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A B S T R A C T   

In the last decades, to enhance success rates in assisted reproductive technology (ART) cycles, scientists have 
continually tried to optimize embryo culture and selection to increase clinical outcomes. In this scenario, the 
application of laser technology has increased considerably worldwide and is currently applied across ART in 
several ways: for assisted hatching (AH) or thinning of the zona pellucida (ZP), embryo biopsy, to immobilize and 
select the sperm during intracytoplasmic sperm injection, as well as to induce artificial blastocyst shrinkage 
before cryopreservation. Laser-AH has been suggested as a procedure to improve embryo implantation: the 
concept is that drilling holes through or thinning of the ZP could improve the hatching process and implantation. 
The artificial disruption of the ZP can be performed by different approaches: mechanically, chemically and with 
the laser, which is one of the most favourable and easy methods to remove part of the ZP and to augment the 
possibilities of implantation in patients defined as having a poor prognosis of success, or when the ZP is too thick. 
However, in the current literature, there is not sufficient evidence about the potential risk or impairment that 
laser utilization might induce on embryo development; therefore, the main aim of the current review is to 
provide an overview of the existing knowledge on the ZP and the mechanisms of manipulating it to improve the 
effectiveness of ART. Also, it emphasizes the positive aspect of laser application as a powerful tool that might 
increase the chance of pregnancy for infertile couples undergoing ART cycles.   

1. Introduction 

The application of assisted hatching (AH) in assisted reproductive 
technology (ART) has notably increased during the last three decades. 
The artificial disruption or thinning of the zona pellucida (ZP) was 
described for the first time by Cohen and collaborators in 1988 [1], who 
reported the first pregnancy after partial zona dissection (PZD). The 
authors described the partial dissection of the ZP achieved on mature 
oocytes using mechanical force in couples undergoing ART cycles with 
male factor infertility. Several authors have reported beneficial effects of 
AH: a study by Valojerdi and colleagues [2] investigated if AH can in-
crease pregnancy success rates of ART cycles in women with recurrent 

implantation failure, with advanced female age, or who are using 
frozen-thawed embryos. The authors found a benefit of AH in women 
having a frozen-thawed embryo replacement; the clinical pregnancy was 
statistically significantly higher in the AH group as compared with the 
control (31.2 % versus 11.1 %). However, in patients with advanced 
female age or recurrent implantation failure having a fresh embryo 
replacement, the clinical pregnancy and implantation rates were similar 
in both groups [2]. In agreement with Valojerdi’s study, other groups 
have seen a beneficial effect in terms of clinical pregnancy and im-
plantation rates following application of AH in frozen embryo transfer 
(FET) cycles, performed either using a laser or with Tyrode’s solution 
[2–4]. However, there is still an active debate on the efficacy of the AH 
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procedure. A prospective randomized study published in 2006 reported 
increased pregnancy outcomes in couples undergoing FET treatments, 
but this improvement was not observed in fresh embryo transfer [5]. A 
Cochrane review of 39 randomized controlled trials (RCTs) including 
7249 women and 2486 clinical pregnancies, reported that there was not 
enough evidence to recommend the use of AH to increase the live birth 
rate (LBR) [6]. Those results confirmed the data of a previous Cochrane 
analysis in 2012, concluding that the LBR was not proven to be raised by 
AH [7]. In addition, both reports announced increased multiple preg-
nancy rates in patients who receive the AH procedure compared to the 
control groups [6,7]. Therefore, further evidence is still missing on the 
routine use of AH for couples undergoing ART treatments. This 
conclusion agrees with data published by Hershlag and colleagues [8]. 
Indeed, more than three decades after the first application of AH on 
human embryos, proof of its efficacy is still lacking. It is important to 
mention that an appropriate interpretation of the evidence is required, 
considering that different methods can be employed to induce embryo 
hatching: mechanical, chemical and with laser technology [2–4]. In 
addition, even laser-assisted hatching (LAH) procedures might be 
applied in different ways and modes, and studies published are per-
formed on different types of patients, with probably divergent results on 
the embryo hatching dynamics. Various methods have been suggested 
such as making holes in the ZP, or thinning of different sizes, drilling, 
cutting, digesting, or mechanically melting the ZP, chemically or with a 
laser beam; on FET or fresh embryos at different stages [9,10]. Finally, 
AH is currently recognized by the Human Fertilisation & Embryology 
Authority (HFEA) in the UK as a method that lacks sufficient 
moderate/high-quality evidence for its clinical effectiveness, which has 
been confirmed very recently by a paper produced by the European 
Society of Human Reproduction and Embryology (ESHRE) on good 
practice recommendations on add-ons in ART [11]. Given that world-
wide this kind of procedure has been applied since 1988, it is critical to 
produce well-designed investigations to provide sufficient evidence on 
the efficacy and utility, as well as the risk associated with each method. 
Since the use of laser technology and AH are increasing in ART units, and 
since we still lack knowledge on the risk and efficacy of these proced-
ures, the goal of the current manuscript will be to furnish an analytical 
and commentary review of the literature on the status of AH and LAH 
methods. It highlights the benefits of lasers as a powerful technology and 
aims to provide the necessary information for the refinement of AH and 
its possible incremental use in ART applications. 

