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1 Introduction

Places influence each other, and the simplest and most used measure of influence are spatial
weights. Since the pioneering works of Moran [1948], Geary [1954] Cliff and Ord [1973] [1981]
and many others, the problem of properly specifying the spatial weight coefficients has largely
been recognized as difficult and controversial. Whereas workers generally agree that spatial
weights should decrease with some generalized distance, increase with the the length of their
common boundary, or, more generally, reflect their general accessibility (see e.g. Anselin [1988]
for a review of models), a univocal specification is yet still lacking. On one hand, this state of
affairs is not surprising, for there is no such thing as “true”, “universal” spatial weights, optimal
in all situations: good candidates must reflect the properties of the particular phenomenon,
properties which are bound to differ from field to field (Cliff and Ord 1973; Arora and Brown
1977; Cressie 1991). On the other hand, this difficulty should not impede a more systematic
investigation of models for spatial weights, starting with the question “which classes of models
yield specified families of spatial weights, and what are the properties of the latter?” This is the
approach we shall follow here.

This paper concentrates upon some theoretical issues related to spatial weights: we intend to deal
with empirical issues subsequently in a forthcoming paper; we are aware of, and apologize for
the fact that this omission ignores the question of formal modelling, and makes the comparison
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with other approaches difficult. Also, theoretical issues related to spatial autocorrelation, spatial
regression, and spatial interpolation, have not been addressed despite their obvious relevance
to our topic. We furthermore have restrained from discussing other spatial interaction models,
such as those based upon the concept of spatial stochastic explorers. Beside length constraints,
the main motivation for these omissions is the author’s feeling that, in contrast to statistical
concepts, geometric concepts are possibly underexploited in Geography, thus justifying a little
more emphasis on the latter, as attempted here.

In section 2, we define the class of spatial weights under consideration and emphasize their
markovian properties. In particular, we concentrate upon the associated stationary distribution
which we propose to interpret as an importance-centrality or prominence index.

Section 3 draws a classification of spatial interactions as well as associated “export” and “import”
weights and stationary distributions. The gravity model emerges as the class of interactions
satisfying certain time-reversibility conditions. The role of marginally homogeneous interactions
is underlined, in particular regarding their spatial aggregation invariance properties.

Section 4 concentrates on symmetric distance decay interactions. Short- and long-distance ex-
pansions yield spatial weights expressions containing traditional ingredients such as the relative
area, the spatial dispersion, the relative distance, the common boundary and the connectivity.

Section 5 exemplifies models of spatial weights in the setup of Integral Geometry, and section 6
shows how next-nearest neighbors in a Dirichlet-Voronoi tesselation can serve to define spatial
weights, of possible relevance in shopping behavior modelling.

To the best of our knowledge, most of the material presented here is new, in particular regarding
the stationary distribution associated with spatial weights (the prominence index), the struc-
tural classes of interaction, and the time reversal or aggregation invariance properties. This,
added to the absence of empirical material, as well as the use of some possibly lesser known
parts of mathematics, might be a source of difficulty for the reader. We have tried to alleviate
this difficulty by systematically presenting the material in a series of examples illustrating the
concepts.

2 Spatial weights as Markov chains

Consider a set of m places. Those places can consist of points x1, ...xm, representing for instance
the location of towns, or of regions A1, ..., Am partitioning the total area Ω of interest.

Definition 1 Let S = {1, ...,m} be a set of places. A spatial weight matrix is a m ×m matrix
W of components wjk satisfying
a) wjk ≥ 0
b)

∑m
k=1 wjk = 1 (for all j = 1, ...,m)

The terms “contiguity”, “connectivity”, “adjacency” or “association” matrices can also be found,
with roughly similar connotations. The simple normalization above makes different choices of
weights immediately comparable and nothing forbids the use of an explicitly distinct multiplica-
tive factor for a given application (as e.g. in spatial autoregression (Hordijk and Nijkamp 1977;
Huang 1984; Anselin 1988), where the multiplicative factor has to be estimated independently).

Definition 1 does not forbid the existence of non-zero diagonal weights: wjj can be thought of
as the self-influence of place j upon itself, and measures the inertia or autonomy of the place:
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the greater the wjj , the more place j resists to neighbor’s changes (relative to the phenomenon
under investigation). Thus non-zero diagonal weights should be allowed, and represent indeed
the main contribution in the “short time” or “long distance limit” models, as shown below.

Basically, wjk is meant to quantify the relative spatial influence of place k on place j. Thus,
non-symmetric weights offer greater flexibility and realism. Also, non zero wjk should not, in
general, be restricted to spatially contiguous pairs, even if one-step accessibility considerations
suggest it: for two-step (and higher order) accessibility modelling is bound to produce non-zero
non-contiguous weights (the neighbors of our neighbors are not necessarily our neighbors). The
same reasonning also shows the need for allowing non-zero diagonal weights.

In summary, we require non-negative, normalized, asymmetric, non-contiguous and non-zero
diagonal spatial weights: this makes the set of spatial weights wjk identical to the set of the
Markov chains transition matrices on S (an introduction to this topic and its basic properties
can be found e.g. in Feller [1966], Kemeny and Snell [1967] or Collins [1974]). This immediately
opens up a wealth of perspectives. First, the set of spatial weights matrices is a convex cone
closed under integer power raising:

a) If W = (wjk) is a spatial weight matrix, so is Wn, for nonnegative integer n. In particular,
W 0 = I, the identity matrix (whose components are noted δjk).

b) If W1 and W2 are spatial weight matrices, so are W (λ) = pW1 + (1 − p)W2 for all p ∈ [0, 1].

