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The effect of different X ray radiation qualities on the calibration of mammographic dosemeters was investigated within the
framework of a EUROMET (European Collaboration in Measurement Standards) project. The calibration coef®cients for
two ionization chambers and two semiconductor detectors were established in 13 dosimetry calibration laboratories for
radiation qualities used in mammography. They were compared with coef®cients for other radiation qualities, including those
de®ned in ISO 4037----1, with ®rst half value layers in the mammographic range. The results indicate that the choice of the
radiation quality is not crucial for instruments with a small energy dependence of the response. However, the radiation quality
has to be chosen carefully if instruments with a marked dependence of their response to the radiation energy are calibrated.

INTRODUCTION

The European Council Directive 97/43/EURATOM(1)

on health protection of individuals against the dan-
gers of ionizing radiation in relation to medical expos-
ure provides various measures in order to control
patient dose from radiodiagnosis. Mammography is
one of the diagnostic techniques which contributes to
the patient dose. Dosemeters are important instru-
ments to assess this dose. An adequate calibration of
these dosemeters is an essential requirement for cor-
rect measurements with these instruments.

A comprehensive comparison of dosemeters used in
diagnostic radiology including mammography was
conducted in 1990. This exercise was performed
in 19 European countries and several publications
refer to the ®ndings of the comparison(2). One
reference dosemeter for conventional radiology and
one for mammography were calibrated at the
Physikalisch-Technische Bundesanstalt (PTB) using

a series of radiation qualities. The reference dose-
meters were then sent sequentially to the national
metrology centres of the other 18 participating coun-
tries. The national centres circulated the dosemeters
among the participants, who were asked to calibrate
the two reference instruments against their own dose-
meter(s) at selected radiation qualities. The calibra-
tion factors determined by all participants were sent
to the relevant national centres and forwarded to
PTB, where all results were analysed. Stability checks
of both reference instruments were carried out by
PTB several times during the comparison. The differ-
ences in the measurements were expressed as the ratio
between the calibration factor determined by an indi-
vidual participant (Npart) and the mean calibration
factor determined by PTB (NPTB). Altogether, 162
participants took part in this comparison, with a
total of 203 dosemeters.

Considering all dosemeters and radiation qualit-
ies, the average of the ratio Npart/NPTB was close
to 1, indicating that there was no systematic bias
in the response of the participants' dosemeters. The�Corresponding author: E1@metrology.at
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relative standard deviation of all ratios was only
slightly greater than 10%, i.e. in most cases, the
error of the measurement was less than 10%. How-
ever, it also means that in about one-third of all
cases, the error of the measurement was greater
than 10% ------ a value currently accepted as a reason-
able upper limit for clinical measurements in the
diagnostic ®eld.

When comparing the results obtained in 1990
with those presented in this report, one should
bear in mind that the earlier comparison was carried
out by users, whereas this EUROMET project was
carried out by national metrology institutes.

In the project EUROMET 364(3) a number of
European standard laboratories have agreed upon
the comparison of their primary air kerma stand-
ards for a selected set of 17 X ray qualities used for
calibration in the ®eld of diagnostic radiology,
including mammography. The results indicated rea-
sonable agreement in the calibration coef®cients for
the two ionization chambers, which were used as
transfer instruments.

The effect of spectra on calibration and measure-
ment with several mammographic ionization chamb-
ers was investigated(4). The energy response of 10
commercially available chambers was determined.
The chambers showed variation in their air kerma
response as a function of beam radiation quality. It was
concluded that the combined effect of the chamber's
energy dependence of response and its in¯uence on the
HVL measurement can result in differences ranging
fromÿ1.8 to�2.5% in the determination of the mean
glandular dose.

A set of X ray qualities containing different
anode (molybdenum, tungsten, rhodium) and ®lter
materials (molybdenum, rhodium, palladium) for
mammographic X ray equipment is de®ned in
IEC 1223----3-2:1996(5). For the calibration of dose-
meters used in mammography, for the time being,
only qualities produced by a Mo-anode are de®ned
in IEC 1267:1994(6). Nowadays, only a few standard
and calibration laboratories are equipped with X ray
tubes with Mo-anode capable of providing these
X ray qualities for calibration purposes. On the
other hand, a number of `similar' radiation qualities
from X ray tubes with W-anode are available at
these laboratories and are worth considering as an
alternative to the X ray qualities de®ned in IEC
1267. These alternatives include qualities de®ned
by BIPM-CCEMRI [now CCRI (Consultative
Committee for Ionising Radiation of the ComiteÂ
International des Poids et Mesures)]: 1972(7) and
ISO 4037----1: 1996(8) (narrow and high air kerma
rate spectra) as well as the X ray qualities from
IEC 1223----3-2, which can be produced by the exist-
ing X ray tubes with W-anode. The availability of
all these and other relevant radiation qualities as
well as dosemeters/detectors was ascertained by the