2. Search strategy 

Relevant peer-reviewed studies were identified in the English- 
language literature using PubMed and were included in this narrative 
review. Search terms included the use of AH and LAH in the ART cycle 
and its correlation with pregnancy outcome and LBRs, also exploring 
any risk eventually associated with the method. Specifically, the 
following clinical outcomes were analysed: implantation, clinical preg-
nancy, abortion, multiple pregnancy, and LBRs. RCTs, prospective and 
retrospective studies were analysed where available. The search 
comprised mainly human studies, although for the first descriptive part, 
some studies in animal models were also included. Relevant published 
papers before March 2024 were selected and included in this review. 

3. Zona pellucida structure and function 

Mammalian embryos are surrounded by the ZP, which is an oocyte 
and embryo-associated acellular translucent protein structure composed 
of a sulphated glycoprotein matrix that is shaped enclosing the oocyte 
during its maturation within the follicle [12]. The human ZP is formed 
by four glycoproteins ZP1, ZP2, ZP3, and ZP4 and its thickness is around 
15–20 µm. Repeated ZP2 and ZP3 units, cross-linked by ZP1, give rise to 
the filamentous nature of the ZP [12–15]. It plays a crucial role at the 
time of fertilization, during the binding of the spermatozoon to the 

oocyte, and alteration in genes encoding human ZP glycoproteins is one 
of the main causes of female infertility [15–17]. The ZP stimulates the 
acrosome reaction in the head of the spermatozoon [18] and soon after 
sperm binding and passage through to the oolemma, the structure of the 
ZP changes, and it becomes more difficult to be penetrated by other 
spermatozoa [19,20]. In effect, following fertilization, fusion of oocyte 
cortical granules with the oolemma and the discharge of their enzymatic 
contents into the perivitelline space (the cortical reaction) results in ZP 
“hardening” and represents an important secondary mechanism to 
reduce the incidence of polyspermy, which is when more spermatozoa 
penetrate the oocyte [21–23]. The ZP also has additional benefits: it 
surrounds both the unfertilized oocyte and the early embryo, and as a 
physical obstruction prevents damage to the oocyte and, 
post-fertilization, to the embryo within from immune cell invasion, or 
biochemical toxicity. The ZP is important for embryo compaction, which 
is the formation of structural gap and tight junctions between blasto-
meres. In humans, blastocoele expansion and thinning of the ZP are 
critically important for the hatching process. In mammalian species, the 
breach of the ZP is controlled by lysin “proteases”, and a Na+, K+