In particular, any combination of the form
∑

n≥0 pnW
n, where {pn} denotes a probability dis-

tribution, is a weight matrix. So:

c) If W is a spatial weight matrix, so are
• W1 := (pW + (1 − p)I)N (binomial convolution)
• W2 := ((1 − p)(I − pW )−1)N (negative binomial convolution)
• W3 := exp(−λ) exp(λW ) (Poisson convolution)

where p ∈ [0, 1], N is a positive integer and λ > 0. For instance, if W happens to describe
a typical pattern of destinations conditional upon the occurence of some emigration process,
W3 might be suitable in describing an unconditional destination pattern if 1/λ is the average
occurrence time of emigration.

Secondly, assuming the chain to be ergodic (which holds e.g. if (Wn)jk > 0 for some n > 0 and
all j, k), we get a unique stationary distribution πj ≥ 0 (

∑
j πj = 1) solution of W ′π = π, i.e.∑

j πjwjk = πk. Equivalently, π is a left eigenvector of W with eigenvalue 1.

Whereas wjk is best thought of as a measure of the relative influence of place k on place j (the
total influence on j is 100% by normalisation), πj can be interpreted as the total influence of place
j on the total area under consideration. πj will be further referred to as an influence-centrality
or prominence index.

A nice feature of the prominence index is its invariance when W is replaced by Wn, W1, W2 or
W3 above. In particular, π is left unchanged under the diagonal change W → pW +(1−p)I: thus
the question of diagonal weights is not critical with respect to the value of the prominence index;
this is a consequence of the long-term, stationary nature of the latter. Note incidentally that
symmetric weights W = W ′ have a corresponding uniform stationary distribution πj = 1/m.

Example 1: define the spatial weights in figure 1 as proportional to the common boundary
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Figure 1

Then

W =




0 1/2 1/4 1/4
2/3 0 1/3 0
1/2 1/2 0 0
1 0 0 0


 (1)

is obtained, with prominence indices π1 = 0.4, π2 = 0.3, π3 = 0.2 and π4 = 0.1.

Example 2: Let the peripheral regions j = 1, ..., n in figure 2 be connected only to a central
region j = 0 by links of the same importance.

Figure 2

Then

W =




0 1/n . . 1/n
1 0 . . 0
. . . . .
. . . . .
1 0 . . 0


 (2)

is obtained, with prominence indices π0 = 1/2 and π1 = π2 = ... = πn = 1/(2n). From this point
of view, and irrespective of n, central region and total periphery are exactly equally prominent.

We now turn to the question (implicit in examples 1 and 2) of the determination of spatial
weights. Models of spatial autocorrelation (to be addressed in a forthcoming paper) constitute
a possible source for identifying spatial weights. Models of spatial interaction, developed below,
constitute another.
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3 Defining spatial weights from spatial interaction

Let njk denote positive fluxes (i.e. number of goods, persons, or units of any kind in motion) or,
more generally, spatial interaction from place j to place k. In this context, j represents an origin
and k a destination. In what follows, we restrict ourselves to the case of identical sets of origins
and destinations. A spatial interaction model consists of expressing njk as a function of spatial
(e.g. intrinsic geometry or separation distances) and/or non-spatial (e.g. economic or climatic
attractiveness) attributes of both places (Fotheringham and O’Kelly 1989; Sen and Smith 1995).
As said earlier, no inferential procedure is considered in this paper; thus the njk can either be
thought as the observed transition count during a certain period, or as a theoretical quantity
such as e.g. the expectation of flow in a Poisson model.

Let nj• :=
∑m

l=1 njl be the total flux leaving place j, n•j :=
∑m

l=1 nlj the total flux entering place
j and n :=

∑m
j=1 nj• =

∑m
j=1 n•j the total flux. There are two obvious ways of defining spatial

weights from njk:

Definition 2 Let njk be a spatial interaction matrix. One defines associated export weights
wjk and import weights w∗

jk as

wjk :=
njk

nj•
w∗
jk :=

nkj

n•j
(3)

As njk �= nkj in general, the export π and import π∗ prominence indices (defined as the stationary
distribution of W , respectively W ∗) generally differ: the prominence of a region depends on the
point of view (export or import) adopted. In the particular case of the gravity model for spatial
interactions (see below), export (resp. import) weights are formally identical with the so-called
conditional destination (resp. origin) probabilities (Sen and Smith 1995).
Of course, in some particular context, one might wish to overcome the export/import distinction,
and to that effect use symmetrized fluxes, as nas

jk := 1
2(njk + nkj) or ngs

jk :=
√
njk nkj . Note in

passing that tests of symmetry (H0 : njk = nkj) yield nas
jk as the adapted decision variable in

the classical maximum likelihood approach, and ngs
jk in the minimum discrimination approach

(see e.g. Bishop and al. [1975] and references therein).

3.1 Structural classes of interactions

Carrying out spatial weights properties analysis requires additional structural requirements on
spatial interactions; in the following definition, αj , aj , βj , bk denote positive quantities, and γjk,
cjk, djk denote symmetric positive matrices.