results of a questionnaire completed by different
metrological institutes. Therefore, the EUROMET
project no. 526 was initiated in order to validate the
different radiation qualities with respect to their
suitability for the calibration of dosemeters used in
mammography. This EUROMET project was a
cooperation in research among various metrological
institutes, which were the participants of this
project.

INSTRUMENTS AND METHODS

The participants agreed to circulate four different
instruments which are dedicated for measurements in
mammography (see Table 1 and Figure 1). They were
to be calibrated in the participating laboratories in
terms of air kerma. Two of the instruments were
ionization chambers which had to be connected to
the laboratories' own electrometers. The other two
instruments were semiconductor detectors connected
to their own electrometers. The owner of the ®rst
three instruments is BEV (Bundesamt f�ur Eich- und
Vermessungswesen). Unfors Instruments (Sweden)
kindly supplied the fourth instrument for this
EUROMET project, free of charge by arrangement
of SSI, Sweden.

The main task of this EUROMET project was to
investigate the suitability of radiation qualities avail-
able (at standard laboratories) for the calibration of
dosemeters used in mammography, according to the

Figure 1. Instruments circulated within the project
EUROMET 526: (1) Radcal chamber, (2) PTW chamber,

(3) PTW Diados, (4) Unfors 508.
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requirements of IEC 61674:1997(9). In this standard,
the reference parameters for the radiation quality in
mammography are: 28 kV, Mo-anode, total ®ltra-
tion: 30 mm Mo as de®ned by IEC 1267:1994, but
without the use of a phantom. According to IEC
61674:1997, the minimum rated range of dosemeters
used in mammography must comply with the
requirements given in Table 2.

The second purpose of this EUROMET project
was to compare the calibration results among the
laboratories.

For the calibration of dosemeters, the radiation
qualities given in Table 3 were used as far as they
were available at the different laboratories. Some
photon ¯uence spectra of these radiation qualities
measured at BEV, NPL and PTB are given in
Figures 2----4. Spectra for radiation qualities de®ned
in ISO 4037 are given in Reference 8.

The calibration of the dosemeter(s)/detector(s)
was carried out in the laboratories of the particip-
ants in the period from December 2000 to May
2002. During this period, the stability of each instru-
ment was checked several times in the dosimetry
laboratory of the BEV, while the stability checks
of the comparison, which was conducted in 1990
and which was mentioned in the Introduction,
were carried out by PTB. The uncertainty Ustab for
the stability of each instrument was derived from
these data using Equation 1:

Ustab � 2�

����������Pm
i�1

s2
i

m

vuuut �k � 2�, �1�

with si being the standard deviation of the
calibration coef®cients for the radiation quality
i and m being the total number of radiation qualities
used for the stability check. The results are given
in the last column of Table 1. The uncertainty Ustab

for the instrument Unfors 508 appeared to be
much larger for attenuated than for unattenuated
beam qualities. This can probably be attributed to
the fact that the air kerma rate of the attenuated
beam qualities available at the BEV was at the lower
end of the measurement range of the instrument.
Nevertheless, Equation 1 was also applied in
this case.

RESULTS

General

In Figures 5----8, all calibration coef®cients Nk in
terms of air kerma are plotted against the ®rst half
value layer (1st HVL) x of the corresponding radia-
tion quality. All uncertainty bars are related to the
expanded uncertainty Uk (coverage factor k � 2) of
the calibration coef®cients. The polynomial regres-
sion Np,a(x) (maximum 4th order), shown in each of
these diagrams, was calculated using all calibration
coef®cients. The dotted lines in these diagrams
indicate the expanded uncertainty Up,a(x) (k � 2)
of the polynomial regression.

In the next step, the calibration coef®cients were
sorted into seven groups of radiation qualities,
shown in Table 3. The ratio of each calibration
coef®cient Nk and the polynomial regression
Np,a(x) at the 1st HVL of the corresponding

Table 2. Requirements of IEC 61674:1997 for dosemeters used in mammography.