-ATPase which pushes sodium into the blastocoel cavity, inducing 
expansion and contraction of the blastocyst in preparation for hatching 
[23–26]. Some authors have investigated if there is a correlation be-
tween ZP thickness and maternal age or women’s hormonal status, in 
patients undergoing ART treatments [27–29]. Balakier and colleagues 
measured the ZP thickness of 5184 cleavage stage embryos (day3) in 
744 in vitro fertilization (IVF) patients, and found no significant corre-
lation with the patient’s age, stimulation protocol or infertility diag-
nosis, as well as no relation with their basal concentration of serum FSH. 
Interestingly, the authors reported a strong association with embryo 
quality, and good quality embryos exhibited a considerably thinner ZP 
compared with those embryos with poor morphology [27]. A study by 
Nawroth and collaborators found a slight association, which was not 
statistically significant, between ZP thickness and women’s age in 843 
metaphase-II oocytes from 100 ART patients [28]. Additional studies 
have investigated the variation of the ZP thickness during embryo 
development and correlated that feature with pregnancy outcomes. 
Lewis and co-authors analysed the variation in ZP thickness during 
embryo development and reported no correlation with implantation 
following day 3 transfer [29]. On the other hand, a trial published by 
Gabrielsen and co-workers reported that replacement of embryos which 
showed a degree of ZP thickness variation during their development 
represented a strong correlation with clinical pregnancy outcome 
following IVF cycles [30]. Finally, several authors seem to agree with the 
consideration that when an embryo possessed a thick ZP, this feature is 
generally associated with low-quality embryo development and poor 
morphology and, following embryo replacement, resulted in reduced 
pregnancy outcomes compared to embryos with a thinner ZP [27–33]. 

4. The rationale for assisted hatching 

In vivo, proteolytic enzymes gradually and slowly digest the ZP. The 
embryo develops further until it hatches completely from the ZP, when it 
reaches the blastocyst stage, and eventually, the implantation process 
takes place [34,35]. However, in-vitro culture conditions, as well as 
cryopreservation procedures, might induce a thickness and hardening of 
the ZP, which may interfere with and disturb the hatching process [36, 
37]. Therefore, AH is a technique during ART in which a hole is made in 
the ZP, using a micromanipulator with a laser, and this has been pro-
posed to improve the capacity of the embryo to escape from the ZP; 
thereby, the embryo should increase its implantation potential [26]. 
Over decades several protocols have been introduced, ranging from zona 
breaching, where a gap of different sizes is induced in the ZP, to zona 
thinning, where its thickness is reduced. This can be achieved with 
chemical solutions or by using a non-contact laser system [36–39]. 
However, the aperture within the ZP is thought to induce negative ef-
fects: it can impair the process of blastocyst expansion or allow 
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blastomere loss through the breached ZP. Also, the embryo might be 
exposed to a higher risk of infectious or immunologic attack [38]. Events 
of embryo trapping have also been reported, however quite rarely 
following ZP breaching of the blastocyst. In animal studies, a correlation 
has been described between the diameter of the hole in the ZP and the 
achievement of the hatching process. Montag and van der Ven, in the 
mouse model, found that if the opening is less than 10 µm, full embryo 
hatching is impaired [32] while in cattle, breaches smaller than 40 µm 
induced trapping events compared to larger holes [40]. Advantages of 
zona thinning include the prevention of blastocyst hatching without full 
expansion and the reduction of embryo splitting to produce mono-
zygotic twins [41]. Investigations performed on the mouse model have 
reported that during the hatching process, the blastocyst goes through 
contraction and re-expansion events [42]. The exact role of those 
contraction events, which can be multiple, is not completely clarified, 
but strong collapse with a reduction of the blastocoel cavity of more than 
50 % of the original volume seems to impair the hatching and implan-
tation processes compared to weak contractions [42]. Similar findings 
have been illustrated with the in-vitro human blastocyst in infertile 
couples undergoing ART cycles. Several authors have reported that a 
transfer of a spontaneously collapsing blastocyst results in reduced im-
plantation potential and diminished pregnancy rates compared to those 
embryos that do not show any collapse events [43–46]. It is however 
hypothesized that AH might facilitate blastocyst hatching features and 
might prevent strong contractions, which might limit great energy 
expenditure. 