Definition 3

a) Spatial interaction is quasi symmetric if it is of the form njk = αjβkγjk with γjk = γkj (or
equivalently njk = ajcjk with cjk = ckj or njk = bkdjk with djk = dkj).

b) Spatial interaction is marginally homogeneous or globally balanced if nj• = n•j .

c) Spatial interaction is symmetric or locally balanced if njk = nkj .

d) Spatial interaction is independent if njk = αjβk.

e) Spatial interaction is trivial if njk = αjαk.

(the above conditions are understood to hold for all possible j, k = 1, ...,m).
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Obviously, requiring quasi-symmetry exactly amounts to postulating a gravity model for spatial
interaction: see Fotheringham and O’Kelly [1989] p. 22, and Sen and Smith [1995] p. 50, which
constitute strongly advisable contemporary extensive reviews of theory and applications of the
gravity models. In this context, αj is referred to as the origin-dependent propulsiveness, βk as the
destination-dependent attractiveness, and γjk as the (generalized) distance deterrence function.
The equivalence mentioned in a) can be constructed as cjk := γjkβjβk and aj := αj/βj , as
well as djk := γjkαjαk and bj := βj/αj (at least for non-zero coefficients). Gravity models
are equivalently characterized by njknklnlj = njlnlknkj for all (repeated or not) triples (j, k, l)
(Caussinus 1966). Violations of the latter have been used to detect failures of the gravity model
in the case of migration streams (Smith and Clayton 1978; Goodchild and Smith 1980).

Marginal homogeneity reflects balanced total exports and imports. For instance, seasonally ave-
raged commuting traveler fluxes are marginally homogeneous, but consumption goods fluxes are
not in general. As developed below, marginal homogeneity is a highly desirable feature regarding
spatial aggregation invariance.

Symmetry is too strong a requirement to possibly constitute a realistic model of spatial interac-
tion in general. However, its simplicity makes it appealing as a purely spatial “model of order 0”,
neglecting in the gravity model aspatial differences in origin propulsiveness and destination at-
tractiveness. As presented in example 4, symmetric models allow fairly convenient investigations
of distance-decay effects.

Independence models constitute another caricature of gravity models, obtained when distance
deterrence is simply ignored, allowing only distinctions in origin propulsiveness and destination
attractiveness. As shown below (theorem 2), independence and globally balanced models are the
only ones to satisfy good invariance properties w.r.t. aggregation.

For completeness sake, a trivial model, independent and symmetric, has also been defined.

3.2 Time reversal properties

The relationship between the export and import weights W and W ∗ in (3) is somewhat remi-
niscent, but distinct from the relationship between a Markov chain W and its dual Ŵ . Recall
that the dual chain is defined as ŵjk := wkjπk/πj , where π is the stationary distribution of W

(Feller 1966). Ŵ has the interpretation of the process W evolving backwards (time reversal). By

construction, Ŵ also possesses π as stationary distribution, and
ˆ̂
W = W . When W = Ŵ , the

chain is called reversible.

Theorem 1

a) Export weights are reversible (W = Ŵ ) ⇔ import weights are reversible (W ∗ = Ŵ ∗) ⇔
spatial interaction is quasi-symmetric (njk = αjβkγjk). In this case, the export and import
stationary distributions are

πj =

∑m
k=1 γjkβjβk∑m

j′,k=1 γj′kβj′βk
π∗
j =

∑m
k=1 γjkαjαk∑m

j′,k=1 γj′kαj′αk
(4)

b) Export and imports weights are the dual of each other (Ŵ = W ∗ and Ŵ ∗ = W ) ⇔ spatial
interaction is globally balanced. In this case, the export and import stationary distributions
coincide: πj = π∗

j = n•j/n = nj•/n.
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c) Export and import weights are identical (W = W ∗) ⇔ spatial interaction is symmetric ⇔
spatial interaction is quasisymmetric and globally balanced. In this case, both weights are also
reversible, with stationary distribution πj = π∗

j = n•j/n = nj•/n.

The equivalence “quasi-symmetry + marginal homogeneity ⇔ symmetry” has been known for
a long time (Caussinus 1966) in the statistical analysis of contingency tables (Bishop and al.
1975). The connection of the latter concepts to duality considerations appears to be little or not
known, however. In particular, the characterization of the class of gravity models as coinciding
with the class of interactions yielding time reversible spatial weights might be of some interest:
gravity modelling is adequate if and only if forward and backward fluxes are indistinguishable.

Let us prove the first part of point a) (the proof of the other points is fairly straightforward):
suppose W = Ŵ i.e. πj wjk = πk wkj where π is the stationary distribution of W . It also follows
from (3) that njk = qjwjk for some positive vector q satisfying q• = n. Defining aj := qj/πj ,
the interaction can be written as njk = ajcjk where cjk := πj wjk is symmetric by hypothesis,
thus making njk quasi symmetric. Conversely, it is easy to demonstrate by direct substitution
the validity of (4) and then to show that quasi symmetry of njk implies reversibility of wjk. ��

Prominence indices for gravity models can explictly be written down as in (4), a fact noticeable
in itself. In accordance with intuition, export prominence is independent of origin propulsiveness
αj , and import prominence is independent of destination attractiveness βj . In the special case
of independent spatial interaction njk = αjβk, the spatial weights degenerate into a zero-order
chain: wjk = πk = βk/β• and w∗

jk = π∗
k = αk/α•.