Radiation quality Anode material Tube voltage Added ®ltration Limits of variation
of response

Unattenuated beam Mo 25----35 kV 30 mm Mo �5%
Attenuated beam Mo 25----35 kV 30 mm Mo � 2 mmAl �5%

Table 1. Instruments calibration in EUROMET 526.

Instrument Model/type Manufacturer Nominal
response

Reference in
this work

Stability
Ustab (k � 2)

1 ion. chamber
�

Model 10� 5----6 M 6 cm3 Radcal 0.2 nC mGyÿ1 Radcal chamber 0.29%
1 ion. chamber

�
Type 77334 1 cm3 PTW 0.05 nC mGyÿ1 PTW chamber 0.34%

1 dosemeter
(semicond. type)

Diados type 11003------
Detector type 60005

PTW 20 nC mGyÿ1 PTW Diados 0.45%

1 dosemeter
(semicond. type)

Mult-O-Meter model 508 Unfors ------ Unfors 508 1.8%

�
A high voltage supply and an electrometer provided by each participating laboratory were necessary to calibrate the

ionization chamber
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Figure 2. Photon ¯uence spectra of X rays emitted by a tungsten target and ®ltered by different material, measured at BEV.
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Figure 3. Photon ¯uence spectra of X rays emitted by a molybdenum target and ®ltered by different material, measured
at NPL. Note the similarity between the attenuated spectra obtained by an additional ®lter of a 45 mm thick breast

equivalent phantom and of 2 mm aluminium.
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radiation quality was calculated. Furthermore, the
ratio of each calibration coef®cient Nk and the mean
Nmean of all calibration coef®cients was calculated
for each instrument. The ratios Nk/Nmean indicate
the total spread of the calibration coef®cients
normalised to Nmean, whereas the ratios Nk/Np,a(x)
show their spread relative to the polynomial regres-
sion. Therefore, the calibration results from the
different groups of radiation qualities with different
1st HVLs can be compared more easily, in particular
for instruments with a marked energy dependence of
their response. The frequency distribution of all ratios
was plotted for each group of radiation qualities
and each instrument (see Figures 9----12). These
®gures show that the experiments did not reveal

any signi®cant difference in the values of the calib-
ration coef®cients obtained in pulsed or constant
potential beams.

In the following paragraphs, the results for the
four instruments involved in this investigation are
discussed.

Radcal chamber

Despite the large variety of radiation qualities used
in this exercise, most of the calibration coef®cients
are within �2% (see Figure 5). This means that this
chamber can be calibrated within this limit at any
HVL irrespective of the type of X ray tube and/or
®lter chosen.
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Figure 4. Photon ¯uence spectrum of the radiation quality CCRI 25 kV, measured at PTB.
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Figure 5. All air kerma calibration coef®cients Nk against ®rst half value layer x of the radiation qualities for Radcal
chamber. The polynomial regression Np,a(x) was calculated from all calibration coef®cients.
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Because of the ¯at energy dependence of the
response, the calibration accuracy between the
laboratories can be judged in the best way using
this instrument. The ratio of each calibration

coef®cient Nk and the value of the polynomial
regression Np,a(x) at the mean 1st HVL, xo, of the
corresponding radiation quality from primary stand-
ard laboratories was plotted in the Figures 13----16.
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Figure 6. All air kerma calibration coef®cients Nk against ®rst half value layer x of the radiation qualities for PTW
chamber. The polynomial regression Np,a(x) was calculated from all calibration coef®cients.
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Figure 7. All air kerma calibration coef®cients Nk against ®rst half value layer x of the radiation qualities for PTW
Diados. The polynomial regression Np,a(x) was calculated from all calibration coef®cients.
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Furthermore, a reference value Nref was determined
for each radiation quality as the mean of the
calibration coef®cients, given by those laboratories
that used a primary standard for the calibration.
The expanded uncertainty Uref (k � 2) of the
reference value Nref was calculated from the

following Equation 2:

Uref � 2�

����������������������������������Pp
i�1

�Nk; i ÿNref �2

p�� pÿ 1�

vuuut �2�
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Figure 8. All air kerma calibration coef®cients Nk against ®rst half value layer x of the radiation qualities for Unfors 508.
The polynomial regression Np,a(x) was calculated from all calibration coef®cients.
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regression Np,a(x) and the mean Nmean of all calibration coef®cients, respectively, for Radcal chamber. See Table 3 for

legend of groups of radiation qualities.
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with Nk,i being the air kerma calibration coef®cient
of the i-th laboratory and p being the number of
primary laboratories contributing to the value of
Nref. The ratios of Nk and Nref are given in the
Figures 13----16. Their expanded uncertainty Uk,ref

(k � 2) was calculated using Equation 3:

Uk;ref � Nk

Nref
�

������������������������������������
Uk

Nk

� �2

� Uref

Nref

� �2
s

�3�

For most of the results, the deviation of the ratios
from unity is less than the expanded uncertainty
Uk,ref, which indicates a good agreement among
the laboratories.