5. Assisted hatching in fresh embryo replacement 

The use of chemicals to induce zona drilling in human embryos has 
been investigated by several authors with controversial results. Some 
retrospective investigations showed no benefit of the procedure 
[47–49], except for some specific groups of patients: such as advanced 
maternal age [50], poor prognosis patients or those with previous failed 
IVF cycles [49–52]. A trial performed by Schoolcraft and co-authors 
[49] analysed the effect of AH in 76 poor prognosis patients undergo-
ing IVF treatments. Those poor prognosis women were defined as having 
a high day 3 Follicle Stimulating Hormone (FSH) level; age > or = 39 
years; and multiple prior IVF failures. AH was performed on the morning 
of day 3 of embryo development using acidified Tyrode’s solution. Re-
sults found that the incidence of ongoing pregnancy in the AH group was 
64 % compared with 19 % in the control group. The implantation rate 
per embryo transferred was 33 % in the AH group versus 6.5 % in the 
control group. In a retrospective study, Hurst and colleagues reported an 
impairment in embryo quality and implantation rate in a small group of 
young patients undergoing ART with AH compared with the control 
group. The authors performed the AH on the morning of day 3 of embryo 
development followed by embryo replacement on the same day [53]. In 
a randomized trial, Cohen and collaborators demonstrated that chemical 
zona drilling increased the percentage of clinical pregnancy in those 
embryos with a ZP thickness ≥ 15 µm, particularly in couples with a 
female age ≥ 38 and with high FSH levels [54]. In a prospective ran-
domized study involving 100 couples, Tucker and co-authors [55] 
applied AH to cleavage stage embryos on day 3 using acid Tyrode’s 
solution and found no beneficial effect on overall ICSI pregnancy out-
comes. However, in those patients with a female age ≥ 35 years, AH was 
able to significantly increase the clinical pregnancy rate (45.2 % versus 
16.9 %, p < 0.05). A prospective randomized trial published by Ma and 
colleagues [56] involving patients undergoing ART cycles with indica-
tion for ICSI found, regardless of age, a higher implantation rate in the 
AH group compared to the control group (16 % versus 8 %; p < 0.01). In 
a more recent prospective randomized double-blinded investigation in 
patients ≤ 38 years old, Hagemann and colleagues [57] analysed the 
effect of AH on pregnancy outcomes. Patients having any embryos with 
a ZP thickness ≥ 13 µm were eligible for randomization, and the study 
included 121 women. All hatching procedures were performed using 

acid Tyrode’s solution on the morning of day 3, at least one hour prior to 
embryo replacement. Results found no differences between hatched and 
unhatched patient groups in rates of clinical pregnancy (47 % versus 50 
%) or live birth (46 % versus 45 %). Furthermore, no significant dif-
ferences were noted between hatched and unhatched groups in rates of 
spontaneous abortion, monozygotic twinning or dizygotic twinning. 
Some groups have also analysed the performance of chemical hatching 
compared to mechanical or LAH, and none of them demonstrated a 
superiority of one over the other two methods [58]. Lanzendorf and 
co-workers [59] did not find a difference in pregnancy outcomes using 
LAH or acid Tyrode’s solution. Also, embryos from patients with a good 
prognosis were cultured without any AH and replaced at the blastocyst 
stage on day 5. The authors found a significantly greater implantation 
rate for day 5 non-hatched blastocysts than for both the LAH and 
chemical hatched groups. In contrast, Feng and collaborators [60] re-
ported that LAH, mechanical AH, or with acid Tyrode’s solution, 
increased the pregnancy rate when compared with the control group. In 
addition, the authors found that both chemical and LAH were more 
effective in enhancing clinical pregnancy compared to PZD. Chemical 
AH has also been suggested for thinning the ZP in fresh embryo trans-
fers. In a prospective randomized trial, Tucker and co-workers [61] were 
not able to report any improvement in implantation rates in a cohort of 
about 200 couples undergoing ART with AH performed on day 3 em-
bryos, prior to uterine replacement. The authors did not observe any 
improvement in clinical outcome: even in specific groups of patients, 
such as those with high FSH or embryos with a thick ZP; thus, they 
concluded that embryos with a thicker ZP implanted as well as those 
with a thinner ZP independently of the AH procedure. In another 
retrospective comparative study investigating four different AH pro-
cedures, including mechanical PZD, LAH, chemical breaching by acidi-
fied Tyrode’s solution, and ZP thinning using pronase, Balaban and 
colleagues [62] reported no difference in terms of implantation and 
clinical pregnancy rates when compared with the control group. In 
contrast, in a randomized trial, Yano and co-authors [63] reported a 
superior efficacy in terms of implantation and clinical pregnancy rates 
with partial zona thinning compared to controls without AH. However, 
those data are inconclusive regarding efficacy and a correlation between 
ZP thinning and the incremental increase in implantation potential 
following fresh embryo replacement. Overall, these studies indicated a 
tendency to exclude the benefit of AH in all patients and advocated that 
better outcomes are only confined to subgroups of poorer prognosis 
patients. 

