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Summary 
 
Cancer immunotherapy has emerged as a promising therapeutic approach for cancer treatment, specifically 
through adoptive cell transfer (ACT), which involves the utilization of engineered tumor-specific T-cells. Gene 
therapy, involving modifying T-cells to express chimeric antigen receptors (CARs) or T-cell receptors (TCRs), 
holds significant potential for addressing the limitations of T-cell-based therapies for solid tumors. Ongoing 
research endeavors are dedicated to enhancing the specificity of engineered T-cells to effectively recognize 
tumor cells. Efforts are also focused on optimizing TCR activation and increasing overall antitumor activity 
to overcome the immunosuppressive tumor microenvironment (TME). Furthermore, diverse engineering 
strategies are being explored to mitigate the potential adverse effects associated with T-cell adoptive therapy, 
including TCR T-cell cross-reactivities, cytokine release syndrome, and on-target/off-tumor toxicities. The 
precise regulation of gene expression and the refinement of vector design play a pivotal role in advancing gene 
engineering approaches and ensuring their efficacy in clinical settings. 

This thesis addresses the challenges associated with treating solid tumors by employing innovative 
combinatorial T-cell engineering strategies. The first part of the study introduces a novel lentiviral vector 
design incorporating two genes of interest, notably, an inducible or constitutive microRNA (miRNA) for 
instance, to induce a gene knockdown (KD) explicitly targeting hematopoietic progenitor kinase 1 (HPK1), 
which is an intracellular negative regulator of the TCR, in addition to a constitutive CAR targeting prostate-
specific membrane antigen (PSMA) in prostate cancer or a TCR targeting New York esophageal squamous 
cell carcinoma 1 (NY-ESO1) which is a cancer-testis antigen expressed in various solid tumors, including 
melanoma and sarcoma. Furthermore, we have developed an optimized protocol for high-titer viral particle 
production to mediate efficient genetic modification in T-cells while ensuring its suitability for clinical 
translation. The second part of the thesis investigates a novel combinatorial approach that targets multiple 
negative regulators of TCR signaling, focusing primarily on HPK1 as the primary target while also considering 
other selected genes.  

In this regard, we have conducted a comprehensive overview of various negative regulators within the TCR 
signaling pathway and identified the most relevant targets for our specific study. We have also investigated 
the impact of downregulating these genes on T-cell antitumor activity using a retroviral vector designed to 
incorporate single, dual, or multiple miRNAs for inducing single or concomitant perturbations downstream of 
the TCR pathway. After screening over twelve genes for their upregulation upon antigen stimulation, casitas 
B-lineage lymphoma b (Cbl-b) and neural precursor cell-expressed developmentally downregulated protein 4 
(NEDD4), both belonging to the ubiquitin-protein ligases family, were selected for constitutive 
downregulation alongside HPK1. The impact of their downregulation on in vivo antitumor activity and in vitro 
cytotoxicity, proliferation, and cytokine secretion was assessed. While downregulating NEDD4 in addition to 
HPK1 KD or in combination with HPK1-Cbl-b KD did not yield significant advantageous outcomes, while 
the combination of HPK1-Cbl-b KD showed promising potential. It notably resulted in a significant delay in 
tumor growth in vivo and increased cytokine secretion in vitro upon antigen engagement. This work also 
revealed the advantages of high-affinity TCR T-cells over low-affinity TCR T-cells. It highlighted the 
importance of removing intracellular TCR checkpoints to enhance T-cell activation, particularly in high-
affinity TCR. Furthermore, a clustered regularly interrupted short palindromic repeats (CRISPR) screening 
approach, utilizing a small TCR signaling library comprising twenty-seven negative regulators, along with 
positive and negative controls, underscored the necessity of adopting a combinatorial KD approach as 
individual negative regulator genes alone failed to improve T-cell persistence in vivo.  
Taken together, this thesis contributes to the development of effective gene therapy strategies by addressing 
the challenges faced in T-cell-based immunotherapy through innovative combinatorial T-cell engineering 
approaches aiming to enhance the efficacy of treatments against solid tumors.  
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Résumé 
 
L'immunothérapie du cancer s'est imposée comme une approche thérapeutique prometteuse pour le traitement 
du cancer, notamment par le transfert adoptif des cellules T génétiquement modifiées pour reconnaitre 
spécifiquement les cellules cancéreuses. La thérapie génique, qui consiste à modifier les cellules T pour 
qu'elles expriment des récepteurs d'antigènes chimériques (CAR) ou des récepteurs des cellules T (TCR), offre 
un potentiel significatif pour surmonter les limites des thérapies à base de cellules T contre les tumeurs solides. 
Des recherches en cours visent à améliorer la spécificité des lymphocytes T génétiquement modifiés pour une 
reconnaissance efficace des cellules tumorales. Les efforts sont également axés sur l'optimisation de 
l'activation des TCR et l'augmentation de l'activité antitumorale globale afin de surmonter les obstacles 
rencontrés dans le microenvironnement immunosuppresseur des tumeurs (TME). En outre, différentes 
stratégies de génie génétique sont explorées pour atténuer les effets indésirables potentiels liés à la thérapie 
adoptive des cellules T, tels que les réactions croisées des TCR, le syndrome de libération de cytokines et les 
toxicités ciblées ou non tumorales. La régulation précise de l'expression des gènes et le raffinement de la 
conception des vecteurs jouent un rôle crucial dans le développement des approches de génie génétique et dans 
la garantie de leur efficacité dans les contextes cliniques. 

Cette thèse aborde les défis associés au traitement des tumeurs solides en utilisant des stratégies combinatoires 
novatrices de la modification génétique des cellules T. La première partie de l'étude présente une nouvelle 
conception de vecteur lentiviral incorporant deux gènes d'intérêt. Il s'agit notamment d’un microARN 
(miARN), par exemple, soit inductible ou constitutif pour l'inhibition génique ciblant spécifiquement la kinase 
1 du progéniteur hématopoïétique (HPK1) comme étant un régulateur négatif intracellulaire du TCR, en plus 
d'un CAR constitutif ciblant l'antigène membranaire spécifique de la prostate (AMSP) du cancer de la prostate 
ou d'un TCR ciblant l’antigène NYESO1 (New York esophageal squamous cell carcinoma 1) qui est un 
antigène du cancer-testicule exprimé dans diverses tumeurs solides, y compris le mélanome et le sarcome. De 
plus, nous avons développé un protocole optimisé pour la production de particules virales à haut titre, 
permettant une modification génétique efficace des cellules T tout en garantissant son adaptation à l’utilisation 
clinique. La deuxième partie de la thèse explore une nouvelle approche combinatoire ciblant multiples 
régulateurs négatifs du signal TCR, en se focalisant principalement sur HPK1 en tant que cible principale, tout 
en considérant également d'autres gènes sélectionnés.  

À cet égard, nous avons réalisé une revue complète des différents régulateurs négatifs de la voie de 
signalisation du TCR et avons identifié les cibles les plus pertinentes pour notre spécifique étude. Nous avons 
également étudié l'impact de l'inhibition de ces gènes sur l'activité antitumorale des cellules T en utilisant un 
vecteur rétroviral conçu pour incorporer un, deux ou plusieurs miARNs afin d'induire des perturbations 
individuels ou concomitantes en aval de la voie du TCR. Après avoir examiné plus de douze gènes pour leur 
expression lors de la stimulation antigénique, le lymphome à lignée B de casitas b (Cbl-b) et la protéine 4 
régulée au cours du développement exprimée par les cellules précurseurs neuronales (NEDD4) qui 
appartiennent tous deux à la famille des ligases de l'ubiquitine, ont été sélectionnées pour une inhibition 
constitutive parallèlement à HPK1. L'impact de leur répression sur l'activité antitumorale in vivo, ainsi que sur 
la cytotoxicité, la prolifération et la sécrétion de cytokines in vitro, a été évalué. Bien que la répression de 
NEDD4 en plus de celle du HPK1 ou en combinaison avec l'inactivation de HPK1-Cbl-b n'ait pas conduit à 
des résultats significativement avantageux, il est important de souligner que la combinaison de HPK1-Cbl-b 
KD a montré un potentiel prometteur. Elle a notamment entraîné un retard significatif de la croissance tumorale 
in vivo et une augmentation de la sécrétion de cytokines in vitro lors de la stimulation antigénique. Cette étude 
a également mis en évidence les avantages des lymphocytes T à TCR à haute affinité par rapport à ceux à 
faible affinité, soulignant l'importance de l'élimination des points de contrôle intracellulaires du TCR pour 
renforcer l'activation des lymphocytes T, en particulier dans le cas des TCR à haute affinité.  
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De plus, une approche de criblage CRISPR (clustered regularly interrupted short palindromic repeats) utilisant 
une petite librairie comprenant vingt-sept régulateurs négatifs de signalisation du TCR a souligné la nécessité 
d'adopter une approche combinatoire d'inhibition, car l'inactivation individuelle des gènes régulateurs négatifs 
n'a pas amélioré la persistance des lymphocytes T in vivo. 

Dans l'ensemble, cette thèse contribue au développement de stratégies efficaces de thérapie génique en 
s'attaquant aux défis rencontrés dans l'immunothérapie à base de lymphocytes T, en utilisant des approches 
innovantes et combinatoire de génie génétique visant à améliorer l'efficacité des traitements contre les tumeurs 
solides. 
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Résumé (large public) 
 
Au cours des dernières décennies, une approche de traitement contre le cancer appelée immunothérapie a été 
développée, comprenant différentes stratégies visant à éliminer les cellules cancéreuses. L'une de ces stratégies 
est le transfert adoptif de lymphocytes T modifiés génétiquement, qui consiste à prélever des lymphocytes T 
du patient ou de donneurs sains et à les modifier en laboratoire pour qu'ils puissent reconnaître spécifiquement 
les tumeurs et les éliminer. Cela peut être réalisé en introduisant des récepteurs antigéniques chimériques 
(CAR) ou des récepteurs de cellules T (TCR) dans les lymphocytes T. Bien que cette approche ait montré une 
efficacité significative dans le traitement de certains cancers du sang, elle est limitée pour les tumeurs solides 
en raison des obstacles présents dans le microenvironnement immunosuppresseur des tumeurs (TME).  
 
Cette thèse propose des stratégies innovantes de modification génétique des lymphocytes T pour surmonter 
ces obstacles.  
 
Dans la première partie de l'étude, un nouveau type de vecteur lentiviral est présenté étant un des moyens 
utilisés en génie génétique pour introduire du matériel génétique spécifique dans les cellules. Ce nouveau 
vecteur contient deux gènes d'intérêt. Le premier gène introduit un CAR, de manière constitutive, spécifique 
de l'antigène membranaire spécifique de la prostate (AMSP) pour cibler le cancer de la prostate, ou un TCR 
spécifique du NYESO1 (antigène du carcinome épidermoïde de l'œsophage de New York 1) exprimé dans 
diverses tumeurs solides. Le deuxième gène est, par exemple, un microARN (miARN) qui réduit l'expression 
d'un gène inhibiteur de l'activation des lymphocytes T. Ce gène peut être exprimé de manière constitutive ou 
induite pour éviter une suractivation indésirable des lymphocytes T dans le TME. De plus, un protocole 
optimisé de production de particules virales à haute concentration a été développé pour permettre une 
modification génétique efficace des lymphocytes T tout en garantissant son utilisation clinique.  
 
La deuxième partie de la thèse explore de nouvelles approches combinatoires ciblant plusieurs régulateurs 
négatifs du signal TCR, en mettant l'accent sur la kinase des progéniteurs hématopoïétiques 1 (HPK1) en tant 
que cible principale. Après avoir identifié les cibles les plus pertinentes pour cette étude, les effets de 
l'inhibition de ces gènes sur l'activité antitumorale des lymphocytes T ont été étudiés en utilisant un vecteur 
rétroviral conçu pour introduire un, deux ou plusieurs miARNs.  
 
Par conséquence, des perturbations individuelles ou concomitantes de la voie du TCR sont générées. 
L’examination de l'expression de plus de douze gènes lors de la stimulation antigénique a permis la sélection 
de deux gènes appartenant à la famille des ligases de l'ubiquitine, notamment le lymphome à lignée B de casitas 
b (Cbl-b) et le neural precursor cell-expressed developmentally downregulated protein 4 (NEDD4), pour une 
inhibition constitutive. La stratégie combinée d'inactivation de HPK1 et Cbl-b a montré des résultats 
prometteurs retardant significativement la croissance tumorale in vivo et augmentant la sécrétion de cytokines 
in vitro lors de la stimulation antigénique. De plus, une approche de criblage utilisant la technologie CRISPR 
(clustered regularly interspaced short palindromic repeats) et une librairie comprenant vingt-sept régulateurs 
négatifs de la signalisation du TCR a souligné la nécessité d'adopter une approche combinatoire d'inhibition, 
car l'inactivation individuelle de ces gènes n'a pas amélioré la persistance des lymphocytes T in vivo.  
 
Dans l'ensemble, cette thèse contribue au développement de stratégies efficaces de thérapie génique pour les 
tumeurs solides en utilisant des approches innovantes de génie cellulaire combinatoire visant à améliorer 
l'efficacité des traitements contre ces types de cancer. 
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I. Introduction 
1. The Immune System 

The immune system comprises a complex network of cells, tissues, and soluble molecules working together 
to defend the body against infectious agents, such as bacteria, viruses, fungi, parasites, and tumor cells. The 
mechanisms of immune protection have become increasingly complex as species adapt to combat evolving 
pathogens. It primarily discriminates between "self" and "non-self" molecules and cells, eliminating the latter 
while leaving the former intact 1. Two main types of responses are adaptive and innate immunity. Innate 
immunity, or natural non-specific immunity of immediate action, is the first line of defense involving cells and 
molecules responsible for phagocytosis of a wide range of invading pathogens and, in some cases, killing 
infected cells. On the other hand, adaptive immunity involves the specific recognition of the foreign substance, 
which will be neutralized and destroyed 2 (Figure 1). While the innate immune response (IR) exists in all 
multicellular organisms, the adaptive IR is found only in vertebrates 3.  

1.1. The Innate Immune Response: 
The innate immune system plays a critical role in maintaining homeostasis and is the first line of defense 
against infectious and pathogenic agents. It is activated by danger signals resulting from interactions between 
self-receptors on various cells and non-self-molecules on microorganisms. Dysregulation of the innate immune 
system can lead to immunodeficiencies 4, autoimmune disorders 5, and chronic diseases such as diabetes 6, 
Alzheimer 7, and atherosclerosis 8.  

The innate immune response involves different defense modules (Figure 1). These include physical and 
chemical barriers, such as the skin and mucous membranes, that prevent pathogen entry into the body 9. 
Induced modules, including the inflammatory response and phagocytosis, involve phagocytic cells, soluble 
molecules, and cytokines 10. Pattern recognition receptors (PRRs) are key components of this response as they 
recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns 
(DAMPs), initiating immune responses11. Examples of key PRRs are Toll-like, nucleotide-binding 
oligomerization domain (NOD-like), RIG-I-like, C-type lectin, STING (stimulator of interferon genes) and 
cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), which detect 
cytosolic deoxyribonucleic acid (DNA) and trigger antiviral immune responses 12,13. Phagocytic cells, such as 
macrophages and dendritic cells (DCs), engulf and destroy invading pathogens (phagocytosis) and function as 
antigen-presenting cells (APCs) by presenting antigens via class I and II major histocompatibility complex 
(MHC) molecules 14,15. Dendritic cells can originate either from myeloid or lymphoid (for some subsets, e.g., 
Ly6D+, Interleukin (IL)-7R alpha (α)+, a cluster of differentiation (CD) 81+ and CD2+plasmacytoid DCs 16) 
progenitors. DCs can either present the antigen at the site of infection or migrate to secondary lymphoid organs 
to trigger the adaptive immune response 17.  

Natural killer (NK) cells are derived from CD34+CD38−CD7+ common lymphoid progenitors in the bone 
marrow 18. However, they do not present the CD3 differentiation cluster; instead, they are characterized by the 
CD56 and CD16 differentiation clusters 19-22. NK cells can spontaneously recognize and destroy virus-infected 
or tumor cells without prior activation 23-26. Moreover, they exhibit tight regulation through activating and 
inhibitory receptors, allowing them to target abnormal cells while sparing healthy ones 27,28.  

Lastly, gut microbiota, such as Lactobacillus reuteri, also shapes the innate immune system and affects 
susceptibility to infectious diseases 29-32.  
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1.2. The Adaptive Immune Response: 

The adaptive immune system was first described through observations of protection against subsequent 
infections. Animals were found to be shielded by exposure to a weakened form of the pathogen or by receiving 
serum from previously infected animals 33-35. In the early twentieth century, Ehrlich introduced the concept of 
"horror autotoxicus," suggesting that the immune system can distinguish between self and non-self 36-39. 
Landsteiner expanded on this idea by discovering the ABO blood group system and showing its ability to 
trigger antibody (Ab) responses to foreign antigens 38,40. Medawar and Burnet later proposed the clonal 
selection theory, providing a framework for understanding how the immune system generates specific 
responses to antigens 41-44. These outlined discoveries paved the way for understanding the role of the adaptive 
immune system.  

The adaptive immune response serves as the second line of defense against infectious agents and involves 
lymphocytes playing a significant role. It is distinguished by self/non-self-discrimination, specificity, diversity, 
and memory, leading to long-term protection against various pathogens 3 (Figure 1). Lymphocytes are the 
major cell type of the adaptive immune response characterized by a unique process of dual differentiation 
modulated by antigenic influences. Depending on their maturity, they are found in different locations, 
including secondary lymphoid organs, blood, and spleen1. Lymphocytes can be categorized into B 
lymphocytes, responsible for the humoral response and possessing B Cell Receptors (BCR), and T 
lymphocytes, responsible for the cellular response and presenting TCR 45.  B- and T-cells acquire their unique 
antigen specificity through V(D)J recombination, mediated by the V(D)J recombinase enzyme complex, which 
recognizes specific DNA sequences flanking the variable (V), diversity (D), and joining (J) gene segments that 
encode for the BCR. 

1.2.1. B lymphocytes:  
B cells originate from hematopoietic stem cells (HSCs) in the bone marrow and undergo a series of maturation 
phases, including gene rearrangement and positive and negative selection, to finally migrate to secondary 
lymphoid organs such as the spleen and lymph nodes for further development. B cells are characterized by the 
expression of the CD19 and a BCR complex comprising a signaling Igα-Igβ dimer that enables specific 
recognition of antigenic peptide fragments derived from pathogens. Additionally, B cells function as APCs, 
presenting both MHC class I and class II molecules 2,46. V(D)J recombination allows B cells to acquire unique 
antigen specificity, generating a variety of BCRs for recognizing numerous pathogens 46,47. On exposure to 
pathogenic antigens, B cells proliferate and differentiate into plasma cells secreting antibodies for pathogen 
neutralization or long-lived memory B cells for faster subsequent infection responses 46.  

Antibodies are heterotetrameric structures composed of two disulfide-connected heavy (H) bonds and two 
light chains (L), each featuring variable (V) and constant (C) regions. Heavy chains exhibit isotypes (IgM, 
IgD, IgG, IgA, and IgE) with specific functions. Antibodies can undergo fragmentation via enzymes such as 
papain (producing Fab and Fc fragments) or pepsin (resulting in F(ab)2 and pFc' fragments)2. 

B cells use several mechanisms for direct or indirect target cell killing, including i) Antibody-dependent 
cellular phagocytosis (ADCP) or antibody-dependent cellular cytotoxicity (ADCC) 48,49, ii) Complement-
mediated cytotoxicity (CDC), involving the membrane attack complex (MAC) 49, iii) Cytokine-mediated cell 
death, by releasing cytokines, such as tumor necrosis factor-alpha (TNF-α) and iv) Direct cell-mediated 
cytotoxicity via Fas ligand (FasL) capable of inducing apoptosis or programmed cell death in target cells 50.  
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1.2.2. T lymphocytes: 
T-cells play a vital role in mediating specific cellular immunity. They acquire their antigen specificity through 
the TCR, which specifically recognizes antigenic fragments presented on the cell surface by MHC molecules. 
Upon activation, T-cells target infected cells, cancer cells, and cells that are damaged or malfunctioning 1,2. 
HSCs in the bone marrow give rise to T-cells, which then migrate to the thymus. In the thymus, immature T-
cells, known as thymocytes, undergo a selection process that determines their antigen specificity and functional 
characteristics. Similar to B cells, thymocytes undergo V(D)J recombination, involving gene rearrangements 
responsible for TCR encoding 47.   

Positive and negative selection mechanisms occur during T-cell development to ensure that T-cells can 
recognize foreign antigens while avoiding attacks on the body's own cells 51. A study led by Kathryn M. et al. 
demonstrated that T-cells can recognize antigens through conformational changes in response to antigen 
binding 52, enabling the recognition of a broad range of antigens, including highly variable ones found on 
viruses. T-cells are characterized by the CD3 along with either the CD4+ or CD8+ differentiation clusters. 
Based on surface markers, T lymphocytes can be classified into various types. Still, the main types are 
cytotoxic CD8+ T-cells characterized by the presence of the CD8+ coreceptor and recognition of MHC I and 
II, and CD4+ T-cells characterized by the presence of the CD4+ coreceptor and recognition of MHC II. CD4+ 
T-cells can further differentiate into helper T-cells, which regulate the adaptive immune response. Both CD8+ 
and CD4+ T-cells can develop into "memory" cells after encountering the antigen, enabling a faster and more 
robust response upon subsequent encounters with the same antigen 1,2.  

T-cells possess diverse mechanisms to eliminate target cells, including i) Direct cell-mediated cytotoxicity, 
whereby T-cells induce cell death in target cells via FasL and by releasing toxic molecules such as perforin 
and granzymes. Encased within granules, these molecules are released by T-cells upon TCR engagement with 
the antigen. T-cells form nanotubes that establish a direct connection with target cells, facilitating the 
transportation of perforin directly to the target cell membrane. Consequently, pores are formed, enabling the 
entry of granzymes. This sequence of events sets in motion a cascade that ultimately results in the demise of 
the target cell 53,54. ii) Cytokine secretion: T-cells produce cytokines, including interferon-gamma (IFN-γ) and 
TNF-α/beta (β), capable of inducing cell death in target cells 2. iii) Activation of other immune cells represents 
another essential mechanism employed by T-cells to eliminate target cells. For example, T-cells can secrete 
IFN-γ which stimulates other immune cells, including macrophages, for enhanced antigen presentation and 
bactericidal function 55. Furthermore, T-cells contribute to Th1 differentiation, cytotoxic T lymphocyte (CTL) 
function, as well as the activation of neutrophils and NK cells 56,57. 

1.3. Crosstalk Between The Innate And Adaptive Immune Responses: 
The activation of the adaptive immune system is facilitated by the innate immune response through the 
recruitment of immune cells to the infection site and antigen presentation to T and B cells, which then mount 
a specific response to the invading pathogen. This process, known as antigen presentation, is crucial for the 
initiation of adaptive immunity (Figure 1). Notably, APCs play a dual role in innate and adaptive immunity 
by activating lymphocytes, which are the principal cells of adaptive immunity. Among these lymphocytes, B 
cells, considered APCs, also contribute to adaptive immunity. Consequently, it can be inferred that innate 
immunity serves as the instigator of adaptive immunity, establishing a significant connection between humoral 
and cellular-mediated immunity. The integrity of this interface is of utmost importance in maintaining the 
body's defense, as a disruption in even a single mechanism can lead to severe or even fatal diseases and 
syndromes 58. 
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Figure 1: Schematic overview of innate and adaptive immune responses. 
top; the innate immune system is the first line of defense against infection, including physical, chemical, and microbiological 
mechanisms. middle; genesis and differentiation of immune cells from hematopoietic stem cells to various innate and adaptive immune 
cells. bottom; timeline of immune responses, from the rapid innate response to the gradual and highly specific adaptive response, 
highlighting the establishment of memory T and B cells in generating long-term immunity. 
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2. Cancer  

Cancer is the leading cause of death globally, accounting for an estimated 10 million deaths in 2020, according 
to the world health organization (WHO) 59. Cancer incidence is also on the rise, with nearly 19 million reported 
in 2020 and an estimated 29 million expected by 2040 based on Globocan data 60.  Cancer is considered a 
genetic and, more recently, also a metabolic disorder that can be inherited or sporadic 61. It involves qualitative 
and quantitative changes in gene expression and function, resulting in the uncontrolled growth and spread of 
abnormal cells in the body. Cancer cells arise and proliferate in different body sites, forming tissue masses 
(i.e., tumors).  

Cancers are usually named based on the type of cell or organ from which they originate. Malignant tumors, 
unlike benign ones, have the ability to spread to adjacent organs or tissues, forming new tumors in distant 
locations (metastasis) through the blood or the lymph system 62,63.  Tumors may consist of different clonal 
types with distinct genetic mutations, responses to treatment, and the potential for recurrence 64.  
Advancements in genome sequencing have revealed chromosomal rearrangements, epigenetic changes, and 
alterations in DNA repair mechanisms as novel genetic alterations and pathways involved in cancer initiation 
and progression 65,66. For instance, epigenetic modifications such as DNA methylation and histone 
modifications can alter gene expression and contribute to cancer development 67,68. Moreover, the TME, 
including immune cells, blood vessels, and extracellular matrix (ECM) components, plays a critical role in 
cancer initiation, progression, and metastasis through interaction with cancer cells and their microenvironment 
69-71. In addition, non-coding ribonucleic acid (RNA), such as miRNAs and long non-coding RNAs (IncRNAs), 
are deregulated in various cancer types and implicated in multiple aspects of cancer growth, migration, and 
invasion 72-74. Emerging evidence also highlights the role of the gut microbiome in cancer development and 
progression by influencing immune responses and metabolic pathways through various mechanisms, including 
the secretion of bacterial toxins, molecules that damage DNA, and cytokines such as interleukin (IL)-1 and 
IL-12 75-78.  

2.1. Solid Tumors:  
Solid and liquid malignancies are two main types of tumors that differ in their physical and structural 
characteristics. Liquid tumors consist of either white blood cells that circulate in the bloodstream and bone 
marrow (leukemias) or abnormal lymphocytes circulating in the lymphatic system (lymphomas) without 
forming masses. In contrast, solid tumors, which can be classified as either "cold" or "hot" tumors (Figure 2), 
comprise cells that form a lump in a particular body area and can spread to other organs or tissues. Cold tumors 
are characterized by a lack of immune cell infiltration and an immunosuppressive tumor microenvironment, 
which hinders the immune system's ability to recognize and attack cancer cells. On the other hand, hot tumors 
exhibit significant immune cell infiltration and an inflamed tumor microenvironment, promoting an active 
immune response against cancer cells. Solid tumors are a significant contributor to the burden of cancer 
worldwide 79-81.  

The National Cancer Institute estimated that solid tumors accounted for 90% of all adult human cancers in 
2023, with breast, lung, prostate, colorectal, and melanoma being the most common types of solid tumors 82,83. 
The prognosis for patients with solid tumors varies depending on the type and stage of cancer, as well as other 
factors such as age and overall health. Treatment options for solid tumors may include surgery, radiation 
therapy, chemotherapy, targeted therapies, and more recently, immunotherapy. 
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Figure 2: Comparative characteristics of cold and hot tumors in TME. 
left; cold tumors are characterized by low immunogenicity, inadequate effector cell priming, and limited infiltration of effector immune 
cells. These tumors harbor a high proportion of immunosuppressive components and cells, which collectively hinder the immune 
system's ability to detect and eliminate cancer cells, leading to CTL cell dysfunction and a reduced response to cancer therapies. right; 
hot tumors are distinguished by an efficient release of tumor antigens, successful priming of effector cells, particularly CTL cells, and 
a significant presence of infiltrating effector immune cells within an inflamed TME. These characteristics result in a more efficient 
eradication of cancer cells and an increased responsiveness to cancer therapies. 

