From the two best-response functions obtained in steps 3 and 4, we identify each

fund’s Nash-equilibrium investment profile given R̂t, (θ(R̂t), X(R̂t)) (Section 4.4).

6. Using (θ(R̂t), X(R̂t)) of step 5, we compute the aggregate demand for the stock,

impose market clearing, and pin down the equilibrium level of R̂t. We then verify

that the resulting Pt is indeed in the linear form conjectured in step 1 (Section 4.5).

4.1 Fee contract

Due to the CARA-normal specification, each fund’s optimal fee has a tractable affine form

presented in the following lemma.

Lemma 4.1 (Fee contract). Each fund’s fee is Ft(Πt+1) = φΠt+1 +Qt, where

φ ≡ βγf

αγm + βγf
(4.1)

and

Qt ≡ (ξ − φ) Et [Πt+1] + ξ(1 + r)Xt −
γm

2

α

β

(
ξ2 − φ2

)
Vart [Πt+1] . (4.2)

Lemma 4.1 is akin to the risk-sharing result of Wilson (1968). The optimal fee is the

sum of proportional fee φΠt+1 and fixed fee Qt, both functions of (θt, Xt). The optimal risk

sharing, which maximizes the agents’ joint surplus by adjusting the risk-return profiles

of their terminal wealths, requires that the agent with relatively high risk tolerance has

large exposure to the stock. Indeed, the manager’s exposure measured by φ is decreasing

in γm, while each fund investor’s exposure, 1−φ = αγm/(αγm +βγf ), decreases with γf .

Moreover, if the mass α/β of investors in the fund increases, φ decreases to counterbalance

13



the manager’s exposure to the risky fund profit, (α/β)Πt+1. The fund investors set Qt so

that (2.7) binds, since otherwise they could decrease Qt to extract more surplus.18

4.2 Fund investor’s optimization: Capital allocation

This section characterizes each fund investor’s optimal policy for her choice of capital

allocation Xt. We make the following parametric assumption.

Assumption 1: φ > ξ2.

Assumption 1 ensures the investor’s optimal choice of Xt to be finite by excluding an

implausible situation that she increases Xt indefinitely to decrease the payment of fixed

fee Qt.
19 Then her optimal policy is given by the following lemma.

Lemma 4.2 (Fund investor’s best response). Suppose the fee schedule Ft(·) is as in

Lemma 4.1. Given expected stock return R̂t, each fund investor’s best response to the

manager’s choice of risk exposure θt is allocating

X(θt; R̂t) = max

{
(1− ξ)R̂tθt − ξ(1 + r)

γmα
β
(φ− ξ2)σ2

Rθ
2
t

, 0

}
(4.3)

dollars of capital to the fund.

To see the intuition for Lemma 4.2, recall that Ft(·) in Lemma 4.1 is such that the

18One may wonder that if ξ is very small then the fund investors might be better off by letting the
manager abscond and thus not paying fees to him. Such an action is not optimal. First, if the fund
investors pay the fee to the manager, the certainty equivalent of each investor’s terminal wealth is Uft ≡
Et[W

f
t+1]− γf

2 Vart[W
f
t+1] = (1−ξ)R̂tθtXt−ξ(1+r)Xt+(1+r)W− γm

2
α
β (φ−ξ2)θ2

tX
2
t σ

2
R. Second, if the fund

investors let the manager abscond, the certainty equivalent would be Ũft ≡ Et[W̃
f
t+1] − γf

2 Vart[W̃
f
t+1] =

(1 − ξ)R̂tθtXt − ξ(1 + r)Xt + (1 + r)W − γf

2 (1 − ξ)2θ2
tX

2
t σ

2
R. So, Uft R Ũft ⇐⇒ (ξ − φ)2 R 0, which

means that Uft > Ũft for any parameter values. The reason is that risk sharing in the second case is
suboptimal, as the manager and each investor split Πt+1 in the proportion of ξ and 1− ξ, rather than φ
and 1− φ. If ξ is very small, the investor’s risk bearing in the second case is too high: she could achieve
a better return-risk profile by reducing her risk exposure from (1− ξ)Πt+1 to (1− φ)Πt+1.

19If Assumption 1 is violated, it would be optimal for each fund investor to choose Xt = ∞ for the
following reason. An increase in Xt increases Vart[Πt+1], which has two opposing effects on the fund
investor’s expected utility. On the one hand, it has a negative effect because she is risk averse. But
on the other hand, it has a positive effect because it decreases her payment of Qt (which is because
a rise in Vart[Πt+1] increases the volatility of the manager’s outside option of absconding, thereby he
requires smaller Qt to not abscond). If the mass of investors in each fund, α/β, is very large, the second
effect dominates the first one, and it would be optimal for the investor to choose an extremely large Xt

to increase Vart[Πt+1] as much as possible. Assumption 1 eliminates such an implausible behavior by
ensuring that the first effect prevails.
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manager’s incentive compatibility constraint (2.7) binds; that is, the manager effectively

faces terminal wealth (2.6) that he would obtain if he absconds. With this remark, (4.3)

can be viewed as a CARA-normal mean-variance solution. It states that the investor’s

choice of Xt is increasing in the expected effective after-fee fund return (the numerator),

and is decreasing in the volatility of that return (the denominator).

Note that X(θt; R̂t) is inverse U-shaped in θt: for small θt it increases with θt, but

for large θt it decreases with θt (illustrated in Figure 2 below). It makes intuitive sense

that X(θt; R̂t) is decreasing in θt for large θt. That is, the investor optimally adjusts Xt

to the opposite direction of θt to balance her exposure to the stock. Then, why does she

increase Xt in response to a rise in θt if θt is small? The key to this is the term ξ(1 + r)

in the numerator of (4.3), which represents the rent that the fund investor leaves to the

manager to deter him from absconding. To see this, recall that the manager can abscond

with a fraction ξ of the fund’s entire asset. So when delegating Xt dollars of capital to

the manager, the investor effectively grants a fraction ξ of that capital—i.e., ξ(1 + r)Xt

dollars in period-(t+ 1) value—as a rent to the manager to prevent him from absconding.

The term ξ(1 + r) in the numerator of (4.3) is the marginal value of the rent.20 Since the

rent does not depend on θt, it effectively serves as a fixed cost of stock investment from

the investor’s perspective. Thus, if the manager increases θt, the rent per share of the

stock held in the fund decreases, making it cheaper for the investor to get exposure to

the stock. This encourages the investor to allocate more capital to the fund, creating the

upward-sloping part of X(θt; R̂t). If θt is very small, the rent per share of the stock is so

large that the investor does not allocate any capital to the fund (i.e., X(θt; R̂t) = 0).

4.3 Fund manager’s optimization: Fund’s risk exposure

This section determines the manager’s optimal policy for his choice of fund’s risk exposure

θt. There are two routes through which θt affects his expected utility. First, it affects

his personal exposure to the stock via the proportional fee φΠt+1, because Πt+1 depends

on θt. Second, it affects fixed fee Qt through Et[Πt+1] and Vart[Πt+1], which are both

increasing in θt. The manager takes these effects into account when choosing θt.

20The following argument, though not entirely rigorous, helps us grasp the economic intuition behind
the numerator of (4.3). From (2.5), each fund investor’s terminal wealth is W f

t+1 = Yt+1 − Ft+1 + (1 +
r)(W −Xt) = Πt+1−Ft+1 +(1+r)W . Since the manager can abscond with ξYt+1, the investor effectively
leaves ξYt+1 to the manager to deter him from absconding. Thus, if we replace Ft+1 with ξYt+1, we have
W f
t+1 = Πt+1 − ξYt+1 + (1 + r)W = (1 − ξ)Πt+1 − ξ(1 + r)Xt + (1 + r)W . So the marginal expected

wealth is ∂Et[W
f
t+1]/∂Xt = (1− ξ)R̂tθt − ξ(1 + r), which is identical to the numerator of (4.3).
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Lemma 4.3 (Fund manager’s best response). Suppose the fee schedule Ft(·) is as in

Lemma 4.1. Given expected stock return R̂t, the manager’s best response to the investor’s

choice of capital allocation Xt > 0 is to choose the fund’s risk exposure

θ(Xt; R̂t) =
βR̂t

γmαξσ2
RXt

. (4.4)

The manager’s best response (4.4) can be viewed as a CARA-normal mean-variance

solution, as if he is facing the terminal wealth (2.6) that he would obtain if absconding.

Not surprisingly, his choice of θt is increasing in R̂t and decreasing in σ2
R and γm. The

mass of investors in his fund, α/β, affects θt negatively for the following reason. A rise in

α/β increases the “total proportional fee rate” αγf/(αγm + βγf ), i.e., φ for each investor

multiplied by the mass α/β of investors. This increases the manager’s personal exposure

to the stock, which he tries to counterbalance by reducing θt. Note that choosing θt given

Xt is equivalent to choosing θtXt, the number of shares of the stock held for each investor.

Hence, the manager optimally decreases θt in response to an increase in Xt to balance his

personal exposure to the stock.

4.4 Fund’s investment profile

To determine the funds’ demand for the stock, let us identify each fund’s optimal in-

vestment profile, i.e., Nash-equilibrium pair (θ(R̂t), X(R̂t)) for given R̂t. This pair is

determined by solving the two best response functions, (4.3) and (4.4), for θt and Xt. As

illustrated in Figure 2, the nonmonotonicity of X(θt; R̂t) is critical to the existence of a

pure-strategy Nash equilibrium. The key to this nonmonotonicity is the rent that each

fund investor leaves to the manager, as discussed already in Lemma 4.2.

To ensure that the two best response functions cross, we assume the following.

Assumption 2: φ < ξ.

Assumption 2 requires that the mass α/β of fund investors in each fund is not too small.21

If α/β increases, θ(Xt; R̂t) shifts downward because the manager tries to rebalance his

personal risk exposure in response to the increased fund size, but X(θt; R̂t) shifts upward

because the associated lower Qt leads the investor to increase Xt.
22 Thus, the two best

21Assumptions 1 and 2 are compatible with each other. For example, the parameter values used in
Figure 2 (α = 0.4, β = 0.001, γf = 1, γm = 1, and ξ = 0.01) satisfy both of them.

22Qt decreases with α/β for the following reason. A higher α/β makes W̃m
t+1 more volatile. With this
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Figure 2: Determination of the fund’s Nash-equilibrium investment profile given R̂t. The
parameter values used in the figure are r = 0.01, γf = 1, γm = 1, ξ = 0.01, α = 0.4, β =
0.001, and σ2

R = 1. We set R̂t = 1.4286, which is the equilibrium level of R̂t determined
later with St = 1.

response functions cross if α/β is large enough. Under Assumptions 1 and 2, (4.3) and

(4.4) pin down each fund’s investment profile given R̂t as follows.

Lemma 4.4 (Fund’s investment profile). Given expected stock return R̂t, there is a unique

pure-strategy Nash-equilibrium investment profile (θ(R̂t), X(R̂t)) for each fund, where

θ(R̂t) =

(
(1 + r)ξ2

ξ − φ

)
1

R̂t

(4.5)

and

X(R̂t) =

(
β(ξ − φ)

(1 + r)γmαξ3σ2
R

)
R̂2
t . (4.6)

Overall, Lemma 4.4 is in line with Hugonnier and Kaniel (2010), who find (1) a positive

relation between a fund’s proportional fee rate and its leverage and (2) a negative relation

between the fee rate and the investor’s holding of the fund. Moreover, Lemma 4.4 implies

that the fund’s stock holding for each investor, θ(R̂t)X(R̂t), is independent of φ (given

R̂t) because the positive effect of φ on θ(·) and its negative effect on X(·) just offset each

less attractive outside option, the manager is willing to continue running the fund for a lower Qt.
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other. This feature is also consistent with the result of Hugonnier and Kaniel (2010) that

the investor’s effective portfolio weights are independent of the fee rate.

4.5 Equilibrium

Each direct investor’s optimal policy K(R̂t) is the same as in the benchmark case, (3.3).

Using (3.3), (4.5), and (4.6), the period-t aggregate demand for the stock is

αθ(R̂t)X(R̂t)︸ ︷︷ ︸
funds’ demand

+ (1− α)K(R̂t)︸ ︷︷ ︸
direct investors’ demand

=

(
β

ξγm
+

1− α
γd

)
R̂t

σ2
R

. (4.7)

The aggregate demand (4.7) is a decreasing affine function of Pt because R̂t is a decreasing

affine function of Pt. Equating (4.7) to the aggregate supply St determines the equilibrium

expected excess stock return:

R̂t = Λ(η)St, where Λ(η) ≡ σ2
R

β
ξγm

+ 1−α
γd

. (4.8)

Unlike its counterpart in the no-delegation case, (3.4), R̂t in (4.8) decreases with the

effective total risk tolerance of fund managers, represented by β
ξγm

, but does not reflect

the fund investors’ total risk tolerance α
γf

because the managers effectively “undo” these

investors’ impact on the price by adjusting θt given Xt.

The consistency between (3.2) and (4.8) requires that η solves the quadratic equation

η = Λ(η) that has two positive roots:

η =
r2

2σ2
s

( β

ξγm
+

1− α
γd

)
±

√(
β

ξγm
+

1− α
γd

)2

− 4σ2σ2
s

r2

 , (4.9)

where only the smaller root is relevant for the stable equilibrium.

Viewing Pt and R̂t as functions of η, their functional forms are identical in the no-

delegation case (Section 3) and the delegation case (Section 4). Thus, we have the follow-

ing proposition on the stock price and return in the stable equilibrium. We append two

asterisks to the equilibrium values of the delegation case.

Proposition 4.1 (Stock market). The stock return and price characterizations are similar

to those without delegation (Proposition 3.1 and Corollary 3.1) with η∗ being replaced by

η∗∗, where η∗∗ is the smaller value of (4.9).
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Proposition 4.1 states that, in terms of the stock price and return, the difference

between the no-delegation case and the delegation case stems directly from the difference

between η∗ and η∗∗. More specifically, the difference is that the total risk tolerance of

fund investors α
γf

in (3.6) is replaced by the effective total risk tolerance of fund managers
β
ξγm

in (4.9). This implies that the presence of fund managers represents a shift in the

aggregate risk bearing capacity. Thus, asset price dynamics with delegation are the same

as they would be in an economy with two agents with different degrees of risk aversion,

for appropriately selected levels of CARA coefficients.23

The next proposition presents the variables related to portfolio delegation in the stable

equilibrium, whose counterparts do not exist in the no-delegation case.