5.1. Assisted hatching in frozen embryo transfer 

In the 1990s, AH found its maximum diffusion and utilization, 
especially in cryopreserved human embryos, using acid Tyrode’s solu-
tion as the method for AH. A retrospective trial by Check and collabo-
rators [64] found that the clinical pregnancy and implantation rates 
were increased in the AH group compared to the non-AH group. In the 
non-hatching group, embryos were cultured in human tubal fluid + 0.5 
% bovine serum albumin for 48 h after thawing and transferred. In the 
hatching group of patients, embryos were cultured in human tubal fluid 
+ 10 % synthetic serum substitute for 72 h after thawing, then had AH 
and were transferred. Therefore, it needs to be mentioned that the cul-
ture conditions as well as protein supplementation were different be-
tween the two groups; thus, it was speculated that this improvement 
could be due to other factors and not only due to the AH procedure. 
Another prospective blinded randomized investigation performed on 
frozen/thawed cycles at the cleavage stage (on day 2) reported an 
increased implantation rate in the AH group compared with the control 
group (11.4 % versus 5.8 %; p < 0.005) [65]. However, different results 
have been reported following chemical zona thinning. In a prospective 
randomized study, Sifer and co-workers [66] cryopreserved surplus 
embryos at the cleavage stage (days 2–3), followed by partial enzymatic 
digestion of the ZP by pronase at the thawing step. Their results found no 
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improvement in pregnancy outcome: implantation and clinical preg-
nancy rates were similar between the AH treatment and control groups. 
No benefits have also been reported with mechanical hatching and PZD 
in frozen embryo transfers by Tucker and co-authors [15]. An additional 
study by Edirisinghe and colleagues on PZD performed after thawing of 
frozen day 3 embryos, could not show any advantage in patients with 
advanced female age, or those patients with previous IVF failures [67]. 
In contrast with the previous studies, Vanderzwalmen and collaborators 
[68] found encouraging results in a retrospective investigation, in which 
artificial opening of the ZP was performed on blastocysts. The authors 
analysed 281 blastocysts after vitrification and warming, concluding 
that artificial opening of the ZP significantly increased implantation and 
pregnancy rates. A recent study published by Wei and co-workers [69] 
analysed 3535 FETs, out of which 2297 were non-LAH cycles and 1238 
were treated with LAH. Their results found a higher LBR in the AH group 
compared to the non-LAH group (34.9 % versus 31.4 %, p = 0.024). 
Furthermore, the LAH group indicated a reduction in pregnancy loss and 
ectopic pregnancy rates, but those variations were not statistically sig-
nificant (p = 0.078, p = 0.063 respectively). Finally, a recent study by 
Alteri and collaborators [70] investigated the effect of partial zona 
removal by AH in patients aged 18–39 years who underwent non-donor 
IVF cycles, having an elective single embryo transfer with a vitri-
fied/warmed blastocyst. Overall, 698 participants were included in the 
study: 352 women were assigned to the AH group and 346 to the control 
arm. Their results showed a similar LBR (AH: 105 (29.8 %) versus 
non-AH: 101 (29.2 %). Following a further analysis considering 
women’s age, cause of infertility, method of insemination, blastocyst 
quality, and day of blastocyst development, their results failed to report 
any clinical situation that could benefit from AH of blastocysts in FET 
[70]. Indeed, based on the findings presented above, there is insufficient 
evidence showing a clear benefit in terms of implantation potential and 
pregnancy outcomes in FETs after AH. Further studies, including 
well-designed and large RCTs, are still required to establish some benefit 
of AH in ART cycles. 