PTW chamber

This chamber shows an energy dependence of
the calibration coef®cients of more than �5%

PTW 77334 SN 948 

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

median

95
 %

 o
f c

al
ib

ra
tio

ns
 

N
k/

N
p,

a

N
k/

N
m

ea
n

al
l c

al
ib

ra
tio

ns

Mo/Mo-
pulsed
n = 17

Mo/Rh-
pulsed
n = 3 

Rh/Rh-
pulsed
n = 5 

Mo/Mo-
const 
n = 20

W/Mo,Rh,Pd- 
const 
n = 30

CCRI, ISO 
4037H 
n = 13

ISO 4037N 

n = 14

N
or

m
al

is
ed

N
k

Group  of radia tion quali ties  with  n calibrations each

Figure 10. Frequency distribution of the ratios of the air kerma calibration coef®cients Nk and the value of the polynomial
regression Np,a(x) and the mean Nmean of all calibration coef®cients, respectively, for PTW chamber. See Table 3 for legend

of groups of radiation qualities.
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Figure 11. Frequency distribution of the ratios of the air kerma calibration coef®cients Nk and the value of the
polynomial regression Np,a(x) and the mean Nmean of all calibration coef®cients, respectively, for PTW Diados. See

Table 3 for legend of groups of radiation qualities.
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over the whole range of HVLs investigated (see
Figure 6). However, at any given HVL, the differ-
ence in the calibration coef®cients for different
radiation qualities is smaller and not signi®cant in
most cases.

PTW Diados

The energy dependence of the calibration coef®-
cients is pronounced over the whole range of
HVLs with a minimum in the range of HVLs of
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Figure 12. Frequency distribution of the ratios of the air kerma calibration coef®cients Nk and the value of the
polynomial regression Np,a(x) and the mean Nmean of all calibration coef®cients, respectively, for Unfors 508. See

Table 3 for legend of groups of radiation qualities.
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Figure 13. Ratio of air kerma calibration coef®cients Nk and the value of the polynomial regression Np,a(xo) of all air
kerma calibration coef®cients at the mean 1st HVL xo of unattenuated and attenuated radiation qualities emitted from a
Mo-target and 30 mm Mo-®lter at a tube voltage of 28 kV for Radcal chamber. Note: The mean 1st HVL was calculated

from the 1st HVL of radiation qualities from primary standard laboratories.
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Figure 14. Ratio of air kerma calibration coef®cients Nk and the value of the polynomial regression Np,a(xo) of all air
kerma calibration coef®cients at the mean 1st HVL xo of unattenuated and attenuated radiation qualities emitted from a
W-target and 60 mm Mo-®lter at a constant tube voltage for Radcal chamber. Note: The mean 1st HVL was calculated

from the 1st HVL of radiation qualities from primary standard laboratories.
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Figure 15. Ratio of air kerma calibration coef®cients Nk and the value of the polynomial regression Np,a(xo) of all air
kerma calibration coef®cients at the mean 1st HVL xo of radiation qualities de®ned by the CCRI and the international
standard ISO 4037----1:1996 (high air kerma rate series) at a constant tube voltage for Radcal chamber. Note: The mean 1st

HVL was calculated from the 1st HVL of radiation qualities from primary standard laboratories.
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about 0.6 to 0.7 mmAl (see Figure 7). Over the
whole range, the calibration coef®cients are within
�10%. In Figure 11, the frequency distribution of
the calibration coef®cients for the radiation qualities
CCRI, ISO 4037H is signi®cantly above the mean of
all calibration coef®cients. This can be explained by
the fact that 8 out of the 13 calibration coef®cients
in this group of radiation qualities belong to the
CCRI 25 kV radiation quality, which has the lowest
1st HVL (�0.25 mmAl) of all the radiation qualities
used in this investigation. Because of the low
response of the PTW Diados at this low HVL, the
calibration coef®cient is signi®cantly higher than at
higher HVLs (see Figure 7).