2.1.1. Melanoma:  
Melanoma is the most aggressive type of skin cancer that emerges from malignant melanocytes 84, which are 
specialized cells that make melanin. It can be caused by genetic alterations, such as mutations in v-raf murine 
sarcoma viral oncogene homolog B1 (BRAF), telomerase reverse transcriptase (TERT), neuroblastoma-RAS 
(NRAS), and phosphatase and TENsin homolog (PTEN) genes, as well as chromosomal rearrangements and 
gene fusions 85-87. Research has identified key signaling pathways involved in melanoma, including the 
mitogen-activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K)/Ak strain transforming 
(AKT)/mammalian target of rapamycin (mTOR) complex pathways. Dysregulation of these pathways is 
observed in a significant number of melanomas, opening up new targets for therapy 87,88. Moreover, recent 
studies have identified specific components, such as tumor-associated macrophages (TAMs), ECM proteins, 
and growth factors, within the melanoma microenvironment. Combinatorial therapies, including 
immunotherapies targeting multiple pathways and components, have shown promise in both preclinical and 
clinical studies 89-95. Furthermore, emerging evidence suggests that the gut and skin microbiomes contribute to 
melanoma development and progression. They may affect the immune system and DNA damage repair. 
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Specific microbial species and metabolites associated with melanoma risk and outcomes have been identified, 
presenting new avenues for prevention and treatment 96-99. Melanoma can be clinically stratified into different 
subtypes based on histopathological features. Common subtypes include superficial spreading melanoma, 
nodular melanoma, lentigo maligna melanoma, and acral lentiginous melanoma 100,101. 

2.1.2. Prostate cancer:  
The most common type of prostate cancer is adenocarcinoma, which accounts for over 90% of cases 102,103. It 
arises from glandular cells producing prostate fluid and is characterized by prostate-specific antigen (PSA) 
expression and abundant androgen receptors (AR), as well as mutations in the erythroblast transformation 
specific (ETS) gene family. Additionally, it exhibits enhanced oxidative phosphorylation (OXPHOS) and 
lipogenesis 104,105. Recent studies have identified biomarkers associated with adenocarcinoma 106-109, as well as 
genes linked to more aggressive disease and resistance to androgen deprivation therapy in certain subtypes of 
adenocarcinoma 110-112. There are other less frequent and aggressive types of prostate cancer. One example is 
prostatic acinar adenocarcinoma with ductal differentiation, which is characterized by the presence of 
glandular and ductal structures. This subtype is associated with a higher risk of biochemical recurrence and a 
poorer prognosis 113. Another type is prostatic urothelial carcinoma, which originates from the urothelial cells 
lining the bladder, neck, and prostatic urethra. This subtype is known for its high frequency of genetic 
alterations and poor prognosis 114.  

2.2. Solid Tumor Immunosuppressive Microenvironment:  
TME is a complex network of highly heterogeneous cellular, non-cellular, and molecular components. 
Different regions exhibit different physical, cellular, and metabolic barriers that significantly influence cancer 
progression, invasion, metastasis, and resistance to therapy (including immunotherapies). These barriers 
inhibit the activity of effector immune cells, including cytotoxic T-cells, NK cells, and DCs 115-118 (Figure 3).   

Upregulation of immune checkpoint molecules such as programmed cell death 1 (PD-1), cytotoxic T-
lymphocyte antigen-4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3) in the TME dampen T-cell 
activation and promote exhaustion (discussed below in this section)  119,120.  For instance, patients with 
advanced non-small cell lung cancer (NSCLC) expressing programmed cell death ligand 1 (PD-L1) on 
circulating tumor cells (CTC) showed improved survival with anti-PD-1/PD-L1 therapy, highlighting the role 
of PD-L1 in immune suppression and drug resistance 121.  

Another challenge faced by T-cells in the TME is the presence of cytokines, chemokines, and growth factors 
that mediate communication between immune cells and components within the TME. For instance, IL-6, 
transforming growth factor- β (TGF-β), and IL-10 can inhibit T-cell function and promote the differentiation 
of immunosuppressive cells 122-124. Moreover, the vascular endothelial growth factor (VEGF) present in TME 
can promote cancer angiogenesis and limit T-cell infiltration 125,126. Furthermore, specific chemokines such as 
chemokine C-C motif ligand 2 and 5 (CCL2, CCL5), C-X-C motif chemokine ligand 12 (CXCL12), and C-X-
C motif chemokine receptor 4 and 7 (CXCR4, CXCR7) attract immunosuppressive cells to the TME and 
contribute to cancer progression 123,127-129.   

The TME also recruits immunosuppressive cells, namely regulatory T-cells (Tregs) and myeloid-derived 
suppressor cells (MDSCs). Tregs have the ability to inhibit the activation and differentiation of T-cells 130-133. 
They induce tumor immune escape through various mechanisms, such as the high consumption of IL-2 due to 
the expression of high-affinity IL-2 receptors, the inhibition of CD80/CD86 expression on DCs through their 
interaction with CTLA-4 on their surface with CD80/CD86 on DCs, the production of inhibitory metabolites 
as prostaglandin E2 (PGE-2), IL-10 and transforming growth factor-beta (TGF-β) within the TME, and even 
by directly killing anti-tumor effector cells 132,134-136. Hence, depleting Tregs has enhanced immune checkpoint 
blockade (ICB) effectiveness in preclinical models 132,136-141, with efficacy depending on the tumor burden and 
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the specific antibody used for Treg depletion 139. On the other hand, MDSCs are a heterogeneous population 
of immature myeloid cells that can suppress T-cell function by secreting IL-10 and IL-12 and promote 
angiogenesis via, for instance, bombina variegata peptide 8 (Bv8) and matrix metalloproteinases 9 (MMP-9) 
production 133,142-145. Additionally, plasmacytoid dendritic cells (pDCs) expressing IFN-α also exert an 
immunosuppressive role within the TME 146-148. These pDCs promote cancer cell invasion through the TNF-
α/ nuclear factor κ light chain enhancer of B cells activation (NF-κB)/CXCR-4 pathway in oral squamous cell 
carcinoma (OSCC) and hepatocellular carcinoma (HCC) contexts 149. This is due to their role in the 
upregulation of ectonucleotidases CD39 and CD73, which are essential for extracellular adenosine (eADO) 
production. This upregulation is induced by hypoxia-inducible factor 1-alpha (HIF-1α) and leads to the 
recruitment and the differentiation of CD4+ CD25+ Foxp3+ Tregs 147,150,151. pDCs induce immunotolerance 
by expressing certain immune checkpoint molecules, including inducible T-cell costimulator ligand (ICOSL) 
152 and indoleamine 2,3 deoxygenase 1 (IDO1) 147,153. Targeting these cells has shown promise in improving 
immunotherapy response in preclinical models 154. TME can also promote the differentiation of cancer-
associated fibroblasts (CAFs) located in the stroma. CAFs can originate from various cell types, including 
myofibroblasts, fibroblasts, adipocytes, and cancer-associated mesenchymal stem cells (MSCs) 155. They 
create a favorable environment for tumor growth, impair T-cell function, and play a role in drug resistance. 
For instance, the CD10+ G-protein-coupled receptor 77 (GPR77)+ CAF subset, secreting IL-6 and IL-8, 
directly promotes human breast and lung cancer cell formation 156. In addition, CAFs limit T-cell function 
either directly by releasing TGF-β, CXCL12 and by forming a physical barrier through ECM deposition 133,157-

159 or indirectly by recruiting immunosuppressive Tregs and myeloid cells through the secretion of IL-1β, IL-
6, VEGF, colony-stimulating factor 1 (CSF-1), CCL2, and Chitinase 3-like1 160-164.  Furthermore, CAFs 
contribute to drug resistance and chemotherapy resistance in certain cancers 155,165.  
A study led by Li et al. has identified the release and transfer of immunosuppressive bioactive lncRNA from 
cancer cells to MSCs via exosomes, resulting in the inhibition of MSC osteogenesis in the multiple myeloma 
(MM) model. Inhibition of exosome release has correlated with efficient bone formation and prevention of 
bone loss 166. Moreover, the TME induces immune evasion through the modulation of the ECM, which acts as 
a physical barrier to immune cell infiltration and hinders their activity. High levels of collagen, fibronectin, 
hyaluronan proteoglycan, and ECM receptors, such as integrins and CD44, are often present in the TME and 
contribute to T-cell exhaustion and inhibition of their cytotoxic activity 133,167-169. Targeting these molecules 
can enhance T-cell activity and cytotoxicity, reduce T-cell exhaustion, and improve the response to 
immunotherapy, particularly when combined with ICB 170-175. 

2.2.1.1. T-cell exhaustion 

T-cell exhaustion is a state of functional impairment and dysfunction observed during chronic infections, 
including viral and tumor infections. Exhausted T-cells (Tex cells) form a distinct T-cell subset distinct from 
naïve, memory, and effector cells 176. Tex exhibits a progressive decline in effector function and cytotoxicity 
along with sustained expression of inhibitory receptors, including PD-1, T-cells immunoglobulin and mucin 
domain-containing-3 (TIM-3), LAG-3, CTLA-4, and T cell immunoreceptor with Ig and ITIM domains  
(TIGIT) 177,178. These cells also experience reduced production of cytokines and metabolic impairments 179. 
Despite their exhausted state, exhausted T-cells (Tex cells) retain the ability to proliferate in vivo and generate 
effector molecules, allowing them to exert some control over pathogens or tumors 178,180. T-cell exhaustion, 
although limiting clearance of virus-infected or tumor cells, plays a vital role in protecting against excessive 
immunopathology 179. Reversal of T-cell exhaustion is possible to some extent, but a threshold of high 
exhaustion may exist, beyond which reversal becomes unlikely, particularly in PD-1hi CD8+ Tex cells 181.   

Chronic TCR signaling plays a pivotal role in driving T-cell exhaustion, as evidenced by the involvement of 
the calcineurin-dependent transcription factor NFAT (nuclear factor of activated T-cells) 182 and other TCR-
responsive transcription factors (e.g., Interferon regulatory factor 4 (IRF4), basic leucine zipper ATF-like 
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transcription factor  (BATF), NR4A, and thymocyte selection-associated HMG BOX (TOX)) in exhaustion 
183-190. These factors contribute to the upregulation of inhibitory receptors such as PD-1, the long-term survival 
of exhausted T-cells, and impaired cellular metabolism 179. On the contrary, reducing IRF4 expression restored 
the functional and metabolic properties of antigen-specific T-cells and promoted memory-like T-cell 
development 179.  

TCF1, a transcription factor crucial for memory T-cell differentiation, is a key regulator in the transition from 
precursor-exhausted to fully exhausted T-cells 191. Beltra et al. (2020) identified a four-stage developmental 
trajectory for subsets of Tex cells based on Ly108 (a surrogate for TCF1) and CD69 expression 192. Their study 
revealed distinct interchangeable progenitor states, namely Texprog1 and Texprog2, characterized by different 
transcriptional, phenotypic, functional, and anatomical features. The Texint subset showed similarities to 
circulating "effector-like" cells but had unique epigenetic characteristics compared to effector cells. The 
transition of Tex cells involved a transcription factor cascade from TCF1hiToxhi to TCF1intToxhi, TCF1negT-
bethiToxint, and finally to TCF1negT-betloToxhiEomeshi cells. Furthermore, after the PD-1 blockade, Texint cells 
were found to potentially replace Texterm cells in tumors, leading to the accumulation of Eomeshi Tex cells 192. 
 

 
Figure 3: Mechanisms of tumor rejection and escape. 
left; tumor rejection involves an efficient process of effector T-cell priming within the tumor bed or lymph nodes by costimulatory 
signals coupled with potent T and NK cell-mediated tumor destruction. right; tumor escape is facilitated by mechanisms suppressing 
effector T-cell activity via a range of immunosuppressive cells, namely, Tregs, TAMs, MDSCs, tolerogenic DCs, and cancer cells, 
along with TEX suppression mechanisms. These immunosuppressive cells and components can impair T-cell function, either directly 
through the direct interaction of inhibitory checkpoint surface molecules with their ligand in the T-cell surface or indirectly by the 
release of immunosuppressive cytokines, chemokines, molecules, and metabolites. 
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3. Cancer Immunotherapy:  

Cancer immunotherapy is a type of cancer treatment that harnesses the power of the body's immune system to 
target and fight cancer cells. It relies on understanding the complex interaction between the immune system 
and cancer cells. Cancer immunotherapy has proven its efficacy in treating many patients with different types 
of tumors. Moreover, it represents an essential milestone in the development of cancer treatments and has the 
potential to revolutionize cancer care 193-195. Cancer immunotherapy has a long history dating back to the late 
19th century. Two German physicians, Fehleisen and Busch, independently observed tumor regression after 
erysipelas infection, and then Fehleisen identified Streptococcus pyogenes as the cause. In 1891, William 
Bradley Coley, a bone surgeon famously known as the “father of immunotherapy”, attempted to use the 
immune system to target bone cancer and developed a mixture of bacteria known as Coley's toxins. Although 
some patients experienced tumor regression, inconsistent and variable data, along with the risk of infecting 
patients, led to the decline of Coley's treatment, ultimately falling out of favor with the advent of radiation and 
chemotherapy 193,196-198. Around the same time, Paul Ehrlich proposed the theory of "side chain" or "receptor," 
suggesting that T-cells have specific proteins that recognize and bind to “antigens”.  

Emil von Behring and Shibasabura Kitasato substantiated his theory by later discovering, in 1890, antibodies. 
In 1907, Ehrlich introduced the concept of a "magic bullet," involving a targeted therapy aimed at selectively 
eliminating cancer cells while preserving normal cells in the patient's body. Subsequently, he confirmed 
Coley's observations in 1908, and significant discoveries in immunology followed 199. Later in 1950, 
researchers found that the immune system can distinguish between self and non-self-antigens, including unique 
antigens expressed by cancer cells. The role of T-cells in cancer immunotherapy was revealed in 1967, leading 
to the exploration of cytokines, monoclonal antibodies, and cancer vaccines. However, these approaches had 
limited success until the late 20th century when advances in molecular biology and immunology sparked 
interest again. Checkpoint inhibitors, which remove breaks from immune cells and allow T-cells to effectively 
recognize and kill cancer cells, revolutionized cancer immunotherapy.  The food and drug administration 
(FDA) approved the first drug, ipilimumab (anti-CTLA-4), against advanced melanoma in 2010, and James 
Allison and Tasuku Honjo were awarded the Nobel Prize in 2018 for their work on checkpoint blockade 
molecules 200. Other immunotherapy drugs like pembrolizumab (anti-PD-L1) and nivolumab (anti-PD-1) have 
been approved for various cancers, shaping cancer immunotherapy as it stands nowadays 201,202. Several 
strategies have been developed to enhance T-cell activity and overcome immunosuppression, each with its 
own advantages and limitations. The choice of treatment depends on factors such as cancer type, stage, patient 
health, and availability. Immunotherapy strategies include ICB, the introduction of immunomodulatory 
cytokines, cancer vaccines, and ACT. 

3.1. Adoptive Cell Therapy (ACT) 
Adoptive cell therapy is a targeted form of cancer immunotherapy treatment involving the isolation of immune 
cells, specifically tumor-infiltrating lymphocytes (TILs) from a cancer patient or from peripheral blood 
mononuclear cells (PBMCs) of a healthy donor (particularly T-cells) (Figure 4). These cells can be subject to 
laboratory-based engineering and expansion processes on a large scale. Subsequently, the modified or 
unmodified T-cells (in the case of TILs) are then reintroduced into the patient via transfer or reinfusion, with 
the primary objective of eradicating cancerous cells. Genetic modification of immune cells can include, for 
instance, CARs or TCRs 203-205. Unlike non-specific treatments like chemotherapy and radiotherapy, which can 
affect healthy cells, ACT is a personalized and targeted approach against cancer cells. Chemotherapy uses 
drugs to kill cancer cells, while radiotherapy damages cancer cell DNA to impede their division and growth. 
However, both treatments can have significant side effects, impacting healthy cells and causing nausea, hair 
loss, and a weakened immune system 206. The concept of ACT originated in the 1980s when Steven Rosenberg 
and colleagues first demonstrated that TILs isolated from melanoma patients could be expanded in vitro and 
reinfused into patients for enhanced antitumor efficacy 207,208.  
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In 1994, the first successful clinical application of ACT was reported, showing a 34% objective response rate 
and complete responses in many patients with metastatic melanoma 209. Since then, ACT has expanded to 
include various immune cells, such as dendritic cells and natural killer cells in multiple cancer types. Moreover, 
a breakthrough in ACT occurred in 2010 with the development of CAR-T-cells. CAR-T-cell therapy has 
demonstrated remarkable clinical responses against certain blood cancers, leading to the approval of CD19 
CAR-T-cells by the FDA in 2017 for treating relapsed or refractory acute lymphoblastic leukemia in children 
and young adults 210-213. While ACT has shown promising clinical results, it faces challenges related to 
technical complexity, cost, cell selection, target antigen identification, toxicity, and tumor immune escape 
mechanisms 214,215.  

Ongoing research projects aim to enhance the efficacy and safety of ACT through novel T-cell engineering 
approaches, gene editing technologies, and the combination of ACT with checkpoint inhibitors, low-dose 
radiotherapy, or combinatorial engineering to improve T-cell persistence and immunomodulation 214,215.  

3.1.1. Tumor-infiltrating lymphocyte (TIL) therapy:  
TIL therapy involves the isolation and big-scale in vitro expansion of lymphocytes, particularly T-cells, from 
a patient's tumor using high doses of IL-2. These expanded TILs are then either directly reinfused or engineered 
before being transferred back into the patient. TILs possess the advantage of specifically recognizing and 
attacking tumor cells upon encountering tumor antigens. However, ongoing efforts aim to enhance TIL 
reactivity toward tumor antigen recognition, specifically neoantigens 216,217. To identify tumor neoantigens 
during TIL preparation, Rosenberg and colleagues developed a protocol that involves spotting mutant proteins 
specific to tumor cells using whole-exome sequencing (WES) technology and RNA-seq (Figure 6). These 
mutant proteins are synthesized as peptides or tandem minigenes (TMG) 218. Subsequently, MHC-matched 
APCs process these neoantigens for coculture with TILs to evaluate antigen presentation and recognition based 
on IFN-γ production measured through enzyme-linked immunosorbent spot (ELISPOT) assays. Neoantigen-
specific TILs are then purified via fluorescence-activated cell sorting (FACS) or magnetic-activated cell 
sorting MACS, using activation markers like CD137, and are exposed to the "rapid expansion procedure" 
(REP) before reinfusion into the patient receiving lymphodepletion, along with IL-2 219.  
A pre-REP step may be included, where tumor fragments containing TILs are cultured in vitro with IL-2 to 
expand "young TILs" or perform IFN-γ-ELISPOT for detecting antigen-specific TILs, prior to the REP 
protocol. These methods have shown promising results in certain patients with melanoma and other solid 
tumors, such as colorectal cancer, breast cancer, and ovarian cancer 220.   

3.1.2. Genetically engineered T-cell therapy:  
Gene therapy is a modern approach that involves altering the genetic material of the cells to treat or prevent 
diseases. There are several types of gene therapy for cancer, which can be broadly classified into two 
categories: gene addition therapy and gene editing therapy. Gene addition therapy introduces new genetic 
material into cells, while gene editing therapy modifies existing genetic material in cells.  

Gene therapy originated in the 1970s and gained momentum in 1990 with the successful treatment of a patient 
with adenosine deficiency by receiving genetically modified white blood cells that produced the missing 
enzyme 221. Since then, numerous clinical trials have been conducted to optimize gene therapy for various 
conditions, including cancer.  

One approach involves manipulating genes related to tumor development and progression. Additionally, gene 
therapy can also modify immune cells, such as T-cells, to specifically recognize and eliminate cancer cells. In 
particular, T-cell-based gene therapy has shown promise in treating blood cancers, although challenges remain 
in its effectiveness against solid tumors 222.  
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Different strategies can be employed for enhancing the ability of genetically modified T-cells to target cancer 
cells in the TME. These include targeting tumor-associated antigens, overcoming immune suppression in the 
TME, and improving T-cell migration, infiltration, and persistence. For this, various T-cell-based gene therapy 
approaches are available, such as the following (Figure 4):  

• Targeting tumor-associated and tumor-specific antigens: Genetic modification of T-cells can be used to 
target tumor-specific antigens (TSAs) that are expressed only by cancer cells in the TME but not in healthy 
tissues such as neoantigens induced by cancer cell genetic mutations. Unlike targeting tumor-associated 
antigens (TAAs), or shared antigens, selective TSA targeting reduces the risk of “on-target, off-tumor” 
toxicity 223. TAAs include cancer/testis (CT) antigens 224 (involving melanoma antigen-encoding genes 
(MAGEs) and NY-ESO1 antigens), differentiation antigens (such as melanoma-associated antigen 
recognized by T cells-1 (MART-1) and carcinoembryonic antigen (CEA)), as well as overexpressed 
antigens (such as mesothelin) 223,225. 

• Overcoming immunosuppression: This involves expressing molecules such as checkpoint inhibitors 226-228, 
a dominant-negative form of transforming growth factor beta receptor II (TGF-βRII)229, optimized forms 
of activation molecules such as high-affinity activation receptors/ligands or TCR adapter Zeta-chain-
associated protein kinase 70 (Zap70) 230, or knocking out (KO)/KD inhibitory genes downstream of 
signaling pathways to prevent T-cell exhaustion.  
 
T-cell homing and infiltration can also be enhanced by modifying T-cells to secrete chemokines or express 
chemokine receptors, such as the CXCR2 receptor that improved T-cell migration and antitumor activity 
231,232.  
Improving T-cell persistence within the TME can be achieved, for instance, through the genetic engineering 
of T-cells to secrete cytokines such as IL-2, IL-7, IL-15, IL-12, IL-18, and IL-21, which have been 
investigated for their potential to boost T-cell antitumor function 203,228. Additionally, modified CAR-T-
cells expressing both the 4-1BB costimulatory endodomain and the CD28 signaling endodomain have 
shown improved persistence and killing capacity 228,233.  
 
Moreover, metabolic reprogramming of T-cells can also enhance their function within the TME 92,118. This 
includes, for example, modulating glycolysis by genetically engineering T-cells to overexpress 
phosphoenolpyruvate carboxykinase 1 (PCK1), which was demonstrated to enhance T-cell antitumor 
function in melanoma model 234 or by favoring alternative metabolic pathways such as fatty acid oxidation 
235,236 and modulating mitochondrial biogenesis (MB). This later is illustrated by the overexpression of the 
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in CD8+ T-cell that pushes toward a 
central memory phenotype, resulting in a robust antitumor response against melanoma tumors. This is 
accompanied by an increased expansion and a higher mitochondrial activity in TILs upon rechallenge in a 
tumor-free host in vivo 235.  
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Figure 4: Strategies for ACT therapy: TIL versus gene therapy. 
Left; TIL therapy englobes TIL extraction followed by their in vitro expansion using both pre-rapid and rapid expansion methods. TILs 
can also be primed through autologous APCs presenting peptides derived from tumor cells. right; Gene therapy includes strategies to 
augment T-cell infiltration and persistence as well as activation and cytotoxicity. These include engineering T-cells to express 
cytokines, enhancing their metabolic fitness, and downregulating checkpoint inhibitors. To specifically target cancer cells, T-cells can 
be engineered to express CARs or TCRs. Combinatorial methods are also used to further enhance T-cell fitness and tumor-killing 
capacity. (Adapted from 220). 

3.1.2.1. CAR-T-cell therapy:  

CAR-T-cell therapy employs genetically engineered T-cells to express chimeric antigen receptors, thereby 
specifically targeting cancer cells. The CAR comprises an antigen-binding domain specific for a tumor-
associated antigen and a signaling domain that activates the T-cell when the antigen is encountered. This 
innovative treatment has shown impressive clinical success, particularly in treating hematological 
malignancies, and has also shown progressive clinical improvements against solid tumors 214. This success is 
attributed to precise targeting that spares healthy cells, long-lasting antitumor activity, and a possible 
"bystander effect" resulting in the extended elimination of even untargeted cancer cells 237. Gross, Eshhar, et 
al. first proposed CAR-T-cell therapy in the late 1980s 238. This study led to its successful clinical trial in 2010, 
targeting CD19+ B cell leukemia and lymphomas with a complete remission rate of 90% 211. Since then, 
subsequent CAR-T-cell therapies targeting various antigens have demonstrated promising outcomes.  

CAR-T-cells are differentiated into various generations according to the composition and signaling domains 
of the CAR. The first-generation CARs have a single signaling domain, typically the CD3 zeta (CD3ζ) chain, 
that triggers T-cell activation upon antigen detection, albeit with restricted efficacy and susceptibility to T-cell 
exhaustion in vivo. Overcoming these limitations involved the incorporation of extra costimulatory domains 
like CD28 or 4-1BB into the CAR structure or integrating inhibitory domains to thwart T-cell exhaustion, 
leading to the creation of second-generation CARs. These second-generation CARs facilitate both T-cell 
activation and costimulation upon antigen detection, improving CAR-T-cell function and persistence in vivo 
214,222,239. Despite this, T-cell exhaustion remains an issue, impeding their long-term effectiveness.  
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Consequently, third-generation CARs emerged from augmenting the second-generation models with 
additional costimulatory domains, modifying the relative signaling strength, or incorporating novel signaling 
domains. The third-generation CARs, with typically two costimulatory domains and the CD3ζ chain, enhance 
T-cell activation and persistence in vivo compared to their predecessors. A recent study has demonstrated that 
a CAR with a CD28 costimulatory domain and a 4-1BBL signaling domain effectively treated relapsed or 
refractory MM 211. Further, a third-generation CAR with a 4-1BB and an ICOS costimulatory domain displayed 
enhanced antitumor activity against solid tumor models 240. The fourth-generation or TRUCKs (T-cells 
redirected for universal cytokine killing) are engineered to boost CAR-T-cell function by promoting cytokine 
secretion or other effector molecules (Perforin, granzyme, Fas-L, and TNF-related apoptosis-inducing ligand 
(TRAIL)) upon antigen recognition besides providing potent T-cell activation and costimulation 241,242. Fifth-
generation CARs, currently under development, are based on the second-generation but include a truncated 
cytoplasmic IL-2 receptor β-chain domain and a binding site for the transcription factor signal transducer and 
activator of transcription 3 (STAT3) 241 (Figure 5). 
While CAR-T-cell therapy has shown promising results, it also introduces several complexities. These include 
refining the CAR structure to augment its function and curtail off-target toxicity, managing risks associated 
with insertional mutagenesis during the viral vector delivery of the CAR, identifying cancer cell-specific target 
antigens, and formulating strategies for efficient and stable CAR expression in T-cells 239,243,244. The potential 
side effects, such as cytokine release syndrome (CRS) and neurotoxicity, also pose significant issues 245.  

