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Abstract: Introduction: Lesion load (LL), deep gray matter (DGM) and normal-appearing white
matter (NAWM) susceptibility and morphometry may help in monitoring brain changes in mul-
tiple sclerosis (MS) patients. We aimed at evaluating the feasibility of a fully automated segmen-
tation and the potential interrelation between these biomarkers and clinical disability. Methods:
Sixty-six patients with brain MRIs and clinical evaluations (Expanded Disability Status Scale [EDSS])
were retrospectively included. Automated prototypes were used for the segmentation and mor-
phometry of brain regions (MorphoBox) and MS lesions (LeManPV). Susceptibility maps were
estimated using standard post-processing (RESHARP and TVSB). Spearman’s rho was computed
to evaluate the interrelation between biomarkers and EDSS. Results: We found (i) anticorrelations
between the LL and right thalamus susceptibility (rho = —0.46, p < 0.001) and between the LL and
NAWM susceptibility (rho = [-0.68 to —0.25], p < 0.05); (ii) an anticorrelation between LL and DGM
(tho =[—-0.71 to —0.36], p < 0.04) and WM morphometry (rho = [—0.64 to —0.28], p < 0.01); and (iii) a
positive correlation between EDSS and LL (rho = [0.28 to 0.5], p < 0.03) and anticorrelation between
EDSS and NAWM susceptibility (tho = [—-0.29 to —0.38], p < 0.014). Conclusions: Fully automated
brain morphometry and susceptibility monitoring is feasible in MS patients. The lesion load, thalamus
and NAWM susceptibility values and trophicity are interrelated and correlate with disability.

Keywords: multiple sclerosis; quantitative susceptibility mapping; morphometry; atrophy; clinical
disability; EDSS

1. Introduction

Multiple sclerosis (MS) is a chronic demyelinating disease that affects both the gray
and white matter of the brain. While MRI is a valuable tool to diagnose and monitor
MS, conventional MRI techniques fail to correlate accurately the lesion load with clinical
disability, possibly in part due to disease activity beyond MR-visible lesions [1]. Novel
MRI techniques are therefore needed to better characterize the total MS burden in the brain
and to improve treatment monitoring. Quantitative susceptibility mapping (QSM) is an
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emerging technique that can potentially facilitate the characterization of inflammation and
demyelination in the brain of MS patients [2,3]. In MS, myelin and iron content changes are
thought to be the main factors responsible for susceptibility changes inside and outside the
visible lesions [4,5]. Thus, QSM is increasingly used for the characterization of iron load
in the deep gray matter (DGM), as well as in lesions and normal-appearing white matter
(NAWM) [6,7]. Among others, changes in DGM susceptibility can be observed in cases of
clinically isolated syndrome (CIS) [8]. Magnetic susceptibility in specific brain regions and
lesions might hence be a potential biomarker to monitor disease progression. However,
the interrelation between susceptibility in the brain and the disease state is still not widely
investigated. Previous studies have shown higher susceptibility for basal ganglia (probably
due to demyelination) and lower susceptibility for thalamus and NAWM (probably due to
iron loss) with disease progression [7,9,10]. Moreover, thalamic damage seems to be related
to NAWM damage [11]. However, because of technical differences, studies are not fully
comparable and conclusive.

Moreover, there is increasing evidence that brain atrophy might be a stronger biomarker
than lesion load for predicting progressing disability. DGM atrophy, specifically of the
thalamus, seems to have the strongest association with MS clinical burden [12-16]. For
instance, it has been shown that atrophy is present in CIS patients at presentation, par-
ticularly in the thalamus, and other DGM structures [17]. Also, based on tractography
analysis, it seems that white matter lesions are likely causing upstream and downstream
degeneration and a subsequent reduction in thalamic volume in patients with MS [16,18].

Analyzing lesion load, atrophy, susceptibility and clinical disability simultaneously is
important because of their potential interrelation as well as direct influence. For instance,
it is known that local susceptibility can change with iron content, but also with local
atrophy [19]. To our knowledge, there is no study exploring the interrelation between
lesion burden and DGM or NAWM susceptibility and trophicity in MS in the same cohort.
Before analyzing such interrelations under the scope of clinical data for disease burden
assessment and monitoring, the feasibility of an automated and reproducible method
should be established.