Example 3: let a neighborhood relation hold among m places. An adjacency or contiguity
interaction model consists of a symmetric matrix njk such that njk = 1 if j and k are distinct
neighbors, and njk = 0 otherwise (examples 1 and 2 above fit into this framework). Let cj := nj•
denote the total number of neighbors of place j; < c >:= (

∑
j cj)/m is the average number of

neighbors. We suppose the system to be connected, ensuring ergodicity of the corresponding
weight Markov matrix wjk = njk/cj . The unique stationary distribution is then πj = cj/(m <
c >).
For instance, the Go board (Lasker 1060; Lichtenstein and Sipser 1980) is a regular m = 19×19 =
361 square grid, with a natural neighborhood structure yielding cj = 4, 3 or 2 for j = “inner”,
“edge” and “corner” positions respectively, with < c >= 3.79. In this approach, an inner position
can be said to be twice as prominent as a corner position.

3.3 Aggregation for spatial weights

Suppose the m regions A := {Aj}j=1,...,m partitioning Ω are aggregated into m̃ < m regions
B := {Bα}α=1,...,m̃. The new partition B is coarser than A, or, equivalently, A is a refinement
of B. Let [α] denote the set of initial indices j whose aggregation yields Bα, i.e. Bα = ∪j∈[α]Aj .
The aggregated fluxes are

Nαβ =
∑

j∈[α],k∈[β]

njk (5)

The latter yields by (3) new export and import weights Wαβ and W ∗
αβ , which in turn yield

new stationary distributions Πα and Π∗
α, to be interpreted as a prominence index of the region

Bα. The following question now arises: is the prominence index of Bα equal to the sum of the
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prominence indices of its constituents, i.e. are the following equalities

Πα =
∑
j∈[α]

πj Π∗
α =

∑
j∈[α]

π∗
j (6)

always true? If yes, spatial interaction is said to be aggregation invariant. The following charac-
terization theorem yields necessary and sufficent conditions for aggregation invariance, ensuring
the value of the importance index of a region to be independent of the partitioning chosen:

Theorem 2

Spatial interaction is aggregation invariant iff one (or both) of the following conditions holds:

• the interaction is independent, i.e. njk = αjβk

• the interaction is globally balanced, i.e. nj• = n•j

Proof: The aggregation A → B can be obtained as the composition of m̃−m pair aggregations.
Consider the case where two formerly distinct regions Aj and Aj′ are aggregated into the single
region A[j∪j′] := Aj ∪ Aj′ . Rewriting definitions (corresponding to the export case), one gets
aggregation invariance if and only if the following holds

njk + nj′k

nj• + nj′•
(πj + πj′) =

njk

nj•
πj +

nj′k

nj′•
πj′ (7)

for all k �= j, j′. Multiplying the latter by denominators and after simplification, one verifies (7)
to hold if and only if one of the following condition (or both) hold:

• njknj′• = nj′knj• (independence)

• nj•πj′ = nj′•πj (global balance)

Those conditions are invariant by transposition of njk, thus solving the problem for the import
case too. Also, the conditions themselves are aggregation invariant, thus solving the problem for
any aggregation A → B. ��

Note that gravity models are generally not aggregation invariant. This difficulty (recognized at
the interaction level rather than the prominence index level) has inspired many workers (Schwab
and Smith, 1985, and references therein). Breaking of aggregation invariance does not ruin the
concept of prominence πj of a region, but simply makes it dependent upon the partitioning
chosen. In contrast, aggregation invariant interactions permit us, proceeding backwards, to define
prominence densities π(x) by considering a sequence of increasingly fine partitions: taking the
limit always yields the same π(x), independently of the details of the sequence. The prominence
index of any region Aj ⊂ Ω is then simply πj =

∫
Aj

dx π(x).
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General interaction

Quasi-symmetric or
gravity interaction

Globally   balanced     or
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interaction

Locally balanced or
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Independent interaction
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n   = α  α 
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Trivial interaction
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j

j

jk k jk γ   = γ
jk kj

jk kj
jk j

jjk

k

k

W=W*^ W*=W^

W=W         W*=W* ^ ^Aggregation invariant

Aggregation invariant

W=W*=W=W* ^ ^

The following diagram summarizes the structural relationships described in theorems 1 and 2.

Figure 3

Models are increasingly structured in a downwards direction. Bottom models inherit the proper-
ties of linked top models. Also, the diagram emphazises the equivalences “marginal homogeneity
+ quasi-symmetry = symmetry” and “independent + symmetric interaction = trivial interac-
tion”.

4 Symmetric distance decay models

4.1 Distance decay models for points

Example 4: let for convenience D stand for the square of the euclidian distance, and consider
a positive, decreasing, smooth function f(D), defining symmetric fluxes between points xj and
xk as:

njk := f(Djk)(1 − δjk) with Djk =
2∑

α=1

(xjα − xkα)2 (8)

The factor (1− δjk) precludes self-interaction, thus diagonal weights vanish; but as far as f(0) is
finite, self-interaction could be allowed, and would play little role in what follows. (8) represents
a purely spatial caricature of the gravity model where all propulsiveness and attractiveness are
constant. By theorem 1c), stationary weights are

πj =

∑m
k=1;k �=j f(Djk)∑m
k,l=1;k �=l f(Dlk)

(9)

If no characteristic intrinsic length (such as the maximum length of a non-stop trip, or the indif-
ference trip length between walking and driving) exists, it makes sense to require the stationary
distribution to be invariant w.r.t. the scaling Djk → λ2Djk, thus yielding the algebraic decay
f(D) = cD−r with c, r > 0. If cost differences are the only thing that matters, and if costs
are quadratic in euclidean distances, then (9) should remain invariant w.r.t. Djk → Djk + λ,
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thus yielding the gaussian decay f(D) = c exp(−βD) with c, β > 0. Algebraic, exponential or
logistic forms for f(D) are common proposals in the literature (Taylor 1975). In the maximum
entropy approach (Wilson 1971), β defined above is interpretable as an inverse temperature.
Long (resp. small) distance limit considered below can thus also be interpreted as a high (resp.
low) temperature limit, or as a cheap (resp. expensive) travel limit.