Proposition 4.2 (Portfolio delegation). In the stable equilibrium,

1. each fund’s fee schedule is

Ft(Πt+1) = φΠt+1 +

(
β(ξ − φ)(ξ − φ+ 2)σ∗∗2R

2αξ2γm
(

β
ξγm

+ 1−α
γd

)2
)
S2
t , (4.10)

where Πt+1 ≡ Rt+1θtXt, φ ≡ βγf/(αγm + βγf ), and σ∗∗2R = σ2 + η∗∗2σ2
s/r

2;

2. each fund’s size (i.e., assets under management) is

α

β
X∗∗t =

(
(ξ − φ)σ∗∗2R

γm(1 + r)ξ3
(

β
ξγm

+ 1−α
γd

)2
)
S2
t ; (4.11)

3. each fund buys (α/β)θ∗∗t X
∗∗
t shares of the stock, where

θ∗∗t =

(
(1 + r)ξ2

(
β
ξγm

+ 1−α
γd

)
(ξ − φ)σ∗∗2R

)
1

St
. (4.12)

The equilibrium with delegation involves a feedback loop among stock price, fund’s

investment profile, and fee schedule. In each fund, the agents take into account the fee

schedule when choosing the capital allocation and the fund’s risk exposure, while the fee

schedule depends on these agents’ choices, and the stock price adjusts so that the agents’

choices are consistent with market clearing. Since St is stochastic, Pt is stochastically

time varying. Accordingly, the agents’ optimal choices of Ft(·), Xt, θt, and Kt are also

23I thank an anonymous referee for suggesting these interpretations of Proposition 4.1.
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time varying with St.
24 Detailed analysis of this equilibrium is deferred to Section 5, in

which we discuss the model’s empirical implications.

It is worth noting that it would be optimal for each fund investor to allocate capital to

only one fund even if she was allowed to access multiple funds. That is, the equilibrium

of this section is also an equilibrium for the case in which investors can allocate capital to

multiple funds. The reason is simple: since there is no diversification benefit from investing

in multiple funds and yet the fee schedule (4.10) involves a fixed fee, it is optimal for each

investor to access only one fund to avoid duplication of fixed fees.

Note that St (and therefore R̂t) can go negative because εt is normally distributed

(for example, noise traders may place a very large buy order). The model’s solution

makes intuitive sense even in such a situation. The fund size (4.11) is proportional to S2
t ,

meaning that fund investors provide a positive amount of capital irrespective of whether St

is positive or negative. This is because fund managers guarantee positive expected returns

on the investor capital by buying the stock in “normal times” (i.e., θ∗∗t > 0 when St > 0)

and shorting it in the reverse condition (i.e., θ∗∗t < 0 when St < 0). The next corollary

makes this point clearer. It derives the distribution of the dollar return on each fund,

which we refer to as the fund return, and shows that the expected fund return is positive

regardless of St. To our knowledge, this is the first paper to study the distributions of

both market return and fund return explicitly in an asset-pricing model.

Corollary 4.1 (Fund return). Let Ωfund
t+1 ≡ (Πt+1−Ft(Πt+1))/Xt be the fund return, i.e.,

the after-fee excess rate of return on each fund. Conditional on t,

1. Ωfund
t+1 is normal with mean

µfund∗∗ =
(1 + r)ξ

(
φ− ξ2+φ2

2

)
ξ − φ

(4.13)

and standard deviation

σfund∗∗t =

(
(1 + r)ξ2(1− φ)

(
β
ξγm

+ 1−α
γd

)
(ξ − φ)σ∗∗R

)
1

|St|
; (4.14)

24The funds’ aggregate stock holding, αθ∗∗t X
∗∗
t =

(
β
ξγm /

(
β
ξγm + 1−α

γd

))
St, and the direct investors’

aggregate stock holding, (1− α)K∗∗t =
((

1−α
γd

)
/
(

β
ξγm + 1−α

γd

))
St, are also time varying with St.
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2. the Sharpe ratio of Ωfund
t+1 is

SRfund∗∗
t ≡ µfund∗∗

σfund∗∗t

=

( (
φ− ξ2+φ2

2

)
σ∗∗R

ξ(1− φ)
(

β
ξγm

+ 1−α
γd

)) |St|. (4.15)

It is readily checked from (4.15) and Assumption 2 that the funds are not able to

beat the market in normal times with St > 0, that is, SRfund∗∗
t < SRmarket∗∗

t if St > 0.

This result is not surprising: as long as St > 0 and therefore R̂t = ηSt > 0, no fund

investor should achieve a better risk-adjusted return than she would do when holding the

market, because the managers access the same market and yet the investors pay fees to

these managers. When St < 0 and thus R̂t < 0, holding the market directly is obviously

unprofitable because SRmarket
t < 0. However, even in such times, investing in a fund

is profitable for fund investors because the manager shorts the market (i.e., θt < 0) to

generate a positive expected return on the investor capital (i.e., SRfund
t > 0).

5 Empirical Implications

This section discusses empirical implications drawn from the equilibrium outcome pre-

sented in Section 4. Unless otherwise noted, we focus on the case of St > 0.

5.1 Effects of portfolio delegation on stock prices

First, we study the impact of portfolio delegation on the stock’s expected returns and price

volatility. Viewing µmarkett , SRmarket
t , and Vart[Pt+1] as functions of η, their functional

forms are identical in the no-delegation case (Proposition 3.1 and Corollary 3.1) and the

delegation case (Proposition 4.1); moreover, all of them are monotonically increasing in

η. Thus, the equilibrium levels of these three variables in the delegation case are larger

(smaller) than those in the no-delegation case if and only if η∗∗ > (<)η∗.

5.1.1 Expected returns

According to Investment Company Institute (2014), in the U.S., the number of house-

holds owning mutual funds has more than doubled in the last two decades, going from 27

million in 1993 to 56.7 million in 2013 (Figure 3, solid line). “As households have come

to rely more on funds over the past decade, their demand for directly held equities has

fallen” (Investment Company Institute 2014). These facts imply that α has increased
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Figure 3: Number of the U.S. households owning mutual funds (solid line; left axis in
millions) and the number of funds in the U.S. mutual fund industry (dashed line; right
axis). Source: Investment Company Institute (2014).

dramatically in the past two decades. Meanwhile, the number of mutual funds has in-

creased too. Investment Company Institute (2014) reports that there are 7,707 mutual

funds in the U.S. in 2013, while there were 4,534 in 1993 (Figure 3, dashed line). This

observation indicates that β has increased significantly. Despite these dramatic shifts in

the portfolio management industry, however, on the surface there is no clear trend in the

overall stock market return over the past two decades (see Figure 4(b) below for S&P 500

returns). The following result reconciles these three observations: (1) a rise in α, (2) a

rise in β, and (3) no trend in the stock market return.

Result 1. The expected market returns, both non risk-adjusted (µmarket∗∗t ) and risk-

adjusted (SRmarket∗∗
t ), are

1. positively related to the proportion α of fund investors and negatively related to the

mass β of fund managers, and

2. larger or smaller than those of the no-delegation case, depending on the parameter

values: µmarket∗∗t > µmarket∗t and SRmarket∗∗
t > SRmarket∗

t if α
β
> 1

ξ
γf

γm
, but µmarket∗∗t <

µmarket∗t and SRmarket∗∗
t < SRmarket∗

t if α
β
< 1

ξ
γf

γm
.

Statement 1 implies that both α and β do impact the stock market returns, but

those impacts may have offset each other (that is, a rise in α increased the expected

market returns but a rise in β lowered them) and therefore have not appeared clearly on

the observed stock returns. The proof of statement 1 is straightforward by algebra, as

dη∗∗/dα > 0 and dη∗∗/dβ < 0 in the stable equilibrium. Statement 2 indicates that the
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stock’s expected returns under delegation may exceed those of the no-delegation case if α

is large and β is small enough, i.e., if a large mass of investors allocate capital to a small

mass of fund managers.25 Note that Result 1 does not rely on the assumption that St is

time-varying, as it follows from comparative statics of α and β.

Why is the expected stock return high if α/β is large? To see the intuition, it is useful

to consider the following decomposition of the expected stock return, R̂∗∗t St. It is the

sum of four components: (1) the total risk premium demanded by fund managers, (2) the

total risk premium demanded by fund investors, (3) the total risk premium demanded by

direct investors, and (4) the total rents paid by fund investors.26 That is,

R̂∗∗t St = βγmVart
[
Wm
t+1

]︸ ︷︷ ︸
managers’ total risk premium

+ αγfVart
[
W f
t+1

]︸ ︷︷ ︸
fund investors’ total risk premium

+ (1− α)γdVart
[
W d
t+1

]︸ ︷︷ ︸
direct investors’ total risk premium

+ αξ(1 + r)X∗∗t .︸ ︷︷ ︸
rents paid by fund investors

(5.1)

The total proportional fee rate ultimately relevant for each manager’s risk bearing is

(α/β)φ = αγf/(αγm+βγf ), which increases with α and decreases with β. Thus, a rise in

α and/or a decrease in β induces him to demand a larger risk premium, increasing the first

term on the RHS of (5.1). Each fund investor receives a fraction 1−φ = αγm/(αγm+βγf )

of Πt+1, which also increases with α and decreases with β. Hence, a rise in α and/or a

decrease in β also leads to a higher risk premium demanded by fund investors, increasing

the second term of (5.1). Furthermore, a rise in α increases the total rents too: a higher

α means that more investors demand extra premia on stock returns to compensate such

rents, and thus the fourth term of (5.1) increases.27 These effects collectively surpass the

decrease in the third term of (5.1) caused by a rise in α, and hence the net effect of α on

the expected stock return is positive.

Both µmarket∗∗t and SRmarket∗∗
t increase with agency friction ξ, as dη∗∗/dξ > 0 in the

stable equilibrium. Moreover, statement 2 of Result 1 states that these returns surpass the

25Both α
β >

1
ξ
γf

γm and α
β <

1
ξ
γf

γm can be compatible with Assumptions 1 and 2. For example, suppose

α = 0.6, β = 0.2, and γf = γm = 1. Then, ξ = 0.4 leads to α
β >

1
ξ
γf

γm whereas ξ = 0.3 leads to α
β <

1
ξ
γf

γm ,
while both of them satisfy Assumptions 1 and 2.

26Each agent’s risk premium is defined as her/his risk aversion γi multiplied by the conditional variance
of her/his terminal wealth. Multiplying it by the mass of agents yields the total risk premium.

27Although the rent ξ(1 + r)X∗∗t is transferred to the manager (through Qt), it does not affect his
choice of θt because it is independent of θt. Thus, the rent has no impact on the stock price through
the managers’ actions. This is the reason the rent is not offset in (5.1) in the form of a reduction in the
premium demanded by the managers.
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no-delegation levels if ξ is large. These results contrast with Buffa, Vayanos, and Woolley

(2014), who find that the aggregate market’s expected return decreases with the agency

friction. Their result arises from asymmetric cross-sectional price distortions in multiple

stocks. In contrast, our result holds for a single stock, and the intuition is derived from

(5.1). As ξ increases, each fund investor needs to leave a larger rent ξ(1 + r)X∗∗t to the

manager. To compensate it, she demands a higher expected return on the stock market,

driving up R̂∗∗t by increasing the fourth term on the RHS of (5.1).

Result 1 is in line with He and Krishnamurthy (2012), who show that the financial

specialist’s presence in the economy inversely impacts the market risk premium and Sharpe

ratio. However, the economic mechanisms are different. In He and Krishnamurthy (2012),

the key is the specialist’s equity capital constraint: if his wealth decreases when the

constraint is binding (i.e., in the “crisis” situation), the risk premium rises to reflect the

capital scarcity. By contrast, our Result 1 holds in non-crisis times, and the key to the

result is the risk sharing between fund investors and managers through the fee contract.

Our result that dSRmarket∗∗
t /dβ < 0 is also consistent with Basak and Pavlova (2012)

who find that the Sharpe ratio decreases with the fraction of institutional investors in

the economy. In their model, a large demand pressure from institutional investors—who

care about their performance relative to an index—requires that, for the stock market to

clear, the market becomes less attractive with a lower Sharpe ratio.

5.1.2 Price volatility

Ever since Shiller (1981) and LeRoy and Porter (1981) found that “stock prices move too

much to be justified by changes in subsequent dividends,” the so-called excess volatility

puzzle has been of interest among financial economists. Our model implies that some of

the characteristics of portfolio delegation affect stock price volatility positively.

Result 2. Stock price volatility Vart[P
∗∗
t+1] = η∗∗2σ2

s/r
2 is

1. positively related to the proportion α of fund investors and negatively related to the

mass β of fund managers, and

2. larger or smaller than that of the no-delegation case, depending on the parameter

values: Vart[P
∗∗
t+1] > Vart[P

∗
t+1] if α

β
> 1

ξ
γf

γm
, but Vart[P

∗∗
t+1] < Vart[P

∗
t+1] if α

β
< 1

ξ
γf

γm
.

That is, stock price tends to be highly volatile when a large fraction of investors access

the market indirectly through a small number of financial experts. The result stems from
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the “risk concentration effect.” As a large amount of investor capital is concentrated in

a small mass of fund managers, the fee arrangement (4.10) requires that each manager

bears a large market risk ceteris paribus. Thus, to balance his personal risk bearing by

reducing the variation of stock holding, the manager submits a demand schedule with low

price elasticity. In equilibrium, the aggregate demand with low price elasticity is settled

by a highly volatile market-clearing price. To see this graphically, consider the classical

demand-supply diagram with price on the vertical axis and quantity on the horizontal

axis. If α is high and/or β is low, the slope of the stock’s demand curve is steep because

the coefficient of Pt in (4.7)—which equals 1/η in equilibrium—is small. This makes the

market-clearing price volatile for a given fluctuation of the vertical supply curve St.

Result 2 shares the key insight of Basak and Pavlova (2012) that “institutional in-

vestors make the stock more volatile.” Their economic mechanism for the large volatility

is different from ours. They argue that a large demand pressure from institutional in-

vestors makes the market less attractive (i.e., more volatile) since otherwise the stock

market would not clear. Result 2 is also consistent with Cuoco and Kaniel (2011), who

show that stock volatility is higher in the economy with a proportional performance fee

than in the benchmark case with costless delegation.

The signs of comparative statics of the market return volatility σmarkett are the same

as those of statement 1 of Result 2. But, in the real world, has the market return

volatility changed behind the change in the fund management industry? The data say no:

Campbell et al. (2001) report that the aggregate market volatility did not change during

the 1962-1997 period, in which there was a dramatic shift towards institutional ownership

of stocks.28 A possible explanation that reconciles this empirical fact and Result 2 is that,

as discussed in Section 5.1.1, α has increased while β has also increased over time and

thus offset each other’s effects on the market return volatility.

5.2 Comovement: Portfolio delegation and stock market

This section studies the dynamics of delegation-related variables such as fees, fund flows,

and fund strategies, which are not analyzed in the no-delegation benchmark case. Our

goal is to understand how and why these variables comove with the stock market.