The main goal of this study was thus to assess the feasibility of a fully automated
quantitative segmentation method. Second, we aimed at evaluating the potential inter-
relation between lesion load and susceptibility and morphometry in DGM and NAWM
and between NAWM susceptibility and DGM susceptibility. Finally, we evaluated the
interrelation between these imaging markers and individual clinical disability.

2. Materials and Methods
2.1. Study Protocol

This retrospective observational single-center study was conducted according to the
STROBE guidelines [20]. Patients with MS who were referred to our institution for brain
imaging between October 2016 and July 2017 were screened. Inclusion criteria were
(a) being diagnosed with multiple sclerosis according to the 2010 McDonald criteria [21]
and (b) having underwent at least one brain MRI with gadolinated contrast media admin-
istration and the acquisition protocol described below. Except for age and sex available
on DICOM tags, no further clinical data was recorded. Also, all collected imaging data
were anonymized to comply with national ethical guidelines. Institutional Review Board
approval (CER-VD 2023-01584) and patient consent were obtained according to the Swiss
Federal Act on Research involving Human Beings from 2011 (HRA, Art. 3), and the study
was conducted in accordance with the World Medical Association Declaration of Helsinki.
Patient clinical disability was assessed using the Expanded Disability Status Scale (EDSS)
at the time of MRI, which was retrieved from patients” hospital records.

2.2. MRI Acquisition

All patients were imaged on a 3T scanner (MAGNETOM Skyra, Siemens Healthcare,
Erlangen, Germany). The acquisition protocol included 3D FLAIR, unenhanced T1w MP-
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RAGE and double-echo (TE = 20/40 ms) gradient echo susceptibility weighted imaging
(SWI) sequences. Acquisition parameters are given in Table 1.

Table 1. Imaging protocol.

Parameters MP-RAGE Pre-Gd 3D FLAIR 3D Double-Echo GRE
Voxel size 1x1x1.2mm? 0.5 x 0.5 x 1 mm? 0.98 x 0.98 x 1.5 mm?
Acquisition plane Sagittal Sagittal Transversal
Flip angle 9° 120° 15°
TR/TI 2300/900 ms 5000/1800 ms 46/-
Echo Time 29 ms 391 ms 20/40 ms

2.3. MRI Post-Processing

The segmentation of MS lesions was performed using a fully automated prototype
method LeManPV [22-24], which takes as input 3D FLAIR and MP-RAGE images. Brain
lobes and segmentations of WM, thalamus and basal ganglia (putamen, pallidum and
caudate) were obtained using the MorphoBox prototype [25], taking unenhanced MP-
RAGE images as input. NAWM was defined as the volume of the remaining segmented
WM after subtracting the MS lesion volume in WM. Lesion load was defined as the volume
in milliliters of all the lesions present in a given region, as it was derived from the binary
masks from the automated lesion segmentation. The age- and gender-corrected Z-scores
(i.e., how many standard deviations is this volume away from the mean volume in a healthy
population) of the DGM regions were used for morphometric analysis.

QSM maps were estimated from phase and magnitude SWI data. The computation
was performed using an in-house dedicated Matlab SPM Toolbox, which integrates a stan-
dard post-processing pipeline that implements the Regularization Enabled Sophisticated
Harmonic Artifact Reduction for Phase data (RESHARP) and the Total Variation using Split
Bregman (TVSB) algorithms [26,27]. This Matlab SPM Toolbox can be shared upon request.
Since QSM reconstruction constitutes an ill-posed inverse problem, it is only possible to
quantify magnetic susceptibility in relation to a reference value rather than in absolute
terms [28,29]. To account for this offset, the median QSM value of the whole brain was
subtracted from each extracted QSM value of the same patient, as previously reported [30].
The MP-RAGE images where rigidly registered to the SWI images using ELASTIX [31].
The resulting transformation matrices where then used to transform the LeMan-PV and
MorphoBox output masks into the QSM space. To mitigate the effect of partial volume
between volumes, all binary masks were eroded by one voxel. Subsequently, median QSM
values of thalamus, basal ganglia and NAWM were extracted (see Figure 1). The median
was preferred over the mean because QSM values were not normally distributed within
the regions and because of its robustness to outliers (e.g., due to inaccurate segmentation
of volumes).