Unfors 508

Among the four instruments investigated in this
project, the Unfors 508 shows the largest energy
dependence of the calibration coef®cients (see
Figure 8). At the HVL of x � 0.3 mmAl, the
calibration coef®cient has a gradient of about:

�dNk=Nk�
dx

� ÿ1:5%

0:01 mmAl
: �4�

In a mammographic set with Mo-anode and 30 mm
Mo-®lter, for instance, the 1st HVL changes from
about 0.28 to about 0.37 mmAl, if the tube voltage
is changed from 25 to 35 kV. However, the calibra-
tion coef®cient of the dosemeter changes in this
range by about ÿ13%. This means that the user of

this instrument has to have a fairly good knowledge
of the HVL in order to apply the correct calibration
coef®cient.

CONCLUSION

Four different instruments used in the dosimetry of
mammography were calibrated by 13 metrological
institutes within the framework of the EUROMET
project no. 526. A large variety of radiation qualities
was used to investigate the suitability of these qual-
ities for the calibration of the instruments and to
compare the calibration results among the labora-
tories. The results indicate that calibration coef®-
cients for different radiation qualities do not differ
signi®cantly for instruments with small energy
dependence. In such a case, the HVL of the radia-
tion quality used for the calibration is not crucial.
However, for instruments with a large energy depend-
ence, the calibration result depends not only on the
HVL, but also to some extent on the spectrum of
the radiation quality used. In addition, differences
in the procedure of the determination of the HVL at
the individual laboratories could also contribute to
the larger spread of the calibration coef®cients for
instruments with a pronounced energy dependence
of response.

No signi®cant difference in the response to X ray
qualities produced with pulsed and constant poten-
tial X ray tubes with Mo-anode was noticed for any
of the dosemeters investigated in this project.
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Figure 16. Ratio of air kerma calibration coef®cients Nk and the value of the polynomial regression Np,a(xo) of all air
kerma calibration coef®cients at the mean 1st HVL xo of radiation qualities de®ned by the international standard ISO
4037----1:1996 (narrow spectrum series) at a constant tube voltage for Radcal chamber. Note: The mean 1st HVL was

calculated from the 1st HVL of radiation qualities from primary standard laboratories.

J. WITZANI ET AL.

44



In many cases, the accuracy of a dose measure-
ment in mammography does not only depend on
the uncertainty of the calibration coef®cient for
the radiation quality chosen for the calibration of the
dosemeter, but also on the shape of the response
function of the dosemeter with respect to the radia-
tion energy. The participants of this EUROMET
project therefore draw the following conclusions:

(1) In general, the smallest uncertainty for the
clinical measurement can be achieved with an
instrument which shows a ¯at energy depend-
ence of the response. Ionization chambers
designed for mammography measurements
which come close to this requirement are
available. In this case, one can fully take
advantage of the fact that (almost) any radiation
quality with an HVL in the mammographic
range can be used for calibration without
compromising the quality of the clinical mea-
surement. Such a dosemeter will always indicate
the correct dose, irrespective of the HVL of the
clinical beam. Furthermore, with such an
instrument, the HVL can be determined with
the smallest uncertainty.

(2) However, if a dosemeter with a marked energy
dependence has to be calibrated, the following
points should be taken into account:

(a) The best choice for calibration is a radiation
quality with a spectrum as close as possible to
the clinical beam that is intended to be
measured. This will generally be a radiation
quality based on a Mo- or Rh-target and a Mo-
or Rh-®lter.

(b) If an X ray tube with a Mo- or Rh-target is not
available, a good compromise for calibration
might be a radiation quality based on a W-target
and a Mo- or Rh-®lter (as used in this work)
followed by the radiation quality H-30 from the
ISO 4037 High Air Kerma Rate Series and the
radiation quality CCRI 25 kV. These radiation
qualities can be delivered with a fairly high dose
rate ------ desirable when calibrating mammo-
graphic dosemeters. However, in this case, the
radiation qualities used in calibration and in the
clinical measurement are different and the possi-
ble in¯uence of the energy dependence of the
dosemeter on the measurements in the clinic
should be carefully checked.

(c) The radiation qualities from the ISO 4037
Narrow Spectrum Series (i.e. N-20, N-25,
N-30) have the following shortcomings when
used for the calibration of mammographic

dosemeters: the dose rate of these qualities is
considerably lower than that of the other radia-
tion qualities discussed above, and for some
detectors, the dose rate might not be suf®cient in
order to perform a proper calibration.
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