6. Different hatching methods: chemical and mechanical 

Thinning of the ZP using a chemical such as acidified Tyrode’s so-
lution at a pH of 2.5, or pronase, was first described for hatching in the 
mouse blastocyst [71–73]. The chemical approach was commonly used 
for zona thinning and biopsy before the advent of laser technology about 
20 years ago (Fig. 1A, B). In this case, a holding pipette was used to 
firmly support the embryo which was then gently touched by an AH 
pipette filled with acid Tyrode’s solution [3,9]. The acid Tyrode’s so-
lution was released gradually from the micropipette until the operator 
could observe thinning of the ZP or expelled until a trough ranging from 
20–40 µm in length was obtained to perform the zona drilling [9,61, 
74–76]. However, the acid Tyrode’s solution had to be released slowly 
and with caution and stopped immediately once desired thinning was 
achieved (Fig. 1A, B). Alternatively, AH can also be performed me-
chanically, using a micropipette and a micromanipulator. One of the 
first mechanical approaches applied was PZD, in which the embryo is 
held firm using a holding pipette and an opening was obtained by 
introducing an injection pipette through the ZP, followed by crushing 
the ZP smoothly against the holding pipette [76–78]. However, an 
important point and limitation to mention regarding mechanical zona 
dissection, is that the size of the hole cannot be controlled, and it may 
not be sufficient to achieve embryo hatching. In addition, there is a risk 
of mechanical injury during the manipulation, including squeezing or 
damaging cells of the embryo; also, there is a risk that the hydrostatic 
pressure might induce potential harm to the spindle, microtubules and 
the cytoskeleton [79,80]. Over the years, different micropipettes have 
been manufactured to carry out mechanical dissection with minimal risk 
of damaging the embryo. Generally, the pipettes used for PZD are the 
same as those applied for the intracytoplasmic sperm injection (ICSI) 
procedure [81]. Extra caution is required when this technique is 

performed on blastocysts, whereby, the hole in the ZP needs to be far 
away from the inner cell mass [80,81]. Another suggested approach is 
piezo micromanipulation, which involves a slight modification of the 
PZD method. The difference is the application of a vibratory motion of 
the piezo pipette produced by a piezoelectric pulse, and this is utilized so 
that ZP thinning, or a hole, can be obtained in a designated area [62]. 

6.1. Laser assisted hatching techniques 

For the following reasons, even though it is the most expensive 
method, LAH is the most widespread technique used in ART nowadays: 
short exposure time, ease and accuracy of use, safety and efficacy [82]. 
The evolution of non-contact lasers utilizes infrared in the range of 
800–1500 nm, which will not induce DNA damage, since the infrared 
range is well away from the DNA absorption peak of 260 nm. The first 
laser applied for human embryos in ART cycles was the 
indium-gallium-arsenic-phosphorus semiconductor diode laser, used by 
Rink and collaborators, who managed to drill mouse oocytes without the 
need for direct contact [83]. Laser pulses (10–20 ms), at a power of 
60–70 mW, were applied to drill openings in the ZP that were 5–7 µm in 
diameter. They reported 70 % blastocyst formation in zona-drilled 
mouse oocytes with this method [83]. Interestingly, one of the main 
advantages of this laser was that it avoided the genetic mutation that 
had been described in other UV contact lasers, and this benefit 
contributed to making this type of laser a valuable tool for ART. With the 
assistance of this type of laser, the first live birth was described in 1995 
by Germon and collaborators in Lausanne, Switzerland [84]. Practically, 
LAH can be delivered using three different methods as described in  

Fig. 1. (A, B): Use of acid Tyrode’s solution or pronase for chemical thinning of 
the ZP. The embryo is held by a holding pipette and gently touched with a 
pipette filled with acidified/enzymatic solution. 
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Fig. 2. A laser pulse can be used to induce a hole in one side of the ZP 
through most of its thickness, allowing an embryo to partially hatch 
(Fig. 3). Alternatively, one shot of the laser can be applied to make a hole 
completely penetrating both layers of the ZP, inner and outer. Finally, 
several multiple pulses of the laser can be utilized to reduce the thick-
ness of the ZP around the embryo, to easily induce the hatching process. 
The specific effects of these three different applications of LAH remain 
controversial and it is not completely clear which method results in 
better pregnancy outcomes. However, an investigation conducted by 
Mantoudis and co-authors, comparing laser-assisted zona thinning, 

partial hatching, and full hatching methods [85], showed that zona 
thinning should be the favoured procedure to obtain a higher pregnancy 
outcome rather than total dissection. Similar results have been obtained 
recently in a large study by Wang and colleagues [86]. They systemat-
ically analysed the effects of two procedures for LAH: the drilling 
(D-LAH) group (694 patients) and the thinning (T-LAH) group (716 
patients), in a total of 1410 patients undertaking a FET. Their results 
showed both implantation and clinical pregnancy rates to be signifi-
cantly higher in the T-LAH group compared to the D-LAH group 
(32.73 % versus 29.09 %, p < 0.01 %, and 50.98 % versus 43.95 %, 