2.4. Statistical Analysis

All statistics were performed with Matlab R2018b (The MathWorks Inc., Natick, MA, USA).
Continuous variables are reported as median and interquartile range (IQR). Categorical
variables are reported as number or percentage. Spearman’s correlation coefficients (rho)
were computed to evaluate potential interrelation between (i) lesion load and DGM mag-
netic susceptibility and morphometry; (ii) lesion load and NAWM magnetic susceptibility
and lesion load and total WM morphometry; and (iii) lesion load and DGM and NAWM
morphometric and susceptibility values with the EDSS (Figure 1). To account for pos-
sible age-related susceptibility variations, the correlation coefficients were controlled by
age using partial correlation [32]. To account for multiple comparisons, the threshold for
significant p-values was corrected using the False Discovery Rate (FDR) procedure [33].
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Figure 1. Imaging processing. Schematic representation of algorithms used to compute QSM using
Regularization Enabled Sophisticated Harmonic Artifact Reduction for Phase data (RESHARP) and
the Total Variation using Split Bregman (TVSB) on double-echo gradient echo (GRE) sequences,
extract MS lesions using LeManPV from 3D FLAIR data and extract brain regions using Morphobox
from 3D unenhanced T1-MP-RAGE data. Correlations between results and with the EDSS were
then computed.

3. Results
3.1. Study Population

Overall, a total of 66 MS patients (50 women, median age = 38 years, IQR = 14 years,
range 18-66 years) consecutively acquired in daily practice over 2 years were retrospectively
enrolled. From the entire cohort, five patients were excluded due to poor image quality
related to motion or magnetic artifacts. Complete post-processing was thus successful in
93.2% of patients. The whole processing (FLAIR, T1 MP-RAGE and QSM) was performed
in 10 min per patient. Overall, patients had 1019 non-enhancing lesions. Fourteen patients
(20%) additionally had a total of 37 enhancing lesions (range 1-10), with their size varying
between 14 and 320 pL. Enhancing lesions thus represent 3.6% of all the lesions. Removing
those fourteen patients from the analysis presented below did not change the results. At
the time of the study, some of the patients were undergoing standard pharmacological
treatments for multiple sclerosis, while 11 patients remained untreated. The different
treatments administered to the 61 patients included in the analysis are listed in Table 2.

Table 2. Number of patients receiving each treatment at the time of the study.

Treatment Patients
Tysabri® (natalizumab) 17
Gilenya® (fingolimod) 13
Tecfidera® (dimethyl fumarate) 9
Rebif® (interferon beta-1a) 4

MabThera (rituximab) 2
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Table 2. Cont.

Treatment Patients
Plegridy® (peginterferon beta-1a) 1
Avonex® (interferon beta-1a) 2
Copaxone® (glatiramer acetate) 2
No treatment 11

3.2. Interrelation Between Lesion Load, DGM Susceptibility and DGM Morphometry

The susceptibility values and Z-scores of the thalamus, basal ganglia and NAWM
are displayed in Table 3. Right thalamus susceptibility was negatively correlated with the
total lesion load (rho = —0.43, p < 0.001), as well as with each individual lobar lesion load
except the right occipital and left frontal lobes (Figure 2A). The left thalamus, left and right
putamen, left and right caudate, and left and right pallidum did not show any significant
correlation with lesion load.

Table 3. Susceptibility values and morphometry of thalamus, DGM and WM (WM susceptibility
values were computed after MS lesions exclusion).

Susceptibility Value Z-Score
Median [IQR] Median [IQR]
Left Right Left Right
Thalamus 0.0014 [0.0027] 0.007 [0.0081] —0.1678 [1.8954]  —0.1454 [1.688]
Caudate nucleus 0.024 [0.0198] 0.027 [0.020] —0.0915[1.2053] ~ 0.0878 [1.2287]
Putamen 0.0168 [0.0095] 0.0148 [0.008] —0.0235[1.2487]  —0.1012 [1.7689]
Pallidum 0.0573 [0.0152] 0.0607 [0.0157] —0.1587 [1.5389]  —0.2118 [1.6012]
Frontal WM —0.0033 [0.0031]  —0.0042 [0.0026] —0.3771[1.7347]  —0.3712[1.3869]
Temporal WM —0.0019 [0.0028]  —0.0037 [0.0041]  —0.4512[1.5931]  —0.765 [1.7001]
Parietal WM —0.0047 [0.0022]  —0.0054 [0.0029]  —0.7124 [1.4574]  —0.4795 [1.2212]
Occipital WM —0.095[0.0039]  —0.0083 [0.0052]  —0.1345[1.0422]  0.1548 [1.2986]
B C
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Figure 2. Correlation between lesion load, DGM susceptibility and morphometry. (A) Interrelation
between lesion load (abscissa) and DGM susceptibility (ordinate). (B) Interrelation between lesion
load (abscissa) and DGM morphometry (ordinate). (C) Interrelation between DGM morphometry
(abscissa) and susceptibility (ordinate). Only correlation coefficients with significant p-values are
written down, with threshold value corrected for multiple comparison.