Recall that St is the only source of time variation of the endogenous variables presented

in Proposition 4.2 (except for Πt+1, which varies also with δt+1). Thus, unlike Result 1,

28Although the aggregate market volatility did not change, Campbell et al. (2001) find a positive
trend in the idiosyncratic volatility of individual firms. Bennett et al. (2003) and Xu and Malkiel (2003)
argue that this increase in the idiosyncratic volatility is due to a rise in institutional ownership.
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the results presented in this section are driven by the assumption that St is time-varying.29

5.2.1 Fund fees and stock market return

Sections 5.1.1 and 5.1.2 shed light on the role of fund fees as a risk-sharing mechanism

that connects the extent of portfolio delegation and stock market performance. Then,

what is the relation between fund fees per se and the stock market return?

Result 3. Conditional on t, fund’s expense ratio Ft(Πt+1)/Xt is normal with mean

Et

[
Ft(Πt+1)

Xt

]
= (1 + r)ξ

(
ξ2 + φ2

2(ξ − φ)
+ 1

)
, (5.2)

which is independent of the market return, and standard deviation

SDt

[
Ft(Πt+1)

Xt

]
=

(
(1 + r)ξ2φ

(
β
ξγm

+ 1−α
γd

)
(ξ − φ)σ∗R

)
1

|St|
. (5.3)

That is, regardless of Ωmarket
t that is time varying with St, funds adopt a fixed expected

expense ratio every period. Moreover, the ratio’s standard deviation (5.3) is much smaller

than σmarkett if |St| is large. So the model predicts that the time variation of the realized

expense ratio can be much smaller than that of the stock market return and other variables

such as fund flows. This is illustrated in panel (a) of Figure 4. It plots simulated paths

of Ωmarket
t+1 = Rt+1/Pt (solid line), Ft(Πt+1)/Xt (dashed line), and the aggregate fund

flow ∆(αXt) (dash-dotted line), with their values for t = 0 being normalized to 1. The

simulation appears to be in line with the real-world mutual fund industry and stock

market. As shown in panel (b) of Figure 4, the average expense ratio in the U.S. mutual

fund industry is quite stable compared to the stock market return and the aggregate fund

flow (per fund) that exhibit large volatility on a similar scale as our model’s simulation.30,31

29All these results do not rely on the assumption that St is a random walk. As discussed in Appendix
G.2, they would also go through under other assumptions that St is non-persistent or mean-reverting.
Here, a caveat is that our attention is limited to AR(1) processes of St. We have not been able to check
whether our results are robust to non-AR(1) specifications of St because we have not yet solved for
equilibria under such processes. For example, if we assume St to be AR(q) with q ≥ 2, the equilibrium
price function would be different from (3.1) because Et[St+1] would depend not only on St but also on
St+1−q; but we have not identified the function yet. We leave this issue for future research.

30While the expense ratio looks constant in Figure 4, it actually stochastically evolves over time in a
small scale, between 0.01043 and 0.01048 in panel (a), and between 0.0078 and 0.0096 in panel (b).

31Equation (5.2) implies that Et[Ft(Πt+1)/Xt] is a decreasing function of α/β. Thus, although α and
β have changed significantly over the last few decades, since the ratio α/β has been fairly stable (Figure
3), the model’s prediction that the expected expense ratio is constant is consistent with the data.
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(a) Simulation. The panel shows the time variation of our model’s market return Ωmarkett+1 =
Rt+1/Pt (solid line), expense ratio Ft(Πt+1)/Xt, (dashed line), and aggregate fund flow ∆(αXt)
(dash-dotted line). For t = 0, Ωmarkett+1 = 4.35%, Ft(Πt+1)/Xt = 0.01046, and ∆(αXt) = 0.00041,

which are all normalized to 1. The parameter values are r = 0.04, δ̂ = 0.1, σ2 = 0.01, σ2
s = 0.001,

S0 = 1, γf = γm = γd = 1, α = 0.4138, β = 0.000067, and ξ = 0.01. The value of α is the
percentage of U.S. households owing mutual funds (the average of 1993–2013). The value of β is
the number of funds of the U.S. mutual fund industry divided by the number of U.S. households
(the average of 1993–2013). Source: Investment Company Institute (2014).
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(b) Data. The panel shows the time variation of S&P 500 total annual return including dividend
(solid line), the U.S. mutual funds’ average expense ratio (dashed line), and the aggregate fund flow
per fund in the U.S. mutual fund industry (dash-dotted line). For year 1993, the S&P 500 return
is 10.08%, the average expense ratio is 0.0096, and the per-fund aggregate fund flow is $27 million,
which are all normalized to 1. Source: Standard & Poor’s and Investment Company Institute.

Figure 4: Market return, expense ratio, and aggregate fund flow: simulation vs. data.
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The reason the expected expense ratio is independent of the market return is the

following. The level of Ft(Πt+1) is positively related to the expected market return. This

makes sense: since each manager’s outside option is high in good times when R̂t is high,

the fund investors need to pay a large Qt to let the manager continue running the fund.

Meanwhile, in good times, the investors allocate a large Xt to the fund. Indeed, Figure

4 shows that the fund flow is positively related to the market return, both in simulation

and data.32 So when we look at the ratio Ft(Πt+1)/Xt, the effect of the market return

is just offset between the numerator and the denominator, and it becomes a constant in

expectation.33

5.2.2 Aggregate fund flows and stock market return

The model yields implications for the relation between aggregate fund flows and stock

market returns. Note that studying aggregate fund flows (at macro level) is fundamentally

different from studying fund flows between individual funds (at micro level).34 As Warther

(1995) explains, “[a]t macro level, flows between funds net out, so only aggregate flows

into and out of the entire market remain. Thus, attention at the macro level centers on

large-scale movements of money into and out of the market without regard to which fund

it goes into or comes from.” Warther (1995) finds evidence of: (1) a positive relation

between flows and subsequent returns, and (2) a negative relation between returns and

subsequent flows.35 The model provides theoretical support for both of these findings.

Result 4. Over time,

1. aggregate fund flow ∆(αXt) is positively related to subsequent market return Ωmarket
t+1 =

Rt+1/Pt;

2. aggregate fund flow ∆(αXt) is inversely related to past market return Ωmarket
t =

Rt/Pt−1.

32Although Ωmarkett+1 and ∆(αXt) are positively related, they are not perfectly correlated. This is
because Ωmarkett+1 evolves with two random variables, St and δt, while ∆(αXt) depends only on St.

33This logic goes through even under alternative measures of the expense ratio such as Ft(Πt+1)/Yt+1

and Ft(Πt+1)/(Yt+1−Ft(Πt+1)). Although we do not obtain simple expressions for the mean and standard
deviation of these measures, the simulation results (which are not presented but available on request)
show that the realized expense ratio is still much less volatile than the market return because the variation
of St is cancelled out between the numerator and the denominator.

34For the micro approach, see, for example, Chevalier and Ellison (1997) and Sirri and Tufano (1998).
35Fant (1999) also finds evidence of a negative relation between returns and subsequent flows.
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Statement 1 holds because both ∆(αXt) and Ωmarket
t+1 comove positively with St. When

St increases, Pt falls, so Ωmarket
t+1 = δt+1+Pt+1

Pt
− (1 + r) tends to increase (though it can

decrease if the realization of δt+1 is very low). Because each fund investor chooses Xt

based on the expectation of Ωmarket
t+1 , flow ∆(αXt) also increases.

Statement 2 contrasts with the well-documented empirical fact at micro level that

individual fund’s flow-performance relation is positive and convex (Chevalier and Ellison

1997). Statement 2 implies that, at macro level, fund investors are “somewhat contrarian”

(Warther 1995). The result holds because the past market return Ωmarket
t decreases with

St (because Ωmarket
t = δt+Pt

Pt−1
− (1 + r) is increasing in Pt that comoves negatively with St),

whereas the current flow ∆(αXt) comoves positively with St. The intuition is as follows.

If St increases, Pt falls. So the investors who bought the stock in period t − 1 sell them

cheap in period t, and thus Ωmarket
t decreases. But, because low Pt implies high Ωmarket

t+1

(which is relevant for the investor’s choice of Xt), the current flow ∆(αXt) increases.

We have two remarks on the robustness of Result 4. First, both statements 1 and 2

would hold even if St is independent over time or mean reverting (see Appendix G.2). As

seen from the economic intuitions discussed above, the three elements needed for Result

4 are dXt/dSt > 0, dΩmarket
t+1 /dSt > 0, and dΩmarket

t /dSt < 0, none of which relies on

our assumption that St is a random walk. Second, since Warther (1995) studies monthly

return patterns, one may argue that his results may not be compatible with our model

where each generation lives for only two periods. However, we will show in Section 6 that

Result 4 still holds in a model with infinitely-lived agents, in which the length of each

time period can be interpreted more flexibly.

5.2.3 Fund’s trading strategy and stock market return: Volatility timing

The model also has implications for fund managers’ trading strategies, such as volatility

timing documented by Busse (1999). He finds that more than 80% of mutual funds in

his sample decrease their market exposure when market volatility is high. Giambona and

Golec (2009) also find that the majority of funds time volatility counter-cyclically. The

model’s prediction is consistent with their findings.

Result 5. Fund’s volatility timing is counter-cyclical. That is, each fund manager de-

creases the fund’s risk exposure θt when the market return volatility σmarkett increases.

Result 5 follows from Proposition 4.1 and (4.12). Over time, θt and σmarkett move in

the opposite directions because θt (resp., σmarkett ) moves in the opposite (resp., same)

direction of St. The intuition is the following. Suppose that St increases in period t, and
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thus Pt falls. On the one hand, this price fall increases σmarkett .36 On the other hand,

the price fall increases R̂t, encouraging fund investors to increase Xt. In response to this,

each manager optimally decreases θt to rebalance his personal exposure to the stock.

An alternative measure of fund’s risk exposure is the leverage ratio, defined as the

amount of borrowing divided by capital, i.e., Lt ≡ (PtθtXt − Xt)/Xt = Ptθt − 1. For a

similar economic intuition as the one for Result 5, the model predicts that funds tend to

use leverage also counter-cyclically, that is, Lt and σmarkett comove negatively over time.

5.2.4 Market return vs. fund return

The model allows us to distinguish market return and fund return, identify their distribu-

tions, and offer testable implications on their equilibrium relation. The following result

indicates that these returns may evolve quite differently over time.

Result 6. Comparing the distributions of market return and fund return,

1. the expected market return µmarkett is time-varying (with supply shock St), but the

expected fund return µfund is constant over time;

2. the market return volatility σmarkett and the fund return volatility σfundt comove neg-

atively.

The reason µfund is constant over time (statement 1) is that the managers undo the

impact of St on µfund. To see this, consider what happens if St decreases. This increases

Pt, which decreases µmarkett because one dollar buys a smaller number of shares of the

stock. However, under portfolio delegation, each manager levers up each investor’s one

dollar of capital so that the expected return from investing one dollar in the fund is still

the same as before the rise in Pt. More specifically, even if the stock return R̂t decreases

due to a decrease in St, the manager increases θt so that the expected rate of return on

the fund (before fee) is R̂tθt, independent of St.
37

Statement 2 of Result 6 implies that funds effectively provide investors with a “volatil-

ity hedge.” The intuition follows from Result 5 that the managers decrease the funds’

36The price fall allows investors to purchase a larger number of shares of the stock by one dollar. Thus,
the return on the market per dollar invested increases in expectation but becomes more volatile too.

37Kaniel and Kondor (2013) argue that funds are less volatile than the market on average, that is,
the average fund overperforms the market in recessions and underperforms in expansions. Although the
economic mechanisms are different, their result and statement 1 of Result 6 share the idea that funds
provide investors with more stable returns than the market over time. This “stabilizing role” of funds is
supported empirically by Kacperczyk, Van Nieuwerbuygh, and Veldkamp (2012), who find that after-fee
excess fund returns are negative in expansions and positive in recessions.
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risk exposure when market volatility increases. The volatility hedge is consistent with the

agents’ incentives as follows. Given that each fund provides a volatility hedge, each fund

investor is encouraged to increase Xt when the market return volatility σmarkett increases

(i.e., when St increases). In response to the increased Xt, each manager decreases θt to

balance his personal risk exposure; this consistently translates back into the lower fund

return volatility σfundt , indeed providing the volatility hedge.

6 Long-lived Agents

This section studies a model with infinitely-lived agents and shows that our main results

in the overlapping-generations model still carry through.

This section’s model is much like the one of Section 2 except that the agents are in-

finitely lived; unless otherwise noted, the same assumptions prevail. The agents have util-

ity function ui(cit) = − exp(−γ̃icit) for i ∈ {f,m, d}, where cit is consumption and γ̃i > 0 is

a coefficient of absolute risk aversion. Due to the model’s recursive nature, it is convenient

to define a “time-adjusted” CARA coefficient γi ≡ r
1+r

γ̃i. For i ∈ {f,m, d}, each agent’s

objective function in period t is her/his lifetime expected utility Et

[∑∞
τ=0 ρ

τui(cit+τ )
]
,

where ρ ∈ (0, 1) is a discount factor common for all agents.

In each period t + 1, each fund investor pays fee Ft+1 to the manager. Since Ft+1

compensates the manager for the investment he made in period t (which yields a return

in period t+ 1), we allow Ft+1 to depend not only on the fund profit Πt+1 but also on the

period-t investment profile (θt, Xt) and the period-t state variable St. At the beginning

of t = 0, the fund investors collectively offer a fee schedule, represented by a function

F (Πt+1, θt, Xt, St), to the manager. We allow F to be any function. If the manager

accepts F in t = 0, then for all t ≥ 0 the fee in that fund will be Ft+1 = F (Πt+1, θt, Xt, St).

Note that, while the functional form of F is determined in t = 0 and does not change

thereafter, the value of the fee Ft+1 changes every period, depending on the realizations

of (Πt+1, θt, Xt, St).

We assume that each manager can abscond in any period t ≥ 0.38 If he absconds in

period t, then he acts as a direct investor from period t + 1 onward.39 The story behind

this assumption is that if a manager ever deceives investors, his name would be mud and

38As in the model of Section 2, each manager who absconds in period t is not allowed to change θt in
that period. However, as shown in Appendix G.7, the results would not change even if we allow him to
modify θt when absconding.

39While acting as a direct investor, his risk aversion is still represented by γm (instead of γd).
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he can never come back to the profession; he lives the rest of his life as an individual

investor, using the investors’ money he absconded with as seed money. When offering F

in t = 0, the fund investors make sure that the manager will never have an incentive to

abscond in the future. That is, they consider incentive compatibility constraints à la (2.7)

for each and every period t ≥ 0 (see Appendix F for details).