To address the emerging challenges, contemporary research endeavors include the development of dual-
targeting CAR-T-cells, universal CAR-T-cells, innovative CAR designs for enhanced safety, and integration 
of CAR-T cells into other cancer therapies (Figure 5). For example, CAR-T-cells that concurrently target 
CD19 and CD22 effectively addressed refractory B-cell acute lymphoblastic leukemia 242.  Meanwhile, 
'switchable' CAR-T-cells, such as Stop-CARs, On Switch-CARs, or Split CARs, can be toggled on or off using 
a small molecule, providing superior therapeutic control 245-247. Additionally, research has underscored the 
advantages of combining CAR-T therapies with other treatments like radiotherapy, chemotherapy, or 
checkpoint inhibitors, leading to improved patient outcomes 248. 
 

 
Figure 5: CAR structure, generation, and novel designs. 
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Top; CAR general structure displays key components, including the antigen-binding domain, hinge, transmembrane domain, and 
intracellular signaling domain. Bottom left; CAR generations, namely 1st, 2nd, 3rd, 4th, and 5th generations, outline the progression and 
distinct features regarding costimulatory domains and signaling modules. Bottom right; Next-generation CAR designs provide 
examples of advanced designs for CARs aimed at enhancing T-cell activation and safety of CAR-T-cell therapies. 

3.1.2.2. TCR-T-cell therapy: 

TCR-T-cell therapy involves engineering a patient’s T-cells to recognize and bind to cancer-specific peptide-
MHC (pMHC) complexes, thereby enabling T-cells to eliminate cancer cells. Several types of TCRs are used 
for gene engineering TCR-T-cell therapy, including primarily natural TCRs and affinity-optimized (or 
transgenic) TCRs. Naturally occurring TCRs can be obtained and cloned for gene-engineering methodologies. 
These include TCRs targeting NY-ESO-1 and MAGE-A3, both are cancer-testis antigens present in numerous 
solid tumors and hematological malignancies. These TCRs have been applied in clinical trials to treat advanced 
cancers, such as melanoma225,249-251. Another example is the Wilms tumor protein 1 (WT1), a TAA that is 
displayed in multiple malignancies but is minimally expressed in normal cells. Preliminary studies indicate the 
efficacy of WT1-targeted TCR-T-cell therapy in treating acute myeloid leukemia (AML) and solid tumors, 
including ovarian cancer 252-254. 

Conversely, transgenic TCRs are designed or altered TCRs to recognize TSAs with high affinity and a reduced 
risk of cross-reactivity. These TCRs recognize exclusively tumor-expressed antigens, such as neoantigens or 
viral-derived oncoproteins 255. Cancer neoantigens make the target antigen highly patient-specific since they 
arise from cancer-specific genetic alterations 256-258. Nevertheless, some neoantigens, shaped by prevalent 
oncogenic mutations, may be common across individuals. Moreover, since conventional αβ-TCR-based T-cell 
therapies are MHC/human leukocyte antigen (HLA) restricted, this can limit their applicability to a small pool 
of patients with the matching HLA allele. Nonetheless, TCR-T-cell therapies targeting these neoantigens are 
advantageous due to their specific tumor targeting, superior TCR affinity, diminished likelihood of tumor 
evasion, and reduced “off-tumor” effects and associated toxicity. However, the process of identifying these 
neoantigen TCRs is intricate and necessitates the utilization of high-throughput screening methods. 

Engineered TCR-T-cells can also encounter a major challenge of MHC expression reduction or loss on tumor 
cells, serving as an evasion strategy from T-cell targeting 259,260. To address this, research has shifted toward 
creating T-cells with MHC-independent TCRs, such as gamma-delta (γδ) TCRs and natural killer T (NKT) 
cell TCRs, aiming for more precise and safer cancer immunotherapy. Γδ TCRs are unique for their broad 
antigen recognition, including those that are not MHC-presented. For instance, Vδ1-Jδ1 TCR can detect the 
stress-responsive major histocompatibility complex class I chain-related gene a and b (MICA/B) protein 
present in various tumor cells. Conversely, NKT-cell TCRs, which are semi-invariant in nature, recognize 
glycolipid antigens presented by the non-polymorphic MHC class I-like molecule CD1d. These TCRs have 
been harnessed for TCR-T-cell engineering, either by modifying the TCR structure or incorporating additional 
signaling domains. 

T-cell-activating conjugates (TACs) and T-cell receptor fusion constructs (TRuCs) also present alternative 
strategies for mitigating MHC restriction and leveraging physiologic αβ-TCR signaling for improved tumor-
targeting. TACs are bispecific antibodies facilitating tumor cell destruction by linking T-cells to tumor cells 
through simultaneous recognition of a specific tumor antigen and activation of the TCR complex on T-cells. 
TRuCs, however, are engineered TCRs that combine a TCR’s tumor antigen specificity with the signaling 
domains of a costimulatory receptor such as CD28 and 4-1BB, thereby enabling T-cell direct activation and 
eliminating the requirement for additional signals from antigen-presenting cells (Figure 6). Despite their early 
development phase, both approaches have exhibited potential in preclinical studies to effectively redirect T-
cells toward tumor cells. 
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Engineering transgenic TCR-T-cells for ACT demands careful consideration of TCR affinity and avidity, 
which define the binding strength between the TCR and the antigen. TCR affinity, denoted by the dissociation 
constant (Kd), measures the interaction’s strength between a T-cell and a corresponding site on a cancer cell's 
MHC molecule 261. Avidity, on the other hand, accounts for the collective interaction strength among multiple 
binding sites. In the genetic engineering of TCR-based T-cells, affinity can be enhanced and tuned to meet 
specific needs 262,263. Additional techniques to improve TCR-T-cell therapy include avoiding mispairing of α 
and β chains of endogenous and transgenic TCRs 262,264,265 (Figure 6), co-transferring the entire CD3 signaling 
domain with the transgenic TCR 266, and exploring methods for developing MHC II-restricted TCR expressing 
CD4+ T-cells. Consistent with this approach, CD4+ T-cells redirected with a class I-restricted TCR and 
transgenic CD8αβ (TCR8) have shown cytotoxic activity while preserving their CD4+ lineage features 267-269.  

 
Figure 6: Engineering strategies for TCR-T-cell therapy. 
TCR signaling mediated by the interaction of the alpha and beta chain of endogenous TCR with MHC complex can be further enhanced 
by engineering T-cell with T-cell receptor fusion construct (TruC) harboring tumor antigen specificity and costimulatory receptor 
signaling domains. The strategy of knockout deployed to delete the endogenous alpha and beta chains of the endogenous TCR is an 
efficient method to prevent chain mispairing between endogenous and transgenic TCRs, thereby ensuring the efficacy and safety of 
TCR gene therapy.  

3.1.2.3. Gene editing technologies 

Genome-editing technologies have been widely used to modify the DNA sequence of specific genes in a 
precise and targeted manner. Each tool has its own mechanism and advantages for gene editing. Transposons, 
movable DNA sequences within the genome, facilitate site-specific integration in non-viral cellular 
engineering enabling stable gene cargo delivery 270,271,  including co-delivery of multiple genes 272 with 
minimal genotoxicity 273. This system involves a transposase enzyme binding to terminal inverted repeats 
(TIRs) to mobilize flanked DNA 274.  

• Transposons: Transposon-modified human T-cells, specifically using a sleeping beauty (SB) DNA 
transposon, have been assessed in preliminary clinical trials for CAR T-cell therapy 275,276. However, this 
method's effectiveness is constrained by the low efficiency of plasmid DNA delivery into human cells 277 
and its limitation to only introducing and adding a transgene into a cell (Figure 7).  

 
• Zinc-finger nucleases (ZFNs): They consist of engineered proteins that comprise a zinc-finger DNA-

binding domain recognizing a specific DNA sequence and a FokI endonuclease domain that functions as a 
dimer; thus, a pair of ZFN is required to cleave the DNA at the target site 278. The break is repaired by 
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endogenous nonhomologous end joining (NHEJ) or homologous recombination (HR) mechanisms 279. An 
NHEJ can result in small insertions (knockin (KI)) or deletions (KO) in the form of indels, while an HR 
can replace a gene 280. ZFNs have the advantage of being highly efficient and specific, which can minimize 
off-target effects 281,282. Moreover, due to their small size, ZFNs can ensure effective transgene delivery for 
successful cancer therapy 283. However, the design and production of ZFNs can be laborious and costly as 
proteins must be engineered specifically for each target in the genome 279. In addition, they can be 
immunogenic and may trigger immune responses in the host (Figure 7). 

 
• Transcription activator-like effector nucleases (TALENs): Similar to ZFNs, they consist of a non-specific 

FokI endonuclease domain and a DNA-binding domain that contains a highly conserved repeat sequence 
from transcription activator-like effectors (TALEs) 280. TALEs are modular protein domains designed to 
recognize specific DNA sequences 284. TALENs have the advantage of being highly specific and efficient 
and can be used to target a wide range of DNA sequences. Unlike ZFNs, TALENs can be easier to design 
and optimize, but their large size renders the delivery of gene cargo difficult 280. They can still have off-
target effects and may not work in some cell types or organisms. Still, clinical trials have used the TALEN 
platform to develop universal allogeneic T-cells that can be used for cancer treatment 285 (Figure 7). 

 
• CRISPR/CRISPR-associated protein 9 (Cas9): CRISPR/Cas9 is a revolutionary genome-editing 

technology that uses the bacterial immune system to target and cleave specific DNA sequences. The 
CRISPR system consists of a small single-stranded guide RNA (sgRNA) to direct the Cas9 nuclease to a 
specific DNA sequence, creating a double-strand break that can be repaired by the cell's endogenous DNA 
repair machinery 286. The sgRNA can be easily designed and synthesized to target virtually any gene of 
interest, either for gene KO, KI, or regulation. By targeting control elements such as promoters or 
enhancers, CRISPR/Cas9 allows gene modulation without fully disabling it. Additionally, it can increase 
gene expression by introducing a transcriptional activator to the gene's promoter region.  
CRISPR/Cas9 can be delivered in diverse formats such as plasmid DNA, ribonucleoprotein complexes 
(RNPs), or messenger RNA (mRNA) 287,288. The sgRNA is typically delivered separately via lentiviral 
vectors for stable expression 285,286. However, it can also introduce off-target effects, anti-Cas9 responses, 
and unwanted mutations, which raise concerns of potential tumor malignancy promotion274, and renders in 
vivo delivery complicated due to the simultaneous introduction of several components285. Nevertheless, 
because of its simplicity, efficiency, specificity, and versatility, CRISPR/Cas9 system has been preferred 
for T-cell engineering in clinical trials 285,289, and has become the most widely used gene editor in various 
organisms, including humans 280 (Figure 7). 
 
Overall, each genome-editing technology possesses unique strengths and weaknesses, and the selection 
depends on the required precision, efficiency, and specificity for different applications (Figure 7). 
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Figure 7: Comparative overview of major gene editing technologies.  
Evaluation of four major gene editing technologies, namely transposons, ZFNs, TALENS, and CRISPR/Cas9 systems, for key 
parameters including efficacy, integration, and stability of gene insertion, toxicity, cargo capacity, and manufacturing process. Each 
technology is represented by a separate column along with its characteristics. (Adapted from 280,286). 

3.1.2.4. Gene editing delivery methods 

T-cell gene engineering is a promising approach to cancer therapy. There are two main approaches to T-cell 
gene engineering: non-viral and viral 276. Viral approaches, such as CAR T-cell therapy, have shown success 
in clinical trials, while non-viral approaches offer a simpler and safer alternative for gene editing.  
 
• Non-Viral approaches involve chemical or physical methods to deliver genes into T-cells without viral 

vectors. Transfection and electroporation are the most common methods to introduce DNA into T-cells. 
Transfection entails using chemical agents, such as lipids, to facilitate the entry of exogenous DNA used to 
deliver genes into T-cells. Conversely, electroporation requires exposing T-cells to pulsed high-voltage 
electrical currents, which creates small pores in the cell membrane that allow nanometer-sized plasmid 
DNA or mRNA to enter the cell transiently. These techniques enable gene replacement or disruption in T-
cells, providing a means for delivering genes. 280,286. Unlike viral transduction, this method offers distinct 
advantages, including a large cargo capacity to facilitate multiple genes or nucleic acid delivery 290. 
Although electroporation is broadly used, for instance in CRISPR-Cas9 system delivery and has entered 
phase I clinical trial to evaluate DNA vaccine against SARS-CoV-2 291, it is still not well validated for in 
vivo T-cell delivery because of its limited penetration depth and localized administration 292. In addition, 
the high voltage used for electroporation could cause a loss of cytoplasmic content and raise the risk of 
cytotoxicity when used for ex vivo studies in addition to affecting the expression profile in the cell 293-295. 
Among the significant constraints faced when using this delivery method is the need for more commercial 
machines designed for large-scale manufacturing rather than for research and development. One of the 
developed techniques for electroporation is nucleofection which can deliver the transgene directly into the 
nucleus without disrupting the nuclear envelope. Similar to conventional electroporation, nucleofection still 
faces the same challenges regarding in vivo use. However, it holds promise for ex vivo T-cell gene 
engineering 296 (Figure 8).   
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• Viral transduction is an adopted method to efficiently deliver the transgene in T-cells using viral vectors 
derived from engineered viruses that are naturally able to deliver their genetic material into host cells 
efficiently 280. Viral vectors are a common tool used for gene engineering T-cells to redirect them against 
cancer cells or deliver therapeutic genes to tumor cells for their destruction 297. While adenoviruses and 
adeno-associated viruses can introduce transient expression of the transgene, gamma-retroviruses and 
lentiviruses can integrate into the host genome to enable stable gene expression and are the most common 
vectors for T-cell gene delivery due to their high transduction efficiencies leading to long-term gene 
expression, notably for CAR/TCR-T-cells or cytokine secretion 280,285,286. To this date, this tool has also 
been developed to make it suitable for applications beyond conventional systems as it has expanded to 
include other gene editing systems such as CRISPR-Cas9 and ZFN for ex vivo studies to inhibit specific 
genes for enhanced T-cell function 287,298 (Figure 8).  

 
Lentiviruses and retroviruses are types of RNA viruses exploited for gene engineering in T-cells to develop 
cancer therapies. Despite their similarities, they harbor significant differences that can influence their 
effectiveness and safety for gene therapy. Their primary disparity lies in tropism, or the types of cells they 
can infect. Lentiviruses, including HIV, can infect dividing and non-dividing cells, facilitating long-term 
gene expression286,299. However, their safety profile is a concern, as lentiviruses, especially HIV, carry a 
higher risk of adverse effects due to potential reactivation and the risk of insertional mutagenesis. This 
occurs when the viral vector integrates into a gene and disrupts its normal function, potentially leading to 
cancer, viral replication, and dissemination245.   
 
Conversely, retroviruses only infect dividing cells, posing limitations for certain uses such as TIL 
engineering 285,300.  Transitioning from the limitations of viral vectors, the intricacies of gene engineering 
are further complicated when introducing two separate genes into T-cells. Gene delivery and expression in 
T-cells containing two different genes entail challenges around gene elements’ size, regulation, and 
compatibility. Difficulties also arise when delivering large DNA constructs with multiple genes in a single 
vector, potentially reducing transduction efficiency (TE) and gene expression levels 301. Additionally, co-
expression of several genes may cause off-target effects and toxicity, including insertional mutagenesis 239.  
 
Moreover, cross-regulation of different gene cargos may complicate the tight regulation necessary for 
optimal therapeutic outcomes. For example, the expression of certain cytokines or checkpoint inhibitors 
may need to be temporally regulated to prevent excessive T-cell activation and potential toxicities, as well 
as potentially affecting the efficacy of the CAR 245,247,297,302. Thus, balancing the expression levels of the 
gene cargo is essential to amplify synergistic effects and prevent adverse interactions. Furthermore, 
overexpression of multiple gene cargos may exhaust or impair T-cells due to increased metabolic demands, 
reducing the in vivo persistence and efficacy of the engineered T-cells 303. 

To address these issues, strategies have been developed, such as optimizing DNA constructs for dual gene 
expression, using smaller gene elements to decrease the DNA construct size, and incorporating costimulatory 
domains in the CAR. The application of inducible promoters and gene switches can help regulate gene cargo 
expression based on the T-cell activation state 304-306. 
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Figure 8: Gene editing delivery methods 
Overview of major gene editing delivery tools, both viral and non-viral. Viral delivery tools involve the usage of lentiviruses or 
retroviruses, while non-viral approaches include electroporation, cell squeezing, and nanoparticles. Key parameters for comparison are 
highlighted, such as efficacy, integration, stability of gene insertion, toxicity, cargo capacity, and manufacturing complexity. Each 
technique is represented by a separate column along with its characteristics. (Adapted from 280,286). 

3.1.2.5. Gene inhibitory strategies  

Suppressing the activity of inhibitory molecules or receptors on effector immune cells, such as PD-1/PD-L1, 
CTLA-4, TIM-3, and LAG-3, has emerged as a promising strategy to enhance T-cell-mediated cancer therapy 
that has shown promising results in preclinical and clinical studies 280,298. Similar to ZFN and TALEN, there 
are other gene editing approaches for disrupting or knocking down the expression of a gene in T-cells for 
cancer treatment, including RNA interference (RNAi) and CRISPR/Cas9 239,280,307. 

siRNA, shRNA, and miRNA for gene knockdown:  
RNAi is a powerful gene silencing mechanism that targets and degrades specific mRNA transcripts of the gene 
of interest, thereby knocking down a gene expression in T-cells for cancer treatment 308,309. There are different 
RNAi technologies, including small interfering RNA (siRNA), short hairpin RNA (shRNA), and miRNA, that 
involve different cellular machinery, including different RNA polymerases and RNA processing enzymes 310 
(Figure 9). 

siRNA are short double-stranded RNA molecules that target a specific mRNA transcript of the corresponding 
gene expression. This leads to its degradation and subsequent KD mediated by the RNA-induced silencing 
complex (RISC). siRNA-mediated gene KD is transient, as siRNAs are rapidly degraded by cellular nucleases. 
Still, siRNAs are easy to design and deliver and have been widely used for gene KD in T-cells and in cancer 
cells to silence genes known to contribute to cancer development and progression 310,311.  

On the other hand, shRNAs are transcribed from a DNA vector using RNA polymerase III (Pol III). They are 
processed by Drosha machinery in the nucleus to generate a hairpin-shaped precursor miRNA (pre-miRNA), 
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which is then exported to the cytoplasm and further processed by Dicer to generate the mature siRNA-like 
molecules. The mature shRNA molecules are then loaded onto the RISC complex for targeting specific mRNA 
degradation 310-312 (Figure 9). shRNA-mediated gene KD is more stable than siRNA-mediated KD, as shRNAs 
are expressed from a plasmid or viral vector and can persist in cells for extended periods of time. However, 
shRNAs can have off-target effects and may trigger immune responses 312.  
 
Another approach for gene inhibition involves miRNAs which are small non-coding RNA molecules that 
regulate gene expression via the cellular machinery. This machinery is responsible for miRNA biogenesis, 
involving Drosha and Dicer enzymes. Endogenous miRNAs are transcribed from endogenous genes by RNA 
polymerase II (Pol II). The primary transcript is then processed by Drosha in the nucleus to generate a pre-
miRNA hairpin. The pre-miRNA is then exported to the cytoplasm and further processed by Dicer to generate 
a mature miRNA duplex. One strand of the duplex is loaded onto the RISC complex for target mRNA transcript 
degradation. The mature miRNA within the RISC guides the complex to target mRNAs by complementary 
base pairing, usually to the 3' untranslated regions (UTRs). This can result in either translational repression or 
mRNA degradation, depending on the degree of complementarity between the miRNA and its target. In 
general, perfect or near-perfect complementarity leads to the cleavage of the target mRNA by the Argonaute 
2 (AGO2) protein, which is a key component of RISC with a cleavage activity. On the other hand, imperfect 
complementarity results in translational repression and, often, subsequent mRNA degradation. 310,313 (Figure 
9). 
 
There are several advantages of using miRNA-mediated gene KD over shRNA, including that miRNA can 
target multiple genes simultaneously, whereas shRNAs typically target a single gene 310. This feature makes 
miRNAs more suitable for studying complex biological processes that involve multiple genes or pathways. 
Furthermore, miRNAs are naturally occurring, and non-coding RNAs are involved in the endogenous 
regulation of gene expression. Thus, they may better mimic physiological gene regulation than shRNAs, which 
are artificially introduced. Moreover, miRNAs are generally better tolerated by cells and have fewer off-target 
effects than shRNAs as they act through partial complementary base pairing with their target mRNA. This 
results in more specific and controlled gene silencing. miRNAs could also be of low cytotoxicity as they are 
less likely to trigger an immune response or cause cytotoxicity compared to shRNAs, as they are naturally 
occurring molecules and part of the cellular machinery. Some miRNAs have tissue-specific or 
developmentally regulated expression patterns, making them suitable for studying gene function in a specific 
cellular context or developmental stage 311,312,314 (Table 1).  
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Figure 9: Cellular processing machinery of miRNA versus shRNA versus siRNA. 
The transcription of miRNAs, whether from within the cell or transferred through viral vectors, starts with RNA Polymerase II, 
producing primary miRNAs (pri-miRNAs). The non-canonical pathway involves mirtrons, which are introns mimicking the hairpin 
structure of pre-miRNAs. Mirtrons skip the Drosha processing step and resemble pre-miRNAs after splicing and debranching. They 
are then exported to the cytoplasm for further processing by Dicer and incorporation into the RISC complex. In the canonical pathway, 
pri-miRNAs are cleaved within the nucleus by the Drosha-DiGeorge critical region-8 (DGCR8) complex, creating pre-miRNAs in a 
hairpin conformation. Exportin-5 translocates the pre-miRNAs into the cytoplasm. In the cytoplasm, the DICER complex, with the 
help of the transactivation response element RNA-binding protein (TRBP), processes the pre-miRNAs, generating miRNA duplexes. 
The guide strand integrates into the RISC complex with the Ago2 protein, regulating target mRNAs through degradation or translational 
inhibition. The passenger strand is usually degraded. Exogenous shRNAs, introduced via viral vectors, undergo a similar biogenesis 
process to miRNAs, but they are synthesized by RNA Polymerase III, bypassing the Drosha step. Instead, shRNA is directly exported 
to the cytoplasm by Exportin-5. In the cytoplasm, shRNA is processed by Dicer and incorporated into the RISC complex, resembling 
miRNA processing stages. Upon cellular introduction, Dicer cleaves exogenous dsRNAs or synthetic shRNAs delivered by non-viral 
tools, guiding the RISC complex to target mRNAs. On the other hand, synthetic siRNAs, similar to Dicer cleavage products, bypass 
Dicer processing and load directly into the RISC complex. Although these molecules have distinct processing routes, they converge in 
utilizing the RISC complex for post-transcriptional gene silencing. 

CRISPR/Cas9-mediated gene knockout  
CRISPR/Cas9 can be used to create a loss-of-function mutation in the target gene by the KO or by introducing 
a specific mutation by KI approaches. By designing guide RNAs that target specific sites in the genome, the 
Cas9 nuclease can be directed to cut the gene of interest resulting in a double-strand break (DSB) at the target 
site. The DSB can then be repaired by the error-prone NHEJ pathway. Consequently, this leads to a frameshift 
mutation and a loss of gene function, such as the deletion of PD-1 in T-cells that resulted in enhanced function 
and tumor clearance 285,298,307. CRISPR/Cas9 can also be used to introduce a specific mutation into the target 
gene, altering its function or expression. This strategy has been used to insert CARs for adoptive T-cell therapy 
where a specific tumor-targeting domain is introduced into the TCR locus 285,289,307.  
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In summary, these gene editing strategies provide promising opportunities for inhibiting suppressive genes in 
T-cell-based cancer therapy. The choice of the suitable strategy depends on the specific application and the 
desired level of KD efficiency, stability, and safety with reduced off-target effects.  

Furthermore, building upon these advancements, harnessing gene editing tools such as RNA interference or 
CRISPR-Cas9 to target and inhibit specific intracellular TCR signaling negative regulators emerges as a 
potential avenue to selectively modulate and KD the activity or expression of suppressive genes in T-cell-
based cancer therapy.  This presents a potential approach to fine-tune TCR signaling and amplify the antitumor 
response of T-cells by relieving the inhibitory checkpoints on T-cells imposed by these regulators. However, 
selecting the appropriate gene editing strategy must be carefully considered and tailored to the specific 
application requirements.  
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Table 1: Comparison of siRNA, shRNA, and miRNA characteristics. 
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4. Intracellular negative regulators downstream of the TCR signaling pathways. 

4.1. TCR signaling pathway: 
The TCR signaling system is a complex network of intracellular pathways that are activated when the TCR 
binds to an antigen presented by the antigen-MHC complex on the surface of an APC. This triggers a series of 
intracellular signaling events involving tyrosine kinases, phosphatases, and adaptor proteins, leading to the 
activation of transcription factors and, ultimately, T-cell activation, differentiation, proliferation, and survival. 

Dysregulation of this pathway can cause immune-related disorders such as autoimmune diseases and 
immunodeficiencies. The TCR is a heterodimeric protein complex composed of α and β chains, or γ and δ 
chains, associated with intracellular signaling proteins. The TCR associates with the CD3 receptor to transmit 
the signal, forming a functional TCR-CD3 complex 315,316. The CD3 receptor consists of CD3γ and CD3δ 
heterodimers and a CD3ζ homodimer containing immunoreceptor tyrosine-based activation motifs (ITAM) 
that activate signaling 317.  

An immunological synapse (IS) is triggered upon encountering a specific antigen, causing the TCR complex 
to change shape and initiate a signaling cascade. This process involves the co-receptor CD4+ or CD8+ 
interacting with the MHC molecules on the APC to stabilize the TCR-antigen interaction. Costimulatory 
receptors like CD28 are also activated by ligands on APCs (CD80 (B7-1) or CD86 (B7-2)), providing the 
necessary co-stimulation for T-cell activation.  

The conformational change in the TCR complex activates protein tyrosine kinases (PTKs), such as 
lymphocyte-specific protein tyrosine kinase (Lck) and Fyn, which phosphorylate ITAMs on CD3ζ chains. 
Phosphorylated ITAMs serve as docking sites for downstream kinases ZAP-70 and Syk, which in turn 
phosphorylate other signaling molecules, including adapter proteins LAT and leukocyte protein of 76 kDa 
(SLP-76). These proteins form a complex that recruits additional signaling molecules like phospholipase Cγ1 
(PLCγ1), Vav, and Growth Factor Receptor-bound protein 2 (Grb2). PLCγ1, when activated, cleaves the 
membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2) into the second messenger inositol 1,4,5-
trisphosphate  (IP3) and diacylglycerol (DAG) 318. IP3 binds to receptors on the endoplasmic reticulum (ER), 
releasing intracellular calcium ions into the cytoplasm. The calcium influx activates calcineurin, 
dephosphorylating the transcription factor NFAT, enabling it to translocate to the nucleus and activate target 
genes. Meanwhile, DAG activates downstream signaling pathways such as protein kinase (PKC), IkappaB 
kinase (IKK) (in a MALT1-CARMA1- B-cell lymphoma/leukemia 10 (BCL10)-dependent pathway 319, RAS 
guanyl nucleotide-releasing protein 1 (RasGRP1), Ras-ERK, activator protein-1 (AP-1), and NF-κB 319-322.  