We found moderate to strong significant negative correlations between lesion load and
DGM morphometry, except for the caudate nuclei (Figure 2B). The strongest correlation was
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between left putamen Z-score and left frontal lobe (rho = —0.71, p < 0.001) and the weakest
correlation between the left thalamus and the right occipital lobe (rho = —0.36, p = 0.004).

We found only positive significant correlations between thalamus susceptibility val-
ues and thalamus, putamen and pallidum DGM morphometric values (Figure 2C). The
strongest correlation was between right thalamus susceptibility and left putamen Z-score
(rho = 0.56, p-value < 0.0001).

3.3. Interrelation Between Lesion Load, NAWM Susceptibility and WM Morphometry

We found weak to strong negative correlations between lobar and total lesion load
with the magnetic susceptibility of the NAWM in the frontal and parietal lobes and left
temporal lobe (rho = [-0.68 to —0.25], all p < 0.05) (Figure 3A). No correlation was found
for right temporal and bilateral occipital NAWM magnetic susceptibility. The median
magnetic susceptibility of the whole NAWM was negatively correlated with lobar and total
lesion load (rho = [—0.71 to —0.46], all p < 0.001).

A

Correlation between NAWM susceptibility and lesion load

Left Temporal

Riaht Temporal

Lesion Load

Z-score

B C

Correlation between WM morphometry and lesion load Correlation between NAWM susceptibility and WM morphometry

Right Parietal Left Paretal -

Left Parietal folal & 1 M Right Parietal

Left Occipital

Right Frontal
Right Temporal

LeftTemporal

Left Temporal Right Temporal

& & @ & E
S & K 5 & & «
5 $ N &V s &

Lesion Load Z-score

Figure 3. Correlation between lesion load, NAWM susceptibility and WM morphometry. (A) Interrela-
tion between lesion load (abscissa) and NAWM susceptibility (ordinate). (B) Interrelation between

lesion load (abscissa) and WM morphometry (ordinate). (C) Interrelation between WM morphometry

(abscissa) and NAWM susceptibility (ordinate). Only correlation coefficients with significant p-values

are written down, with threshold value corrected for multiple comparison.

We found weak to strong negative correlations between lobar and total lesion load
and the morphometry of the WM in each individual lobe except right and left occipital
lobes (rho = [—0.64 to —0.28], all p < 0.01, Figure 3B). The morphometry of the total WM
was negatively correlated with the lesion load in left parietal, both frontal, both temporal
lobes and with the total lesion load (rho = [-0.42 to —0.31], all p < 0.01).

We found weak to moderate positive correlation between WM morphometry and
NAWM susceptibility values between frontal lobe morphometric values and left frontal
and both parietal lobe susceptibility (rho = [0.37 to 0.44], all p < 0.01, while no correlation
was found in the temporal and occipital lobes (Figure 3C).

3.4. Interrelation Between NAWM and DGM Susceptibility

Left and right putamen susceptibility values were negatively moderately correlated
with fronto-temporal and total NAWM median susceptibility (tho = [-0.46 to —0.34],
p < 0.008, Figure 4). No systematic correlation was found for thalamus, pallidum and caudate.
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Correlation between DGM and NAWM susceptibility
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Figure 4. Correlation between DGM and NAWM susceptibilities. Only correlation coefficients with
significant p-values are written down, with threshold value corrected for multiple comparison.

3.5. Interrelation Between EDSS Clinical Score and MRI Metrics

We found moderate to strong positive correlation between lesion load and EDSS score
(rho =[0.28 to 0.5], p < 0.03) and a weak to moderate negative correlation between EDSS
score and total NAWM susceptibility, as well as with both frontal and left temporal lobe
NAWM (rho =[-0.29 to —0.38], p < 0.014) (Figure 5). There was no correlation between
WM morphometric values, nor with DGM susceptibility and morphometric values.