We look for a linear equilibrium in which Pt is linear in δ̂ and St. The equilibrium

is derived in Appendix F, using the standard dynamic programming technique. The

following proposition summarizes the equilibrium outcome.

Proposition 6.1 (Long-lived agents). Define π ≡ β
ξγm

+ 1−α
γd
, η ≡ σ2

π
, qd1 ≡

σ2σ2
s

rπ2+σ2σ2
s
, qd2 ≡

σ2
(

1 + σ2σ2
s

r(rπ2+σ2σ2
s)

)
, and Ad ≡ σ2

rπ2 , and let (ζX , q
f
1 , q

m
1 , q

f
2 , q

m
2 , q3, q4, A

f , Am) be the solu-

tions to the system of nine equations:

ζX =
π2

(1 + r)ξ3γm2

(
γmξσ2

(
1− ξ +

q3
r

)
− β

α
q4

)
, (6.1)

qi1 =
Aiσ2

s

1 + Aiσ2
s

for i ∈ {f,m}, (6.2)

qi2 = σ2
R −

η2σ2
sq
i
1

r2
for i ∈ {f,m}, (6.3)

q3 = (1− φ)qf1 + φqm1 − ξqd1 , (6.4)

q4 = γf (1− φ)2qf2 + γm
α

β

(
φ2qm2 − ξ2qd2

)
, (6.5)

Af =
1

1 + r

(
γfβ2q4

γm2α2ξ2π2
+

Af

1 + Afσ2
s

− γfβ

γmα

(
Ad

1 + Adσ2
s

− Am

1 + Amσ2
s

))
, and (6.6)

Am = Ad + 2γmξζX . (6.7)

Then, in equilibrium,

1. the stock return and price characterizations are similar to those of the short-lived

agents case (Proposition 4.1) with η∗∗ being replaced by η = σ2/π,

2. each fund’s fee schedule is F (Πt+1, θt, Xt, St) = φΠt+1 + Q(θt, Xt, St), where φ ≡
βγf/(αγm + βγf ) and

Q(θt, Xt, St) ≡
(
ξ

(
1 +

qd1
r

)
− φ

(
1 +

qm1
r

))
ηStθtXt −

γm

2

α

β
(ξ2qd2 − φ2qm2 )θ2tX

2
t

+ ξ(1 + r)Xt +
1

2γm
β

α

((
qd1 − qm1
σ2
s

)
S2
t + ln

(
1− qm1
1− qd1

))
, (6.8)
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3. each fund’s size (i.e., assets under management) is (α/β)Xt = ζXS
2
t , and

4. each fund buys (α/β)θtXt shares of the stock, where

θt =
ζθ
St

with ζθ ≡
(1 + r)ξ2γmπ

γmξσ2
(

1− ξ + q3
r

)
− β

α
q4
. (6.9)

The equilibrium characterization of the long-lived agents case is more complicated

than that of the overlapping-generations case due to the agents’ concerns for hedging

against stochastic variation of St, which are captured by qi1, i ∈ {f,m, d}. Nevertheless,

the implications drawn from these two cases are similar. Indeed, all the qualitative results

presented in Section 5 carry through also in this section’s model. First, because we have

dη/dα > 0 and dη/dβ < 0 in this section’s model, both µmarkett = R̂t/Pt = rηSt/(δ̂− ηSt)
and SRmarket

t = (η/σR)St increase with α and decrease with β (Result 1), and the same

applies to Vart[Pt+1] = η2σ2
s/r

2 (Result 2). Second, since in both models the fee Ft+1 is

an affine function of Πt+1 where Qt is an affine function of S2
t , the qualitative implication

of Result 3 is still derived from this section’s model.40 Third, in both Sections 4 and 6, in

equilibrium R̂t, Xt, θt, and Kt are proportional to St, S
2
t , 1/St, and St, respectively. So

the two models’ endogenous variables move in the same direction over time, and hence

Results 4, 5, and 6 hold also in this section’s model.41

How does the assumption of long-lived agents change their behavior and stock price?

Figure 5 plots the key endogenous variables of the long-lived agents model of this section

(solid line) and those of the overlapping generations model of Section 2 (dashed line)

as functions of the volatility σ2
s of stock supply. The overlapping-generations case is

straightforward. As σ2
s increases, the agents demand a higher risk premium, pushing up

R̂t (panel (a)). This encourages fund investors to increase Xt (panel (b)), which then

40Cuoco and Kaniel (2011) also consider a multi-period problem of portfolio delegation, but a linear
fee is not optimal in their model. Why is it not optimal in theirs, while it is in ours? In Section 6 of Cuoco
and Kaniel (2011), the authors argue that the critical assumption that prevents a linear fee from being
optimal is that investors take the fee structure as given and do not internalize the fact that their choice of
capital allocation affects the equilibrium fee. The authors note (page 289): “If fund investors were able to
choose the managers’ compensation contract while committing to delegating the amount [...], this [linear]
fee would indeed be optimal.” By contrast, in our model the fund investors choose the fee structure,
and each of them fully internalizes how her choice of capital allocation Xt will affect the equilibrium fee
because the load component Qt is a function of Xt (as opposed to Cuoco and Kaniel (2011) in which the
load component is assumed to be a constant). Consequently, a linear fee is still optimal in our setting,
consistent with the standard results such as Wilson (1968) and Ross (1973).

41Moreover, the funds’ aggregate stock holding, αθtXt = β
ξγmπSt, and the direct investors’ aggregate

stock holding, (1− α)Kt = 1−α
γdπ

St, are also the same as those of Section 4 (see Footnote 24).
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Figure 5: Long-lived-agents model vs. overlapping-generations (OLG) model. The graphs
plot the key endogenous variables versus the volatility σ2

s of stock supply. The parameter
values are σ2 = 1, r = 0.02, ξ = 0.01, γf = γm = γd = 1, α = 0.4, β = 0.0006, and
St = 1.
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leads the manager to decrease θt to counterbalance his personal risk exposure (panel (c)).

The funds’ aggregate stock holding αθtXt is independent of σ2
s because the increase in Xt

and decrease in θt just offset each other (panel (d)). If σ2
s = 0, even the long-lived agents

choose mean-variance solutions and thus the two models’ solutions coincide in all four

panels. However, for σ2
s > 0 the long-lived agents’ hedging demand creates discrepancies

between the models. The expected return R̂t is independent of σss in the long-lived agents

case (panel (a)). This is because an increase in σ2
s has two opposing effects on R̂t. First,

it increases risk premium, having an upward pressure on R̂t; second, it increases hedging

demand, having an upward pressure on Pt, i.e., a downward pressure on R̂t. These two

effects just offset each other, leading to dR̂t/dσ
2
s = 0. Despite dR̂t/dσ

2
s = 0, each fund

investor’s Xt increases with σ2
s (panel (b)) because her hedging demand increases with

σ2
s . The increase in Xt is moderate compared to the overlapping-generations case, in

which R̂t increases with σ2
s to drive up Xt more sharply. As a best response to such a

moderate increase in Xt, the manager’s θt decreases with σ2
s also moderately (panel (c)).

The funds’ aggregate stock holding αθtXt is independent of σ2
s also in the long-lived agents

case because, again, the increase in Xt and decrease in θt just cancel out (panel (d)).

7 Conclusion

This paper develops a model of asset-market equilibrium that incorporates delegated port-

folio management with optimal fee contracts. Fund managers and investors strategically

interact to determine funds’ investment profiles, while they share the funds’ portfolio risk

via fee contracts. In equilibrium, their investment decisions, fee schedules, and stock

prices feed back into one another. The model yields a number of empirical implications

for fund size, fund fees, funds’ investment strategies, stock market returns, and fund

returns. It predicts that expected stock returns and price volatility tend to be high

when a large fraction of investors access the market indirectly through a small number

of funds (the risk concentration effect). Explanations are provided to the empirical facts

documented in the literature: (1) a positive relation between aggregate fund flows and

subsequent stock returns and a negative relation between returns and subsequent flows,

and (2) funds’ counter-cyclical volatility timing. Moreover, new testable implications on

the distributions of market return and fund return are offered: (1) expected fund return

is less volatile than expected market return, and (2) funds use leverage counter-cyclically

to balance their risk exposure, that is, funds provide investors with a volatility hedge.
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In our model, time variation of variables is caused by exogenous supply shocks (or

noise trading). It will be a fruitful future research to endogeneize these shocks to study

the welfare implications of portfolio delegation. Given the policy debates about the effect

of financial intermediaries on the real economy, such a study will be important.

A limitation of our model is that it does not allow us to analyze cross-sectional varia-

tions of funds. Indeed, in equilibrium fund returns are perfectly correlated, and all funds

have the same size. These are clearly counterfactual. For future research, it will be inter-

esting to consider heterogeneities of funds (such as investment styles or managers’ skill),

possibly in a multiple-stock setting, and explore the interactions of funds’ investment

profiles and returns, manager compensations, and asset prices.
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Online Appendix:
Delegated Portfolio Management, Optimal Fee

Contracts, and Asset Prices

Yuki Sato
University of Lausanne and Swiss Finance Institute

A Proof of Lemma 4.1

For an arbitrary investment profile (θt, Xt), generation-t fund investors choose fee schedule Ft(·) that

maximizes the expected utility of each of them, subject to the manager’s incentive compatibility con-

straint. The manager’s participation constraint, Et
[
um(Wm

t+1)
]
≥ Et

[
um(0)

]
, is slack because it is implied

by the incentive compatibility constraint. That is, the problem is

max
Ft(·)

Et

[
uf (W f

t+1)
]

sub. to Et
[
um(Wm

t+1)
]
≥ Et

[
um(W̃m

t+1)
]
. (A.1)

The Lagrangian is

L =

∫
uf (Π− Ft(Π) + (1 + r)W ) gt(Π)dΠ− ψt

(
Et

[
um(W̃m

t+1)
]
−
∫
um
(
α

β
Ft(Π)

)
gt(Π)dΠ

)
,

where gt(·) is the probability density function (conditional on t) of the fund profit Πt+1, and ψt is the

Lagrange multiplier. The first-order condition (FOC) for Ft(Πt+1) is

−uf ′ (Πt+1 − Ft(Πt+1) + (1 + r)W ) gt(Πt+1) + ψtu
m′
(
α

β
Ft(Πt+1)

)
α

β
gt(Πt+1) = 0

⇐⇒
um′

(
α
βFt(Πt+1)

)
uf ′ (Πt+1 − Ft(Πt+1) + (1 + r)W )

=
β

α

1

ψt
. (A.2)

Log-differentiating (A.2) with respect to Πt+1,

um′′(Wm
t+1)

um′(Wm
t+1)

α

β
F ′t (Πt+1)−

uf ′′(W f
t+1)

uf ′(W f
t+1)

(1− F ′t (Πt+1)) = 0

⇐⇒ −γmα
β
F ′t (Πt+1) + γf (1− F ′t (Πt+1)) = 0 ⇐⇒ F ′t (Πt+1) =

βγf

αγm + βγf
≡ φ. (A.3)

(A.3) implies that the optimal fee schedule is

Ft(Πt+1) = φΠt+1 +Qt
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for some Qt that is known as of period t. The fund investors choose Qt such that the manager’s incentive

compatibility constraint (A.1) holds with equality, since otherwise they can be better off by decreasing

Qt until (A.1) binds. Thus, recalling that the manager has exponential utility, Qt satisfies

Et
[
um(Wm

t+1)
]

= Et

[
um(W̃m

t+1)
]
⇐⇒ Et

[
Wm
t+1

]
− γm

2
Vart

[
Wm
t+1

]
= Et

[
W̃m
t+1

]
− γm

2
Vart

[
W̃m
t+1

]
⇐⇒ α

β
(φEt [Πt+1] +Qt)−

γm

2

α2

β2
φ2Vart [Πt+1] =

α

β
ξEt [Yt+1]− γm

2

α2

β2
ξ2Vart [Yt+1]

⇐⇒ φEt [Πt+1] +Qt −
γm

2

α

β
φ2Vart [Πt+1] = ξEt [Πt+1] + ξ(1 + r)Xt −

γm

2

α

β
ξ2Vart [Πt+1]

⇐⇒ Qt = (ξ − φ)Et [Πt+1] + ξ(1 + r)Xt −
γm

2

α

β
(ξ2 − φ2)Vart [Πt+1] .

B Proof of Lemma 4.2

Given Ft(·) specified in Lemma 4.1, each fund investor’s terminal wealth (2.5) is rewritten as

W f
t+1 = (1− φ)Πt+1 − (ξ − φ) Et[Πt+1]− ξ(1 + r)Xt +

γm

2

α

β

(
ξ2 − φ2

)
Vart[Πt+1] + (1 + r)W,

which implies that the mean and variance of W f
t+1 are

Et

[
W f
t+1

]
= (1− ξ)Et [Πt+1]− ξ(1 + r)Xt +

γm

2

α

β
(ξ2 − φ2)Vart[Πt+1] + (1 + r)W and (B.1)

Vart

[
W f
t+1

]
= (1− φ)2Vart [Πt+1] . (B.2)

Since each fund investor has exponential utility, (B.1) and (B.2) imply that her maximization problem is

max
Xt

Et
[
uf (W f

t+1)
]
⇐⇒ max

Xt
Et
[
W f
t+1

]
− γf

2
Vart

[
W f
t+1

]
⇐⇒ max

Xt
(1− ξ)Et [Πt+1]− ξ(1 + r)Xt + (1 + r)W − γm

2

α

β

(
−ξ2 + φ2 +

βγf

αγm
(1− φ)2

)
Vart[Πt+1]

⇐⇒ max
Xt

(1− ξ)R̂tθtXt − ξ(1 + r)Xt + (1 + r)W − γm

2

α

β
(φ− ξ2)θ2

tX
2
t σ

2
R.

The FOC for Xt, assuming interior solution, is

(1− ξ)R̂tθt − ξ(1 + r)− γmα
β

(φ− ξ2)θ2
tXtσ

2
R = 0.

This yields the fund investor’s best response to θt given R̂t:

X(θt; R̂t) =
(1− ξ)R̂tθt − ξ(1 + r)

γmα
β (φ− ξ2)σ2

Rθ
2
t

.