Fig. 2. Use of LAH. A: Complete LAH, in which a single hole is used to completely drill through the ZP. B: Partial LAH, in which a single hole is applied without 
breaching the inner membrane of the ZP (black arrow indicates the position of the laser pulse). C: Quarter LAH, in which around a quarter of the ZP is partially drilled 
(red interrupted line). 
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p < 0.01, respectively). The proportion of live births was also slightly 
higher in the T-LAH group, but this variation was not statistically sig-
nificant (39.11 % versus 36.89 %, p > 0.05) [86]. Also, a meta-analysis 
and systematic review published by Chen and co-authors analysed the 
usage of laser AH and compared two methods: D-LAH and T-LAH, and 
correlated them with clinical pregnancy rates in women undergoing 
ART cycles [87]. The meta-analysis involved nine studies with 2405 
clinical pregnancies from D-LAH and 2239 from T-LAH. Their results 
showed no difference in the clinical pregnancy rates between the two 
techniques. Even after subgroup analyses, the authors found no sub-
stantial differences between the two methods. 

7. Clinical application of laser technology: blastocyst collapse 
and embryo biopsy 

Laser technology is a simple, accurate and effective feature, and has 
been applied in different fields, including ART for about three decades. 
Prior to blastocyst vitrification, the use of artificial shrinkage induced by 
a laser pulse might facilitate the diffusion of cryoprotectants into the 
embryo, and thus, the embryo’s exposure to the equilibration solution 
can be reduced to what would be adequate to obtain an efficient vitri-
fication process [88]. Full and expanding blastocysts include a large 
amount of fluid in the blastocoel cavity, which during the process of 
vitrification could be easily converted into ice crystals and impair the 
efficiency of the vitrification procedure. With the application of a laser 
pulse, expanded blastocysts can be easily collapsed, lose fluid in a short 

time and be converted into a morula-like stage. A laser pulse at a min-
imal setting, orientated at the junction between two trophectoderm 
cells, away from the inner cell mass, can be applied to induce an arti-
ficial blastocyst collapse and optimize vitrification-warming outcomes 
[89]. This agrees with several investigations by other authors reporting 
an improvement in cryo-survival, implantation and clinical pregnancy 
rates using the laser collapse approach prior to vitrification [88,89]. An 
additional interesting application to mention regarding laser technology 
and ART is at the time of embryo biopsy (Fig. 4). Genetic testing of 
embryos has been increasingly applied worldwide to scrutinize chro-
mosomal aberration or hereditary disorders. To complete such types of 
assessment, one or two cells from a cleavage stage embryo, or 5–10 cells 
from a blastocyst need to be collected and then sent to the genetics 
laboratory for analysis. Alternatively, genetic material can also be ob-
tained by performing first and second polar body biopsies on the oocyte, 
which, however, involves genetic screening from only the maternal side. 
Historically, to perform embryo biopsy a hole in the ZP has been created 
using acid Tyrode’s solution or mechanical methods utilising a sharp 
glass micropipette [90]. However, both procedures are quite variable 
and might result in inconsistent hole sizes or induce cell harm. In 
addition, with Tyrode’s solution, there is a high risk that the embryo 
itself can be exposed to acidic levels of pH and be irreversibly damaged 
[90,91]. Currently, the use of a laser to perform embryo biopsy is 
considered the gold standard: laser pulses can easily induce a uniform 
hole in the ZP, whereby a biopsy pipette can pass through to remove the 
designated cells, without the potential risk of exposing the embryo to the 

Fig. 3. Use of LAH at different embryonic development stages.  

Fig. 4. Use of LAH to facilitate embryo biopsy. TE: trophectoderm; ZP: zona pellucida  
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acidic pH of Tyrode’s solution. Investigations assessing the utilization of 
acid Tyrode’s and laser zona drilling for human embryo biopsy have 
demonstrated that the use of the laser is easy and quick, ensuring a 
greater number of intact blastomeres, also consistently reducing the 
time the embryo stays outside the incubator [90–92]. 