The Ras/MAPK pathway, along with the PI3K/Akt, NFAT, and the NF-κB pathways, cooperate to initiate the 
T-cell activation transcriptional program, resulting in cytokine production and T-cell activation as exhibited 
by the upregulation of the activation marker CD69 323,324. Taking together, TCR engagement leads to 
intracellular signals that differentiate between antigens with different affinities. Hence, as a counterpart, 
negative signaling loops are crucial for maintaining a threshold for T-cell activation 325. These loops interact 
with regulatory molecules to modulate immune activation, allowing tolerance to self-antigens while eliciting 
a response to foreign antigens 326. TCR negative regulators, including molecules such as phosphatases and 
inhibitory receptors on the cell membrane (e.g., CTLA-4 and PD-1), downregulate or inhibit TCR signaling 
pathways, providing feedback control 327. CTLA-4 is a prominent co-inhibitory checkpoint receptor that 
competes with CD28 for binding with higher affinities to CD80 and CD86 ligands on activated APCs 328.  

Post-TCR engagement, CTLA-4 is expressed and translocated to the cell surface, where it downregulates 
CD28 ligand availability through trans-endocytosis of CD80 and CD86 329-331. It also recruits phosphatase Src 
homology 2 (SH2) domain-containing tyrosine phosphatase1 (SHP1) to inhibit phosphorylation events 
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downstream of TCR/CD28 signaling 332. Another key co-inhibitory receptor is PD-1, presented on the cell 
surface after T-cell activation, which binds to ligands PD-L1(CD274; B7-H1) and PD-L2 (CD273; B7-DC) 
expressed on immune cells and nonlymphoid tissues, including tumors 333. PD-1 engagement leads to 
phosphorylation of its intracellular motifs, notably immunoreceptor tyrosine-based inhibition motif (ITIM) 
and immunoreceptor tyrosine-based switch motifs (ITSM) 334, recruiting SHP2 to dephosphorylate key 
mediators of TCR and CD28 signaling such as ZAP70, as well as downstream of CD28, in particular PI3K 335. 
Additional important co-inhibitory receptors in T-cells include TIM-3, which promotes immunosuppression 
by promoting myeloid suppressor cell expansion and positively regulating the suppressive functions of Tregs 
336,337, and TIGIT, which binds to CD112, CD113, and CD155 ligands on APCs and cancer cells 338. The 
stability of receptors and the signalosome at the cell surface is another regulatory layer in T-cell activation, 
involving the dephosphorylation of LCK by the CD45 phosphatase upon T-cell activation 339. 

4.2. TCR signaling intracellular checkpoints:  
The balance of internalization, recycling, and degradation of TCR receptors determines the amplitude and 
duration of TCR signaling. The process of ubiquitination, which is essential for the internalization of TCR/CD3 
complexes, has been established 340,341. However, the ubiquitin-dependent mechanisms controlling TCR 
endocytosis and surface stability remain uncovered. Non-optimal T-cell stimulation prevents sustainable T-
cell activation 342. Indeed, chronic viral infections or cancer can lead to T-cell dysfunction, characterized by 
hypo-responsiveness illustrated by anergy due to a lack of costimulatory signal 2 induced by CD28/CD80 
interaction and signal 3 for cytokine stimulation 343,344 or T-cell exhaustion 344 often accompanied by the co-
expression of inhibitory receptors like CTLA-4, PD-1, LAG-3, and TIM-3. In the context of repeated antigen-
driven proliferation, T-cells can become senescent and enter a cell cycle arrest 345, downregulating 
costimulatory molecules such as CD28 and CD27 346-348. Senescent, exhausted, and anergic immune cells are 
commonly found in the TME and pose challenges to the efficacy of cancer immunotherapy 349,350. 

Alongside immune checkpoint proteins on the cell surface, certain intracellular proteins contribute to negative 
feedback loops downstream of the TCR (Figure 10). These proteins, known as intracellular immune 
checkpoints (iICPs), have gained attention as promising targets for cancer immunotherapies 351-354 (Table 2). 
This approach is particularly valuable due to the limitations observed in other cancer immunotherapies, such 
as CAR-T therapies or protein checkpoint blockade, which can suppress CD8+ T-cell activation due to 
exposure to multiple immunosuppressive factors in the TME 355-357. These proteins can be categorized into 
various groups based on their mechanism of action, including kinases, protein phosphatases, ubiquitin ligases, 
and deubiquitination enzymes (DUBs).  

4.2.1. Kinases:  
Various serine/threonine kinases and lipid kinases play a crucial role in regulating intracellular signaling 
pathways downstream of the TCR 358. Unlike protein-targeting kinases, lipid phosphorylation can have both 
stimulatory effects mediated by PI-3-kinase and inhibitory effects mediated by diacylglycerol kinases (DGKs). 
Therefore, both serine/threonine and lipid kinases present potential targets for boosting immune responses 
against tumors. 

4.2.1.1. HPK1:  

Hematopoietic Progenitor Kinase 1 (HPK1), encoded by the mitogen-activated protein kinase 1 (MAP4K1) 
gene, is a serine/threonine kinase  359. It consists of an N-terminal kinase domain, followed by four SH3-
binding proline-rich motifs and a large citron homology domain at its C terminus 360,361. HPK1 serves as a 
negative regulator of TCR signaling by phosphorylating and inhibiting crucial downstream molecules involved 
in T-cell activation. Dysregulated HPK1 expression or activity can result in impaired T-cell responses and 
contribute to the development of various diseases. HPK1 exerts its regulatory effects on TCR signaling through 
interactions with key proteins and signaling pathways. Upon TCR engagement, HPK1 is recruited to the IS in 
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the plasma membrane 362-364. Once activated via Y381 phosphorylation, it associates with essential adaptors 
like adhesion and degranulation-promoting adapter protein (ADAP) and SLP-76 359,360. This interaction 
activates downstream kinases, including c-Jun N-terminal kinase (JNK) and p38 MAPK, ultimately regulating 
transcription factors like AP-1 and NFAT. Consequently, HPK1 recruits the negative regulator 14-3-3, 
inhibiting the phosphorylation of proximal TCR signaling molecules such as ZAP-70 and LAT 360,365. The 
destabilization of SLP-76's interaction with LAT signalosome triggers SLP-76 degradation366,367, negatively 
impacting the MAPK ERK pathway signaling 360,364.  

Interestingly, HPK1 expression correlates with T-cell exhaustion 354, and dampens Ras-proximate-1 (Rap1) 
activation, resulting in decreased activity of the adhesion receptor LFA-1. HPK1-deficient T-cells exhibit 
increased ADAP recruitment to SLP-76 and elevated Rap1 activation, leading to enhanced adhesion and cell 
spreading 368. Additionally, HPK1 is exploited by PGE-2 to suppress T-cell-mediated antitumor responses in 
a protein kinase A (PKA)-dependent manner 369-371.  

Studies employing HPK1 inhibitors or gene silencing techniques have exhibited promising outcomes by 
augmenting T-cell responses against tumors, leading to increased TCR signaling and enhanced antitumor 
immune reactions against malignant cells. Downregulation of HPK1 expression or inhibition of its kinase 
activity augments AP-1-dependent gene transcription 364, enhancing TCR signaling, T-cell activation, 
proliferation, effector function, and cytotoxicity against target cells 359,365. Notably, robust immune responses 
have been observed in HPK1 kinase-dead transgenic mice against various tumor models, including sarcoma, 
Lewis lung carcinoma, and GL261 glioma which express high amounts of PGE-2 and adenosine 359. Devoid 
of HPK1 expression, both mouse and human CD8+ cells, as well as CAR-T-cells, exhibited improved 
degranulation activity (CD107a), cytokine production, and reduced expression of exhaustion markers such as 
PD-1, TIM-3, and LAG-3 354. In murine xenograft models, adoptive cell transfer of HPK1 KO CAR-T-cells, 
while in both mice and humans, demonstrated better tumor growth control 354. Additionally, several small 
molecule inhibitors targeting HPK1 are currently undergoing clinical trials for cancer immunotherapy 372. 
Mechanistically, the inhibition of HPK1 lowers the activation threshold of TCR, imparts resistance against 
suppressive factors like PGE-2, and enhances chemokine/receptor signaling. The absence of HPK1 exposes 
T-cells to elevated cytotoxic potential, hyperproliferation, and significantly higher secretion of Th1/effector 
cytokines, namely IL-2, IFNγ, Granzyme B, and TNF-α 359,365,369. Furthermore, HPK1 KO from kinase-dead 
mice bearing single loss or point mutation in HPK1 improves the functionality of other effector immune cells 
by enhancing maturation and antigen presentation of DCs and enhancing NK-mediated cytotoxic activity 
against tumors when compared to their wild-type counterparts 359. 

4.2.1.2. Csk 

The cytoplasmic tyrosine kinase C-terminal Src kinase (Csk) plays a crucial role in inhibiting proximal T-cell 
activation. Csk is recruited to the plasma membrane through interactions with various scaffolding proteins, 
including focal adhesion kinase (FAK), downstream of kinases 1/2 (Dok1/2), TNF receptor-associated factor 
(TRAF3), and the phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG). Upon T-
cell activation, PAG undergoes dephosphorylation, resulting in the release of Csk from the plasma membrane 
and its subsequent distance from potential substrates. This enables Csk to phosphorylate inhibitory tyrosines 
(Y505 and Y528) within the Src kinases Lck and Fyn 373-377. Inhibiting Csk leads to enhanced TCR activation 
378,379. Moreover, T-cells lacking Csk exhibit spontaneous proximal TCR activation, but the signaling cascade 
does not extend distally to PLCγ1 activation without additional signals, such as CD28 costimulation 380. Unlike 
PAG-deficient mice, mice lacking Csk demonstrate severe abnormalities in T-cell development, suggesting 
that other binding partners redundantly recruit Csk to the plasma membrane 380-383.  
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4.2.1.3. DGKs 

Diacylglycerol kinases are enzymes that convert DAG into phosphatidic acid (PA)384. This phosphorylation 
process by DGKs disrupts the association of DAG with RasGRPs, leading to the inhibition of the RAS/MAPK 
pathway and the attenuation of TCR function, including cytokine production 324,384-387.  

Two specific isoforms of DGKs, DGKα, and DGKζ, regulate DAG downstream of the TCR 386. While both 
isoforms have redundant functions in metabolizing DAG and inducing T-cell anergy, they exhibit distinct 
structural motifs, expression patterns, and activation modes 388,389.  

TILs in human tumors upregulate DGK isoforms, resulting in functional inhibition, while DGK-deficient mice 
show substantial antitumor activity 390,391. Interestingly, despite being less abundant in T-cells, DGKζ plays a 
dominant role in DAG metabolism and the suppression of Ras signaling due to its increased kinase activity 
relative to DGKα in naïve T-cells 392,393. Single KD of DGKα or ζ does not affect T-cell development or the 
number of CD4+ or CD8+ T-cells but can impact the number of activated T-cells in unchallenged mice 
324,387,394. In contrast, mice lacking both isoforms of DGK demonstrate a significant reduction in the number of 
peripheral CD4+ and CD8+ T-cells 394. Notably, DGK KO or pharmacological inhibition enhances the 
cytotoxicity of CAR-T-cells against tumors in mouse and human models, while CRISPR inactivation of both 
DGK isoforms synergistically improves tumor clearance, cytokine production, proliferation, and the 
phenotype of CAR-T-cells to effector memory 352,395. Furthermore, DGKζ KO in CD8+ mice enhances 
resistance to tumor growth and improves in vivo antitumor responses upon ACT of naïve or primed DGKζ 
CD8+ T-cells 385-387,395. 

4.2.2. Protein Phosphatases:  
Protein phosphorylation events, including ITAM phosphorylation, generally activate proteins. Conversely, 
dephosphorylation by phosphatases of signaling proteins attenuates the TCR signaling cascade, leading to 
decreased activity 396. Protein tyrosine phosphatases (PTPs) and protein tyrosine phosphatase non-receptor 
type (PTPN) are a group of negative regulators involved in TCR signaling. PTPN, specifically, has been 
associated with T-cell exhaustion 397. Among the PTPN family, three members, PTPN2, PTPN6, and PTPN22, 
are involved in downstream TCR signaling negative feedback loops and have been evaluated in preclinical 
models for their anticancer activity. 

4.2.2.1. PTPN2: 

PTPN2 also referred to as TC-PTP, is an important phosphatase primarily expressed in hematopoietic cells. It 
plays a crucial role in T-cell signaling by directly dephosphorylating Lck and Fyn kinases in CD4+ and CD8+ 
T-cells. This activity establishes a threshold for triggering the TCR 398,399. T-cells lacking PTPN2 display 
enhanced T-cell-mediated immunosurveillance, increased numbers of effector memory T-cells (TEM), tumor 
infiltration, and heightened cytokine production 400. Deletion of PTPN2 in mouse CAR-T-cells results in 
acquiring an effector memory phenotype (CD44+CD62L) and increased expression of IFNγ, TNFα, and 
Granzyme B, making them less prone to exhaustion 400. Furthermore, the use of small molecule inhibitor 
targeting PTPN2 improves the cytotoxicity of mouse CAR-T-cells and demonstrates similar benefits for 
human CAR-T-cells in vitro 400,401. 

4.2.2.2. PTPN6 (SHP1): 

SHP-1, also known as PTPN6, is a protein tyrosine phosphatase predominantly expressed in hematopoietic 
cells 358. It has been identified as a negative regulator of T-cell activation and interacts with various molecules 
involved in TCR signaling, including Zap-70, Syk, PI3K, Vav, Lck, CD3ζ, and SLP-76 358. The exact 
mechanism of SHP-1 function during T-cell activation remains uncertain due to variations in experimental 
conditions 402-409.  
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SHP-1 deficiency in mice leads to increased phosphorylation and activation of Lck, Fyn, and other key 
components of TCR signaling, resulting in T-cells that are hyper-responsive to TCR/CD3 stimulation and 
produce more IL-2 410,411. SHP-1 has also been found to exert its inhibitory effects by mediating inhibitory 
cytokines, such as IL-10 and TGF β, and by modulating the activation threshold of T-cells as SHP-1 is also 
upregulated in a TCR affinity-dependent manner 412,413. Furthermore, SHP-1 has been shown to inhibit T-cell 
activation by dephosphorylating casitas B-lineage lymphoma b (Cbl-b), thus protecting it from degradation 
414.  

Targeting SHP-1 has shown promise in preclinical models, particularly in therapies involving adoptive T-cells 
415. Deletion of SHP-1 in CD8+ T-cells enhances their proliferation potential, cytolytic capacity, and cytokine 
production 416,417. Although SHP-1 has been observed to interact with PD-1 in CD4+ T-cells and Jurkat T-cell 
lines, recent data suggests that their activities do not entirely overlap 335,418,419. Interestingly, PD-1 blockade 
has shown that SHP-1-deficient CD8+ T-cells are more responsive to anti-PD-1 and exhibit improved control 
of melanoma cell growth 420.  Pharmacological inhibition of SHP-1 (and partially SHP-2) has also been found 
to enhance the cytotoxic capacity of human primary CD8+ T-cells against tumors 419. 

4.2.2.3. PEP/PTPN22 

PEST-domain enriched tyrosine phosphatase (PEP), also known as PTPN22, is a cytoplasmic phosphatase 
found near the plasma membrane in all hematopoietic cells, including lymphocytes 421. It forms a tight complex 
with the negative regulatory kinase Csk, inhibiting T-cell activation by preventing phosphorylation of the TCR 
receptor complex 422,423. PTPN22 can also dephosphorylate Lyn and Fyn, Src-family protein tyrosine kinases, 
competing with Csk 423,424. It regulates Zap-70, TCRζ, and Vav1 activities, and its absence in T-cells increases 
T-cell association with antigen-presenting cells through enhanced activation of the small nucleotide guanosine 
triphosphate hydrolases (GTPase), Rap1425,426. The C1858T mutation in PEP, reducing its association with 
Csk, is linked to over twenty autoimmune diseases 427-431. 

Studies consistently show that targeting PEP enhances TCR signaling while overexpressing it results in the 
opposite effect 431. Experimentally, PTPN22 KO CD8+ T-cells demonstrated improved control of tumor 
growth, increased cytokine production, and resistance to TGFβ-mediated immunosuppression 432-434. 
Moreover, multiple successful screening approaches have identified small-molecule inhibitors of this 
phosphatase, which hold potential for clinical use as cancer immunotherapeutic 435-438. 

4.2.2.4. PTP-PEST/PTPN12  

PTPN12, a phosphatase containing a PEST domain, is widely expressed in mammalian cells 439. It interacts 
with Csk 440 and acts as a potent negative regulator by dephosphorylating important signaling molecules like 
Grb2, inhibiting Ras activation in B and T-cells 440,441. PTPN12 also regulates actin reorganization and the 
formation of the IS in lymphocytes by targeting the wiskott-aldrich syndrome protein (WASP) and actin-
related protein 2/3 (Arp2/3). When conditionally knocked down in T-cells, PTPN12 has been found to induce 
anergy, secondary T-cell activation, and autoimmunity 442. In contrast, PTPN12 overexpression decreases IL2 
production and inhibits NF-κB signaling 442-444. 

4.2.3. SOCS family: 
There are currently eight identified proteins known as SOCS (suppressor of cytokine signaling), including 
SOCS1-7 and CISH (chromogenic in situ hybridization). These proteins are negative regulators facilitating the 
degradation of JAKs and STATs 445-447. T-cell activation leads to the downregulation of SOCS3, and its 
depletion enhances T-cell proliferation and IL2 production 448. Additionally, SOCS6 is believed to act as a 
negative regulator of TCR signaling by targeting the proximal signaling kinase Lck for degradation 449. 
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4.2.3.1. CISH 

CISH, a negative regulator of TCR signaling, degrades PLCγ1 and SLP76, which inhibit NFAT and NF-κB in 
CD8+ T-cells 450,451, NK cells 452,453, and DC cells 454. In mice lacking CISH, CD8+ T lymphocytes displayed 
improved proliferation, Ca2+ signaling, and IL-2 production upon TCR engagement. These cells also exhibited 
increased expression of effector function-associated genes and showed enhanced control of tumor progression 
when used in ACT 351.  
Ongoing clinical trials are exploring CRISPR-Cas9 targeting of CISH in TILs prior to ACT, which has shown 
promising effects in improving the efficacy of ICB therapies as combined targeting of CISH−/− TILs isolated 
from CISH KO mice with anti-PD-1 antibodies has effectively controlled tumor progression 351. Recent studies 
have demonstrated the benefits of targeting the intracellular checkpoint SOCS-1, a member of the CISH 
family, in DCs for treating relapsed acute leukemia 454. Furthermore, the importance of CISH-expressing DCs 
in enhancing antitumor immunity and CTL activity has been demonstrated in mouse models 455.  

4.2.4. E3 Ligases 
Ubiquitination is a cellular process that involves attaching ubiquitin, a 76 amino acid protein, to substrate 
proteins, marking them for degradation in the proteasome or endosome. This process serves as a mechanism 
for removing misfolded or unwanted proteins and regulating the levels of transcription factors and signal 
transduction mediators. Ubiquitination occurs through three enzymatic steps, with the final step involving the 
E3 ubiquitin ligase. The E3 ligase recognizes the substrate and facilitates the transfer of ubiquitin from the E2 
enzyme to a lysine residue on the substrate protein456,457. 

4.2.4.1. CBL Family  

The Cbl (Casitas B-lymphoma) proteins, including c-Cbl, Cbl-b, and Cbl-3, are a conserved family of 
proteins458-460. These proteins play a role in downregulating the TCR signaling cascade by promoting the 
degradation of multiple targets 461,462. While the specific function of Cbl-3 is not yet fully understood, both 
Cbl-b and c-Cbl have been demonstrated to act as negative regulators of TCR signaling463,464. 

1.1.1.1.1 c-Cbl: 
c-Cbl plays a crucial role in T-cell signaling by binding and targeting various proteins for degradation. After 
TCR activation, c-Cbl primarily targets the CD3ζ chain of the TCR complex for degradation, leading to the 
downregulation of TCR signaling 465. Lck, a cytoplasmic tyrosine kinase, and LAT, an adaptor protein 
necessary for TCR signal transduction, are also important targets for c-Cbl-mediated degradation in activated 
T-cells 466. c-Cbl deficiency in immature T-cells results in increased expression of TCR-CD3ζ complexes and 
enhanced positive selection 467. The interaction between c-Cbl and the ζ chain is facilitated by Zap-70, which 
acts as a scaffold and aids in terminating TCR signaling 465.  

Interestingly, evidence suggests that c-Cbl can promote the degradation of CD3ζ through ubiquitination and 
subsequent translocation into lysosomal vesicles, independent of the proteasome468,469. Additionally, depletion 
of c-Cbl leads to impaired LAT internalization and elevated LAT levels in T-cells 470. c-Cbl also affects PD-1 
by binding to its cytosolic tail and promoting ubiquitination for proteasomal degradation 471. Consequently, 
genetic reduction of c-Cbl results in increased PD-1 expression in CD8+ T-cells and macrophages 471. 

1.1.1.1.2  Cbl-b:  
The E3 ubiquitin ligase Cbl-b is a crucial regulator of T-cell activation, possessing really interesting new gene 
(RING) finger catalytic domains responsible for protein ubiquitination and subsequent degradation of target 
proteins 472. Cbl-b is prominently expressed and functional in peripheral T-cells 473. Upon T-cell activation and 
clustering at the IS, Cbl-b is recruited to the TCR 474,475, where it employs various inhibitory mechanisms 
downstream of the TCR. Cbl-b interacts with important TCR signalosome molecules, including LCK, SLP76, 
ZAP70, PLCγ1, Vav1, and the regulatory subunit p85 of PI3K, to dampen T-cell activation 476-479.  
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Mice lacking Cbl-b display hyperactive T-cells that do not require CD28 for activation, leading to enhanced 
T-cell antitumor immunity in vivo 480,481. CD28 activation triggers Cbl-b ubiquitination and degradation via 
phosphorylation by PKCθ in a negative feedback loop 482,483. The homologous to the E6-AP carboxyl terminus 
(HECT) E3 ligase NEDD is a potential facilitator of Cbl-b degradation 482-484. The binding of CD28 ligands 
(B7-1 or B7-2) to CTLA-4 on T-cells increases Cbl-b protein levels, suggesting a contribution of Cbl-b to 
CTLA-4's inhibitory function 485. Cbl-b represses PTEN inactivation by NEDD4, reducing PI3K activity 486. 
Cbl-b, along with ITCH, is involved in TGF-β-mediated regulation of forkhead box P3 (Foxp3). The absence 
of either E3 ligase impairs the development of TGF-β-induced Foxp3+ Tregs (iTreg), resulting in iTregs with 
reduced Foxp3 expression and impaired suppressive functions 487-490. Cbl-b-deficient mice exhibit fewer 
exhausted T lymphocytes in the tumor microenvironment, and depletion of Cbl-b through CRISPR/Cas9 can 
restore the expression of inflammatory cytokines and cytotoxic molecules in exhausted PD-1+TIM-3+ T-cells 
353.  

CRISPR-Cas9-mediated depletion of Cbl-b in mouse CAR-T-cells promotes tumor regression and resistance 
to exhaustion 353. Adoptive transfer of Cbl-b-deficient CD8+ T-cells to tumor-bearing mice confers antitumor 
activity and tumor rejection 481,491,492. The loss of Cbl-b upon TCR triggering leads to increased 
phosphorylation of Akt/Erk, proliferation, activation, cytokine production (IFNγ, TNFα, IL-2), and cytolytic 
capacity (Granzyme B)353,493-495.  Cbl-b-deficient CD4+ and CD8+ T-cells are less susceptible to PD-1 or 
CTLA-4 inhibition 485,496 and immune suppression by Tregs, TGFβ, and PD-L1481,491,493,497. Of note, combining 
therapies targeting CTLA-4 with Cbl-b-deficient T-cells synergistically enhances antitumor response and 
survival in melanoma mouse models 493. Cbl-b-deficient mice reject various tumors and exhibit long-term 
tumor-specific immunological memory 353,481,491,493-495,497,498. Although Cbl-b KO mice are more susceptible to 
T-cell-mediated autoimmunity and type 1 diabetes 480,499,500, mild and non-lethal autoimmunity development 
in Cbl-b-deficient mice contrasts with enhanced antitumor immunity 491,501. Wild-type mice receiving Cbl-b 
KO or KD CD8+ T-cell-based adoptive transfer immunotherapy have not shown any autoimmune injury 
462,481,491,492,494,502.  

1.1.1.1.3 GRAIL: 
The gene known as RNF128, or the gene related to anergy in lymphocytes (GRAIL), is a transmembrane RING 
E3 ligase found in endosomes that negatively regulates T-cell activation and plays a vital role in enforcing T-
cell tolerance 503. GRAIL achieves this by poly-ubiquitinating and degrading CD3ζ molecules via the 
proteasome, leading to the downregulation of the TCR/CD3 complex on the cell surface 503. GRAIL directly 
targets TCRβ and CD3ζ, as evidenced by the significant decrease in CD3ζ ubiquitination observed in GRAIL-
deficient mice 503.  Furthermore, GRAIL is involved in the ubiquitination of proteins like Rho guanine 
dissociation inhibitor (RhoGDI), Arp2/3 subunit 5, and coronin 1A, which are associated with regulating the 
actin cytoskeleton and potentially modulating the anergic state of T-cells 504,505. GRAIL's impact extends 
upstream as well, as its deficiency leads to enhanced phosphorylation of ERK1/2 after T-cell activation, 
suggesting its role in regulating proteins preceding this signaling node 506. Absence of GRAIL in T-cells results 
in increased proliferation and cytokine secretion, independent of CD28 co-stimulation 503,507. During anergy 
induction, GRAIL upregulation correlates with decreased CD40 ligand (CD40L) expression, which is critical 
for dendritic cell-mediated licensing of T-cells 508,509. GRAIL binds to CD40L and promotes its ubiquitination 
for degradation 510.  

GRAIL deficiency in mice confers resistance to anergy induction, hyperactivation of CD4+ T-cells mediated 
by TCR, and enhanced proliferation and survival of T-cells following activation 503,507. Additionally, GRAIL-
deficient mice display heightened susceptibility to autoimmune diseases 503. Other potential targets of GRAIL 
have been identified, including CD83, which contributes to CD4+ T-cell costimulation, as well as tetraspanins 
like CD81 and CD151 511,512. Overexpression of GRAIL inhibits IL2 and IL4 production and induces anergy 
in CD4+ T-cells. It is upregulated in CD8+ T-cells within transplanted EL-4 and EG-7 (EL4-ova) lymphoma 
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tumors 513. Remarkably, CD8+ TILs lacking GRAIL exhibit improved tumor control, increased production of 
IFNγ and Granzyme B, and elevated expression of IL-21R. 513. Furthermore, GRAIL plays a critical role in 
Treg function, as GRAIL-deficient Treg cells exhibit reduced immunosuppressive capacity and express genes 
associated with TH17 cells 514. 

1.1.1.1.4 Roquin-1 and Roquin-2: 
Roquin-1 and Roquin-2 are intriguing mRNA-binding proteins that possess an active RING-E3 ligase domain. 
They directly reduce ICOS expression by binding to the 3’ untranslated region (3’UTR) of ICOS mRNA, aided 
by the cofactor NUFIP2 515,516. Additionally, both Roquin paralogs suppress OX40 levels by repressing OX40 
mRNA levels 517. Consequently, T-cells lacking Roquin exhibit heightened levels of ICOS and OX40. 
Remarkably, the increased ICOS levels in Roquin-deficient mice can override the need for CD28-
costimulation in their T-cells 518. 