Correlation between lesion load and EDSS and between NAWM QSM and EDSS
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Figure 5. Correlation between EDSS and lesion load (first column) and between EDSS and NAWM
susceptibility (second column). Only correlation coefficients with significant p-values are written
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down, with threshold value corrected for multiple comparison.

4. Discussion

The present study investigated the feasibility of a fully automated method for MS
patient assessment and to evaluate the interrelation between lesion load and DGM, as well
as NAWM susceptibility and morphometry and the correlation with the EDSS clinical score.
We found negative correlations between lesion load and right thalamus susceptibility, as
well as between lesion load and NAWM susceptibility. Lesion load was also negatively
correlated with DGM and WM morphometric values. Despite these interrelations, the
EDSS score only correlated with lesion load and anti-correlated with NAWM susceptibility
values. Overall, the significant correlations and the tendencies to correlation obtained in
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our study were in line with a recent meta-analysis synthetizing data available on QSM
mapping of MS lesions, DGM and NAWM. As the relation between lesion load and clinical
disability has been often demonstrated, a significant relation with NAWM susceptibility
values has almost never been obtained [34,35].

From the earliest description of lesions on MRI of MS patients, lesion load has been
considered a biomarker of disease severity. However, numerous studies have reported
that lesion load does in fact not perfectly correlate with patients’ disability [1,36,37]. Being
related both to myelination and iron deposition, QSM was thought to have the potential for
evaluating both lesions’ characteristics [4,38—41] and remote tissues changes, which could
better reflect disease progression. We hereby demonstrated that a fully automated method
for lesion detection and morphometric and QSM map computation is feasible in 93.2% of
patients at 10 min per patient. This allowed for evaluating potential interrelations between
lesion load, morphometry and susceptibility.

Indeed, positive correlations between lesion load and/or clinical disability and basal
ganglia susceptibility were reported in the literature [10,42]. However, the relation between
thalamic susceptibility and lesion load is still debated. Some studies showed positive corre-
lations [43-46] and others found negative correlations, as in the present study [10,47-49].
Various reasons can explain these discrepancies, such as the type of QSM sequence (notably
the number of employed echoes), post-processing steps (notably the type of normalization
and referencing) and the subjects’ characteristics, which differ between studies. For instance,
Chiang et al. [43] used a circular ROI in CSF for reference value, used manual segmentation
of the lesions and did not include primary progressive multiple sclerosis patients. In our
cohort, we used a double-echo SWI sequence, an in-house post-processing pipeline and
referencing to the brain cortex that were all previously validated. Also, lesion load and
DGM segmentation was performed using two automated prototypes that demonstrated
good reproducibility [22-25] and ensured avoiding reader-related bias. Beyond technical
considerations, this may be due to the heterogeneous evolution of susceptibility within the
thalamus, as Schweser et al. [6] demonstrated that susceptibility reduction was more signif-
icantly associated with disease duration in the pulvinar, the left lateral nuclear region and
the global thalamus. The discrepant results on thalamus susceptibility could also be due to
the effect of atrophy, as Schweser et al. [19] recently suggested that magnetic susceptibility
changes over time could be partially explained by disease-related atrophy, along with a
progressive declining in DGM iron content. This argues for the necessity of analysing atro-
phy and susceptibility simultaneously, as in our study. In accordance, we found positive
significant correlations between thalamus susceptibility values and thalamus, putamen and
pallidum morphometry, which suggests a parallel evolution between DGM atrophy and
iron loss. Regarding the morphometry, we also found a strong correlation between atrophy
of DGM structures and lesion load (i.e., a negative correlation), which corroborates previous
results, especially for the thalamus [12,16,18]. Deep grey matter atrophy, specifically in the
thalamus and the basal ganglia, is considered to be a stronger and earlier biomarker of MS
burden than lesion load [12-14,16,50]. Nevertheless, our results indicate that lesion load,
DGM atrophy and susceptibility are interrelated markers of disease severity.