8. Safety concerns and potential risks associated with AH and 
the use of lasers 

It has been reported by several authors that AH might increase the 
risk of multiple pregnancies [6–8]. This is an important concern to take 
into consideration since the risk of complications is increased for both 
mothers and newborn babies. It is therefore critical to clarify this aspect 
with additional and well-designed large RCTs. Also, it has been reported 
that a complete hole through the entire ZP might negatively impact the 
process of blastocyst expansion or loss of blastomeres, as well as increase 
the risk of bacterial contamination or immunological attack [2]. Some 
authors have investigated the association between AH and ectopic 
pregnancy. A retrospective investigation of 623 clinical pregnancies 
obtained after standard IVF, found an increase in ectopic pregnancy of 
5.4 % when AH was applied compared to 2.2 % in the group without 
hatching [93]. However, some other authors [85–87] have found no 
significant difference in the rates of miscarriage, multiple pregnancy, 
and ectopic pregnancy comparing LAH with non-LAH. Regarding the use 
of laser technology, since the first introduction of this procedure into 
ART, there were several concerns about safety, especially related to the 
risk of possible increased congenital alterations, DNA damage, as well as 
impairment of normal embryo development [94]. Laser wavelength, 
power and pulse length have been the main features scrutinized and, in 
particular, UV wavelength has always been investigated as inducing 
possible mutagenic outcomes and compromised DNA integrity. How-
ever, the wavelength normally applied by lasers used in the field of ART 
is specifically infrared, far away from those that can interfere with DNA 
integrity and thus induce harm [95]. Concerning the power of the laser, 
it can affect the size and width of the hole produced and the amount of 
heat created [95]. Lasers normally use high energy light, which contacts 
the medium surrounding the embryo, and thus, the heat produced will 
be quickly dissolved into the culture medium, therefore not affecting the 
embryo. The risk of thermal harm has been investigated by Wong and 
colleagues [96], and their conclusions failed to identify any significant 
harm to human embryo development after the use of laser procedures on 
vitrified-warmed blastocysts. Another study by Chailert and co-workers 
[97] showed that the utilization of a laser to completely open the ZP was 
positively associated with the number of hatched blastocysts in com-
parison with LAH thinning of the ZP and the control group; however, the 
number of trophectoderm cells and cells of the inner cell mass were 
reduced when both LAH and laser assisted zona thinning was applied in 
comparison with controls. Contrasting results have been reported by 
other authors: Honguntikar and colleagues [98] have reported an in-
crease in DNA fragmentation at the blastocyst stage in the mouse model 
exposed to LAH. In a subsequent study, the same authors investigated 
the epigenetic dysfunction associated with the use of a laser in mouse 
embryos [99]. They reported that the expression of two de novo methyl 
transferases (Dnmt3a and Dnmt3b) decreased following LAH performed 
on day 2 of embryo development, whereas LAH at day 3 or day 5 did not 
induce any impairment in the equivalent genes. Also, the methylation of 
long interspersed nuclear element 1 (LINE-1), a marker of global 
genomic DNA methylation, did not alter following LAH at any embry-
onic stages (cleavage and blastocyst investigated) [99]. Also, an addi-
tional study by Fan and collaborators [100] investigated the effect of ZP 
removal by acid Tyrode’s solution in mouse embryos. The authors found 
that the expression of differentiation-related genes in the inner cell mass 
and trophectoderm was significantly altered in ZP-free blastocysts 
compared with ZP-intact embryos [100]. To summarize, overall 
research involving both animal models and humans has not yet provided 
a clear answer. It seems that lasers might induce some effects on embryo 

physiology and development, but currently, there is insufficient evi-
dence to support a clear link between the use of lasers and embryo 
viability and pregnancy potential. Finally, additional investigations and 
long-term studies of pregnancy rates and the health of offspring are 
needed to clarify and support the safety of laser techniques in the field of 
reproductive medicine. 

9. Concluding remarks 

This narrative review summarizes current knowledge of AH using 
various procedures to reduce the thickness of the ZP and illustrates 
technical aspects of zona manipulation to improve pregnancy outcomes 
and implantation potential in ART cycles. Many different methods are 
being used for AH, which may differ in both efficacy and risks. Evidence 
suggests that LAH is currently considered the most applied method as 
regards safety and efficacy. Improving AH techniques based on the data 
obtained from evidence-based medicine is critically important for the 
future. Finally, even though AH methods have been utilized worldwide 
for more than 30 years, they still lack consolidation from acceptable 
well-designed, large RCTs. 
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