Taking care of the nonnegativity condition for Xt yields the required result.
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C Proof of Lemma 4.3

Under fee schedule Ft(·) of Lemma 4.1, each manager’s terminal wealth (2.4) is rewritten as

Wm
t+1 =

α

β
(φΠt+1 +Qt)

=
α

β

(
φΠt+1 + (ξ − φ)Et[Πt+1] + ξ(1 + r)Xt −

γm

2

α

β
(ξ2 − φ2)Vart[Πt+1]

)
,

which implies that the mean and variance of Wm
t+1 are

Et
[
Wm
t+1

]
=
α

β

(
ξEt[Πt+1] + ξ(1 + r)Xt −

γm

2

α

β
(ξ2 − φ2)Vart[Πt+1]

)
and (C.1)

Vart
[
Wm
t+1

]
=
α2

β2
φ2Vart [Πt+1] . (C.2)

Since the manager has exponential utility, (C.1) and (C.2) imply that his maximization problem is

max
θt

Et
[
um(Wm

t+1)
]
⇐⇒ max

θt
Et
[
Wm
t+1

]
− γm

2
Vart

[
Wm
t+1

]
⇐⇒ max

θt

α

β
ξEt[Πt+1] +

α

β
ξ(1 + r)Xt −

γm

2

α2

β2
ξ2Vart[Πt+1]

⇐⇒ max
θt

α

β
ξXt

(
R̂tθt + (1 + r)− γm

2

α

β
ξθ2
tXtσ

2
R

)
.

The FOC for θt is

R̂t − γm
α

β
ξθtXtσ

2
R = 0.

This yields the manager’s best response to Xt given R̂t:

θ(Xt; R̂t) =
βR̂t

γmαξσ2
RXt

.

D Proof of Proposition 4.2

The fixed fee Qt is computed as follows. In equilibrium, the conditional mean and variance of Πt+1 are

Et[Πt+1] = R̂tθ
∗
tX
∗
t =

(
βσ2

R

αξγm
(

β
ξγm + 1−α

γd

)2
)
S2
t and (D.1)

Vart[Πt+1] = θ∗2t X
∗2
t σ

2
R =

(
β2σ2

R

α2ξ2γm2
(

β
ξγm + 1−α

γd

)2
)
S2
t . (D.2)
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Using (D.1) and (D.2), we have

Qt =(ξ − φ)

(
βσ2

R

αξγm
(

β
ξγm + 1−α

γd

)2
)
S2
t + ξ(1 + r)

(
β(ξ − φ)σ2

R

γm(1 + r)αξ3
(

β
ξγm + 1−α

γd

)2
)
S2
t

− γm

2

α

β

(
ξ2 − φ2

)( β2σ2
R

α2ξ2γm2
(

β
ξγm + 1−α

γd

)2
)
S2
t

=

(
β(ξ − φ)σ2

R

αξγm
(

β
ξγm + 1−α

γd

)2
)(

1 +
1

ξ
− ξ + φ

2ξ

)
S2
t =

(
β(ξ − φ)(ξ − φ+ 2)σ2

R

2αξ2γm
(

β
ξγm + 1−α

γd

)2
)
S2
t .

E Proof of Corollary 4.1

We have

µfundt = Et

[
Ωfundt+1

]
= Et

[
Πt+1 − Ft(Πt+1)

X∗t

]
=

1

X∗t
((1− φ)Et[Πt+1]−Qt)

=

(
γm(1 + r)αξ3

(
β
ξγm + 1−α

γd

)2
β(ξ − φ)σ2

R

)
1

S2
t

( (1− φ)βσ2
R

αξγm
(

β
ξγm + 1−α

γd

)2
)
S2
t −

(
β(ξ − φ)(ξ − φ+ 2)σ2

R

2αξ2γm
(

β
ξγm + 1−α

γd

)2
)
S2
t


=

(1 + r)ξ

ξ − φ

(
(1− φ)ξ − (ξ − φ)(ξ − φ+ 2)

2

)
=

(1 + r)ξ
(
φ− ξ2+φ2

2

)
ξ − φ

and

σfundt =

√
Vart

[
Ωfundt+1

]
=

1

X∗t
(1− φ)

√
Vart[Πt+1]

=

(
γm(1 + r)αξ3

(
β
ξγm + 1−α

γd

)2
β(ξ − φ)σ2

R

)
1

S2
t

(
(1− φ)βσR

αξγm
(

β
ξγm + 1−α

γd

))|St|
=

(
(1 + r)ξ2(1− φ)

(
β
ξγm + 1−α

γd

)
(ξ − φ)σR

)
1

|St|
.

F Proof of Proposition 6.1

F.1 Dynamic budget constraints

Each fund investor allocates her wealth W f
t between consumption cft , capital allocation Xt to the fund,

and investment in the riskless asset to maximize her lifetime expected utility. Her dynamic budget

constraint is

W f
t+1 = Πt+1 − Ft(Πt+1) + (1 + r)(W f

t − c
f
t ), (F.1)

which states that her next-period wealth is the sum of the after-fee fund return and the proceeds from

her own riskless investment.

Each fund manager allocates his wealth Wm
t between consumption cmt and investment in the riskless

asset, and chooses the fund’s risk exposure θt to maximize his lifetime expected utility. His dynamic
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budget constraint if he continues his fund until period t+ 1 is

Wm
t+1 =

α

β
Ft(Πt+1) + (1 + r)(Wm

t − cmt ). (F.2)

If he absconds in a certain period, his next-period wealth would be

W̃m
t+1 =

α

β
ξYt+1 + (1 + r)(Wm

t − cmt )

=
α

β
ξ (Πt+1 + (1 + r)Xt) + (1 + r)(Wm

t − cmt ). (F.3)

After this period onward, he acts as a direct investor; thus, his dynamic budget constraint would be

W̃m
t+1 = Rt+1K̃

m
t + (1 + r)(W̃m

t − c̃mt ), (F.4)

where K̃m
t and c̃mt are his stock purchase and consumption, respectively.

Each direct investor allocates her wealth W d
t between consumption cdt , purchase of Kt shares of the

stock, and investment in the riskless asset to maximize her lifetime expected utility. Her dynamic budget

constraint is

W d
t+1 = Rt+1Kt + (1 + r)(W d

t − cdt ). (F.5)

F.2 Conjectures

We conjecture and later verify that each agent’s value function is, for i ∈ {f,m, d},

V i(W i
t , St) = − exp

(
−γiW i

t −
Ai

2
S2
t −Bi

)
, (F.6)

where Ai and Bi are constants that will be determined later. Moreover, conjecture and later verify that

the value function of a manager who has absconded is

Ṽ m(W̃m
t , St) = − exp

(
−γmW̃m

t −
Ad

2
S2
t −Bd

)
. (F.7)

Note that (F.7) is characterized by Ad and Bd (as opposed to Am and Bm), reflecting that he acts as a

direct investor after absconding. We also conjecture and verify later that the equilibrium stock price is

Pt =
δ̂ − ηSt

r
, (F.8)

where η > 0 is a constant that is determined later. This conjecture implies that, conditional on t, Rt+1

is normally distributed with mean

R̂t ≡ Et[Rt+1] = ηSt (F.9)

and variance σ2
R ≡ Vart[Rt+1] = σ2 + η2σ2

s/r
2. From (F.8) and (F.9), we have Pt = (δ̂ − R̂t)/r.
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F.3 Fee contract

At the beginning of period 0, the fund investors collectively choose fee schedule F (Πt+1, θt, Xt, St) that

maximizes the period-0 value of each of them, V f (W f
0 , S0), subject to the manager’s incentive compati-

bility constraints. Note that V f represents the investor’s value given that the manager never absconds in

the future. So, when maximizing V f , the investors ensure that the manager will not have an incentive to

abscond at all times by considering his incentive compatibility constraint (IC) for each and every t ≥ 0.

That is, the optimal schedule F is the solution to the following problem.

max
F

V f (W f
0 , S0)

sub. to Et
[
V m(Wm

t+1, St+1)
]
≥ Et

[
Ṽ m(W̃m

t+1, St+1)
]

for all t ≥ 0. (F.10)

The manager’s participation constraint, E0

[
V m(Wm

1 , S1)
]
≥ E0

[
Ṽ m(0, S1)

]
, is omitted because it is

implied by IC (F.10). Note that (F.10) is characterized by Et[·] rather than E0[·], despite the fact that

the maximization problem is solved in period 0, because (F.10) is concerning the manager’s incentive to

continue or abscond as of period t.

Conjecture and verify later that ICs for all t ≥ 1 are redundant, that is, the solution to the problem

with IC for only t = 0 satisfies ICs for all t ≥ 1. Moreover, from the fund investor’s Bellman equation

V f (W f
t , St) = max

cft ,Xt

{
uf (cft ) + ρEt

[
V f (W f

t+1, St+1)
]}
, (F.11)

maximizing V f (W f
0 , S0) amounts to maximizing E0

[
V f (W f

1 , S1)
]
. So the original problem reduces to:

max
F

E0

[
V f (W f

1 , S1)
]

sub. to E0

[
V m(Wm

1 , S1)
]
≥ E0

[
Ṽ m(W̃m

1 , S1)
]
. (F.12)

The Lagrangian is

L =

∫ ∫
V f
(

Π1 − F1 + (1 + r)(W f
0 − c

f
0 ), S1

)
g(Π1, S1)dΠ1dS1

− ψ
(

E0

[
Ṽ m(W̃m

1 , S1)
]
−
∫ ∫

V m
(
α

β
F1 + (1 + r)(Wm

0 − cm0 ), S1

)
g(Π1, S1)dΠ1dS1

)
,

where F1 ≡ F (Π1, θ0, X0, S0), g(·, ·) is the probability density function of Π1 and S1, and ψ is the Lagrange

multiplier. Let VA(A,B,C) denote the partial derivative of function V with respect to A. Then the FOC

for F1 is

− V fW
(

Π1 − F1 + (1 + r)(W f
0 − c

f
0 ), S1

)
g(Π1, S1)

+ ψV mW

(
α

β
F1 + (1 + r)(Wm

0 − cm0 ), S1

)
α

β
g(Π1, S1) = 0

⇐⇒
V mW

(
α
βF1 + (1 + r)(Wm

0 − cm0 ), S1

)
V fW

(
Π1 − F1 + (1 + r)(W f

0 − c
f
0 ), S1

) =
β

α

1

ψ
. (F.13)
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Log-differentiating (F.13) with respect to Π1,

V mWW (Wm
1 , S1)

V mW (Wm
1 , S1)

α

β
FΠ(Π1, θ0, X0, S0)−

V fWW (W f
1 , S1)

V fW (W f
1 , S1)

(1− FΠ(Π1, θ0, X0, S0)) = 0

⇐⇒ FΠ(Π1, θ0, X0, S0) =
βγf

αγm + βγf
≡ φ. (F.14)

(F.14) implies that F (Π1, θ0, X0, S0) = φΠ1 +Q(θ0, X0, S0) for some function Q. Thus, for general t ≥ 0

we have

F (Πt+1, θt, Xt, St) = φΠt+1 +Q(θt, Xt, St). (F.15)

Now, let us determine Q. In period 0, the fund investors set Q so that the manager’s IC binds:

E0

[
V m(Wm

1 , S1)
]

= E0

[
Ṽ m(W̃m

1 , S1)
]
. (F.16)

To solve (F.16) for Q, first we need to obtain the explicit expressions of the left-hand side (LHS) and

RHS of (F.16).

First, let us compute the LHS of (F.16). Conjecture (F.6) implies that (we use an identity Rt+1 =

R̂t + (δt+1 − δ̂) + η
rSt −

η
rSt+1 and denote Q0 ≡ Q(θ0, X0, S0))

V m(Wm
1 , S1) = − exp

(
−γmWm

1 −
Am

2
S2

1 −Bm
)

= − exp

(
−γm

(
α

β
(φR1θ0X0 +Q0) + (1 + r)(Wm

0 − cm0 )

)
− Am

2
S2

1 −Bm
)

(F.17)

= − exp

(
−γmα

β

(
φR̂0θ0X0 + φ(δ1 − δ̂)θ0X0 + φ

η

r
S0θ0X0 +Q0

)
− γm(1 + r)(Wm

0 − cm0 )−Bm
)

︸ ︷︷ ︸
(i)

× exp

(
γm

α

β
φ
η

r
θ0X0S1 −

Am

2
S2

1

)
︸ ︷︷ ︸

(ii)

. (F.18)

In (i) of (F.18), the only random variable is δ1, whereas S1 is the only random variable in (ii). Since δ1 and

S1 are independent, the conditional expectation of V m(Wm
1 , S1) is written as a product: E0 [V m(Wm

1 , S1)] =

−E0 [(i)] E0 [(ii)] . First, E0

[
(i)
]

is

E0

[
(i)
]

= exp

(
−γmα

β

(
φR̂0θ0X0 + φ

η

r
S0θ0X0 +Q0 −

γm

2

α

β
φ2θ2

0X
2
0σ

2

)
− γm(1 + r)(Wm

0 − cm0 )−Bm
)
.

(F.19)

Second, E0

[
(ii)
]

is obtained by using the following fact of normal calculus:

Fact 1. If x is normally distributed with mean µ and variance σ2 then

E

[
exp

(
−ax− b

2
x2

)]
= exp

(
−1

2
ln(1 + bσ2)− 1

1 + bσ2

(
aµ− a2

2
σ2 +

b

2
µ2

))
, (F.20)

where a and b are constants.
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Setting x = S1, a = −γmα
βφ

η
r θ0X0, b = Am, µ = S0 and σ2 = σ2

s in Fact 1, we have

E0 [(ii)] = exp

(
−1

2
ln(1 +Amσ2

s)− 1

1 +Amσ2
s

(
− γmα

β
φ
η

r
θ0X0S0 −

γm2

2

α2

β2
φ2 η

2

r2
θ2

0X
2
0σ

2
s +

Am

2
S2

0

))
.