1.1.1.1.5 NRDP1:  
NRDP1, an E3 ligase, hinders TCR signaling by participating in ZAP-70 ubiquitination (NRDP1-mediated 
Lys33-polyubiquitin chains) 519. These Lys33-linked ubiquitin chains facilitate the recruitment of suppressor 
of T-cell receptor signaling (Sts) 1 and 2 phosphatases, which subsequently dephosphorylate and deactivate 
ZAP70 519. TCR stimulation of CD8+ T-cells derived from Nrdp1−/− mice results in augmented proliferation, 
elevated phosphorylation of signaling proteins (ZAP-70, LAT, PKC, ERK-1/2, and JNK-1/2), increased 
cytokine production (IFNγ, IL-2), and enhanced expression of critical transcription factors (Prf1, Gzmb, T-
bet, Eomes) associated with effector function 519. Additionally, Nrdp1-deficient primed CD8+ T-cells exhibit 
improved control over syngeneic tumor development in a mouse model during adoptive cell transfer 519. The 
inhibitory effects of NRDP1 on T-cells are counteracted by the deubiquitination proteins OTU deubiquitinase 
7B (OTUD7B) and ubiquitin specific peptidase 12 (USP12) 520,521. 

1.1.1.1.6 Peli1:  
Peli1 (Pellino E3 ubiquitin protein ligase 1), an E3 ubiquitin ligase, exerts negative control over TCR signaling 
through two distinct mechanisms. First, upon TCR/CD28 stimulation, Peli1 targets the NF-κB protein c-Rel, 
tagging it with Lys48-polyubiquitin chains, leading to proteasomal degradation. This degradation prevents the 
induction of ICOS and CD40L expression, as well as T-cell activation, proliferation, and cytokine production 
522,523. Second, following TCR engagement, Peli1 facilitates the ubiquitination of tumor suppressor tuberous 
sclerosis complex (TSC), a tumor suppressor gene, enhancing TSC1/TSC2 dimerization and inhibiting 
mammalian target of rapamycin complex 1 (mTORC1), which a protein involved in the PI3K-Akt pathway 
that regulates metabolism 524. Recent studies have shown that Peli1 KO mice exhibit hyper-responsive effector 
T-cells 525. These mice demonstrate improved tumor control in various tumor models, attributed to increased 
infiltration of CD4+ and CD8+ T-cells into tumors and enhanced production of IFNγ and granzymes 524. 
Consistent with its biochemical function, Peli1-deficient mice develop autoimmunity due to hyperactivated T-
cells resistant to suppression by regulatory T-cells or TGFβ 525. 

1.1.1.1.7 NEDD4 Family: 
The NEDD4 (neural precursor cell expressed developmentally downregulated 4) family consists of nine 
members, distinct from Cbl E3 ligases, as they use a HECT domain for ubiquitin transfer instead of a RING 
domain 526. Specifically, NEDD4-1 and Itch have been identified as negative regulators of T-cell activation by 
attenuating NF-κB-mediated signaling 526. They achieve this by ubiquitinating and promoting lysosomal 
degradation of BCL10, a component of the CARMA1-BCL10-MALT1 (CBM) complex that activates NF-κB 
526. NEDD4-1 and Itch also target downstream signaling proteins, PKCθ and PLC-γ1, for ubiquitination and 
degradation, leading to reduced AP-1 activation 527. NEDD4 has also been found to regulate the expression of 
the costimulatory receptor GITR, and its degradation diminishes the cytotoxic response of T-cells 528.  
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Furthermore, Itch interacts with and enhances the ubiquitination of CD3ζ to terminate TCR signaling while 
regulating NF-κB activation in conjunction with NEDD4-1. Itch phosphorylation by JNK induces the 
degradation of c-Jun and JunB transcription factors 529-531. Itch inhibits IL-17 production from Th17 CD4+ T-
cells and γδ T-cells 532. Loss of Itch leads to modest increases in T-cell proliferation and IL-2 production, 
enhanced Th2 differentiation, and elevated IL-4 production. Homozygous Itch mutations can result in urticaria, 
autoimmune hepatitis, and susceptibility to spontaneous autoimmunity 533,534. Treg-specific Itch deficiency in 
mice causes severe airway inflammation due to increased TH2 cytokine production 535. Additionally, double-
KO mice lacking Itch in combination with either WWP2 or Cbl-b exhibit stronger autoimmune phenotypes 
than single-gene deficient mice 536,537. 

1.1.1.1.8 Deltex1  
Upon Notch signaling activation, Deltex1 which is an E3 RING finger ubiquitin ligase, is upregulated during 
T-cell anergy 538,539. The negative regulation of T-cell activation by Deltex1 remains controversial, but it 
involves both E3-dependent and E3-independent mechanisms. Deltex1 inhibits T-cell activation even without 
its Notch-binding domain and regulates the expression of anergy-associated molecules, Gadd45b and Cbl-b 
540. The significance of Deltex1-mediated suppression of T-cell activation is uncertain, as deletion of its RING 
finger domain only moderately affects its inhibitory capacity 539. It interacts with Egr-2 for optimal Cbl-b 
expression, and genes like Gadd45b, Egr2, and Egr3 are upregulated in anergic T-cells 541. A deficiency of 
Deltex1 increases T-cell activation, impairs anergy induction and enhances inflammation. This makes it a 
downstream component of calcium-NFAT signaling that regulates T-cell anergy 540. Additionally, Deltex1 can 
immunoprecipitate with PKCθ 542. Mice lacking Deltex1 exhibit increased mature peripheral lymphocytes, 
enhanced T-cell activation and proliferation with reduced T-cell tolerance and heightened susceptibility to 
autoimmune diseases 540. 

1.1.1.1.9 MDM2:  
The E3 ligase murine double minute 2 (MDM2) degrades the T-cell activation factor NFATc2 in CD4+ T-
cells, independent of the tumor-suppressor, tumor protein 53 (p53) 543. This degradation process may lead to a 
reduction in TCR activity 543,544. When MDM2 is knocked out in mice, naïve CD4+ T-cells exhibit increased 
production of IL-2 and IFNγ upon TCR stimulation. Moreover, the transfer of CD4+ T-cells with MDM2 
deficiency resulted in decreased tumor growth in mice with tumors 543. Moreover, Zhou J. et al. (2020) found 
that mice with MDM2 deficiency in T-cells display an accelerated progression of tumors along with reduced 
survival and functionality of CD8+ TILs. The authors also showed that MDM2 competes with c-Cbl for 
STAT5 binding, leading to decreased in c-Cbl-mediated STAT5 degradation and enhanced STAT5 stability, 
specifically in CD8+ TILs.  

On the other hand, MDM2 deficiency using pharmacological drugs enhances the production of CD8+ T-cell 
effector cytokines, such as IFN-γ and IL-2 545. Furthermore, clinical evidence showed that MDM2 abundance 
correlates with T-cell function and the interferon-γ signature in cancer patients 545. Still, the precise molecular 
mechanisms through which MDM2 modulates CD8+ TCR signaling are being elucidated. 

4.2.5. Dual Specificity Phosphatases (DUSPs): 
DUSP family members, including DUSP14 and DUSP22, play a role in inhibitory feedback control of TCR-
triggered signals. On the other hand, DUSP2 (PAC1) is upregulated in exhausted tumor-infiltrating T 
lymphocytes, and the absence of DUSP2 in CD8+ TILs from KO mice resulted in reduced exhaustion markers 
(PD-1, TIM-3, LAG-3), improved production of IFNγ, TNFα, and Granzyme B, enhanced control of tumor 
growth, and increased survival 546. However, their inhibitory capacities have not been demonstrated in mouse 
tumor models. 
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4.2.6. Deubiquitination enzymes (DUBs):  
The deubiquitinases A20 and cylindromatosis (CYLD), known for their role in regulating NF-κB signaling in 
innate immune cells, also impact T-cell function. A20, or tumor necrosis factor-α-induced gene 3 (TNFAIP3), 
removes ubiquitin chains from activated mucosa‐associated lymphoid tissue 1 (MALT1) in the Carma1-
BCL10-MALT1 (CBM) complex, preventing its interaction with IKK and inhibiting NF-κB activation upon 
TCR stimulation 547. Conditional deletion of A20 in peripheral CD8+ T-cells enhances NF-κB signaling, 
leading to increased production of IL-2, TNFα, IFN-γ, and cytotoxicity 548-550. In a mouse melanoma model, 
ACT using pre-stimulated A20 KO CD8+ T-cells significantly reduces tumor growth 549,551. Similarly, the 
deubiquitinase CYLD disrupts T-cell activation by removing Lys63-ubiquitin chains from the TAK1 kinase 
downstream of the CBM complex. CYLD deficiency results in colitis, elevated T-cell frequency, and 
activation, accompanied by spontaneous activation of IKK and NF-κB 552.  
 
Other negative regulators, including RASA2 (RAS p21 protein activator 2) and scaffold proteins of the Dok 
family, such as Dok1 and Dok2, play important roles in the negative regulation of TCR signaling 325,553-555. For 
instance, RASA2 ablation has been shown to enhance human CD8+ T-cell proliferation and improve in vivo 
tumor control during ACT of engineered T-cells in xenograft models 556. Dok1 and Dok2 proteins recruit 
different negative enzymes, such as Csk, SHIP-1, or RasGAP, establishing a platform for these proteins and 
bringing them close to the LAT signalosome. Furthermore, Ubiquitin-associated and SH3 domain-containing 
protein3a (Ubash3a) acts as a negative regulator of TCR signaling by recruiting and activating phosphatases, 
including SHP-1 and SHP-2, to the TCR signaling complex 335. These later phosphatases dephosphorylate 
tyrosine residues on various components of the TCR signaling pathway, which attenuates downstream 
signaling events. Similarly, Ubash3b interacts with the TCR complex and recruits phosphatases, inhibiting 
the activation of downstream signaling molecules 325.  

X-box-binding protein 1 (XBP1), specifically the spliced isoform of X-box binding protein 1, serves as a 
negative regulator of TCR signaling by repressing the expression of key components involved in the pathway 
554. It binds to specific regulatory regions of target genes and inhibits their transcription, resulting in the 
downregulation of critical signaling molecules. Notably, XBP1 also regulates glutamine influx, cholesterol-
induced CD8+ T-cell exhaustion, and transcriptional reprogramming in T-cells within the metastatic ovarian 
cancer milieu 555. 

Additionally, Siglec E, F, and G, members of the Siglec family, function as negative regulators of TCR 
signaling by binding to sialic acid residues on cell surface glycoproteins 335. These binding recruits inhibitory 
signaling molecules, including SHP-1 and SHP-2, to the TCR complex, leading to the attenuation of the TCR 
signaling and dampening T-cell activation. Ptprc, also known as CD45, negatively regulates TCR signaling 
by dephosphorylating tyrosine residues on key signaling molecules 335. By counteracting the action of protein 
tyrosine kinases, Ptprc, also known as CD45, attenuates TCR signaling and modulates T-cell activation. 
Moreover, Rasal1 acts as a negative regulator of TCR signaling by promoting the hydrolysis of the GTP bound 
to Ras proteins 335. This GTPase-activating activity leads to the inactivation of Ras, a critical component of the 
TCR signaling pathway. Consequently, Rasal1 attenuates TCR signaling and regulates T-cell activation.  

Furthermore, calcineurin binding protein 1 (Cabin1) Cabin1 suppresses NFAT activation and dampens TCR 
signaling through its inhibitory interaction with calcineurin 553, while Akap5 (A-kinase anchoring protein 5) 
negatively regulates TCR signaling by sequestering PKA away from its downstream targets 553. Akap5 acts as 
a scaffold protein, binding PKA and preventing its interaction with TCR signaling molecules. This 
sequestration of PKA attenuates TCR signaling and modulates T-cell activation.  
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Figure 10: TCR intracellular negative regulators 
TCR activation is inhibited through various negative regulators involving E3 ubiquitin ligases (dark pink), PTEN/PTPN-related 
molecules (dark blue), kinases, and other downstream TCR molecules (dark orange). Arrows indicate target substrates. 
 
Targeting negative regulators of T-cell responses offers potential for innovative therapeutic interventions. 
Understanding the regulatory mechanisms of these regulators provides insights into the complex regulation of 
T-cell responses, enabling the unleashing of T-cell-mediated antitumor responses and overcoming inhibitory 
checkpoints in adoptive T-cell transfer and cancer immunotherapy. However, concerns regarding safety and 
the development of autoimmunity arise with the modulation of inhibitory proteins.  

Current approaches primarily rely on small molecules that can block the catalytic domain of ubiquitin-related 
enzymes, either through direct binding, allosterism, or antagonist activity, and preventing their interaction with 
substrates or regulatory proteins. However, designing or screening for selective compounds is challenging due 
to redundancy among enzymes, limited knowledge of relevant substrates, and the prevalence of RING-type 
E3 ubiquitin ligases lacking conventional enzymatic domains.  

High doses of chemical compounds are often required for effective inhibition, resulting in off-target effects 
and cellular toxicities. Nonetheless, recent advancements in cell genetic engineering, particularly with 
CRISPR-Cas9 technology and other gene inhibitory tools, have facilitated the specific targeting of negative 
regulators 557,558. This precise targeting enables the engineering of specific immune cell types (e.g., T-cells) for 
therapeutic purposes while minimizing the risk of cell cytotoxicity associated with non-specific inhibition 
caused by systemically administered pharmacological drugs (Table 2).
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Table 2: Targeting TCR intracellular negative regulators for cancer immunotherapy.  
(Adapted from 559,560).  
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1 

II. Ph.D. Project aim:  
 
Adoptive T-cell transfer is a groundbreaking cancer treatment that can generate a strong and long-lasting 
response against different types of cancer. However, its effectiveness in solid tumors is limited compared to 
hematological malignancies, leading to modest responses and frequent relapses214. This is primarily due to the 
death or dysfunction of infused T-cells within the TME, which contains factors, immune cells, and physical 
barriers that prevent T-cells from efficiently infiltrating the tumor and exerting their cytotoxic activity. To 
improve T-cell persistence and antitumor function in solid tumors, various gene-engineering approaches have 
been employed to redirect T-cells toward cancer cells expressing specific TAAs 223,224 (Figure 4), as well as 
addressing the negative signals received by engineered T-cells (Figure 3). 

Our study focuses on overcoming the obstacles that hinder T-cell activation, persistence, and antitumor 
activity. We identified suppressive molecules downstream of the TCR signaling pathway that can be targeted 
and inhibited to enhance T-cell activation and unlock their full antitumor potential. Additionally, we developed 
gene-engineering tools to target those intracellular negative regulators, either individually or in combination, 
to enhance T-cell functionality in vivo, particularly in human and murine melanoma models. The study is 
divided into the following aims: 

Aim 1: Development of novel vector constructs and a protocol to gene-engineer T-cells with inducible 
or constitutive miRNA for downregulating targets while expressing a CAR or a transgenic TCR to 
redirect T-cells into the TME. 
To modulate TCR negative regulators and direct engineered T-cells to kill cancer cells, this chapter focuses 
on the development of a new lentiviral vector design. The design includes two gene cargos under independent 
promoters, enabling genetic modification of T-cells.  

This process involves: 
1-Comprehensive examination of existing gene-editing technologies and the development of novel strategies 
to effectively gene-engineer T-cells, thereby enhancing their antitumor function. 

2-Validating the novel vector design by using miRNA to downregulate HPK1, the primary negative regulator 
target. Recent evidence demonstrates promising results by deleting HPK1, which elevates constraints on T-
cell activation and antitumor activity. 

Aim 2: A combinatorial approach targeting multiple intracellular TCR negative regulators for 
enhanced T-cell persistence and functionality in vivo.  
This section presents a combinatorial strategy to inhibit multiple intracellular checkpoint inhibitors 
downstream of the TCR network. We also demonstrate the enhanced T-cell function and evasion of TME 
immunosuppression through the concomitant downregulation of dual intracellular negative regulators of TCR, 
both in vitro and in vivo.  

This part will cover: 
 
Aim 2.1: Identifying relevant intracellular negative regulators to target downstream TCR signaling pathways. 
Here, we will involve an in-depth, comprehensive literature overview and evaluation of currently studied TCR 
intracellular inhibitory checkpoints and their significance in immune regulation, T-cell activation, as well as 
their antitumor responses to highlight relevant targets to downregulate for our study.  



 

 38 

 
Aim 2.2: Evaluate the expression of selected negative regulators in high-affinity TCRs:  
To achieve our primary goal of downregulating specific negative regulators, our strategy relies on upregulating 
those genes during the TCR synapse with tumor antigen. This approach is valid only when the target expression 
is ensured in the context of T-cell activation within the TME. To simulate this antigen encounter in the lab, we 
employed an experimental method that induces a state resembling T-cell exhaustion. This was achieved by 
chronically stimulating the T-cells with ovalbumin (OVA) SIINFEKL peptide, using an adapted protocol 
adapted from Katsikis lab published in 2020 561.   
 
Aim 2.3: Screen miRNAs for achieving a high knockdown level of the selected targets using the single-miRNA 
vector in high-affinity TCRs. 
The main goal of delivering miRNA for gene inhibition is achieving high KD efficiency. However, this 
outcome is not always guaranteed. Indeed, it depends on various factors such as vector design elements 
(promoter, spacers, and miRNA backbone) as well as the miRNA biogenesis affecting the potency of targeted 
gene KD. We will demonstrate an experimental method and resulting data for screening multiple miRNAs 
using a single miRNA vector to ensure effective gene silencing for all selected TCR intracellular inhibitors. 
 
Aim 2.4: Design vectors for dual and multiple targeting of the selected TCR intracellular inhibitory 
checkpoints:  
One key challenge in gene engineering T-cells for simultaneous multiple gene inhibition is designing and 
constructing a polycistronic miRNA vector. In our context, the shRNA-based miRNA approach is the tool of 
choice. Synthetic miRNA minigenes (SMIGs) hold significant potential for molecular therapy. However, their 
optimal architecture has been the focus of numerous studies aimed at enhancing cloning efficiency, expression, 
successful delivery, and consistent KD potency. Considering factors such as insert size limitation, miRNA 
stability, biology, and regulation, we outline the method used to construct a multiple miRNA vector for 
downregulating multiple genes simultaneously.  
 
Aim 2.5: Evaluate T-cell antitumor activity in vitro and in vivo when carrying multiple perturbations targeting 
TCR negative regulators in high and low-affinity TCRs: 
To validate our experimental approach, engineered T-cells were assessed for their antitumor activity upon 
downregulating suppressive molecules downstream of the TCR signaling pathway. This involves evaluating 
their cytokine secretion, proliferation, and persistence in the immunosuppressive TME, specifically in cold 
tumors using the B16/B16 OVA syngeneic tumor model in high and low-affinity TCR scenarios for performing 
ACT.  
 
Aim 2.6: Develop an unbiased, high-throughput screening approach for identifying suitable candidates for 
gene silencing.  
To enlarge our strategy to a broader spectrum, we adopted the CRISPR/Cas 9 system as a high throughput 
screening method enabling the inclusion of a larger number of potential TCR suppressive regulators and an 
unbiased screening of all the targets at once based on T-cell persistence. We demonstrated the outcome of 
silencing 19 targets downstream of the TCR signaling pathway using a small pooled CRISPR library we built 
and validated in our team.  
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III. Results:  
1. Development of novel approaches and vector constructs comprising inducible or constitutive miRNA 

for CAR and TCR-based T-cell therapies. 

Inverted lentiviral transfer vector comprising independent promoters for  
on-command gene-cargo delivery by tumor-redirected T-cells 
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1.1. Co-author contribution:  
In this study, Melita Irving and George Coukos directed the overall research, with Melita Irving providing 
supervision. Patrick Reichenbach and Greta Giordano Attianese were responsible for designing and planning 
experiments related to the vector configurations while experiments related to HPK1 KD were planned and 
designed by myself. The following individuals, including myself, contributed to the execution, analysis and 
interpretation of experiments: Patrick Reichenbach, Greta Giordano Attianese, Elisabetta Cribioli, Melanie 
Triboulet, Sarah Ash, Margaux Saillard, Romain Vuillefroy de Silly. 

My specific contributions to the study are as follows: performing the cloning of the bidirectional configuration 
vector for transducing Jurkat cells and conducting the flow cytometric analysis (Figure 1b); contributing to 
the execution and analysis of in vivo bioluminescence imaging experiments, comparing prostate-specific 
membrane antigen (PSMA) sCAR/aCAR/aCARNovB2 Tax with untransduced (UTD) and CD19 CAR cells 
(Figure 5e); cloning the miRNAs targeting HPK1 and miRNA CTRL in the pCRRL lentiviral vector for 
constitutive expression, along with NGFR and the NYESO-1 TCR (Figure 6e); planning, performing, 
analyzing, and interpreting the western blot data for HPK1 downregulation in NYESO TCR transduced Jurkat 
cells (Figure 6f); planning, performing, analyzing, and interpreting the flow cytometric results assessing the 
transduction efficiency of NGFR and NYESO-1 TCR expression in transduced primary human CD4+and 
CD8+T-cells (Figure 6g); planning, performing, analyzing, and interpreting the western blot results evaluating 
HPK1 KD levels in NYESO-1 TCR-CD4+and CD8+T-cells from three different healthy donors (Figure 6h); 
planning, performing, analyzing, and interpreting the cytotoxicity experiments for NYESO-1 T-cells against 
target cells using IncuCyte (Figure 6i), as well as cytokine secretion upon coculture with target cells (Figure 
6j) and proliferation assay (Figure 6k).  

Additionally, I evaluated the functionality of the dual antisense configuration vector by planning, performing, 
analyzing, and interpreting flow cytometric results of Pz1-CAR expression upon transduction of CD4+ and 
CD8+ primary human T-cells with the pCRRL lentiviral vector containing the inducible miRNA B targeting 
HPK1 in dual antisense configuration, along with western blot results assessing HPK1 downregulation in Pz-
1-CAR T-cells (Figure 7c). I also analyzed the flow cytometric data for pan-TCR and eGFP expression in T-
cells transduced with constitutive miRNA targeting TRAC (Figure 7d), along with performing, analyzing, 
and interpreting the in vivo bioluminescence results for the study using the antisense orientation vector 
comprising the inducible luciferase along with the constitutive aPSMA or aCD19 CAR (Extended Data 
Figure 5g, 5h, 5i, and 5j). Furthermore, I contributed to the writing and editing of the manuscript. 
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1.2. Summary:  
In the quest to bolster the efficacy of T-cell-based immunotherapies for oncological applications, this research 
endeavor addressed issues linked to the co-expression of genes in engineered T-cells. We combined the 
benefits of controllable, inducible gene expression in synergy with a perpetually expressed tumor-specific 
receptor. Meanwhile, we developed a fine-tuned and clinically viable procedure to amplify viral titer during 
viral synthesis, thereby enhancing transduction efficiency and facilitating the simultaneous expression of the 
pair of genes.  

In fact, gene-engineering T-cells to express tumor-targeting receptors such as CARs or transgenic TCRs along 
with additional therapeutic genes (i.e., miRNAs, chemokines, or cytokines) has largely been achieved by the 
co-transduction of two delivery vectors 562,563. However, this results in high GMP-grade production costs, 
cellular stress, decreased viability due to repeated infection, and an increased risk of insertional mutagenesis 
564.  Existing approaches involve alternative strategies using bicistronic vectors to express both genes of interest 
under the same promoter 565,566 comprising a picornavirus 2A (P2A) peptide sequence 567,568 or an internal 
ribosome entry site (IRES) 569 for separating and constitutively expressing the two genes. However, these gene-
separation approaches have limitations, such as reduced gene expression of the downstream gene and potential 
immunogenicity led by incomplete cleavage at the P2A site, in addition to limiting the size of the inserted 
“gene-cargo” in case of using, for instance, IRES (about 500bp).  

By developing a novel lentiviral vector design with two independent promoters in the antisense orientation, 
we could demonstrate the successful generation of T-cells expressing the inducible transgene and the 
constitutively expressed tumor-targeting receptor using Pz1-CAR and NYESO-1-TCR with improved gene 
expression, transduction efficiency, and T-cell performance. Through in vitro and in vivo experiments, the 
engineered T-cells exhibit enhanced tumor cell recognition, resulting in improved tumor cell killing and tumor 
growth delay. We have also investigated the kinetics of transgene expression and demonstrated precise control 
of its activation using the inducible system, allowing for fine-tuning therapeutic effects, and minimizing 
adverse events associated with sustained transgene expression. 
 
Overall, our findings establish the feasibility and potential of the developed lentiviral vector for not only the 
production of engineered T-cells with enhanced expression of two inserted genes but also their performance 
that resulted from better transduction efficiency with respect to safety standards, lower GMP production costs, 
and faster delivery. The novel vector design represents a significant advancement in T-cell-based 
immunotherapies for cancer treatment, with implications for improving the safety and efficacy of cancer 
therapy. This study provides a solid foundation for further investigations and future clinical applications to 
advance personalized cancer therapy and achieve better patient outcomes. 
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1.3. Article 
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2. Evaluation of the antitumor activity of CAR/TCR T-cell expressing miRNAs for HPK1 downregulation:  

2.1. Summary:  
To improve T-cell fitness in the context of solid tumors, one promising approach is to engineer TCR/CAR-T-
cells to resist suppressive mechanisms. This can be achieved by downregulating master negative regulatory 
genes involved in attenuating T-cell activity following chronic TCR stimulation, such as HPK1, which was 
reported in several studies that is a crucial negative intracellular regulator of human and murine CD8+ T-cell 
effector function (discussed in the introduction section of “Intracellular negative regulators downstream TCR 
signaling pathways”).  
 
Given the fact that targeting HPK1 holds promise for improving T-cell-mediated immune responses, we 
hypothesized that HPK1 KD in human primary T-cells would significantly increase the potency of T-cells to 
initiate a more robust response, better persist, and infiltrate the TME. Here, we have evaluated HPK1 KD in 
the context of Pz1-CAR and HLA/A2-NY-ESO-1157-165 (referred to, here, as NYESO-1) restricted TCR-
engineered T-cells for ACT. However, we also anticipated that our gene-engineering approach would not come 
without difficulties as we sought to downregulate HPK1 using a miRNA, which we considered the best fit for 
our therapeutical goal (i.e., stable downregulation and clinically translated approach for gene KD) due to its 
biology and cellular processing machinery that make it difficult to be delivered (please refer to the introduction 
section of “Gene inhibitory strategies”). Still, these facts did not compromise our objective, and we opted to 
use our optimized tools to tackle these issues.   
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2.2. Material and Methods:  

Cell lines and culture 
The prostate carcinoma cell line PC3-PIP (PMSA+), Na8, Me275, A375, Saos-2, 293T human embryonic 
kidney (HEK293T) cells, and Jurkat cells were cultured in roswell park memorial institute medium (RPMI) 
complete medium, consisting of Roswell Park memorial institute medium (RPMI) 1640 Glutamax medium 
(61870010, Invitrogen) supplemented with 10% heat-inactivated (HI) fetal bovine serum (FBS) (for 30 min at 
56°C) (26140-079, Gibco) and 1% Penicillin/Streptomycin (P/S) (penicillin 10’000 IU ml−1−streptomycin 
10’000 μg ml−1 (100X)) (BioConcept) at 37 °C in a 5% CO2 atmosphere. Na8, Me275, A375, Saos-2, 293T, 
and Jurkat cell lines were purchased from the american type culture collection (ATCC). The PC3-PIP and PC3 
cell lines were kindly provided by Dr. A. Rosato (University of Padua, Italy).  