It is instructive to identify the position xj maximizing πj , the positions of other points xk, k �= j
being fixed. By (9), the sought for coordinates are

xjα =

∑m
k;k �=j f

′(Djk) xkα∑m
k;k �=j f

′(Djk)
(10)

Therefore, πj is maximum when xj is a weighted average of other places’ coordinates, with
positive weights −f ′(Djk), in complete conformity with the centrality or prominence index
interpretation of πj .

4.2 Aggregation: distance decay models for regions

Example 5 : consider a positive decreasing smooth decay function f(D), normalized for conve-
nience as

∫∞
0 dD f(D) = 1, thus interpretable as an interaction density at (squared euclidian)

distance D. Significantly, the size invariant function f(D) = cD−r is non-normalizable.
Consider also the normalized rescaled density fτ (D) := τf(τD), where τ > 0 represents an
inverse characteristic distance. Let the total region of interest to be partioned in m regions Aj ,
j = 1, ...,m.
One then defines additive, symmetric fluxes between regions Aj ⊂ Ω and Ak ⊂ Ω as

njk(τ) :=

∫
Aj

dx

∫
Ak

dy fτ ((x− y)2) (11)

Denote by x̄k, resp. x̄Ω the gravity center of Ak, resp. Ω. We also define regional, resp. total
spatial dispersions, as

s2
k :=

1

|Ak|

∫
Ak

dx (x− x̄k)
2 s2

Ω :=
1

|Ω|

∫
Ω
dx (x− x̄Ω)2 (12)

Assuming smoothness of f(D) around D = 0, small τ (i.e. large characteristic distances) expan-
sion reads

njk(τ) = τ |Aj ||Ak|{f(0) + f ′(0)τ [s2
j + s2

k + (x̄j − x̄k)
2]} + 0(τ3) (13)

where |Aj | denotes the area of Aj . By symmetry, import and export weights coefficients (3)
coincide. They are

wjk(τ) =
|Ak|
|Ω| {1 + [s2

k − s2
Ω + (x̄j − x̄k)

2 − (x̄j − x̄Ω)2]
f ′(0)

f(0)
τ} + 0(τ2) (14)

with associated stationary distribution

πj(τ) =
|Aj |
|Ω| {1 + [s2

j − s2
Ω + (x̄j − x̄Ω)2]

f ′(0)

f(0)
τ} + 0(τ2) (15)

To the lowest order in τ , prominence indices are proportional to the area of the region. First-order
corrections increase this weight (recall f ′(0) ≤ 0):
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• for regions of small spatial dispersion s2
j , thus favoring approximately

circular regions against elongated ones of same area

• for central regions ((x̄j − x̄Ω)2 small).

On average, those corrections cancel, as shown by the familiar variance decomposition s2
Ω =∑

j
|Aj |
|Ω| [s2

j +(x̄j − x̄Ω)2]. Also, (15) can be shown to be aggregation invariant (π[j∪j′] = πj +πj′),

as it must from theorem 2 and the symmetry of njk(τ).

Before tackling large τ expansion, relevant for small characteristic distances, let us introduce the
following definitions: ∂Ajk denotes the common boundary between Aj and Ak. By construction,
∂Ajk �= ∅ iff Aj and Ak are contiguous (∂Ajj = ∅ by convention). Then ∂Aj

int := ∪m
k=1Ajk

denotes the internal boundary of Aj , i.e. that part of the boundary shared with some other
region Ak, whereas ∂Aj

ext denotes the external boundary, i.e. that part of the boundary shared
with ∂Ω. The total boundary of Aj then obtains as ∂Aj = ∂Aj

int∪∂Aj
ext. Finally, |∂B| denotes

the measure of the length (perimeter) of ∂B. For instance, |Aint
j | =

∑m
k=1 |Ajk|. Also, |∂Aj | =

|∂Aj
int| + |∂Aj

ext| and
∑m

j=1 |∂Aj
ext| = |∂Ω|

As limτ→∞ fτ ((x − y)2) = δ((x − y)2) = πδ(x − y), fluxes are purely diagonal to the leading
order. The next-order term is more tricky, and is non-zero for off-diagonal components iff Aj

and Ak are adjacent. Performing integrations with local coordinates, parallel and orthogonal to
∂Ajk, and taking for convenience f(D) as an arbitrary superposition of decreasing exponentials
in D, one finally gets, hopefully without loss of generality:

njk(τ) =

{
π|Aj | − |∂Aj |Lτ−1/2 + 0(τ−1) if j = k

|∂Ajk|Lτ−1/2 + 0(τ−1) otherwise
(16)

where L :=<
√
D >=

∫∞
0 dD

√
D f(D) is the unscaled average interaction distance. Now

weights coefficients become

wjk(τ) = δjk +
Lτ−1/2

π|Aj |
{|∂Ajk| − δjk|∂Aj

int|} + 0(τ−1) (17)

with associated stationary distribution

πj(τ) =
|Aj |
|Ω| +

Lτ−1/2

π|Ω| { |Aj |
|Ω| |∂Ω| − |∂Aj

ext|} + 0(τ−1) (18)

To the lowest order in τ−1, prominence indices are proportional to the area of the region. First-
order corrections increase this weight for large (|Aj | large), non boundary (|∂Aj

ext| small) regions.
On average, those corrections cancel. Also, the aggregation invariance of (18) is obvious.