(F.21)

Thus, from (F.19) and (F.21) we have

E0 [V m(Wm
1 , S1)] = −E0 [(i)] E0 [(ii)]

= − exp

 −γmα
βφ
((
R̂0 + η

r q
m
1 S0

)
θ0X0 − γm

2
α
βφq

m
2 θ

2
0X

2
0

)
− γmα

βQ0

+ 1
2 ln(1− qm1 )− 1

2
qm1
σ2
s
S2

0 − γm(1 + r)(Wm
0 − cm0 )−Bm

 , (F.22)

where

qi1 ≡
Aiσ2

s

1 +Aiσ2
s

for i ∈ {f,m, d} (F.23)

and

qi2 ≡ σ2 +
η2σ2

s

r2

1 +Aiσ2
s

= σ2 +
η2σ2

s

r2
− η2σ2

s

r2

Aiσ2
s

1 +Aiσ2
s

= σ2
R −

η2σ2
sq
i
1

r2
for i ∈ {f,m, d}. (F.24)

Next, let us compute the RHS of (F.16), E0

[
Ṽ m(W̃m

1 , S1)
]
. Conjecture (F.7) implies that

Ṽ m(W̃m
1 , S1) = − exp

(
−γmW̃m

1 −
Ad

2
S2

1 −Bd
)

= − exp

(
−γm

(
α

β
ξ (R1θ0X0 + (1 + r)X0) + (1 + r)(Wm

0 − cm0 )

)
− Ad

2
S2

1 −Bd
)
. (F.25)

Following the steps from (F.17) to (F.22) again, we have

E0

[
Ṽ m(W̃m

1 , S1)
]

= − exp

 −γmα
β ξ
((
R̂0 + η

r q
d
1S0

)
θ0X0 − γm

2
α
β ξq

d
2θ

2
0X

2
0

)
− γmα

β ξ(1 + r)X0

+ 1
2 ln(1− qd1)− 1

2
qd1
σ2
s
S2

0 − γm(1 + r)(Wm
0 − cm0 )−Bd

 . (F.26)

Now, plugging (F.22) and (F.26) into (F.16), we have

− γmα
β
φ

((
R̂0 +

η

r
qm1 S0

)
θ0X0 −

γm

2

α

β
φqm2 θ

2
0X

2
0

)
− γmα

β
Q0

+
1

2
ln(1− qm1 )− 1

2

qm1
σ2
s

S2
0 − γm(1 + r)(Wm

0 − cm0 )−Bm

=− γmα
β
ξ

((
R̂0 +

η

r
qd1S0

)
θ0X0 −

γm

2

α

β
ξqd2θ

2
0X

2
0

)
− γmα

β
ξ(1 + r)X0

+
1

2
ln(1− qd1)− 1

2

qd1
σ2
s

S2
0 − γm(1 + r)(Wm

0 − cm0 )−Bd. (F.27)
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Solving (F.27) for Q0 and noting that R̂0 = ηS0 (see (F.9)), we have

Q0 =

(
ξ

(
1 +

qd1
r

)
− φ

(
1 +

qm1
r

))
ηS0θ0X0 −

γm

2

α

β
(ξ2qd2 − φ2qm2 )θ2

0X
2
0

+ ξ(1 + r)X0 +
1

2γm
β

α

((
qd1 − qm1
σ2
s

)
S2

0 + ln

(
1− qm1
1− qd1

)
+ 2(Bd −Bm)

)
. (F.28)

Thus, for general t ≥ 0 we have

Q(θt, Xt, St) =

(
ξ

(
1 +

qd1
r

)
− φ

(
1 +

qm1
r

))
ηStθtXt −

γm

2

α

β
(ξ2qd2 − φ2qm2 )θ2

tX
2
t

+ ξ(1 + r)Xt +
1

2γm
β

α

((
qd1 − qm1
σ2
s

)
S2
t + ln

(
1− qm1
1− qd1

)
+ 2(Bd −Bm)

)
. (F.29)

As shown later, we have Bm = Bd in equilibrium (see (F.60) in Section F.9.1 and (F.67) in Section F.9.3).

Thus, the term 2(Bd −Bm) in (F.29) is zero, and we obtain (6.8) of Proposition 6.1.

Last, we can readily verify our conjecture that the fee schedule (F.15) satisfies ICs for all t ≥ 1 (with

equalities) by plugging (F.15) and (F.29) into those ICs. This is not surprising: since we obtained Q0

from the binding IC for t = 0, if we replace t = 0 with an arbitrary t, Qt should satisfy IC for that period

with equality too.

F.4 Fund manager’s optimization

Each fund manager’s Bellman equation is

V m(Wm
t , St) = max

cmt ,θt

{
um(cmt ) + ρEt

[
V m(Wm

t+1, St+1)
]}
. (F.30)

Plugging (F.15) and (F.29) into the period-t version of (F.22) and rearranging, we have

Et
[
V m(Wm

t+1, St+1)
]

= − exp

 −γmα
β ξ
((
R̂t + η

r q
d
1St

)
θtXt + (1 + r)Xt − γm

2
α
β ξq

d
2θ

2
tX

2
t

)
+ 1

2 ln(1− qd1)− 1
2
qd1
σ2
s
S2
t − γm(1 + r)(Wm

t − cmt )−Bd

 . (F.31)

The FOC for θt is ∂Et
[
V m(Wm

t+1, St+1)
]
/∂θt = 0, which is equivalent to(

R̂t +
η

r
qd1St

)
Xt − γm

α

β
ξqd2θtX

2
t = 0. (F.32)

Therefore, given that there is a mass α/β of fund investors in his fund, each of whom invests Xt > 0

dollars of capital, each manager’s optimal choice of risk exposure given R̂t is

θt(Xt; R̂t) =
R̂t + η

r q
d
1St

γmα
β ξq

d
2Xt

. (F.33)
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F.5 Fund investor’s optimization

Conjecture (F.6) implies that each fund investor’s next-period value function is

V f (W f
t+1, St+1) = − exp

(
−γfW f

t+1 −
Af

2
S2
t+1 −Bf

)
= − exp

(
−γf

(
(1− φ)Rt+1θtXt −Qt + (1 + r)(W f

t − c
f
t )
)
− Af

2
S2
t+1 −Bf

)
. (F.34)

Repeating the steps from (F.17) to (F.22) (for an arbitrary period t rather than period 0), we have

Et
[
V f (W f

t+1, St+1)
]

= − exp

 −γf (1− φ)
((
R̂t + η

r q
f
1St

)
θtXt − γf

2 (1− φ)qf2 θ
2
tX

2
t

)
+ γfQt

+ 1
2 ln(1− qf1 )− 1

2
qf1
σ2
s
S2
t − γf (1 + r)(W f

t − c
f
t )−Bf

 .

(F.35)

Plugging (F.29) into (F.35) and rearranging, we have

Et
[
V f (W f

t+1, St+1)
]

= − exp

(
−γf

(
(1− ξ)R̂tθtXt + η

r q3StθtXt − ξ(1 + r)Xt − 1
2q4θ

2
tX

2
t

)
− 1

2z1S
2
t − z2 − γf (1 + r)(W f

t − c
f
t )

)
, (F.36)

where q3 ≡ (1− φ)qf1 + φqm1 − ξqd1 , (F.37)

q4 ≡ γf (1− φ)
2
qf2 + γm

α

β

(
φ2qm2 − ξ2qd2

)
, (F.38)

z1 ≡
qf1
σ2
s

− γf

γm
β

α

(
qd1 − qm1
σ2
s

)
, and (F.39)

z2 ≡ Bf −
1

2
ln(1− qf1 )− γf

γm
β

α

(
1

2
ln

(
1− qm1
1− qd1

)
+Bd −Bm

)
. (F.40)

Assuming positive solution, the FOC for Xt is ∂Et
[
V f (W f

t+1, St+1)
]
/∂Xt = 0, i.e.,

(1− ξ)R̂tθt +
η

r
q3Stθt − ξ(1 + r)− q4θ

2
tXt = 0. (F.41)

Thus, given θt and R̂t, each fund investor’s optimal capital allocation is

Xt(θt; R̂t) = max

{
(1− ξ)R̂tθt + η

r q3Stθt − ξ(1 + r)

q4θ2
t

, 0

}
. (F.42)

F.6 Direct investor’s optimization

The Bellman equation of each direct investor is

V d(W d
t , St) = max

cdt ,Kt

{
ud(cdt ) + ρEt

[
V d(W d

t+1, St+1)
]}
. (F.43)
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Conjecture (F.6) implies that the next-period value function of each direct investor is

V d(W d
t+1, St+1) = − exp

(
−γdW d

t+1 −
Ad

2
S2
t+1 −Bd

)
= − exp

(
−γd

(
Rt+1Kt + (1 + r)(W d

t − cdt )
)
− Ad

2
S2
t+1 −Bd

)
. (F.44)

Following the steps from (F.17) to (F.22), we have

Et
[
V d(W d

t+1, St+1)
]

= − exp

 −γd
((
R̂t + η

r q
d
1St

)
Kt − γd

2 q
d
2K

2
t

)
+ 1

2 ln(1− qd1)− 1
2
qd1
σ2
s
S2
t − γd(1 + r)(W d

t − cdt )−Bd

 . (F.45)

The FOC for Kt, ∂Et
[
V d(W d

t+1, St+1)
]
/∂Kt = 0, yields her optimal stock purchase:

R̂t +
η

r
qd1St − γdqd2Kt = 0 ⇐⇒ Kt(R̂t) =

R̂t + η
r q
d
1St

γdqd2
. (F.46)

F.7 Fund’s investment profile given R̂t

As in Lemma 4.4, the unique pure-strategy Nash-equilibrium investment profile given R̂t, (θt(R̂t), Xt(R̂t)),

is obtained by solving the two best response functions, (F.33) and (F.42), for θt and Xt:

θt(R̂t) =
(1 + r)ξ2γmα

β q
d
2(

ξ(1− ξ)γmα
β q

d
2 − q4

)
R̂t + η

r

(
γmα

β ξq
d
2q3 − qd1q4

)
St

(F.47)

and

Xt(R̂t) =

(
R̂t + η

r q
d
1St

)((
ξ(1− ξ)γmα

β q
d
2 − q4

)
R̂t + η

r

(
γmα

β ξq
d
2q3 − qd1q4

)
St

)
(1 + r)ξ3γm2 α2

β2 qd2
2

. (F.48)

F.8 Market clearing

Plugging (F.46), (F.47), and (F.48) into the market clearing condition and solving for R̂t, we have

R̂t =

(
qd2

β
γmξ + 1−α

γd

− η

r
qd1

)
St. (F.49)

For (F.9) and (F.49) to be consistent with each other, i.e., for conjecture (F.8) to be correct, we need

η =
qd2

β
γmξ + 1−α

γd

− η

r
qd1 ⇐⇒ η =

qd2(
β
γmξ + 1−α

γd

)(
1 +

qd1
r

) . (F.50)

Plugging R̂t = ηSt into (F.47), (F.48), and (F.46) yields the equilibrium levels of θt, Xt, and Kt:

θt =

 (1 + r)ξ2γmα
β q

d
2(

γmα
β ξq

d
2

(
1− ξ + q3

r

)
−
(

1 +
qd1
r

)
q4

)
η

 1

St
≡ ζθ

1

St
, (F.51)
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Xt =


(

1 +
qd1
r

)(
γmα

β ξq
d
2

(
1− ξ + q3

r

)
−
(

1 +
qd1
r

)
q4

)
η2

(1 + r)ξ3γm2 α2

β2 qd2
2

S2
t ≡ ζX

β

α
S2
t , and (F.52)

Kt =
η

γdqd2

(
1 +

qd1
r

)
St. (F.53)

F.9 Value functions and consumptions

This section verifies value functions (F.6) and (F.7), and determine the agents’ consumption policies.

F.9.1 Fund managers

Plugging (F.51) and (F.52) into (F.31) and rearranging, we have

Et
[
V m(Wm

t+1, St+1)
]

= − exp

 − 1
2

(
η2

qd2

(
1 +

qd1
r

)2

+ 2γmξ(1 + r)ζX +
qd1
σ2
s

)
S2
t

+ 1
2 ln(1− qd1)− γm(1 + r)(Wm

t − cmt )−Bd

 . (F.54)

For notational convenience, define

ϕmt ≡ − ln ρ+
1

2

(
η2

qd2

(
1 +

qd1
r

)2

+ 2γmξ(1 + r)ζX +
qd1
σ2
s

)
S2
t −

1

2
ln(1− qd1) +Bd. (F.55)

Then, recalling that γm ≡ r
1+r γ̃

m, the Bellman equation is

V m(Wm
t , St) = max

cmt

{
− exp

(
−
(

1 + r

r

)
γmcmt

)
− exp (−ϕmt − γm(1 + r)(Wm

t − cmt ))

}
. (F.56)

The FOC for cmt is(
1 + r

r

)
γm exp

(
−
(

1 + r

r

)
γmcmt

)
− exp(−ϕmt )γm(1 + r) exp (−γm(1 + r)(Wm

t − cmt )) = 0,

which implies that his optimal consumption is an affine function of wealth Wm
t :

cmt =

(
r

1 + r

)
Wm
t +

r

γm(1 + r)2
(ϕmt − ln r). (F.57)

Plugging (F.57) into (F.56) yields

− exp

(
−γmWm

t −
Am

2
S2
t −Bm

)
= − exp

(
−γmWm

t −
ϕmt

1 + r

)
r−

r
1+r (1 + r)

⇐⇒ 1

2
(1 + r)AmS2

t + (1 + r)Bm

=
1

2

(
η2

qd2

(
1 +

qd1
r

)2

+ 2γmξ(1 + r)ζX +
qd1
σ2
s

)
S2
t − ln

ρ(1 + r)1+r

rr
− ln(1− qd1)

2
+Bd. (F.58)
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Comparing the coefficients of S2
t and the constant terms in (F.58), we have

Am =
1

1 + r

(
η2

qd2

(
1 +

qd1
r

)2

+ 2γmξ(1 + r)ζX +
qd1
σ2
s

)
and (F.59)

Bm =
1

1 + r

(
Bd − ln

ρ(1 + r)1+r

rr
− ln(1− qd1)

2

)
. (F.60)

Once we obtain Ad ((F.66) in Section F.9.3), we see that (F.59) is (6.7) in the main text. Also, once we

get Bd ((F.67) in Section F.9.3), we see from (F.60) that Bm = Bd.

F.9.2 Fund investors

Plugging (F.51) and (F.52) into (F.36) and rearranging, we have

Et
[
V f (W f

t+1, St+1)
]

= − exp

(
−1

2

(
γfβ2q4η

2

γm2α2ξ2qd2
2

(
1 +

qd1
r

)2

+ z1

)
S2
t − z2 − γf (1 + r)(W f

t − c
f
t )

)
.

(F.61)

Following the steps from (F.54) to (F.60), we obtain the fund investor’s optimal consumption policy as

(F.57) with m replaced with f , and the equations for Af and Bf as

Af =
1

1 + r

(
γfβ2q4η

2

γm2α2ξ2qd2
2

(
1 +

qd1
r

)2

+ z1

)
and (F.62)

Bf =
1

1 + r

(
z2 − ln

ρ(1 + r)1+r

rr

)
. (F.63)

Plugging (F.39) into (F.62) yields (6.6). Plugging (F.40) with Bd = Bm into (F.63), we have

Bf =
1

r

(
− ln

ρ(1 + r)1+r

rr
− 1

2
ln(1− qf1 )− 1

2

γf

γm
β

α
ln

(
1− qm1
1− qd1

))
. (F.64)

F.9.3 Direct investors

Plugging (F.53) into (F.45) and rearranging, we have

Et
[
V d(W d

t+1, St+1)
]

= − exp

 − 1
2

(
η2

qd2

(
1 +

qd1
r

)2

+
qd1
σ2
s

)
S2
t

+ 1
2 ln(1− qd1)− γd(1 + r)(W d

t − cdt )−Bd

 . (F.65)

Following the steps from (F.54) to (F.60), we obtain the direct investor’s optimal consumption policy as

(F.57) with m replaced with d, and the equations for Ad and Bd as

Ad =
1

1 + r

(
η2

qd2

(
1 +

qd1
r

)2

+
qd1
σ2
s

)
and (F.66)

Bd =
1

r

(
− ln

ρ(1 + r)1+r

rr
−

ln
(
1− qd1

)
2

)
. (F.67)
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F.9.4 Fund managers who have absconded

The manager who has absconded acts as a direct investor. So his optimization problem is identical to

that of Section F.6 except that the risk-aversion coefficient is γm rather than γd. Likewise, his value

function (F.7) is verified as in Section F.9.3, replacing γd with γm.