Vector construction 
• In the context of Pz1-CAR: Second-generation Pz1-CAR comprising the CD8α hinge, CD28 

transmembrane (TM), CD28 endodomain (ED), and CD3ζ ED, along with the miRNA targeting HPK1 
(miRNA B) and the control miRNA (miRNA CTRL) were cloned in an antisense configuration pCRRL 
vector available in the lab. The anti-PSMA scFv derived from monoclonal antibody J59199 was used to 
confer tumor-antigen specificity and was constitutively expressed under the phosphoglycerate kinase 
(PGK) promoter. The (NFAT)6 response elements-IL-2 minimal promoter, abbreviated as 6xNFAT, was 
used to promote the inducible expression of the miRNAs.  

• In the context of NYESO-1 TCR: In a sense configuration pCRRL vector, the human truncated nerve 
growth factor receptor (tNGFR) and HLA-A2/NY-ESO-1157-165 restricted TCR bearing the I53F mutation 
(I53F-NYESO-TCR) were constitutively expressed by the PGK promoter. In addition, miRNAs targeting 
HPK1 (miRNA A and B), and the miRNA control (miRNA CTRL) were expressed under the U6 promoter 
followed by a leader sequence (LS). The HLA-A2/NY-ESO-1157-165 restricted TCR has been previously 
described570.   

Replacement of the RSV promoter with the CMV promoter in the 5’ long terminal repeat (LTR) was used to 
enable soluble TNFα in the culture supernatant to favor transcription of the single-strand RNA (ssRNA) viral 
genome. 

Cloning strategies 
The gene strings of the transgenes were ordered from Addgene, and the cloning was done in lentiviral (pCRRL) 
vectors. Vectors’ amplification was performed in Stellar competent cells (E. coli HST08, 636763, Takara). All 
plasmids were purified using PureLink HiPure Plasmid Filter Maxiprep kit (Invitrogen, Life Technologies) or 
Miniprep kit (Qiagen) upon confirmative sequencing (from Microsynth AG, Switzerland) 

Lentivirus supernatant production 
• For large-scale virus production to transduce primary human T cells: 24 h before transfection, 293T-cells 

were seeded at 10 × 106 cells in 30 ml medium in a T-150 tissue culture flask. All plasmid DNA was purified 
using the Endo-free Maxiprep kit (Invitrogen, Life Technologies). 293T-cells were transfected with 7 μg 
pVSVG or 7 μg pVSVG-T2A-NovB2, 18 μg of R874 (Rev and Gag/Pol expression plasmid), and 15 μg of 
pCRRL transgene plasmid added to a mixture of 180μl Turbofect (Thermo Fisher) and 3 ml Optimem media 
(Invitrogen, Life Technologies). The medium was further supplemented with TNFα at 10 ng ml−1 working 
concentration. The viral supernatant was collected at 48 h post-transfection. Viral particles were 
concentrated by ultracentrifugation for 2 h at 24,000 g and resuspended in 400μl complete RPMI-1640 
media, followed by immediate snap freezing on dry ice. 

• For small-scale virus production to transduce Jurkat cells: Viral supernatant was produced by seeding 293T 
cells in a 12-well plate at 0.65 × 106 cells in 2 ml medium per well 5-6 h prior to transfection. 293T cells 
were transfected with 2 μg total DNA mixture consisting of 1 μg pVSVG/R874 and 1 μg of pCRRL 
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transgene plasmid. The DNA mixture was added to a mix of Turbofect (Thermo Fisher) and Optimem 
media (Invitrogen, Life Technologies) according to the manufacturer’s instructions, then incubated for 
10−20 min at room temperature (RT). After 24h, the medium was refreshed, and at 48h post-transfection, 
the viral supernatant was collected and then used directly to transduce Jurkat cells. 

Jurkat cell transduction for viral titration 
Jurkat cells were suspended at 1 × 105 cells per ml and seeded into 24-well plates at 1 ml per well. Different 
volumes of viral supernatant were used for transduction, as indicated, ranging from 300μl down to 3μl. Cell 
media were refreshed after incubation for 24 h at 37 °C. Viral titers (transducing units per ml (TU ml−1) were 
calculated as follows: ((total number of cells/100) × percentage of transduced cells) × dilution of the virus 
supernatant). 

Primary human T-cell purification, activation, transduction, and expansion 
Primary human T-cells were isolated from the PBMCs of healthy donors (HDs; prepared as buffycoats) 
collected with informed consent by the blood bank. Total PBMCs were obtained via Lymphoprep (Axonlab) 
separation solution by a standard centrifugation protocol. CD4+ and CD8+ T-cells were isolated by negative 
selection using magnetic beads following the manufacturer’s protocol (easySEP, Stem Cell Technology). 
Purified CD4+ and CD8+ T-cells were cultured separately in complete RPMI-1640 and stimulated with anti-
CD3 and anti-CD28 monoclonal antibody (mAb)-coated-beads (Invitrogen, Life Technologies) at a 1:2 ratio 
of T-cells to beads. T-cells were transduced with lentivirus vector particles at 18–22 h post-activation. Human 
recombinant interleukin-2 (h-IL-2; Glaxo) was replenished every other day for a concentration of 50 IU ml−1 
until 5 d post-stimulation (day +5). At day +5, magnetic beads were removed, and h-IL-7 and h-IL-15 (Miltenyi 
Biotec) were added to the cultures at 10 ng ml−1. A cell density of 0.5–1 × 106 cells per ml was maintained for 
expansion. Rested engineered T-cells were adjusted for equivalent transgene expression before all functional 
assays; the more efficiently transduced samples were diluted with appropriate numbers of UTD-T-cells. 

Cell staining and flow cytometric analysis 
To evaluate CAR cell-surface expression, transduced cells were stained with fluorescent anti-human F(ab’) 
mAb (BD Biosciences). For evaluating I53F-NYESO-TCR cell-surface expression, transduced cells were 
stained with fluorescent HLA-A2/NY-ESO-1157-165 tetramer produced in-house. Aqua live Dye brilliant violet 
(BV510) and near-infrared fluorescent reactive dye (APC Cy-7) were used to assess viability (Invitrogen, Life 
Technologies). For assessing memory phenotype, cells were subjected to surface staining using CCR7 BV421 
(clone G043H7, BioLegend) and CD45RA ECD (clone 2H4LDH11LDB9 (2H4), B49193, Beckman Coulter).  

Proliferation assay 
To assess the proliferative capacity of HLA-A2/NY-ESO-1157-165 (A2/NYESO-1)-specific TCR-T-cells co-
expressing a miRNA-based shRNA, both transduced and UTD-T-cells (n = 3 donors) were stained with cell 
trace violet (CTV) (Invitrogen, Life Technologies) according to the manufacturer’s instructions. Cells were 
then stimulated for 96 h with anti-CD3 and anti-CD28 monoclonal antibody (mAb)-coated beads CTV 
(Invitrogen, Life Technologies) at a 2:1 ratio of beads:T-cells.  

Immunoblotting 
Cells were lysed in RIPA buffer supplemented with Halt phosphate/protease inhibitors (Thermo Fisher) and 
boiled at 97 °C for 10 min with Bolt LDS sample buffer and reducing agent (Thermo Fisher). Protein samples 
(10 μg) were separated by SDS–PAGE and transferred to PVDF membranes using the iBlot2 system (Thermo 
Fisher). Antibody staining of the molecules of interest was carried out according to the manufacturer’s 
instructions. Rabbit monoclonal antibody (EP630Y) specific to MAP4K1/HPK1 antibody (ab33910) was 
purchased from Abcam, and anti-β-actin (sc-47778) from Santa Cruz. Images were acquired with a western 
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blot imager (Fusion, Vilber Lourmat), and protein levels were quantified using the ImageJ software by 
analyzing the pixel intensity of the bands. Total HPK1 level was calculated by dividing its signal by the β-
actin signal. 

Enzyme-Linked Immunosorbent Assay (ELISA) for IFNγ detection 
To assess human IFNγ (hIFNγ) secretion by engineered T-cells, 5×104 primary untransduced (UTD) and 
transduced T-cells were cocultured with 5×104 target cells per well, at a ratio of effector: target (E:T) of 1:1, 
as duplicates in 96-well round bottom plates in a final volume of 200 µL complete RPMI media. After 24-hrs, 
supernatants of the coculture were harvested and tested for the presence of IFN-γ using the Human IFNγ 
ELISA MAX Deluxe kit (Cat n°430104, BioLegend) upon appropriate dilution (1/25-100) according to the 
manufacturer protocol.  

Cytotoxicity with IncuCyte System 
Cytotoxicity assays were performed using the IncuCyte System (Essen Bioscience). Briefly, 1.5x104 
engineered nuclei red target cells per well were seeded in flat bottom 96well plates (Costar, Vitaris) 4h before 
to the coculture. Rested T-cells (80% CD8+ and 20% CD4+ T-cells) not receiving cytokines for 48h were 
washed and seeded at 3x104 cells per well, at a ratio of the E:T = 0,25:1, 0,5:1, 1:1 or 2:1 in complete media 
of 200µl total volume with or without the presence of inhibitory factors 2-chloroadenosine CADO (Sigma-
Aldrich), Forskolin (FSK) (Sigma-Aldrich) and PGE2 (Sigma-Aldrich) in an increasing dose manner. No 
exogenous cytokine was added to the assay medium during the coculture period. Internal experimental 
negative controls were included in all assays, including coculture with UTD-T-cells, tumor cells, and tumor 
cells alone, to monitor tumor cell death over time. As a positive control, tumor cells alone were treated with 
1% triton solution (T8787, Sigma-Aldrich) to evaluate maximal killing in the assay. The nuclei red target cells 
were generated with IncuCyte NucLight Lentivirus (Essen Bioscience) for nuclear-restricted expression of 
mKate2 (red fluorescent protein), according to the manufacturer’s instructions. Images of the total red area per 
well were collected every 2 h of the coculture for up to three days. The total red area per well was obtained 
using the analysis protocol on the software provided by Essen Bioscience manufacturer. Data were normalized 
by subtracting the background fluorescence observed at time 0h (before any cell killing by Pz1-CAR- or 
NYESO-1-TCR-T-cells) from all further time points. Data are expressed as mean ± s.e.m. of different donors. 

Mouse strain and in vivo experimentation 
Mouse Strains and Housing 
NSG (NOD scid gamma) and NSG -IL15 mice (The Jackson Laboratory) were bred and housed in a specific 
and opportunistic pathogen-free animal facility (SOPF) providing a temperature-controlled environment and 
a light-dark (12 h/12 h) cycle in the Oncology Department of the University of Lausanne (Epalinges, 
Switzerland). All in vivo experiments were conducted according to the Swiss Federal Veterinary Office 
guidelines and were approved by the Cantonal Veterinary Office. Experiments used mice at least six weeks 
old, and all cages housed five animals in an enriched environment providing free access to food and water. 
During experimentation, all animals were monitored for signs of distress at least every other day. Mice were 
euthanized at the endpoint by carbon dioxide overdose. 

In vivo experiments with xenogeneic tumor models 
NSG-IL15 male mice aged 8–12 weeks were blindly selected, then subcutaneously (s.c.) injected in the flank 
with 5x106 Me275 melanoma tumor cells in 100μl of PBS. Once tumors were palpable (day 5), the mice were 
randomized and grouped for similar mean tumor volume and standard deviation (SD) prior to T-cell treatment. 
The T-cell transfer was performed by intravenous (i.v.) injection of 5x106 UTD or NYESO1-T-cells in 100μl 
of PBS. NYESO1-T-cells were distinguished into three groups: (1) CTRL, (2) HPK1 (A), and (3) HPK1 (B). 
In each group of T-cell treatment, 80% of CD8+T-cells and 20% of CD4+T-cells were mixed. Tumor volume 
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was monitored via caliper measurement every two days. It was calculated using the formula V (mm3) = 1/2 
(length × width2), where length is the greatest longitudinal diameter and width is the greatest transverse 
diameter. 

Statistical analysis 
Statistical analyses were performed using GraphPad Prism 9.0 (GraphPad Software, La Jolla, CA). For single 
variable testing, one-way analysis of variance (ANOVA) followed by Tukey post-hoc correction was utilized 
for multiple comparisons across column groups. In the case of two/multiple-variable analysis involving 
multiple groups, a two-way repeated measure ANOVA, coupled with either a Tukey post-hoc correction or a 
Šidák post-hoc analysis, was employed. Differences were considered significant when *P < 0.05, very 
significant when **P < 0.01, and highly significant when ***P < 0.001. 
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2.3. Results:  

2.3.1. In the context of Pz1-CAR T-cells:  
To address our study objectives, we started initially by evaluating the KD potency of three microRNAs (miRs) 
- A, B, and C (from Transomic Technologies Inc.) targeting HPK1 in comparison to a control miRNA (CTRL), 
that has no target in primary cells, using a commercial retroviral vector (Figure 11a).  

By performing a western blot in Jurkat cells transduced with the aforementioned vector, we could demonstrate 
that miRs A and C demonstrated substantial KD potency resulting in approximately 85-86% downregulation 
of HPK1. Notably, miR B achieved the highest level of KD with over 92% downregulation of HPK1 expression 
compared to the miR CTRL, exhibiting its efficacy in targeting HPK1 (Figure 11b).   
 
To take our approach a step further and investigate the HPK1 KD’s potential in primary human T-cells, we 
took advantage of the novel lentiviral vector design we have developed in our lab (discussed previously in the 
section “1.3 article” of the previous chapter) and cloned the miR B and miR CTRL in a pCRRL lentiviral 
vector construct harboring an antisense configuration, wherein miR B was inducibly expressed under the 
NFAT promoter (to induce the downregulation only when T-cell engage with tumor antigen as a way to avoid 
any potential toxicities due to T-cell overactivation). In contrast, second-generation Pz1-CAR recognizing the 
PSMA antigen of prostate cancer cells and comprising 28z endodomain was constitutively expressed under 
the PGK promoter (Figure 11C).  
 
Isolated human primary CD4+ and CD8+ T-cells were then transduced with lentivirus-bearing Pz-1-CAR-miR 
B/miR CTRL and stained cells with anti-fab Ab recognizing the single chain fragment variable (scFv) of the 
CAR to determine the TE by flow cytometry on day 7 post-transduction (Figure 1d). Data were displayed as 
percentages and mean fluorescence intensity (MFI) of CAR expression. The results revealed TE rates 
exceeding 90% and 60% of CD4+ cells and CD8+ T-cells, respectively, for both miR B targeting HPK1 and 
CTRL miR. No statistical difference (ns) is to be reported between CD4+Ctrl and KD or CD8+Ctrl and KD.  
 
Moreover, to determine the level of HPK1 KD, sorted Pz-1-CAR+ T-cells were stimulated with either anti-fab, 
anti-CD3 Ab, or anti-CD3/CD28 dynabeads for 6h, 24h, and 48h. Western blot analysis of one representative 
donor indicated that miR B effectively downregulated HPK1 expression, with over 99% KD level observed in 
CD4+ and 90% efficiency in CD8+ T-cells following activation of the NFAT promoter through anti-fab 
stimulation for 6 hours (Figure 11e) (Figure 7c, right of the attached published article).  
 
Lastly, we investigated whether HPK1 KD affected the fraction of live CD4+ and CD8+ T-cells stained by 
the near-infrared fluorescent reactive dye (Figure 1f) and could demonstrate that the percentage of live cells 
remained unaltered upon HPK1 downregulation compared to the CTRL condition highlighting the potential of 
miR B in efficiently reducing HPK1 expression without compromising the viability of CD4+ and CD8+T-
cells. Taken together, these results emphasize the effectiveness of miR B in downregulating HPK1 expression 
in human primary Pz1-CAR T-cells and the successful cell transduction using both miR B and the CTRL miR, 
resulting in a significant milestone achievement in this study. 
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Figure 11: Characterization of HPK1 Knockdown in transduced Jurkat cells and anti-PSMA-CAR primary CD4+ and CD8+ 
T-cells.  
(a) Schematic of the commercial vector used for Jurkat cell transduction. (b) Western blot analysis showing HPK1 KD levels using 
miR A, B, and C compared to miR CTRL together with β-actin control blot for 20μg and 40μg Jurkat cell protein extract. (c) Schematic 
of antisense lentiviral transfer vector encoding an anti-PSMA-CAR under PGK and miRNA either targeting HPK1 (HPK1 (B)) or miR 
CTRL (CTRL) under 6xNFAT. (d) Evaluation of transduction efficiency 7 days post-transduction; top: representative flow cytometry 
histogram of Pz-1-CAR CD4+ and CD8+ T-cells downregulating HPK1 (HPK1 (B)), CTRL T-cell, and UTD T-cells used as a baseline 
for the gating strategy to exclude the fluorescence background; bottom: bar graphs presenting the mean ± s.e.m of the percentage (%) 
(bottom left) and as MFI (Bottom right) of the Pz1 derived CAR expression in primary CD4+ and CD8+ T-cells (n=4 donors) 
determined by flow cytometric analysis using anti-fab targeting Pz-1-CAR scFv. (e). Western blot analysis showing specific 
downregulation of HPK1 using miR B compared to miR CTRL together with β-actin control blot of a representative human T-cell 
donor (out of n=2 donors) upon 6h stimulation with plate-coated anti-F(ab)2. (f) Bar graph depicting the mean ± s.e.m of the percentage 
of cell viability of transduced CD4+ and CD8+ T-cells stained with near-infrared fluorescent reactive dye (n=4 donors) 7 days post-
transduction.  
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Next, we wanted to investigate the impact of HPK1 downregulation on various aspects of Pz1-CAR T-cell 
functionality when stimulated and even challenged in immunosuppressive conditions. We designed 
experimental settings to provide insights into the impact of HPK1 downregulation without or with 
immunosuppressive inhibitors, mimicking the immunosuppressive conditions in the TME using PGE2, CADO 
(stable adenosine analog), and Fsk (specific activator of adenylate cyclase), on T-cell proliferation, cytokine 
secretion, and tumor-killing potential. To examine the proliferation capacity of HPK1 KD T-cells, we 
performed a CTV-based proliferation assay where CD4+ and CD8+ Pz-1-CAR T-cells downregulating or not 
HPK1 were stimulated in technical duplicates with aCD3/aCD28 dynabeads at a ratio of E:T=2:1. The results 
highlighted the positive impact of miR B-mediated HPK1 downregulation on CD8+ T-cell proliferation, as a 
significant difference was found between HPK1 KD and CTRL T-cells, whereas no difference was observed 
in CD4+ T-cells (Figure 12a).  
 
Next, we exposed HPK1 KD and CTRL CD4+T-cells to CADO and PGE2 in cell culture at increasing 
concentrations. We stained them intracellularly for flow cytometric analysis to measure IL2, IFNγ, and TNFα 
expression by the T-cells. Notably, significantly higher IFNγ secretion was observed in HPK1 KD CD4+ T-
cells compared to the CTRL for intermediate to high concentrations of CADO and PGE2 (Figure 12b). 
However, in vitro cytotoxicity analysis using the IncuCyte system did not reveal a significant difference in 
tumor killing when coculturing HPK1 KD and CTRL T-cells (80% CD8+ and 20% CD4+ T-cells) with PC3 
PIP cells at E:T ratios of 2:1 and 1:1 over a 48 hour period, as shown by the line graphs depicting the percentage 
of tumor survival, suggesting comparable efficacy in tumor cell elimination (Figure 12c). Similarly, no 
discernible difference was observed in tumor killing between T-cells bearing or not HPK1 downregulation 
when cocultured at an E:T ratio of 2:1 with PC3 PIP cells under different conditions, including the 
immunosuppressive inhibitors CADO, PGE2, and FSK at increasing concentrations (Figure 12d).   

These findings offer valuable perspectives into the role of HPK1 in modulating T-cell responses and tumor 
immunity of both CD4+ and CD8+ T-cells. 
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Figure 12: Functional effect of HPK1 downregulation on human primary Pz1-CAR T-cells.  
(a) CTV-based proliferation assay; left: Bar graph presenting the mean  ± s.e.m of the percentage of proliferating HPK1 KD (HPK1 B) 
and CTRL CD4+ and CD8+ T-cells (n=3 donors). Statistical significance determined using Two-Way ANOVA and post-hoc Šidák 
analysis; right: Flow cytometry histograms displaying non-stimulated CTV-unstained cells and stimulated CTV-stained cells as the 
baseline for analysis in addition to miR B targeting HPK1 (HPK1 B) and CTRL T-cells. (b) Bar graphs showing the mean  ± s.e.m. of 
the fold change (FC) of cytokine expression in the presence of inhibitor reagents CADO and PGE2 at increasing concentrations 
normalized to the percentage of expression upon cell culture at 0nM of inhibitors, Two-Way ANOVA and post-hoc Šidák analysis 
were performed of n=2. (c) Line graph representing the mean  ± s.e.m. of tumor survival upon HPK1 (B) and CTRL T-cell (n=3 donors) 
coculture with PC3 PIP Nucred cells at a ratio of E:T of 2:1 and 1:1 over 48h. Statistical analysis was done using mixed-effect analysis 
over time and post-hoc Tukey’s multiple comparisons analysis test. (d) Line graph representing the mean of technical duplicates of 
tumor survival upon HPK1 (B) and CTRL T-cell coculture with PC3 PIP Nucred cells at a ratio of E:T of 2:1 and 1:1 over 48h (n=1 
donors) in the presence of PGE2, FSK, and CADO at increasing concentrations and in media alone and media with DMSO as control, 
t test analysis was used to compare the mean of n=2 between CTRL and HPK1 KD. 
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2.3.2. In the context of NYESO-1 TCR T-cells:  
Encouraged by the foreseen potential of HPK1 KD to enhance CD8+Pz-1-CAR T-cell proliferation and 
CD4+Pz-1-CAR T-cell cytokine expression in the presence of immunosuppressive inhibitors, we sought to 
evaluate the effect of HPK1 KD in the context of HLA/A2-NY-ESO-1157-165 (NYESO-1) restricted TCR 
bearing the I53F mutation (I53F-NYESO-TCR). For this, we used a pCRRL lentiviral vector which included 
a constitutively expressed NYESO-1 TCR under the PGK promoter, U6 promoter-based constitutive 
expression of miRs (A and B) targeting HPK1 or a miR CTRL (targeting no molecule), the NGFR reporter 
gene, and the NYESO-1 TCR, all arranged in the sense configuration vector. A leader sequence was inserted 
after the U6 promoter to facilitate miR processing, as it was reported (also tested in our lab; data not shown) 
that it was necessary for an effective gene downregulation (Figure 13a).  

A proportional increase in TE of Jurkat cells was observed for HPK1 KD (using miR A and B) as well as 
CTRL-T-cells upon infecting with different volumes (3, 10, 30, 100, and 300μl) of viral supernatants, as 
indicated by the percentage of double positive (DP) cells for the NGFR and the tetramer, which specifically 
recognizing for NYESO-1 TCR. TE ranged from less than 5% for the lowest volume (3μl) to over 70-80% for 
the highest volume (300μl) (Figure 13b) (Figure 6f of the attached published article).  

Moreover, Western blot analysis of extracted proteins from transduced Jurkat cells demonstrated a KD level 
of over 93% with miR A and an average of 60% with miR B compared to the CTRL (Figure 13c). In primary 
human T-cells, and by using these lentiviral vectors, we could induce high levels of TE that exceeded 80% in 
CD4+ T-cells and over 60% in CD8+T-cells for all miRs (Figure 13d). Furthermore, through western blot 
data analysis, we determined the efficiency of HPK1 KD using miR A and miR B compared to miR CTRL 
and UTD cells in CD4+ and CD8+T-cells. The results indicated an HPK1 KD level exceeding 95% in CD4+T-
cells and between 70% to 97% in CD8+T-cells with miR A, as compared to the CTRL miR (Figure 13e) 
(Figure 6h of the attached published article).  

These results provide valuable insights into the KD efficiency of HPK1 using specific miRNAs in primary 
human T-cells and the impact of TE on transduced Jurkat cells, CD4+ T-cells, and CD8+ T-cells. 
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Figure 13: Evaluation of knockdown levels using miRs targeting HPK1 in transduced NYESO-1-TCR CD4+ and CD8+ T-cells.  
(a) Schematic of sense lentiviral transfer vector encoding miRNAs targeting HPK1 (A and B) or scramble control (miRNA CTRL) 
under the U6 promoter, as well as tNGFR and the I53F-NYESO-TCR, both under the PGK promoter and separated by P2A sequence. 
(b) Evaluating the TE in Jurkat cells; left:  Bar graph as mean ± s.e.m of the percentage of Jurkat cell DP for NGFR and NYESO-1 
TCR in technical duplicates; right: Representative flow cytometry histograms showing Jurkat cells' TE with miR CTRL, miR A, and 
miR B for HPK1 KD as UTD as a baseline for gating. (c) Western blot analysis of HPK1 KD levels in Jurkat cells using miR A, miR 
B, and miR CTRL together with β-actin control blot of technical duplicates for each condition in addition to UTD cells. (d) Evaluating 
the TE in primary T-cells; left: Bar graph as mean ± s.e.m of primary human CD4+ and CD8+ T-cell percentage DP for NGFR and 
tetramer (n=3 donors); right: representative flow cytometry histograms showing CD4+ and CD8+ T-cell TE with miR A, and miR B 
targeting HPK1, miR CTRL and with UTD being a baseline for gating. (e) Western blot data comparing HPK1 KD efficiency of miR 
A and miR B with miR CTRL in CD4+ and CD8+ T-cells together with β-actin control blot (n=3 donors). 
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After successfully transducing primary human T-cells with NYESO-1 HPK1 KD, we sought to assess their 
functionality in vitro. However, we wanted first to investigate whether downregulation of HPK1 can 
compromise their ability to expand in moderate-to-long in vitro cell expansion or perhaps modulate their 
phenotype, based on the hypothesis that HPK1 could push more toward an effector state rather than memory 
phenotype before performing an ACT. This could substantially lead to the generation of terminally 
differentiated effector cells after a long-term in vitro cell culture prior to in vivo injection.  

Interestingly, when examining the rate of expanding UTD and engineered T-cells CD4+ and CD8+ T-cells, no 
significant difference was observed between T-cells with or without HPK1 downregulation, indicating that 
HPK1 KD did not alter the in vitro expansion capacity of the T-cells (Figure 14a). Similarly, no significant 
difference was to be reported in the phenotype of HPK1 KD T-cells compared to the control (CTRL) T-cells 
as measured by the ratio of memory cells over effector cells (Figure 14b), suggesting that HPK1 
downregulation does not affect the cell phenotype of the engineered T-cells in vitro.  

Next, to elucidate the proliferation capacity of HPK1 KD T-cells upon TCR stimulation with anti-CD3/CD28 
dynabeads (E:T=2:1), a CTV-based proliferation assay was performed on CD4+ and CD8+ T-cells and results 
demonstrated a significant increase in the proliferation capacity of CD8+ T-cells with HPK1 KD using miR A 
compared to the control (CTRL) T-cells. A representative histogram of CD8+ T-cells clearly shows the 
enhanced proliferation of HPK1 KD T-cells. However, no significant difference was observed in the 
proliferation of CD4+ T-cells. These findings indicate that HPK1 downregulation using miR A specifically 
enhances the proliferative response of CD8+ T-cells in vitro (Figure 14c) (Figure 6k of the attached 
published article).   