Example 5 makes it possible to introduce, in a minimal, unified setting, many traditional geo-
metric ingredients aimed at the construction of spatial weights, previously proposed in the
literature: the relative area |Aj |/|Ω| (at both ends of the long-short distance spectrum); the dis-
persion s2

j and the relative distance (x̄j − x̄k)
2, relevant for the long distance limit; the common

boundary (and, hence, the connectivity) |∂Ajk| and the distinction internal/external boundary

|∂Aj
int/ext|, relevant for the short distance limit.
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For the sake of concreteness, consider a 12× 12 (arbitrary units) square universe Ω divided into
4 regions A1, . . . , A4, as depicted in figure 4.

Figure 4

One verifies the corresponding areas, inner and outer boundaries, gravity centers and spatial
dispersions to be:

|A1| = 64 |∂A1
int| = 16 |∂A1

ext| = 24 |∂A1| = 40 x̄1 = (−3, 1) s2
1 = 50/3

|A2| = 32 |∂A2
int| = 20 |∂A2

ext| = 4 |∂A2| = 24 x̄2 = (2, 0) s2
2 = 20/3

|A3| = 32 |∂A3
int| = 12 |∂A3

ext| = 12 |∂A3| = 24 x̄3 = (2,−4) s2
3 = 20/3

|A4| = 16 |∂A4
int| = 8 |∂A4

ext| = 8 |∂A4| = 16 x̄4 = (4, 4) s2
4 = 8/3

|Ω| = 144 |∂Ω| = 48 x̄Ω = (0, 0) s2
Ω = 24

Let c := −f ′(0)/f(0) ≥ 0. Then, in the limit τ → 0, one gets
π1(τ) = 4/9 − (32/27)c τ
π2(τ) = 2/9 + (80/27)c τ
π3(τ) = 2/9 − (16/27)c τ
π4(τ) = 1/9 − (32/27)c τ .
On average, the 0(τ) corrections cancel; these corrections increase the relative prominence of re-
gion A2. This was to be expected, the smallness of the ratio |∂A2

ext|/|A2| reflecting the centrality
of region A2.

Let c̃ := L/(π|Ω|) ≥ 0. Then, in the limit τ → ∞, one gets
π1(τ) = 4/9 − (8/3)c̃ τ−1/2

π2(τ) = 2/9 + (20/3)c̃ τ−1/2

π3(τ) = 2/9 − (4/3)c̃ τ−1/2

π4(τ) = 1/9 − (8/3)c̃ τ−1/2

12
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On average, the 0(τ−1/2) corrections cancel; again, these corrections increase the relative pro-
minence of region A2, but for reasons differing from the preceeding: the centrality of region A2

is now reflected by the centrality of its gravity center as well as by its relatively small spatial
dispersion.

Corrections stand in proportions −2 : 5 : −1 : −2 for both limits; this constitutes a pure
coincidence, somewhat favored by the simplicity of the geometry of figure 4. Needless to say,
this simplicity is hardly representative of most partitionings encountered in geography; but
still, the previous theoretical considerations might help discriminating between good and poor
approximations aimed at simplifying a real situation: for instance, a complicated border between
regions A1 and A2, as depicted by the solid line in figure 5, can be approximated by the indicated
dotted polygonal line, provided |a| + |c| + |e| = |b| + |d|: this condition insures the invariance of
the areas |A1| and |A2|, and thus leaves in the first approximation the corresponding prominence
indices unchanged.

Figure 5

5 Integral geometric models

A potential source of relevant results towards a geometric definition of spatial weights is cons-
tituted by Integral geometry (Santalo 1976, Ambartzumian 1990), dealing with random mea-
surements of a fixed geometric set with “solid” apparatus, as in Buffon’s needle paradigmatic
problem.

Consider an infinite straight line G in the plane together with a given regular curve C (closed
or not) of length L(C), and let N(G,C) be the number of intersections of G with C. Let dG
denote the infinitesimal measure element of all possible positions of G in the plane, differing
by uniform parallel translations and rotations. dG plays for lines a role analog to the Lesbesgue
measure dx for points, and can be written as dG = dr dφ, where r is the distance of G with
some fixed origin and φ ∈ [0, 2π] its direction (see figure 6). Then Poincaré’s formula holds:∫

dG N(G,C) = 4L(C) (19)

By construction, N(G,C) ≥ 1 iff G ∩ C �= ∅. Thus the integration region is de facto restricted to
intersecting positions. Formula (19) has been used for approximatively measuring the length of
curves by counting intersections with a lattice of equidistant parallels (Steinhaus 1954, Moran
1966).

Example 6 : a purely geometric spatial interaction model can be obtained by throwing randomly
a long (actually infinite) stick G on a geographical map partitioned in m regions Aj , and to define

13
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symmetric fluxes as njk :=
∫
dG N(G, ∂Ajk), where, as in the previous section, ∂Ajk denotes

the boundary common to Aj and Ak.