F.10 Solving the system of equations

We can obtain closed-form solutions for (η, qd1 , q
d
2 , A

d) by solving the system of (F.50), (F.23) for i = d,

(F.24) for i = d, and (F.66). Plugging η = σ2/π into (F.52), (F.51), and (F.62) yields (6.1), (6.9), and

(6.6), respectively.

G Robustness

G.1 Endogenous riskless rate

The model of Section 2 assumes an exogenous, constant riskless rate r. Although such an assumption is

standard in the literature, it is worth investigating what happens to our result if r is endogeneized.

Let us modify the model of Section 2 as follows. Each period, a one-period riskless bond is traded

in the market. The bond is in zero net supply, and each unit of the bond delivers one dollar in the next

period. Let qt denote the (endogenous) period-t bond price, and define the riskless rate by rt ≡ 1/qt− 1.

We focus on the case of nonstochastic supply: St = S > 0 for all t. We have not been able to solve the

case with stochastic supply (we will discuss the challenge later).

The model is solved in a similar fashion as Section 4. Conjecture and later verify that rt (and thus

qt) is constant over time in equilibrium, and that the equilibrium stock price is constant,

Pt = P ≡ δ̂ − ηS
r

, (G.1)

for all t, where η is a constant that is determined later. These conjectures imply that the stock’s excess

return Rt+1 ≡ δt+1 + Pt+1 − (1 + r)Pt is, conditional on t, normally distributed with mean

R̂ = ηS (G.2)

and variance σ2. Taking R̂ and r as given, all the arguments in Sections 4.1–4.4 go through. The stock’s

market clearing yields, as in (4.8),

R̂ =
σ2

β
ξγm + 1−α

γd

S. (G.3)

For our conjectures to be correct, we need (G.2) and (G.3) to be consistent with each other, i.e.,

η =
σ2

β
ξγm + 1−α

γd

. (G.4)
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The bond’s market clearing condition is

α

(
W −Xt

q

)
︸ ︷︷ ︸

fund investors’ demand

+α

(
Xt − PtθtXt

q

)
︸ ︷︷ ︸

funds’ demand

+ (1− α)

(
W − PtKt

q

)
︸ ︷︷ ︸

direct investors’ demand

= 0 (G.5)

⇐⇒ W − Pt (αθtXt + (1− α)Kt) = 0. (G.6)

Plugging αθtXt + (1− α)Kt = S, (G.1), and (G.4) into (G.6) yields the equilibrium riskless rate:

r =

(
δ̂ − σ2S

β
ξγm + 1−α

γd

)
S

W
. (G.7)

We can choose δ̂ large enough to ensure that r > 0.

Do the results presented in Section 5 carry through under endogenous riskless rate? Since dR̂/dα > 0

and dR̂/dβ < 0, Result 1 still holds in this model. However, since we have not been able to solve the case

with endogenous riskless rate and stochastic stock supply St, we are unable to check the robustness of

the other results that rely on the assumption that St is stochastic. The challenge is the following. If St is

stochastic, the one-period riskless rate rt would also be stochastic, reflecting the agents’ asset demands

that depend on St. This means that the price conjecture of the form (G.1) would not work out. Intuitively,

it would be sensible to conjecture that the equilibrium price is of the form Pt = Et

[∑∞
ν=t

∏ν
τ=t

(
δν+1

1+rτ

)]
−

Z, where the first term is the expected discounted future payoffs and Z is the risk premium. However, the

whole analysis is very complicated with such a price function. We leave this problem for future research.

How does the extent of portfolio delegation as measured by (α, β) affect r? From (G.7), we have

dr/dα < 0 and dr/dβ > 0. The intuition is as follows. Given r, an increase in α and/or a decrease in β

increase R̂ (see Result 1 for the intuition), lowering the stock price P = (δ̂ − R̂)/r. This decreases the

stock market capitalization, PS, and therefore more investor capital flows into the bond market, that

is, (W − PS) increases. Thus, to clear the bond market, that is, to make the market less attractive for

investors, r decreases.

G.2 Stock supply process

In Section 2, we model the stock supply process as a random walk. While this specification simplifies

the analysis, it is more restrictive than needed. All of our results go through qualitatively under more

general AR(1) process

St = a0 + a1St−1 + εt, (G.8)

where a0 ≥ 0 and a1 ∈ [0, 1] are constants and εt is normal with mean 0 and variance σ2
s > 0. Note that

(G.8) nests not only the one of Section 2 (a0 = 0 and a1 = 1) but also, for example, an i.i.d. process

(a0 > 0 and a1 = 0) and a mean-reverting process (a0 = ψS̄ and a1 = 1 − ψ where S̄ = E[St] and

ψ ∈ (0, 1)).

The equilibrium under (G.8) is determined as follows. Conjecture and later verify that the equilibrium

stock price is of the form

Pt =
δ̂ − η(St + a0

r )

r
, (G.9)
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where η is a constant that is determined later. This conjecture implies that the stock’s excess return

Rt+1 is, conditional on t, normally distributed with mean

R̂t =

(
1 +

1− a1

r

)
ηSt (G.10)

and variance σ2
R ≡ σ2 +η2σ2

s/r
2. Taking R̂t as given, all the argument in Sections 4.1–4.4 carries through.

Market clearing yields, as in (4.8),

R̂t =
σ2
R

β
ξγm + 1−α

γd

St. (G.11)

For (G.10) and (G.11) to be consistent with each other, we need(
1 +

1− a1

r

)
η =

σ2
R

β
ξγm + 1−α

γd

. (G.12)

Solving (G.12) for η, in the stable equilibrium we have

η =
r2

2σ2
s

(1 +
1− a1

r

)(
β

ξγm
+

1− α
γd

)
−

√(
1 +

1− a1

r

)2(
β

ξγm
+

1− α
γd

)2

− 4σ2σ2
s

r2

 . (G.13)

Since R̂t is proportional to St and the proportionality constant
(
1 + 1−a1

r

)
η is increasing in α and

decreasing in β, all the results presented in Sections 4 and 5 go through qualitatively. In the main text,

we focus on the random walk case because it keeps the analysis very simple, and assuming a0 > 0 and

a1 6= 1 does not yield much additional economic insights.

G.3 Fund investors’ choices of funds and funds’ competition

This section shows that each fund has a mass α/β of fund investors in equilibrium if each investor can

choose a fund to which to allocate capital. This result is not obvious because, a priori, we cannot exclude

the possibility of strategic complementarity, that is, each fund investor’s expected utility may increase

with the mass of investors in the fund. If that is the case, the equilibrium outcome would be that all fund

investors allocate capital to a single fund. In the following, we show that it is not the case: each fund

investor’s expected utility decreases with the mass of fund investors in that fund, and thus the investors

will optimally flow in and out of funds until every fund accommodates the same mass of investors. We

also show that fund managers are “perfectly competitive” in attracting investors, in the sense that each

manager takes the mass of fund investors choosing his fund as given, as he cannot strategically influence

the investors’ fund choices through his actions.

Suppose that each fund investor chooses a fund at the beginning of each period. Once all investors

have chosen funds, each fund determines the fee schedule Ft(·) and investment profile (θt, Xt), as in the

model of Section 2. Let N be the mass of fund investors who choose an arbitrary fund. In this fund,

each investor’s next-period wealth is given by (2.5), while that of the manager is Wm
t = NFt(Πt+1) if he

continues the fund and W̃m
t = ξNYt+1 if he absconds. The optimal fee schedule is obtained by replacing
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α/β with N in Lemma 4.1:

Ft(Πt+1) = φNΠt+1 +QN,t, (G.14)

where φN ≡ γf/(Nγm + γf ) and

QN,t = (ξ − φN )Et[Πt+1] + ξ(1 + r)Xt −
γm

2
N(ξ2 − φ2

N )Vart[Πt+1]. (G.15)

This fund’s investment profile given R̂t is the one in Lemma 4.4 with φ and α/β replaced by φN and N ,

respectively:

θ(R̂t) =

(
(1 + r)ξ2

ξ − φN

)
1

R̂t
and X(R̂t) =

(
ξ − φN

(1 + r)γmNξ3σ2
R

)
R̂2
t . (G.16)

Using (G.16), the certainty equivalent of each fund investor’s next-period wealth (given R̂t) is

Uft = Et
[
W f
t+1

]
− γf

2
Vart

[
W f
t+1

]
= (1− ξ)R̂tθtXt − ξ(1 + r)Xt + (1 + r)W − γm

2
N(φ− ξ2)θ2

tX
2
t σ

2
R

=
(φN − ξ2)R̂2

t

2Nγmξ2σ2
R

+ (1 + r)W. (G.17)

Since dUft /dN < 0, the investors are worse off as the mass of investors in the fund increases. So, in

equilibrium, N must adjust so that Uft is equalized across all fund investors, i.e., N = α/β for all funds.

The intuition is the standard arbitrage argument: if there is a mass Ni of investors in fund i who achieve

higher Uft than those in fund j with mass Nj > Ni, then investors flee fund j (i.e., Nj decreases) and

flock to fund i (i.e., Ni increases) until Ni and Nj are equalized.

Likewise, using (G.16), the certainty equivalent of the manager’s next-period wealth (given R̂t) is

Umt = Et
[
Wm
t+1

]
− γm

2
Vart

[
Wm
t+1

]
= NξR̂tθtXt +Nξ(1 + r)Xt −

γm

2
N2ξ2θ2

tX
2
t σ

2
R

=

(
1

2
+
ξ − φN
ξ2

)
R̂2
t

γmσ2
R

. (G.18)

Since dUmt /dN > 0, the manager is better off as more investors choose his fund. However, in our setting,

he is unable to attract investors by strategically influencing their fund choices. The reasons are twofold.

First, he cannot increase N by offering a fee schedule Ft(·), as the investors will set Ft(·) that is best

for them anyway. Second, at the time the investors choose funds, each manager cannot credibly commit

to choose θt in the interest of the investors: once the investors have been allocated to funds, it will be

optimal for the manager to renege on the promise he made and strategically choose θt as in Section 4.

G.4 Active funds and passive funds

In the model of Section 2, each manager chooses θt strategically to maximize his own expected utility.

Consequently, the fund invests in the riskless asset despite the fact that the investors can buy it on their

own. In reality, however, there are a number of passively managed funds, such as index funds, in which

the managers do not have discretion over portfolio choice: the investors effectively specify the number of

shares of the risky asset to hold, and typically do not allow the managers to buy the riskless asset.
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This section shows that our model can accommodate such funds too. We extend the model of Section

2 to have both “active funds,” in which the managers choose θt strategically as in Section 2, and “passive

funds,” in which each investor specifies the number of shares of (only) the stock to buy and the manager

passively fulfills it. In both types of funds, the managers can abscond as in Section 2. Each fund investor

can choose a fund to which to allocate capital.

In equilibrium, both types of funds coexist in the sense that they all attract positive mass of investors.

This result may sound counterintuitive, as it looks like the passive funds dominate the active ones from

the investors’ perspective. However, in our setting, the passive funds do not necessarily dominate the

active ones for the following two reasons. First, even the passive funds are subject to the same agency

problem that the managers can abscond. So, just like in the active funds, the passive funds’ investors also

incur agency costs by offering fee contracts to the managers to prevent them from absconding. Second,

although the investors in the passive funds are better off than those in the active ones when these funds

accommodate the same mass of investors, the investors’ expected utilities change as the allocation of

investors across funds change. Specifically, as shown below, as the mass of investors in a fund increases,

the investors in that fund are worse off. So, in equilibrium, the investors flow in and out of funds until

they become indifferent between any funds.

G.4.1 Setup

Section 2’s model is modified as follows. A mass ωβ of fund managers run active funds, and a mass

(1− ω)β of them run passive funds, where ω ∈ [0, 1] is an exogenous parameter. The letters a and p are

used to represent active funds and passive funds, respectively. Each active fund’s manager can choose θt

strategically as in Section 2. Each passive fund’s manager buys X/Pt shares of the stock given X dollars

of investor capital and does not buy the riskless asset. That is, from an investor’s perspective, allocating

X dollars of capital to a passive fund is equivalent to asking the manager to buy X/Pt shares of the stock

on her behalf. Each fund investor can choose a fund to which to allocate capital. In equilibrium, a mass

λα of fund investors invest in the active funds and a mass (1− λ)α of them invest in the passive funds,

where λ ∈ [0, 1] is endogenously determined. In both types of funds, the investors offer fee contracts that

depend on the fund profits to the managers who can abscond with a fraction ξ of the fund assets. It is

not important that both types of funds share the same ξ. The result would be very similar if we assume

different ξ for each type.