Beyond the DGM, recent studies evaluated the impact of MS on the surrounding
NAWM. We here found a strong negative correlation between the lesion load and NAWM
susceptibility, which is in line with evidence found in other studies [7,9,51], and a neg-
ative correlation between NAWM and EDSS, which is in line with a recent study [52].
Furthermore, we found that NAWM susceptibility decrease was correlated with thalamus
susceptibility decrease and putamen susceptibility increase, in accordance with reported
longitudinal iron level changes in MS patients [47]. Considering the prognostic value of
early changes in the thalamus, this may sustain the influence of NAWM alteration on
patients” outcomes, as outlined by a longitudinal-exploring prediction value of NAWM
susceptibility on EDSS increments over time [35]. In histopathological studies, the NAWM
in MS patients has indeed shown substantial abnormalities, including inflammation, mi-
croglial activation, gliosis, demyelination and axonal swelling [53]. There is also evidence
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of decreasing iron content in NAWM with disease duration in chronic MS. This loss would
contribute in a greater extent to NAWM changes on QSM than the concurrent myelin loss,
which would lead to an increasing effect on QSM [9,51,54]. The decrease in susceptibility
of the NAWM with increasing white matter lesions is thus likely due to a decrease of the
iron/myelin ratio. However, Wang et al. [55] also reported that demyelination was signifi-
cantly correlated with longitudinal atrophy of the NAWM. Along those lines, we found
that the lesion load was negatively correlated with the WM morphometry in multiple lobes,
which confirms the presence of remote changes in the brain of MS patients. In fact, while
both iron loss and demyelination are associated with NAWM atrophy, their antagonist
effect on susceptibility may explain discordant interrelations in the literature. This may
also explain why we only observed a moderate association between NAWM susceptibility
and WM morphometry. Overall, this suggests that iron loss, demyelination and atrophy
of the NAWM are, as DGM changes, interrelated markers of disease progression and
patients’ disability [55].

We have to acknowledge several limitations of the present study. First, there is in-
creasing evidence that the underlying pathological processes of primary and secondary
progressive MS are different, and this difference could impact advance MRI methods such
as QSM [14,42,48,56]. In addition, the size of our patient cohort was too small to allow
subgroup analysis, which is a meaningful analysis, given for instance the decreasing iron
content within the thalamus from 30 years of age [57], or the influence of sex and genes
involved in iron regulation on DGM susceptibility [49]. Also, our imaging protocol did
not include diffusion [48] or myelin water imaging [58], which could help in evaluating
microstructural changes and help characterizing the relative effect of iron loss and de-
myelination on susceptibility of the NAWM. While evaluating NAWM using susceptibility
values or other techniques such as diffusion tensor imaging, neurite orientation dispersion
and density imaging [59,60], T1/T2-weighted ratio [61] or MR spectroscopy [62] seems to
provide new insights into physiopathological aspects of MS, it remains unclear which se-
quence or combination of sequences could have a favorable diagnostic or prognostic impact
for initial patient classification, therapy guidance and monitoring or clinical outcome strati-
fication. Exploring these points, as well as externally validating automated susceptibility
quantification, needs larger prospective studies. The potential confounding effect of spinal
cord lesions, trophicity and susceptibility on the interrelation with the EDSS could not be
evaluated, as the spinal cord is not assessable with automated morphometry and QSM for
its full length. Finally, longitudinal analysis of DGM and NAWM susceptibility and mor-
phometry was not performed. This would need long-term follow-up and a larger, different
cohort study. DGM atrophy [14] and DGM susceptibility [49] longitudinal evolution were
already assessed in large studies to avoid the limitations of monocentric studies with short
follow-up [47], as was evaluated NAWM susceptibility for clinical evolution prediction
among different types of MS patients [35]. This could also help in evaluating whether
different treatments might influence DGM and NAWM trophicity and susceptibility in
a distinct manner, which has never been studied, to the best of our knowledge. To this
purpose, integrated automated MR post-processing could be used, as in the present study.

In conclusion, automated computation of lesion load, morphometry and susceptibility
maps is feasible and could allow the use of this advanced quantitative imaging in daily
clinical practice. Lesion load, thalamus and NAWM quantitative susceptibility values and
trophicity are interrelated in MS patients, as well, EDSS clinical score correlates with lesion
load and anti-correlates with NAWM quantitative susceptibility. Beyond MS lesions, brain
remote changes are potential biomarkers for disease monitoring and may be assessed using
automated MR morphometry and QSM.
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