Figure 6

For instance, consider in figure 6 the region Aj , interior to Ω and contiguous to the regions Ak,
Ak′ and Ak′′ . Thus N(G1, ∂Ajk′) = 1, N(G1, ∂Ajk) = 3, N(G1, ∂Ajk′′) = 0, N(G2, ∂Ajk′) = 2,
N(G2, ∂Ajk) = 0, N(G2, ∂Ajk′′) = 2, N(G3, ∂Ajk′) = 1, N(G3, ∂Ajk) = 1, N(G3, ∂Ajk′′) = 0.
Note in general

∑
k N(G, ∂Ajk) = N(G, ∂Aint

j ) to be even with probability 1 if ∂Aint
j is closed,

i.e. if ∂Aext
j = ∅, as realized here. By (19) and theorem 1, the associated spatial weights and

prominence indices are

wjk = w∗
jk =

|∂Ajk|
|∂Aint

j | πj = π∗
j =

|∂Aint
j |∑m

k=1 |∂Aint
k | (20)

Therefore, stick throwing yields familiar spatial weights, namely ones proportional to the length
of the common border. In this setup, the prominence of a region is proportional to its total
interregional boundary. Note that replacing the measuring stick by any other fixed bounded
curve K of length L(K) does not change the spatial weights (20), since∫

dK N(K,C) = 4L(K)L(C) (21)

and factor 4L(K) cancels out in (20). In (21), the kinematic density dK runs over all bidimen-
sional translations and rotations of the curve K.

Consider the aggregation A[j∪j′] := Aj ∪Aj′ with j �= j′. Then

π[j∪j′] =
|∂Aint

j | + |∂Aint
j′ | − 2|∂Ajj′ |

(
∑m

k=1 |∂Aint
k |) − 2|∂Ajj′ |

�= πj + πj′ (22)

unless ∂Ajj′ = ∅. This apparent aggregation-invariance breaking seems to contradict theorem 2,
since the fluxes njk are symmetric and thus globally balanced. Actually, the merging A[j∪j′] :=
Aj∪Aj′ is not an aggregation in the sense of paragraph 3.3, but rather an aggregation followed by
the annihilation of those fluxes previously crossing the border ∂Ajj′ , disappearing after merging.
For instance, n[j∪j′],[j∪j′] = 0 ≤ njj + njj′ + nj′j + nj′j′ = 2njj′ .

Example 7 : let an organism randomly land on Ω with uniform (Lesbegue) density dx. The
organism then moves in a random direction φ uniformly selected in [0, 2π], until it crosses some

14



internal border. Let the interaction njk be proportional to the probability to land in Aj and
then reach region Ak.

In the integral geometric setup, this model may be expressed as njk =
∫
dG σj(G) N(G, ∂Ajk),

where σj(G) is the length of the chord G ∩ Aj . To get some feeling for the formula, ima-
gine the organism to land somewhere on G1 ∩ Aj in figure 6. Choosing randomly the sense of
motion (the unsigned direction being already fixed), the odds of meeting Ak against Ak′ are
N(G1, ∂Ajk)/N(G1, ∂Ajk′) = 3/1. On the other hand, the probability of landing on G1 ∩ Aj

(conditional upon landing in Aj) is proportional to σj(G1).

The interaction njk, although well defined, does not possess strong structural features in the
sense of theorem 1, thus making the computation of the weights and the stationary distribution
difficult. Let us however mention the property nj• = 2π|Aint

j |, valid if ∂Aint
j is a convex closed

curve.

Example 8 : the quantity

D(∂Aj , ∂Ak) :=
1

2

∫
dG |N(G, ∂Aj) −N(G, ∂Ak)| (23)

behaves as a metric index of dissimilarity between borders ∂Aj and ∂Ak (Santalo 1976). For
instance, D(∂Aj , ∂Ak) = |∂Aj |−|∂Ak| if the convex closed curve ∂Ak lies inside the convex closed
curve ∂Aj . The symmetric interaction njk := f(D(∂Aj , ∂Ak)) (with f(D) positive decreasing)
yields large prominence values πj for regions Aj whose borders have a small average dissimilarity
with other borders. A variant of this model is obtained when considering inner borders ∂Aint

j

only. The same caveat met in example 6 about aggregation applies to examples 7 and 8 as well.

6 Spatial weights for Dirichlet-Voronoi tessellations

Example 9: let x1, ..., xm be m distinct points (e.g. cities or shops) in some bounded planar set
Ω. The Dirichlet-Voronoi cells Aj := {x ∈ Ω | d(x, xj) ≤ d(x, xl) ∀l �= j}, where d(x, y) denotes
the euclidean distance, constitute a partition of Ω (see e.g. Brassel and Reif 1979, Møller 1994).
Consider also the sets Ajk := {x ∈ Ω | d(x, xj) ≤ d(x, xk) ≤ d(x, xl) ∀l �= j, k} if j �= k, and
Ajj := ∅. The set Aj consists of the points of Ω with xj as nearest neighbor among the m points,
and Ajk is the part of Aj with xk as second nearest neighbor, so that if xj were removed, Ak

would be enlarged by adding Ajk to it. Note that |Ajk| �= |Akj |, although both values are zero
or strictly positive together (in the latter case, xj and xk are said to be neighbors).
In the context of distance-minimizing customers, Ajk can be thought of as the area primarily
served by shop xj , and otherwise by shop xk when the former is closed. Let us consider the
interaction model njk := |Ajk|. The associated export and import weights

wjk :=
|Ajk|
|Aj |

w∗
jk :=

|Akj |∑
l |Alj |

(24)

possess strict screening properties: they vanish if j and k are not neighbors. Export weights
wjk enjoy a remarkable property discovered by Sibson (1980), namely