G.4.2 Price conjecture

We conjecture and later verify that the equilibrium stock price is of the form

Pt = `δ̂ − η

r
St, (G.19)

where ` and η are constants that are determined later. Given this conjecture, we have

R̂t ≡ Et[Rt+1] = (1− r`)δ̂ + ηSt (G.20)

and Vart[Rt+1] = σ2
R ≡ σ2 + η2σ2

s/r
2.
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G.4.3 Fee contracts

There is a mass λα
ωβ of fund investors in each active fund, and (1−λ)α

(1−ω)β in each passive fund. Thus, following

the same argument of Lemma 4.1, the fee schedule for each active fund is

F at (Πa
t+1) = φaΠa

t+1 +Qat , where φa ≡ ωβγf

λαγm + ωβγf
, Πa

t+1 ≡ Rt+1θtX
a
t , and

Qat = (ξ − φa)Et[Π
a
t+1] + ξ(1 + r)Xa

t −
γm

2

λα

ωβ
(ξ2 − φa2)Var[Πa

t+1], (G.21)

and the one for each passive fund is

F pt (Πp
t+1) = φpΠp

t+1 +Qpt , where φp ≡ (1− ω)βγf

(1− λ)αγm + (1− ω)βγf
, Πp

t+1 ≡ Rt+1
Xp
t

Pt
, and

Qpt = (ξ − φp)Et[Πp
t+1] + ξ(1 + r)Xp

t −
γm

2

(1− λ)α

(1− ω)β
(ξ2 − φp2)Var[Πp

t+1]. (G.22)

G.4.4 Optimization problems

Before choosing Xt, each fund investor chooses a fund. For now, let us take this choice of fund as given,

and determine the optimal Xt. We consider her choice of fund later (in Section G.4.6), after characterizing

her expected utilities. Following Lemma 4.2, each active-fund investor’s optimal capital allocation is

Xa(θt; R̂t) = max

{
(1− ξ)R̂tθt − ξ(1 + r)

γm λα
ωβ (φa − ξ2)σ2

Rθ
2
t

, 0

}
. (G.23)

Noting that θt = 1/Pt ∀t in passive funds, each passive-fund investor’s optimal capital allocation is

Xp(Pt; R̂t) = max

 (1− ξ) R̂tPt − ξ(1 + r)

γm (1−λ)α
(1−ω)β (φp − ξ2)σ2

R
1
P 2
t

, 0

 . (G.24)

As in Lemma 4.3, given Xa
t > 0, each active-fund manager chooses

θ(Xa
t ; R̂t) =

ωβR̂t
γmλαξσ2

RX
a
t

. (G.25)

From (G.23) and (G.25), each active fund’s Nash-equilibrium investment profile given R̂t is given by

θ(R̂t) =

(
(1 + r)ξ2

ξ − φa

)
1

R̂t
and Xa(R̂t) =

(
ωβ(ξ − φa)

(1 + r)γmλαξ3σ2
R

)
R̂2
t . (G.26)

Each direct investor’s optimal policy is the same as (3.3).
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G.4.5 Market clearing and belief consistency

The market clearing condition for the stock is

λαθ(R̂t)X
a(R̂t)︸ ︷︷ ︸

active funds’ demand

+ (1− λ)α
Xp(R̂t)

Pt︸ ︷︷ ︸
passive funds’ demand

+ (1− α)K(R̂t)︸ ︷︷ ︸
direct investors’ demand

= St (G.27)

⇐⇒ R̂t =
k2

k1
`δ̂ +

1

k1

(
σ2
R − k2

η

r

)
St, (G.28)

where

k1 ≡
ωβ

γmξ
+

(1− ω)β(1− ξ)
γm(φp − ξ2)

+
1− α
γd

and k2 ≡
(1− ω)βξ(1 + r)

γm(φp − ξ2)
. (G.29)

For (G.20) and (G.28) to be consistent with each other, we need

1− r` =
k2

k1
` ⇐⇒ ` =

1

r + k2
k1

(G.30)

and

η =
1

k1

(
σ2
R − k2

η

r

)
⇐⇒ η =

r2

2σ2
s

(k1 +
k2

r

)
±

√(
k1 +

k2

r

)2

− 4σ2σ2
s

r2

 . (G.31)

As discussed in Section 3.3, only the smaller root of (G.31) is relevant in the stable equilibrium. Since R̂t

and Pt are affine functions of ηSt, the stock price dynamics are similar to those of the model of Section

2 with the value of η being replaced by (G.31).

G.4.6 Fund investor’s choice of fund

If a fund investor chooses an active fund, the certainty equivalent of her terminal wealth would be

Uaft ≡ Et[W
af
t+1]− γf

2
Vart[W

af
t+1] =

(
ωβγf

λαγm+ωβγf
− ξ2

)
ωβ

2γmλαξ2σ2
R

R̂2
t + (1 + r)W. (G.32)

Here, we take R̂t and Pt as given because each investor takes them as given when choosing a fund. If she

chooses a passive fund, the certainty equivalent would be

Upft ≡ Et[W
pf
t+1]− γf

2
Vart[W

pf
t+1]

=
(1− ω)β

2γm(1− λ)α
(

(1−ω)βγf

(1−λ)αγm+(1−ω)βγf
− ξ2

)
σ2
R

(
(1− ξ)R̂t − ξ(1 + r)Pt

)2

+ (1 + r)W. (G.33)

As long as Uaft > (<)Upft , investors flock to active (passive) funds and λ increases (decreases). The

adjustment of λ continues until every investor is indifferent between all funds, i.e., until Uaft = Upft holds.

Such a critical level of λ exists in the interval (0, 1) because limλ→0 U
af
t =∞ and limλ→1 U

af <∞ while

limλ→0 U
pf
t <∞ and limλ→1 U

pf =∞.

The intuition for this result is the following. If λ→ 0, each active fund’s manager takes capital from
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investors of measure 0. From this manager’s perspective, the investment risk is so small that he is willing

to bear all of it, that is, φa → 1 as λ → 0. If φa → 1, we have Qat < 0 (i.e., the investor receives Qat
from the manager); thus, the fund is risk-free from the investor’s perspective. So she chooses Xa

t → ∞,

leading to Uaft → ∞. This induces the investors to choose active funds, so λ increases. This decreases

φa, increasing each investor’s risk bearing and decreasing Uaft . Likewise, if λ→ 1, the passive funds are

risk-free for investors so Upft → ∞; but Upft decreases as λ decreases. At a critical level of λ ∈ (0, 1),

Uaft = Upft holds and the investors are indifferent between any funds.

G.5 Allowing fund managers to invest capital

This section shows that fund managers would not invest their own capital in their funds even if they were

allowed to do so.

Suppose that each generation-t manager is born with an endowment of W ≥ 0 dollars, and chooses to

invest Zt ≥ 0 dollars (per investor) in his fund. That is, given Xt, he chooses θt ∈ (−∞,∞) and Zt ≥ 0 to

buy θt(Xt+Zt) shares of the stock per investor. The fund’s profit per investor is Πt+1 ≡ Yt+1−(1+r)Xt.

Recalling that there is a mass α/β of investors in his fund, the manager’s terminal wealth is

Wm
t+1 =

α

β
Ft(Πt+1) + (1 + r)

(
W − α

β
Zt

)
, (G.34)

where the first term on the RHS is the total fees, and the second term is the proceeds from the riskless

asset. His terminal wealth if he absconds would be

W̃m
t+1 =

α

β
ξYt+1. (G.35)

The fund investor’s and the direct investor’s budget constrains are the same as those of Section 2. The

optimal fee contract is still obtained in the form of Lemma 4.1.

Now, let us consider a manager’s problem. Under fee schedule Ft(·) of Lemma 4.1, his terminal

wealth (G.34) is rewritten as

Wm
t+1 =

α

β

(
φΠt+1 + (ξ − φ)Et[Πt+1] + ξ(1 + r)Xt −

γm

2

α

β
(ξ2 − φ2)Vart[Πt+1]− (1 + r)Zt

)
+ (1 + r)W,

which implies that the mean and variance of Wm
t+1 are

Et
[
Wm
t+1

]
=
α

β

(
ξEt[Πt+1] + ξ(1 + r)Xt −

γm

2

α

β
(ξ2 − φ2)Vart[Πt+1]− (1 + r)Zt

)
+ (1 + r)W (G.36)

and

Vart
[
Wm
t+1

]
=
α2

β2
φ2Vart [Πt+1] . (G.37)

Since the manager has exponential utility, (G.36) and (G.37) imply that his maximization problem is

max
θt,Zt

Et
[
um(Wm

t+1)
]
⇐⇒ max

θt,Zt
Et
[
Wm
t+1

]
− γm

2
Vart

[
Wm
t+1

]
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⇐⇒ max
θt,Zt

ξR̂tθt(Xt + Zt)− (1 + r)(1− ξ)Zt + ξ(1 + r)Xt −
γm

2

α

β
ξ2θ2

t (Xt + Zt)
2σ2
R.

The FOC for θt is

R̂t − γm
α

β
ξθt(Xt + Zt)σ

2
R = 0, (G.38)

and the one for Zt is

ξR̂tθt − (1 + r)(1− ξ)− γmα
β
ξ2θ2

t (Xt + Zt)σ
2
R ≤ 0, with equality iff Zt > 0. (G.39)

(G.38) and (G.39) imply that the LHS of (G.39) is −(1 + r)(1− ξ), which is negative. So we have Zt = 0.

That is, the manager would not invest his own capital in his fund even if he was allowed to do so.

The result holds because a manager can control the fund’s stock holding, θt(Xt + Zt), by choosing

two variables: θt and Zt. While choosing Zt > 0 entails an opportunity cost (i.e., he could invest it in

the riskless asset and earn 1 + r), choosing θt > 0 is costless. Thus, it is optimal for him to set Zt = 0

and use only θt to control the stock holding.

G.6 Fee contract space

In the model of Section 2, we assume that the fee Ft depends only on the fund profit, Πt+1. This

assumption is stronger than necessary: all the results (including the fee schedule) would be identical to

those of Section 4 even if we allow for a larger contract space that includes not only Πt+1 but also the

stock return Rt+1 and the fund portfolio’s total proceeds Yt+1.

To see this, let us allow the fee to depend on Rt+1, Πt+1, and Yt+1, and solve for the optimal fee

contract. The maximization problem is the same as the one presented in Appendix A. Since Rt+1 is the

only random variable in Rt+1, Πt+1, and Yt+1, the Lagrangian is (we omit time scripts)

L =

∫
uf (Π− F (R,Π, Y ) + (1 + r)W )h(R)dR− ψ

(
E
[
um(W̃m)

]
−
∫
um
(
α

β
F (R,Π, Y )

)
h(R)dR

)
,

where h(·) is the probability density function (conditional on t) of Rt+1, and ψ is the Lagrange multiplier.

The FOC for Ft(Rt+1,Πt+1, Yt+1) is

um′
(
α
βF (R,Π, Y )

)
uf ′ (Π− F (R,Π, Y ) + (1 + r)W )

=
β

α

1

ψ
. (G.40)

Log-differentiating (G.40) with respect to Rt+1, Πt+1, and Yt+1, we have

−γmα
β

(FR + FΠθX + FY θX) + γf (θX − FR − FΠθX − FY θX) = 0, (G.41)

−γmα
β

(FΠ + FY ) + γf (1− FΠ − FY ) = 0, (G.42)

and

−γmα
β
FY + γf (1− FY ) = 0, (G.43)

respectively, where Fj is the partial derivative of F (R,Π, Y ) with respect to j ∈ {R,Π, Y }. From (G.41),
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(G.42), and (G.43), we have FR = 0, FΠ = 0, and FY = φ, which imply that the optimal fee schedule is

Ft(Rt+1,Πt+1, Yt+1) = φYt+1 +QYt (G.44)

for some QYt that is known as of period t. The value of QYt satisfies the manager’s incentive compatibility

constraint (2.7) with equality:

Et
[
um(Wm

t+1)
]

= Et

[
um(W̃m

t+1)
]

⇐⇒ Et
[
Wm
t+1

]
− γm

2
Vart

[
Wm
t+1

]
= Et

[
W̃m
t+1

]
− γm

2
Vart

[
W̃m
t+1

]
⇐⇒ α

β

(
φEt [Yt+1] +QYt

)
− γm

2

α2

β2
φ2Vart [Yt+1] =

α

β
ξEt [Yt+1]− γm

2

α2

β2
ξ2Vart [Yt+1]

⇐⇒ QYt = (ξ − φ)Et [Yt+1]− γm

2

α

β
(ξ2 − φ2)Vart [Yt+1] , (G.45)

which is different from Qt obtained in (4.2). However, plugging (G.45) into (G.44), we end up with the

same fee schedule as Lemma 4.1:

Ft(Rt+1,Πt+1, Yt+1)

= φYt+1 +

(
(ξ − φ)Et [Yt+1]− γm

2

α

β
(ξ2 − φ2)Vart [Yt+1]

)
= φ (Πt+1 + (1 + r)Xt) +

(
(ξ − φ)Et [Πt+1 + (1 + r)Xt]−

γm

2

α

β
(ξ2 − φ2)Vart [Πt+1]

)
= φΠt+1 +

(
(ξ − φ)Et [Πt+1] + ξ(1 + r)Xt −

γm

2

α

β
(ξ2 − φ2)Vart [Πt+1]

)
= φΠt+1 +Qt. (G.46)

Following similar steps, it is easy to show that the fee contracts depending on any one or two of

(Rt+1,Πt+1, Yt+1) would also result in (G.46). For example, if we allow Ft to depend on only Rt+1,

then the optimal proportional fee rate would be φθtXt and the fixed fee is Qt, so we have Ft(Rt+1) =

(φθtXt)Rt+1 +Qt = φΠt+1 +Qt, which is identical to (G.46).

G.7 Allowing managers to modify θt when absconding

In the model of Section 6, an implicit assumption is that each manager who absconds in period t is not

allowed to change the risk exposure of that period, θt. This section shows that the results would not

change even if we allow him to modify θt when absconding.

Let us assume that each manager can abscond with a fraction ξ of the fund portfolio and can change

that portfolio’s risk exposure from θt to θt + ∆t, where ∆t ∈ (−∞,∞) is his choice variable. That is, the

next-period wealth of an absconding manager, i.e., the counterpart of (F.3), is

W̃m
t+1 = Rt+1(θt + ∆t)

α

β
ξXt + (1 + r)

α

β
ξXt + (1 + r)(Wm

t − cmt ). (G.47)
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Then, following the steps of Appendix F, we have

Et
[
V m(Wm

t+1, St+1)
]

= Et

[
Ṽ m(W̃m

t+1, St+1)
]

= − exp

 −γmα
β ξ
((
R̂t + η

r q
d
1St

)
(θt + ∆t)Xt − γm

2
α
β ξq

d
2(θt + ∆t)

2X2
t

)
−γmα

β ξ(1 + r)Xt + 1
2 ln(1− qd1)− 1

2
qd1
σ2
s
S2
t − γm(1 + r)(Wm

t − cmt )−Bd

 . (G.48)

On the one hand, the manager chooses θt to maximize Et
[
V m(Wm

t+1, St+1)
]
, which is (G.48). On the

other hand, if he absconds, he chooses ∆t to maximize Et

[
Ṽ m(W̃m

t+1, St+1)
]
, which is also (G.48) due to

the binding IC. But since θt and ∆t appear in (G.48) only in the form of their sum, θt+∆t, the FOCs for

θt and ∆t are the same. Thus, the optimal level of the sum θt + ∆t is determined but its composition is

indeterminate. So ∆t = 0, which we assume in Section 6, is an equilibrium outcome, though not a unique

one. It is easy to show that if the manager incurs a (very small) adjustment cost for choosing ∆t > 0,

the unique outcome would be that he chooses ∆t = 0 and the same θt as in Section 6. The economic

intuition is the following. Since the IC is binding, each manager chooses θt as if he is maximizing the

outside option that he would obtain if absconding. Thus, he has no reason to change such a θt when he

actually absconds.
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