We further evaluated the secretion of IFNγ by HPK1 KD and CTRL T-cells measured by ELISA upon 
coculture with HLA2+/NYESO-1+ (A2+/NY+) tumor cells (Me275, A375, and Saos2) in addition to coculture 
with the (A2-/NY-) cells Na8 for 24h at a ratio of E:T=1:1. While no significant differences were detected 
among the different conditions, the data suggested that HPK1 KD T-cells using miR A tended to secrete more 
IFNγ than the CTRL T-cells when cocultured with Me275 melanoma cells (Figure 14d) (Figure 6j of the 
attached published article). Although not statistically significant, this finding suggests a potential role for 
HPK1 in regulating IFNγ secretion, particularly in the context of Me275 melanoma cells.  

These findings suggest that HPK1 KD may not significantly impact T-cell expansion or phenotype in vitro. 
However, it may play a role in regulating the proliferative response of CD8+ T-cells and potentially IFNγ 
secretion in specific tumor cell contexts.  
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Figure 14: In vitro characterization of NYESO-1+ T-cells downregulating HPK1 using miR A and B compared to CTRL 
NYESO-1+ T-cells.  
(a) Cell expansion rate of UTD and NYESO-1+T-cells with miR A and B for HPK1 KD and miR CTRL over time of CD4+ and 
CD8+T-cell in vitro cell culture measured by dividing the total number of cells in each condition by the number of cells at the 
corresponding condition at the beginning of the in vitro cell culture day 0, data presented as mean ± s.e.m (n=3 donors), statistical 
significance was assessed using Two-way ANOVA  and post-hoc Tukey analysis. (b) The ratio of memory over effector cells in 
engineered T-cells (HPK1 KD vs. CTRL), and the phenotypic state of T-cells was determined by flow cytometric analysis of CCR7- 
and CD45RO-stained T-cells, data presented as mean ± s.e.m (n=4 donors) and Two-way ANOVA and post-hoc Tukey’s multiple 
comparison was used for statistical analysis. (c) CTV-based proliferation assay; left: bar graph presenting the mean  ± s.e.m of the 
percentage of proliferating HPK1 KD (HPK1 B) and CTRL CD4+ and CD8+ T-cells (n=3 donors), statistical significance was 
determined by Two-way ANOVA and post-hoc Tukey analysis; right: flow cytometry histograms displaying non-stimulated CTV-
unstained cells and stimulated CTV-stained cells as the baseline for analysis in addition to UTD, HPK1 (A), HPK1 (B) and CTRL T-
cells. (d) IFNγ secretion measured by ELISA upon overnight coculture of HPK1 KD and CTRL T-cells with A2+/NY+ and A2-/NY-
tumor cells at ratio E:T of 1:1, data are shown as mean ± s.e.m (n=3 donors) and analyzed for statistical significance using Two-Way 
ANOVA and post-hoc Tukey’s multiple comparisons where ****P<0,0001.  
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When investigating the antitumor activity in vivo of NYESO-1+-T-cells downregulating HPK1, NSG-IL15 
mice (n= 5 mice/ group) were subcutaneously injected with 5M Me275 melanoma cancer cells. When tumors 
became palpable 10 days after inoculation, an ACT was conducted using 10x106 UTD and engineered T-cells. 
We then monitored tumor growth over time and evaluated survival. (Figure 15a). The engineered T-cells were 
downregulating HPK1 using miR A and B, and their performance was compared to control (CTRL) T-cells, 
UTD T-cells, and tumors alone (saline). T-cells exhibiting the highest KD level of HPK1 through the use of 
miR A (HPK1 (A)) demonstrated significantly improved tumor control compared to the CTRL T-cells 
(p=0,0002 comparing CTRL and HPK1 (A) transduced T-cells using student t test) (Figure 15b, left), as also 
indicated by the lowest tumor volume at day 24 (Figure 15b, right). Furthermore, HPK1 KD using miR A 
significantly enhanced mice’s probability of survival compared to CTRL T-cells (P=0,01 using Kaplan Meier 
analysis) (Figure 15c).  

Here, we provide evidence that downregulating HPK1, particularly through miR A with the highest KD level, 
can significantly enhance tumor control and improve survival in vivo.  
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Figure 15: In vivo evaluation of HPK1 KD impact on NYESO-1+ T-cells’ antitumor activity.  
(a) In vivo experimental design for ACT of engineered T-cells targeting HPK1 in NSG-IL15 mice using the Me275 melanoma cancer 
tumor model. (b) Tumor volume in mm2 measured by caliper over time; top: individual tumor growth curves of different groups; 
bottom left: Tumor growth curves of different groups over time presented as mean ± s.e.m. for n = 4 (saline) to 5 mice/group. Statistical 
significance was determined by student t test between CTRL vs. HPK1 (A) or vs. HPK1 (B) T-cells, ***P =0,0002 and ns= 0,163; 
bottom right: bar graph representing total tumor volumes at day 24 of CTRL, HPK1 (A) and HPK1 (B) as mean ± s.e.m. for n = 4 
(saline) to 5 mice/group until the endpoint. Statistical significance was determined using One-Way ANOVA and post-hoc Tukey’s 
analysis. (c) Probability of survival of different conditions presented using Kaplan Meier analysis of mice’s survival up to the endpoint 
after tumor injection of n=5 mice /group.   
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We subsequently evaluated the in vitro cytotoxicity of the NYESO-1 T-cells with or without HPK1 KD against 
A2+/NY+ target cell lines Me275, A375, and Saos2, as well as the A2-/NY- cell line Na8 as a negative control. 
Tumor killing capacity was quantified over 44h using the IncuCyte system, where UTD and +/- HPK1 KD T-
cells were cocultured at different E:T ratios of 2:1, 1:1, and 0.5:1 with target cells engineered to express the 
nucred dye. Thus, the number of dead tumor cells is proportional to the loss of NucRed signal by tumors 
quantified in each well. Although no significant difference in vitro cytotoxicity was observed overall between 
T-cells with or without HPK1 KD compared to the control (CTRL) at different E:T ratios tested using different 
target cells, the most striking results emerged from the coculture with Me275 tumors at an E:T ratio of 2:1, 
where HPK1 loss using miR B significantly enhanced T-cell killing capacity in vitro compared to CTRL T-
cells (P= 0,012 using two-way ANOVA analysis and post-hoc Tukey test for multiple comparisons at last time 
point of n=3 donors in technical duplicates) (Figure 16a).  
 
To elucidate the underlying mechanisms of these findings, we analyzed by flow cytometry the expression of 
surface inhibitory markers on HPK1 (A), HPK1 (B), and CTRL T-cells at the end of the IncuCyte assay from 
each coculture condition tested. The cells were then stained with Ab against CTLA4, PD-1, TIGIT, and TIM-
3. Data shown in Figure 16b revealed that T-cells downregulating HPK1 and specifically using miR A 
exhibited significantly higher levels of TIGIT, TIM-3, and CTLA4 expression in all tested A2+/NY+ tumor 
models. Additionally, HPK1 (A) T-cells displayed a greater upregulation of PD-1 when cocultured with Me275 
cells at an E:T ratio of 0.5:1. These results suggest HPK1 KD in T-cells may contribute to an enhanced immune 
checkpoint inhibitor profile in vitro and could also explain why we couldn’t replicate the same findings as in 
vivo.  

However, this could highlight a potential for enhanced immunoregulatory functions and open a path for 
exploring the benefit of a combinatorial approach involving HPK1 KD with ICB to boost HPK1 KD NYESO-
1 T-cell cytotoxicity.  
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Figure 16: Assessment of cytotoxicity and inhibitory checkpoints expression upon HPK1 knockdown in NYESO-1 T-cells.  
(a) NYESO-1 +/- killing assay by +/- HPK1 KD-NYESO-1+T-cells measured by IncuCyte system as total red area per μm2 overtime 
at 3 different E:T ratios using A2+/NY+ Me275, A375, and Saos2 target cells along with A2-/NY- Na8 target cells as a negative 
control. Data presented as mean ± s.e.m. (n = 3 donors in technical duplicates). Statistical significance was assessed using Two-way 
ANOVA and post-hoc Tukey test, where indicated, **P=0,0046 and *P= 0,012. (b) Fold change expression of surface checkpoint 
inhibitors of CTRL, HPK1 (A), and HPK1 (B) NYESO-1+ T-cells measured by flow cytometric analysis at the end of IncuCyte assay 
at 3 ratios E:T and using A2+/NY+ Me275, A375 and Saos2 target cells along with A2-/NY- Na8 target cells. Data are shown as 
mean ± s.e.m. (n = 3 donors in technical duplicates). Statistical significance was assessed using Two-way ANOVA and post-hoc Tukey 
test.  
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3. A combinatorial gene-engineering approach targeting multiple TCR intracellular negative regulators 
for enhanced T-cell persistence and functionality.  

3.1. Summary 
Given the wide range of suppressive barriers in the TME, chronic antigen exposure and inflammatory signals 
can render T-cells exhausted. To counteract this effect, we further proposed to evaluate HPK1 KD in 
combination with additional downregulation of other suppressor molecules downstream of TCR. One possible 
combinatorial approach to improve T-cell function is to downregulate the inhibitory lipid kinases, such as 
DGKs, responsible for “switching off” the MAPK pathway in T-cells 559 or kinases belonging to the E3 ligases 
family responsible for attenuating TCR signaling through the ubiquitylation machinery. These E3 ligases 
include Cbl-b, Itch, GRAIL, and NEDD4-1 linked anergy and exhaustion. 479,480. Indeed, several studies have 
shown that many intracellular suppressor regulators can dampen TCR signaling and attenuate T-cell response 
and their killing capacity in the context of tumors; thus, downregulating each of these target genes could 
significantly enhance T-cell function. Overall, our strategy aims to engineer CAR/TCR T-cells with two 
combined KDs to strengthen the TCR signaling and protect it from degradation and suppression. We believe 
combinatorial gene KD T-cell therapy will be a potent approach against solid tumors.  

Furthermore, to determine the optimal combinatorial gene KD strategy to complement HPK1 KD in our 
investigation, we transitioned from employing a Xenograft model to using a syngeneic mouse model. This 
transition allowed for a comprehensive examination of the TME. It facilitated a thorough assessment of the 
impact of potential combinatorial downregulation of suppressor genes on overcoming immunosuppressive 
barriers within tumors. Additionally, we selected the B16 OVA tumor model, known for its characteristics as 
a cold solid tumor with limited T-cell infiltration, attributed to its low immunogenicity. 
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3.2. Material and Methods:  

Molecular Biology:  

Vector construction and insert cloning:  
DNA fragment inserts were designed using SnapGene software version 5.2 (San Diego, USA), purchased from 
Microsynth (Microsynth AG, Switzerland) or from Transomic for shRNA-based miRNAs, then cloned in 
frame in retroviral (pMSGV) or in pSUPER (kindly provided by Ping-Chi-Ho lab) vectors available in the lab. 
The vectors amplification was performed in Stellar competent cells (E. coli HST08, 636763, Takara) and 
purified with PureLink HiPure plasmid Filter mini/maxi-prep kit (K210016, ThermoFisher Scientific) upon 
confirmative sequencing (Microsynth AG, Switzerland). 

mRNA extraction and quantitative PCR 
The mRNA was extracted using the Rneasy Mini extraction kit (74104, Qiagen) following the manufacturer’s 
instructions. Post purification, less than 1 µg of RNA was reversely transcribed to cDNA with the PrimeScript 
1st strand cDNA Synthesis Kit (Takara 6110). The quantitative polymerase chain reaction (qPCR) primers 
HPK1 (MAP4K1, Mm01152700_m1, Taqman), Cbl-b (Mm01343092_m1, Taqman), NEDD4 
(Mm00456829_m1, Taqman), IFNγ (mM-01168134_m1, Taqman), TNFα (Mm00443258_m1, Taqman), 
GzmB (Mm00442837_m1, Taqman), PD-1 (Mm01285676_m1, Taqman), CD69 (Mm01183378_m1, 
Taqman), GAPDH (Mm99999915_g1, Taqman) were used to perform quantitative PCR (qPCR) with TaqMan 
Fast Universal PCR Master Mix kit (4352042, Lifetechnologies) using manufacturer’s suggested plates 
(4346906, Lifetechnologies) with appropriate optical cover plates (4360954, Lifetechnologies). The qPCR 
using housekeeping gene GAPDH was performed as a control to allow the normalization of samples. Each 
sample was run in duplicate or triplicate, and each experiment included two non-template control wells. The 
relative mRNA levels (fold change) of each transgene among the different samples were quantified using the 
comparative 2−ΔΔCt method. 

Retroviral supernatant production 
Phoenix-Eco cells (ATCC CRL-3214) were seeded at 2,5x106 per T-150 tissue culture (Corning, 430825) in 
35ml RPMI complete medium 3 days before transfection. On the day of transfection, the medium was then 
removed from each T-150 flask bearing Phoenix Eco cells of 80–90% confluency and was reconstituted with 
a transfection mixture that comprised plasmid DNA mix added to 180μl of Turbofect (ThermoFisher 
Scientific) or Polyethyleneimine (PEI) (Chemie Brunschwig) and 3 ml of Optimem (Invitrogen, Life 
Technologies) added on top of the cells then incubated for 30 min at RT followed by the addition of 30 ml 
fresh medium. Plasmid DNA mix included 14,4µg pCLEco retrovirus packaging vector and 21,4 µg transfer 
plasmid using Turbofect. The viral supernatant was harvested at 48 h and 72h post-transfection. Viral particles 
per each T-150 flask were concentrated by ultracentrifugation at 24,000 g for 2h at 4°C in 38,5 ml tubes 
(244058, Beckman Coulter) with a Beckman JS-24 rotor (Beckman Coulter) and resuspended in 400μl of T-
cell medium consisting of complete RPMI medium further supplemented with 1% sodium pyruvate 
(11360070, ThermoFisher Scientific), 1% nonessential amino acids (MEM nonessential amino acids solution 
100X) (11140035, ThermoFisher Scientific) and 0.1% 2-mercaptoethanol (31350010, ThermoFisher 
Scientific). The retrovirus was used immediately or aliquoted for snap-freeze and storage at −80°C until the 
day of cell transduction. 

Cell line Culture:  
The B16 cell line was purchased from ATCC (ATCC CRL-6475) and genetically manipulated to express the 
OVA peptide presented on major histocompatibility complex (MHC) class I molecules. Wild type (WT) B16, 
B16-OVA, C1498, and Phoenix-Eco (ATCC CRL-3214) cell lines were kept in complete RPMI medium at 
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37 °C in a 5% CO2 atmosphere. Cell media was refreshed three times per week to maintain the cells in culture 
at a maximum of 80% confluency.   

Primary murine T-cells isolation, stimulation, transduction, and culture 
OTI/OT3.CD45.1+ or OT1/OT3 CD45.1+ Cas9 GFP murine T-cells were isolated from single-cell suspensions 
of dissociated spleens from CD45.1/2+ congenic C57BL/6 or C57BL/6 whole body cas9 mice bred in-house 
at the animal facility of the University of Lausanne (UNIL; Epalinges, Switzerland) using the EasySep Mouse 
T-cell Isolation Kit (StemCell Technologies). Briefly, upon mice euthanasia with high doses of CO2 
atmosphere, the spleen was harvested, smashed on a 40 µm size strainer (352340, Corning) using a 2 ml syringe 
plunger (01227, Becton Dickinson) and RPMI-1640 Glutamax medium. Collected splenocytes were lysed 
using red blood lysis buffer (420301, BioLegend), then T-cells were negatively selected using antibody 
complexes and magnetic beads of the EasySep Mouse T-cells Isolation Kit (Stem Cell) according to the 
manufacturer’s protocol (19851, Stem Cell Technology). Purified murine T-cells were resuspended in mouse 
T-cells complete medium, activated on the same day using αCD3/αCD28 monoclonal antibody (mAb) 
magnetic beads (Gibco, Thermo Fisher Scientific) at a bead-to-cell ratio of 2:1, in addition to 50 IU/ml of hIL-
2 (Glaxo) then seeded at 1 × 106 cells per ml in a cell culture treated 48-well plate in a total volume of 1 ml per 
well of T-cell media (CLS3548, Corning). Non-treated 48 or 24-well plate cell culture plates (Corning) were 
precoated with 0,25 ml or 0,5 ml, respectively, of Human recombinant RetroNectin (T100A, Takara Bio) at a 
final concentration of 20 μg/ml, overnight (O/N) at 4°C prior murine T-cell transduction. 24h post-T-cell 
activation, the RetroNectin-precoated plates were washed twice with PBS and then blocked with T-cell media 
for 30 min at RT. Subsequently, a volume of T-cell media equal to virus volume to be used is removed and 
replaced by the retrovirus for a final volume of 500μl per well and with a multiplicity of infection (MOI) of 
2,5 or 5. In some experiments, the transduction procedure was performed at 48h or both at 24h and 48h after 
activation. Later, the plates were spun at 2’000 g for 2h at 32°C. Finally, the supernatants were aspirated, and 
the 24h-activated cells were transferred to each coated well for a final volume of 500μl. The plates were 
centrifuged at 300g for 10 min before incubation at 37 °C in a 5% CO2 atmosphere. Starting from the third day 
of culture, the cells were maintained at a cell density of 0.5x106/ml and replenished with fresh T-cell medium 
supplemented with human IL2 at 20UI/ml, IL15 at 25ng/ml (130-093-955, Miltenyi Biotech) and human IL7 
at 2,5ng/ml (130-093-937, Miltenyi Biotech) every other day. To maintain the cell density at 0.5x106/ml, cells 
were manually counted over time with a Neubauer chamber (140527, Milian) with trypan blue (15250061, 
Invitrogen) dilution to distinguish live and dead cells. Alternatively, cells were counted with 
NucleoCounter®200 (Chemometec) counting machine to automatically assess cell number, viability, and size 
(in µM). At day 6 post-activation, magnetic beads were removed, and T-cells were stained for flow cytometric 
analysis before performing an in vivo ACT or in vitro assays. 

In vitro assays with primary murine T-cells 

T-cells stimulation 
OTI and OT3 cells were stimulated in duplicate or triplicate by coculturing 0,5x106 primary murine T-cells 
with WT B16 or B16 OVA target cell lines at a ratio of E:T = 2:1 or 1:1 in 200µl T-cell media. Where indicated, 
we stimulated OTI or OT3 cells with the daily addition of OVA SIINFEKL peptide (EMC microcollections 
GmbH) in the culture at 0,01µg/ml. 24h, 48h, 72h, and 96h post-coculture or peptide stimulation, 100µl of cell 
culture supernatant were collected and frozen at -80°C for reverse transcription qPCR (RT-qPCR) analysis or 
cytokines release analysis.  

Proliferation assessment with CSFE trace assay 
For evaluating the proliferative capacity of murine primary T-cells, OTI or OT3 cells were stained with 
Carboxyfluorescein succinimidyl ester (CFSE) (C34554, Invitrogen) according to the manufacturer’s 
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instructions and seeded at a cell density of 104 in 200 µl of T-cell medium per well in duplicate or triplicate 
prior coculture with WT B16 or B16-OVAcells at a ratio of E:T = 1:1. Upon 72h of coculture, cell division 
was evaluated by dilution of the CFSE dye in live CD8+ T-cells by flow cytometric analysis.  

Intracellular and extracellular staining for Flow Cytometry 
For analyzing molecular-cell surface expression, cells were collected in a 96-well round or V-shaped bottom 
plate (Corning), washed with FACS buffer containing PBS (CHUV) with 1% bovine serum albumin (BSA) 
(268131000, Chemie Brunschwig) and 0,1% NAN3 sodium azide (S2002-100G, Sigma-Aldrich) then 
incubated with the antibody mixture on ice for 30min at 4°C. 

For cell surface staining, the following anti-murine antibodies were used: aCD8+ BV510 (clone 145-2C111) 
or BV711 (clone 53-6.7), aCD90.1 (Thy1.1) BV650 (clone OX-7) or BV605 (clone OX-7), aCD45 PE Cy5.5 
(clone 104), aPD-1 APC Cy7 (clone 29F.1A12), aCD69 BV605 (clone H1.2F3) and aCD25 BV605 (clone 
PC61). Abs were purchased from eBioscience or BioLegend. For distinguishing the live versus dead cells, the 
Live/dead Fixable Aqua dead (BV510) staining kit was used (L34957, ThermoFisher Scientific). 

For intracellular staining, the cells were collected in a 96-well round or V-shaped bottom plate (Corning) and 
washed with FACS buffer before adding Fc Block (BD Biosciences-clone 2.4G2). After washing, cells were 
cell surface stained, fixed, and permeabilized for 30 min at RT with the Fix/Perm buffer set kit according to 
the manufacturer’s instructions (88-8824-00, eBioscience) before adding the intracellular antibodies mixture 
resuspended in permeabilization buffer on the ice at 4°C for 30 min as following: aIFNγ Peridinin chlorophyll 
protein (PerCp) (clone XMG12), aTNFα Pacific Blue (PB) (clone MP6-XT22), aTOX PE (clone REA473), 
aTCF1 (C63D9), aHPK1 Alexa Fluor 647 (clone G-9), aCbl-b Fluorescein isothiocyanate (FITC) (clone G-1), 
aNEDD4 (PA5-17463), aDGKα (PA5-87278, Invitrogen), AKAP5 (NBP2-92620), Cabin1 (PA5-68119), 
PTPN3 (NBP2-93945), PTPN12 (AG10), PTPN22 (D6D1H), 14-3-3ζ/δ (D7H5), XBP1 (NBP-77681), and 
secondary anti-rabbit IgG Fab2 Alexa Fluor 488 (4412S, Cell Signaling) or PE (8885S, Cell Signaling). Abs 
for intracellular staining were purchased from eBioscience, BioLegend, Invitrogen, Miltenyi, Cell signaling, 
Santa Cruz Biotechnology, or Novus Bio. The stained samples were kept on ice and acquired with the LSRII 
machines at the UNIL Flow Cytometry Facility. 

Cytotoxicity with IncuCyte System 
The IncuCyte System (Essen Bioscience) was used for assessing the cytotoxicity of murine primary OTI. 1x104 

target cells were seeded 4h before the coculture was set up in flat bottom 96well plates. Rested T-cells (no 
cytokine addition for 48h) were counted and seeded at 1x104 cells/well, at a ratio E:T = 1:1 in T-cell media. 
Cytotox Red reagent (Essen Bioscience) was added at a final concentration of 125nM in a total volume of 
200µl. No exogenous cytokine was added to the assay medium during the coculture period. Internal 
experimental negative controls were included in all assays, involving untraduced cells and co-incubation with 
WT B16 cells, as well as T-cells and tumor cells alone in the presence of Cytotoxic Red reagent to monitor 
spontaneous cell death over time. As a positive control, tumor cells alone were treated with 1% Triton (T8787, 
Sigma-Aldrich) solution to represent maximal killing in the assay. Images of the total red area/well were 
collected every two hours of the coculture for up to three days. The total red area per well was obtained using 
the analysis protocol on the software provided by Essen Bioscience manufacturer. Data were normalized by 
subtracting the background fluorescence observed at time 0, which consists of any cell killing by primary 
murine transduced or untraduced OTI cells from all further time points. Data are expressed as mean ± s.e.m. 
of different donors. 
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In vivo adoptive cell transfer experiments with syngeneic tumor models 
C57Bl/6 CD45.1/.2 female mice (purchased from Harlan Laboratories) and OTI/OT3-CD45.1 whole-body 
Cas9 GFP were housed in a dedicated and opportunistic pathogen-free animal facility (SOPF) in the Oncology 
Department of the University of Lausanne. B16 OVA tumor cells were harvested with Accutase (Sigma-
Aldrich), washed, and resuspended in PBS at 1x105 cells per 100μl, then subcutaneously injected in the flank 
of 8-12 weeks old mice. Once the tumor volume reached 50-100 mm3 after 8 days, mice were irradiated with 
5Gy prior to ACT which was performed twice on day 9 and 11 post-tumor injections by administering 
intravenously 2,5-5x106 OTI/OT3 CD45.1+ cells or OT1/OT3 CD45.1+ Cas9 GFP cells.  Tumor growth was 
monitored via caliper measurement every two days. It was calculated using the formula V (mm3) = 1/2 
(length × width2), where length is the greatest longitudinal diameter and width is the greatest transverse 
diameter. During experimentation, all animals were monitored for signs of distress at least every other day. 
Mice were sacrificed at the endpoint by carbon dioxide overdose, and where indicated, tumors, spleens, and 
lymph nodes were collected. 
 
Ex vivo analysis of syngeneic tumor models 
At the terminal point, solid tumor mass was excised from the mice, cut into small pieces with a scalpel, passed 
through 40mm pore cell strainers (Grenier Bio-One), processed in GentleMACS dissociator system using 
tumor dissociation kit (130-096-730, Miltenyi) according to the manufacturer’s guidelines, then centrifuged 
for 5 min at 1500 rpm to pellet the cells. Upon washes, the obtained cells were stained with anti-CD45.1 (clone 
A20) Ab to assess the presence of TILs post ACT by flow cytometry. 

Statistical Analysis 
All the statistical analyses were performed using GraphPad Prism 9.0 (GraphPad Software, La Jolla, CA). 
Student t-test or Mann-Whitney u test were used to evaluate differences among two groups, one-way analysis 
of variance (ANOVA) followed by post-hoc Tukey correction for multiple comparisons was used for 
evaluating significant differences among column groups when one variable was tested. Two-way ANOVA 
followed by post-hoc Tukey correction was used for statistical analysis of multiple groups with more than one 
variable. Differences were considered significant when *P < 0.05, very significant when **P < 0.01, and highly 
significant when ***P < 0.001. 

CRISPR screen data visualization  
For identifying essential and suppressor genes downstream of the TCR signaling in the OTI model in the 
context of in vivo persistence, the MAGeCKFlute pipeline was adopted. It combines the MAGeCK and 
MAGeCK-VISPR algorithms571. The volcano plot and the ranking plot based of the fold change of the output 
(TILs) vs. the input (OTI+Cas9+GFP+ cells) were created using the R program, version 4.1.2. 

Graphical and schematic illustrations  
The graphical figures depicted in the introduction, as well as the schematic visualization elucidating the design 
of vector constructs and in vivo experimental designs, were created using Biorender.com. 
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3.3. Results 

3.3.1. Identification of relevant intracellular negative regulators for miRNA targeting downstream the 
TCR signaling pathway. 

Following a comprehensive literature review, as detailed in the introduction section of "Intracellular negative 
regulators downstream TCR signaling pathways," twelve initial genes were identified as potential targets for 
gene inhibitory strategies. The selection process considered several factors: the role each intracellular 
checkpoint plays in CD4+ and CD8+ T-cell activity, the risk of autoimmunity, and the availability of clinical 
or preclinical data pertaining to ACT combined with the inhibition of these molecules (Table 2). The chosen 
targets include HPK1, Cbl-b, NEDD4, DGKα, CISH, PTPN3, PTPN12, PTPN22, AKAP5, Cabin1, 14-3-3z, 
and XBP1 (Figure 17a). 

3.3.2. Evaluation of gene expression of the selected negative regulators in high-affinity CD8+ cells: 
Prior to implementing our strategy for downregulating the activity of selected downstream TCR suppressor 
genes, it was imperative to evaluate their expression levels following antigen stimulation. This approach aimed 
to mimic the conditions observed within the TME and allowed us to ascertain that these negative regulators 
were indeed upregulated when T-cells experienced chronic stimulation. This preliminary assessment was 
crucial to ensure that a KD strategy targeting these regulators would yield meaningful outcomes and could 
effectively release the TCR brakes and enhance the antitumor functionality of T-cells upon TCR stimulation.  