∑
k wjk xk = xj for all

inner xj (i.e. satisfying Aj ∩ ∂Ω = ∅). This property opens up the possibility of a “natural
neighbor interpolation”, besides better known methods such as kriging or splines techniques
(Cressie 1991).
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Two- and higher-dimensional configurations do not possess analytical solutions in general. In
one dimension, however, the problem can be solved fairly completely: consider the ordered m+2
points x0 ≤ x1 ≤ ... ≤ xm ≤ xm+1. Non zero export weights are w01 = wm+1,m = 1 and

wj,j−1 =
xj+1 − xj
xj+1 − xj−1

wj,j+1 =
xj − xj−1

xj+1 − xj−1
(25)

for 1 ≤ j ≤ m. Others weights are zero (screening), and one verifies the distribution

πj =




κ
xj+1−xj

+ κ
xj−xj−1

= κ
dj

+ κ
dj−1

if 1 ≤ j ≤ m
κ

x1−x0
= κ

d0
if j = 0

κ
xm+1−xm

= κ
dm

if j = m + 1

(26)

to be solution of the stationarity equation
∑m+1

j=0 πjwjk = πk, where the dj := xj+1 − xj (j =
0, . . . ,m) denote the interpoint distances. The normalization constant κ > 0 is determined by∑

j πj = 1, that is

κ =
1

2
∑m

j=0
1
dj

(27)

On the other hand, non zero one-dimensional Dirichlet-Voronoi import weights for x0 ≤ x1 ≤
... ≤ xm ≤ xm+1 are w∗

01 = w∗
m+1,m = 1,

w∗
10 =

x1 − x0

x3 − x2 + x1 − x0
w∗

12 =
x3 − x2

x3 − x2 + x1 − x0
(28)

w∗
m,m−1 =

xm−1 − xm−2

xm+1 − xm + xm−1 − xm−2
w∗
m,m+1 =

xm+1 − xm
xm+1 − xm + xm−1 − xm−2

(29)

and

w∗
j,j−1 =

xj−1 − xj−2

xj+2 − xj+1 + xj−1 − xj−2
w∗
j,j+1 =

xj+2 − xj+1

xj+2 − xj+1 + xj−1 − xj−2
(30)

for 2 ≤ j ≤ m− 1. The corresponding import prominence index turns out to be

π∗
j =




κ∗(dj−2 dj−1 dj + dj−1 dj dj+1) if 2 ≤ j ≤ m− 1
κ∗d2

0 d1 if j = 0
κ∗ (d2

0 d1 + d0 d1 d2) if j = 1
κ∗ (dm−2 dm−1 dm + dm−1 d

2
m) if j = m

κ∗ dm−1 d
2
m if j = m + 1

(31)

with the normalization

κ∗ =
1

2
∑m

j=0 dj−1 dj dj+1
(32)

with dj = xj+1 − xj (j = 0, . . . ,m), d−1 := d0 = x1 − x0 and dm+1 := dm = xm+1 − xm.
Figure 7 and 8 illustrate prominence indexes in both cases, for the same configuration with
interpoint spacings in simple proportions 1 : 2 : 4 : 6. In the distance-minimizing customers
interpretation, shop xj (1 ≤ j ≤ m) inherits almost the totality of customers primarily attached
to shops xj±1 if the distance |xj−xj±1| is small. As a result, export prominence indices are large
for places possessing close neighbors. In the limit dj → 0 of two coinciding points xj and xj+1,
the mass of the distribution actually becomes entirely concentrated on πj and πj+1 = 1 − πj :
places xj and xj+1 act as an interaction trap, for wj,j+1 → 1 and wj+1,j → 1 when dj → 0 (one
can think of a consumer wandering from one shop to the next neareast one). Conversely, one
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can show πj(xj) to be minimal at the local equidistant location xj = 1
2(xj+1 + xj−1) (the other

coordinates xk, k �= j, being fixed).

Figure 7

On the other hand, a shop xj located in a dense area possesses a small basin of customers
attached to it. As a consequence, when the shop xj is closed, the added flux of customers
towards its neighbors xj±1 is small too: thus, in the import view, prominence indices are small
for places possessing close neighbors. Conversely, one can show πj(xj) (2 ≤ j ≤ m − 1) to be
maximal near the local equidistant location (the other coordinates xk, k �= j, being fixed), the
maximum being attained at xj = 1

2(xj+1 + xj−1) + a, where |a| << dj + dj−1, and a > 0 iff
dj+1dj+2 > dj−3dj−2. For instance, d6d7 > d2d3 in figure 8, thus displacing x5 by a small amount
to the right would increase π5.

Figure 8

The strong contrast exhibited by export and import quantities (whose prominence indexes are,
among other things, not aggregation invariant) in this simple model is made possible by the
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absence of structural constraints for the fluxes: the interaction |Ajk| is indeed not globally ba-
lanced nor quasi-homogeneous. This again underlines the necessity of the existence of additional
constraints (such as those described in theorems 1 and 2, among which gravity constraints are
the most familiar in geography) for allowing tractable modelling in general.
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