To achieve this, we employed an in vitro protocol adapted from the Katsikis laboratory’s publication in 2020 
561, which focused on generating an exhausted-like state in T-cells through chronic antigen stimulation. Using 
OTI mouse T-cells as a model of high-affinity TCR, T-cells were isolated and then chronically stimulated at 
day 6 post in vitro culture with SIINFEKL OVA peptide repeatedly for three consecutive days (repeated 
peptide condition, RP). The single peptide condition (SP), where OTI cells encountered the peptide only once 
on day 6, in addition to OTI cells that did not receive any peptide stimulation (NP), were included as a control 
(Figure 17b).  

Post-stimulation, the influence of peptide-TCR engagement was assessed through flow cytometric analysis. 
Two primary effects were observed: First, an indication of OTI-cell exhaustion, evidenced by the upregulated 
expression of PD-1 and TOX, alongside the downregulation of TCF1 in the RP condition compared to the NP 
condition (Figure 17c). Second, the expression of the chosen target negative regulator was observed (Figure 
17d). 

Notably, HPK1, together with other selected molecules, Cbl-b, NEDD4, DGKα, CISH, PTPN22, and XBP1, 
exhibited upregulation upon stimulation, with the highest levels observed when OTI cells were chronically 
stimulated (RP) compared to when the TCR engaged only once (SP). At the same time, the difference was 
much greater when OTI cells that were not stimulated by the peptide (NP) or when they are freshly isolated as 
naïve T-cells. On the other hand, the expression of AKAP5, Cabin1, 14-3-3z, PTPN3, and PTPN12 was similar 
in both RP and NP conditions (Supplementary Figure 1a).  

These data suggest that chronic antigen stimulation induces the upregulation of selected negative regulators 
associated with high-affinity TCR T-cell exhaustion, supporting the potential effectiveness of a KD approach 
targeting these regulators to enhance the antitumor function of T-cells by relieving TCR brakes. 
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Figure 17: Evaluation of selected negative regulators’ expression levels in the context of in vitro exhaustion assay using high-
affinity TCR OTI cells.  
(a) List of selected negative regulators targeted for downregulation. b) Schematic of the in vitro exhaustion assay with different peptide 
stimulation conditions: repeated peptide (RP), single peptide (SP), and no peptide (NP). (c) Representative flow cytometry contour 
plots illustrating the expression of PD-1, TOX, and TCF1 in CD8+ OTI cells in RP compared to NP condition. (d) right: Representative 
histogram depicting HPK1 expression in NP, SP, and RP compared to Naïve OTI cells and FMO (Fluorescence Minus One); left and 
bottom: Bar graphs demonstrating the expression as mean fluorescence intensity (MFI) of TCR downstream checkpoints i.e., HPK1, 
Cbl-b, NEDD4, DGKα, CISH, PTPN22, and XBP1, in NP, SP, and RP conditions compared to naïve cells, data shown as mean ± s.e.m. 
of two independent experiments (n=6). 
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3.3.3. miRNA screening for achieving a high knockdown level of the selected targets using the single-
miRNA vector in high-affinity CD8+ cells. 

After the confirmation of TCR suppressor molecule candidates, we proceeded with cloning the Transomic 
miRNA targeting mRNA corresponding to each TCR negative regulator candidate in an MSGV retroviral 
vector developed in-house. This vector was employed to introduce miRNAs targeting each selected negative 
regulator (listed in Figure 7a) to assess their KD efficiency. Three distinct miRs were tested for 
downregulating each negative regulator alongside a control miRNA (CTRL) (devoid of any targeted sequence 
in primary murine OTI cells).  

The miRNAs were constitutively induced by the U6 promoter, followed by a leader sequence for facilitating 
miR processing, and the Thy1.1 reporter gene was also expressed constitutively under the PGK promoter, 
enabling the measurement of transduced T-cells, all arranged in a sense configuration (Figure 18a). Thereafter, 
we determined the efficacy of retroviral vector transduction (MOI=5) by assessing the percentage of Thy1.1 
expression in live CD8+T-cells relative to UTD CD8+T-cells, which was found to be high, reaching above 
90%, indicating successful transduction of the T-cells with the retroviral constructs (Figure 18b).  

Next, the KD potency was evaluated within the in vitro exhaustion assay context and by performing 
intracellular staining for flow cytometric analysis to detect each molecule expression within each condition. 
Representative histograms showcase the reduction in expression of selected molecules, notably HPK1, in 
different experimental conditions: NP, SP, and RP compared to Naïve OTI cells and FMO (Figure 18c). Each 
of the selected molecules underwent downregulation using three distinct miRNAs (A, B, and C) in OTI cells 
compared to the control miRNA (miR CTRL) under the in vitro exhaustion assay. Subsequently, flow 
cytometric analysis was conducted to determine the percentage (%) and mean fluorescence intensity (MFI) of 
expression for each targeted molecule, as we anticipated that the KD could impact either the percentage of the 
positive population expressing the molecule or reduce the expression level within individual cells. 
Additionally, we established a fixed minimum threshold for the KD level set at 30% to evaluate the 
effectiveness of the downregulation. Data was presented based on the condition where the KD demonstrated 
the most KD efficacy. 

A strong KD level was observed for HPK1 of approximately 70%, for Cbl-b of above 40%, and for NEDD4 
with more than 50% of KD (Figure 18d). Other miRNAs targeting the remaining molecules were also 
evaluated for their downregulation potency, with some achieving KD levels above 30% and others below 30% 
(Supplementary Figure 1b). An alternative approach was pursued to downregulate molecules whose KD 
levels were below 30%. Three newly designed miRNAs targeting each of those molecules were developed 
using a specific algorithm (SplashRNA) published by Pelossof, Fairchild, et al. in 2017 572. However, the 
introduction of these new "splash" miRNAs (sp-miRs) did not significantly improve the KD potency of the 
targeted genes (Supplementary Figure 1c). As a result, the focus was narrowed down to HPK1, Cbl-b, and 
NEDD4, encompassing two E3 ligases of the TCR ubiquitination pathway along with the main target, HPK1, 
for combinatorial gene downregulation. 
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Figure 18: Downregulation of selected TCR negative regulators in transduced OTI cells with single miRNA retroviral vector  
(a) Schematic of the MSGV retroviral constructs containing a single miRNA, either miR CTRL or a miRNA targeting TCR intracellular 
checkpoint molecule, expressed under the U6 promoter, a leader sequence for miRNA processing, and a constitutively expressed 
Thy1.1 reporter gene under the PGK promoter. (b) Representative flow cytometry contour plots showing high TE measured by the 
percentage of Thy1.1 expression in live transduced miR CTRL-CD8+T-cells (right plot) compared to untransduced CD8+T-cells (left 
plot). (c) Representative histograms illustrating the downregulation of HPK1 in different experimental conditions (NP, SP, RP) along 
with the OTI naïve cells and FMO as a baseline for gating strategy. (d) Bar graphs demonstrating the fold change of percentage (%) 
and mean fluorescence intensity (MFI) of expression of targeted intracellular checkpoint inhibitors upon downregulation using miR A, 
B, and C compared to miR CTRL (CTRL) for each targeted molecule. Data are presented as mean ± s.e.m. (n=2 or 3 technical 
replicates). 
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3.3.4. Vector design for dual and multiple targeting of the selected TCR intracellular inhibitory 
checkpoints: 

To accomplish concomitant downregulation of two or three selected HPK1, Cbl-b, and NEDD4 negative 
regulators, retroviral vectors were generated comprising dual miR vectors for targeting two genes and a 
multiple miR vector for targeting all three molecules simultaneously. The positioning of each miRNA sequence 
within the vector presented numerous possibilities, including placing the miR directly after the U6 promoter 
and leader sequence, at the last miRNA position, or in the middle in the case of the multiple miR vector. In 
our approach, HPK1 was consistently positioned as the first miR after the U6 promoter, while the last position 
was filled by the miRNA that exhibited the highest KD level. This selection was based on the hypothesis that 
the miR processing machinery would be more potent closer to the promoter, resulting in stronger KD. In 
contrast, reduced efficacy might be observed as the distance from the promoter increases (this hypothesis was 
tested and confirmed by colleagues and me; the data is not shown in this report).  

Furthermore, we have also considered expressing all miRs under individual U6 promoters for each miR to 
enhance the KD efficacy. Thus, we designed retroviral vectors using consecutive U6 promoters to induce 
individual miR-mediated KD. However, we encountered challenges during the cloning steps, including 
bacterial recombination (data not shown). Therefore, we present here only the vectors utilized in the 
forthcoming studies.  

The retroviral vectors were generated using the NEB Golden Gate assembly method (NEB Labs), which 
involves a streamlined and efficient DNA assembly technique based on the use of type IIS restriction enzymes. 
The dual and multiple miR vectors utilized in this section shared identical compositions with the single miR 
vectors, differing solely in the number of miRs incorporated. These are the miRs selected based on their 
demonstrated highest KD levels, as presented in Figure 18d. Consequently, two distinct types of dual miR 
vectors were generated: the first contained two miRs targeting HPK1 and Cbl-b, while the second incorporated 
two miRs targeting HPK1 and NEDD4. In addition, a multiple miR vector was also developed, encompassing 
three miRs targeting HPK1, Cbl-b, and NEDD4 simultaneously. Spacers comprising specific and distinct 
restriction enzymes were employed to ensure proper separation and proper processing of the miRs within the 
dual and multiple miR vectors (Figure 19a).  

To comprehensively evaluate the effectiveness of our combinatorial gene KD approach, we sought to examine 
its performance in the context of both high-affinity and low-affinity TCR systems. Therefore, our developed 
vectors’ transduction efficiency and KD levels were assessed in two distinct contexts: OTI cells, representing 
the high-affinity TCR, and OT3 cells representing the low-affinity TCR. This investigation allowed us to gauge 
the functionality and versatility of our vectors across varying TCR affinity scenarios. Subsequently, flow 
cytometric analysis of Thy1.1 expression indicated high TE levels ranging from >60% to 90% when employing 
single, dual, and triple miRNA vectors in OT3, while in OTI cells, TE was beyond 50% to 90%, which is 
considered a success considering the utilization of constructs comprising complex secondary structure 
miRNAs (Figure 19b). The KD levels in Thy1.1+sorted OTI cells were measured by RT-qPCR as a more 
sensitive detection of molecules’ downregulation. They are shown as relative mRNA expression normalized 
to the CTRL murine T-cells (miR CTRL). The results demonstrated high KD levels achieved using single and 
multiple miRNA vectors, ranging from 30% to 70% with the multiple miR vector and 40% to 90% with the 
dual miRNA vectors (Figure 19c). 

Another comparative strategy was employed to double or triple transduce OTI cells with single miR vectors 
using an equal MOI for the selected combinations; however, this approach failed to reach the same KD levels 
as the one achieved by our developed vector constructs for downregulating HPK1 and NEDD4 while a 
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nonsignificant increase of Cbl-b KD was observed using the double or triple transduction (DT or TT) of single 
miR targeting HPK1 and single miR targeting Cbl-b (Supplementary Figure 2a).  

Furthermore, we have assessed the kinetics of the KD levels for the dual KD combination, specifically HPK1-
Cbl-b KD, upon antigen stimulation and over a 72-hour period compared to the control miR (CTRL). For this, 
engineered OTI cells were cocultured with B16 OVA cells at an E:T ratio of 1:1, along with B16 cells as a 
negative control. The obtained data demonstrated that upon antigen stimulation (with B16 OVA cells), the KD 
level of HPK1, as well as Cbl-b expressions, remained suppressed over time with a significant decrease at 24h 
(P=0,0141) for HPK1 expression and at 48h (P=0,0479) for Cbl-b expression. As anticipated, the expression 
of both HPK1 and Cbl-b was reduced to negligible levels in the B16 control for both conditions due to the 
absence of stimulation (Supplementary Figure 2b). Moreover, the KD levels observed in Thy1.1+sorted OT3 
cells were remarkably high for both the dual and multiple miR vectors and the single miR targeting HPK1, 
ranging from 80% to 90% for downregulating HPK1, 40% to 70% for Cbl-b KD, and 50% to 70% for NEDD4 
KD (Figure 19d).  
 
Here we demonstrate the successful generation of dual and multiple miRNA retroviral vectors for transducing 
murine T-cells and inducing multiple perturbations of selected TCR downstream suppressor molecules. 
Indeed, the vectors exhibit high transduction efficiency and achieve significant KD levels, highlighting their 
potential utility for studying and manipulating TCR signaling pathways. 
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Figure 19: Generation and evaluation of dual and multiple miR retroviral vectors for knocking down HPk1, Cbl-b, and NEDD4 
in OTI and OT3 cells. 
(a) Schematic representing different MSGV retroviral constructs, similar to single miRNA vectors (as shown in Figure 8a), additional 
dual and multiple miRNA vectors were generated. (b) TE measured by flow cytometric analysis of Thy1.1 expression in primary 
murine OTI and OT3 cells for single, dual, and multiple miR vectors, data presented as mean ± s.e.m (n=2 and n=3 for OTI and OT3, 
respectively). (c) KD levels in Thy1.1+-sorted OTI cells were measured by relative mRNA expression of selected genes using single, 
dual, and multiple miR vectors compared to the miR control (CTRL), data shown as mean ± s.e.m (n=2). (d) KD levels in Thy1.1+-
sorted OT3 cells were measured by relative mRNA expression of selected genes using single, dual, and multiple miR vectors compared 
to the miR control (CTRL), data presented as mean ± SD (n=2). 
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3.3.5. Evaluation of in vitro and in vivo T-cell antitumor activity upon multiple perturbations targeting 
the TCR negative regulators in high and low-affinity CD8+ cells: 

Subsequent to the successful induction of KD for the targeted molecules, namely HPK1, Cbl-b, and NEDD4, 
our investigation progressed toward the in vivo assessment of the antitumor impact upon their downregulation 
in T-cells.  

This evaluation encompassed single perturbations, dual and multiple KD combinations, with a focus on 
survival and tumor control. To initiate this investigation, we first examined the antitumor effect within the 
context of high-affinity TCR using OTI cells for ACT in the B16 OVA tumor model. C57BL/6 female mice 
(n=5 mice/group) were subcutaneously injected with 0.1M tumor cells. On day 11 post-inoculation, when 
tumors became around 100mm3, mice were subject to lymphodepletion with 5Gy total body irradiation (TBI) 
prior to performing an ACT using 5x106 of engineered OTI cells (TE and KD levels shown in Figure 19) 
administered in two sequential injections on day 12 and day 14, then we monitored tumor growth over time 
and evaluated survival. (Figure 20a).  

The in vivo evaluation was performed on multiple occasions, with a minimum of two repetitions. The results 
revealed that individual downregulation involving the KD of HPK1, Cbl-b, and NEDD4 did not substantially 
improve in OTI cell-mediated tumor control compared to the control group (ns; One-way ANOVA analysis). 
In contrast, dual KD targeting HPK1 and Cbl-b significantly enhanced tumor control compared to the CTRL 
(P=0,019; One-Way ANOVA analysis), while unexpectedly, concomitant downregulation of HPK1, Cbl-b, 
and NEDD4 did not (Figure 20b). Despite the observed distinct effects on tumor growth, the survival 
outcomes were comparable across the tested conditions, as no significant difference in survival was detected 
between single and multiple gene perturbations compared to the CTRL (Figure 20c).  

In summary, these results indicate that individual downregulation of HPK1, Cbl-b, and NEDD4 could not 
significantly delay tumor growth. However, the combined effects of dual HPK1 and Cbl-b KD resulted in a 
substantial significant enhancement of tumor growth delay, although it did not improve overall survival 
compared to the control group. 
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Figure 20: In vivo study in the B16 OVA tumor model to evaluate the antitumor activity of OTI cells downregulating HPK1, 
Cbl-b, and NEDD4 as single and combinatorial perturbations.  
(a) Schematic in vivo study design using the B16 OVA tumor model and OTI cells for ACT. (b) Tumor volume in mm2 measured by 
caliper over time; top: Individual tumor growth curves of different groups; bottom left: Tumor growth curves of single HPK1, Cbl-b, 
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and NEDD4 KD over time compared to CTRL OTI cells and no T-cells as control, data presented as mean ± s.e.m. for n = 5 mice/group. 
Statistical significance was determined by mixed-effect analysis post-hoc Tukey’s multiple comparisons where no statistical 
significance was detected among groups; bottom right: Tumor growth curves of combined HPK1-Cbl-b KD, HPK1-NEDD4 KD, and 
HPK1-Cbl-b-NEDD4 KD over time compared to CTRL OTI cells and no T-cells as control, data presented as mean ± s.e.m. for n = 5 
mice/group. Statistical significance was determined by mixed-effect analysis post-hoc Tukey’s multiple comparisons where *P=0,019; 
(c) left: Probability of survival of single HPK1, Cbl-b, and NEDD4 KD compared to CTRL OTI cells and no T-cells as control, 
presented using Kaplan Meier analysis of mice survival up to the endpoint, post ACT of n=5 mice /group; right: Probability of survival 
of combined HPK1-Cbl-b KD, HPK1-NEDD4 KD and HPK1-Cbl-b-NEDD4 KD compared to CTRL OTI cells and no T-cells as 
control, presented using Kaplan Meier analysis of mice survival up to the endpoint, post ACT of n=5 mice /group, no statistical 
significance was detected between groups using single or multiple gene KD approach.  

Next, we proceeded in vitro to assess the impact of HPK1-Cbl-b KD on OTI, then in OT3, cell activity. Using 
B16 OVA tumor cells, we assessed their cytokine expression, proliferation capacity, and cytotoxicity against 
target cells. As a negative control, B16 cancer cells were included in the experiment, maintaining a ratio of 
E:T at 1:1. In the initial dataset, cytokine expression and cellular proliferation, measured via Kiel University's 
experiment number 67 (ki67) expression in HPK1 KD and HPK1-Cbl-b KD OTI cells were compared to a 
CTRL OTI cell. The relative mRNA expression levels of IFNγ, TNFα, ki67, and GzmB over time were 
quantified using RT-qPCR. 
 
Interestingly, albeit not reaching standard statistical significance, both HPK1-Cbl-b KD and HPK1 KD 
displayed higher IFNγ cytokine expression in addition to greater proliferative ability demonstrated by higher 
levels of ki67 expression than the CTRL OTI cells. However, regarding Gzmb and TNFα expression, all 
conditions demonstrated similar levels to the CTRL OTI cells (Figure 21a).  
 
To address the second segment of our study, the in vitro cytotoxicity of OTI cells engineered with either single 
(only for HPK1), dual, or multiple miR vectors was evaluated by quantifying the incorporation of a nucleic 
acid dye that correlates with the number of dead tumor cells using IncuCyte assay. This evaluation was 
conducted at least twice to ensure reliability. OTI cells were either stimulated or not with B16 OVA cells at 
an E:T ratio of 1:1. The results indicated that the single, dual, and multiple combinatorial KD approaches did 
not improve the in vitro tumor killing compared to the control condition (CTRL) (Figure 21b).  

Taken together, downregulating HPK1 and HPK1 along with Cbl-b leads to increased IFNγ expression in OTI 
cells, while the combination of HPK1 KD with Cbl-b and NEDD4 KD as dual or multiple TCR downstream 
perturbations did not significantly enhance TNFα or GzmB expression compared to the CTRL cells. Moreover, 
none of the single, dual, or multiple KD strategies resulted in improved in vitro cytotoxicity against tumor 
cells.  
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Figure 21: In vitro evaluation of cellular cytokine expression and cytotoxicity upon downregulating HPK1 as single or in 
combination with Cbl-b KD and/or NEDD4 KD in OTI cells.  
(a) Relative mRNA expression of IFNγ, TNFα, ki67, and GzmB measured over time by RT-qPCR; data presented as mean ± s.e.m for 
n = 3. Statistical analysis was done using Two-Way ANOVA and post-hoc Tukey’s analysis (no statistical difference was detected); 
(b) In vitro cytotoxicity assessed by nucleic acid dye incorporation in OTI bearing single HPK1 KD and in combinations with Cbl-b 
and/or NEDD4 data presented as mean for n = 2. Statistical analysis using One-Way ANOVA and post-hoc Tukey’s analysis where 
***P=0,0008 and ****P<0,0001. 

Next, we turned our attention toward investigating the in vivo outcomes of downregulating HPK1, along with 
Cbl-b and/or NEDD4 in low-affinity CD8+ T cells using the OT3 model. This investigation was endorsed by 
the hypothesis that our induced TCR downstream perturbations might yield more significant benefits for low-
affinity TCR T-cells to enhance their tumor infiltration into the tumor bed and antitumor activity by relieving 
the inhibitory effects imposed by these suppressor genes. Following the identical in vivo study design 
employed in the OT1 model, engineered OT3 in vivo antitumor activity was assessed. For this, 5 female 
C57BL/6 mice were subcutaneously injected with 0.1x106 tumor cells. Once the tumors became palpable on 
day 11 post-inoculation, the mice underwent lymphodepletion with 5Gy TBI before initiating an ACT using 
5x106 engineered OT3 cells administered on day 12 and then on day 14 in a raw. Subsequently, tumor growth 
was monitored over time, and survival was evaluated post-ACT (Figure 22a).  

Notably, the downregulation of HPK1 as single gene perturbations or combined with combination with Cbl-b 
KD and/or NEDD4 did not significantly improve OT3-mediated tumor control relative to CTRL cells (Figure 
22b). Furthermore, this downregulation strategy did not lead to enhanced survival rates when compared to the 
control OT3 cells since the survival outcomes were comparable across the different conditions (Figure 22c).  
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Furthermore, the in vitro cytotoxicity of OT3 cells engineered with single HPK1, dual, or multiple miR vectors 
was assessed to determine their ability to induce tumor cell death. This evaluation was conducted by 
quantifying the incorporation of a nucleic acid dye, which is proportional to the number of dead tumor cells 
using the IncuCyte assay. For this purpose, OT3 cells were either stimulated or not stimulated with B16OVA 
cells, maintaining an effector-to-target (E:T) ratio of 1:1. In line with the outcomes observed in the in vivo 
experiments, the findings demonstrated that the single, dual, and multiple combinatorial KD approaches did 
not yield an improvement in the in vitro tumor killing as compared to the control condition (CTRL) (Data not 
shown).  

These results indicate that the downregulation strategies employed, whether individually or in combination, 
did not enhance the cytotoxicity of OT3 cells against tumor cells in both the in vitro and in vivo settings.  

 

Figure 22: In vivo evaluation of OT3 cell antitumor activity bearing single and combined HPK1, Cbl-b, and NEDD4 
downregulation.  
(a) Schematic in vivo study design using the B16 OVA tumor model and OT3 cells for ACT. (b) Tumor volume in mm2 measured by 
caliper over time; top left and bottom: individual tumor growth curves of different groups; top right: Tumor growth curves of single 
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HPK1 and combined HPK1-Cbl-b KD, HPK1-NEDD4 KD, and HPK1-Cbl-b-NEDD4 KD over time compared to CTRL OT3 cells as 
control, data presented as mean ± s.e.m. for n = 5 mice/group. One-way ANOVA and post-hoc Tukey analysis revealed no statistical 
significance between groups (ns); (c) Probability of survival of single HPK1 and combined HPK1-Cbl-b KD, HPK1-NEDD4 KD, and 
HPK1-Cbl-b-NEDD4 KD compared to CTRL OTI cells, data presented using Kaplan Meier analysis of mice survival up to the 
endpoint, post ACT of n=5 mice /group. No statistical significance was detected among the groups. 

In order to gain a comprehensive understanding of the dissimilar antitumor responses observed in OTI and 
OT3 cells, as well as the underlying mechanisms contributing to the limited enhancement of in vivo and in 
vitro antitumor capacity in OT3 cells when employing HPK1-Cbl-b KD or other combinatorial KD approaches, 
we conducted a thorough investigation. Our investigation aimed to assess the baseline functionality and explore 
potential disparities in the antitumor responses between high-affinity and low-affinity TCR in CD8+ cells. 
Additionally, we examined the kinetics of upregulation for each targeted molecule. To achieve this, we 
performed measurements of cytokine and activation markers' expression in these cells during coculture with 
target cells, precisely when TCR engagement occurred. Furthermore, we compared the expression patterns of 
these markers over time upon antigen engagement and TCR stimulation in the context of both high-affinity 
CD8+ cells (OTI cells) and low-affinity CD8+ cells (OT3 cells). 
 
Upon TCR stimulation with B16 OVA cells at a ratio of E:T=1:1 or via chronic stimulation by SIINFEKL 
OVA peptide at 10ng/ml for 3 days in raw. In basal levels, we observed that OTI cells exhibited significantly 
enhanced proliferation compared to OT3 cells (Figure 24a). Furthermore, OTI cells demonstrated markedly 
improved cytotoxicity compared to OT3 cells, as determined by the IncuCyte assay, where engineered miR 
CTRL T-cells (CTRL) were cocultured with B16 OVA tumor cells alongside non-stimulated cells as the 
control at a ratio of E:T=2:1 in which dead cells were quantified by the total red area of added nucred dye 
incorporation over time (Figure 24b).  

Additionally, these findings align with the observed high in vivo antitumor capacity of OTI cells compared to 
OT3 cells engineered to express the miR CTRL in the B16 tumor model. Notably, significant tumor control 
was demonstrated by OTI CTRL cells (P=0.049 at day 13 post ACT) compared to OT3 CTRL cells, which 
was accompanied by improved survival, although the difference did not reach statistical significance (Figure 
24c).  
 
Subsequent to the previous findings, OTI and OT3 cells were subjected to coculture with B16 OVA cells or 
B16 cells as a control, with an E:T ratio of 1:1 and was maintained over a period of time, including time points 
at 0h, 4h, 16h, 24h, 48h, and 72 h. The expression levels of target genes, namely HPK1, Cbl-b, and NEDD4, 
along with the expression levels of cytokines IFNγ, TNFα, and activation markers PD-1 and CD69, were 
measured by RT-qPCR. For analysis purposes, the baseline expression at 0h was used, and relative mRNA 
expression values were calculated (n=2). The experiment was repeated on multiple occasions to ensure its 
reliability.  

Remarkable upregulation of HPK1, Cbl-b, and NEDD4 TCR suppressor genes was observed over time in the 
OTI cells upon TCR engagement with the antigen OVA presented on B16 OVA tumor cells. This upregulation 
correlated with an increase in CD69 and PD-1 activation markers and GzmB expression; additionally, gene 
expression levels of IFNγ and TNFα were also more prominent in OTI cells. Interestingly, these patterns were 
not observed in OT3 cells as they showed decreased expression below thresholds at all time points (Figure 
24d), suggesting that differences in HPK1, Cbl-b, and NEDD4 gene expression levels in high vs. low-affinity 
TCRs may contribute to the inability to downregulate these molecules in low-affinity TCR (OT3) cells. Thus, 
the incapacity to enhance the antitumor function of OT3 cells.  

Likewise, upon evaluating HPK1, Cbl-b and NEDD4 expression levels by flow cytometric analysis upon 
SIINFEKL OVA peptide stimulation at 10ug/ml along with increasing concentrations of aCD3/aCD28 
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dynabeads in each of the following conditions: NP, SP and RP of in vitro exhaustion assay (described in Figure 
7b) (at least in two independent experiments), the results affirmed that those suppressor molecules were highly 
upregulated in high-affinity TCR (OTI) cells compared to low-affinity TCR (OT3) cells (Supplementary 
Figure 3a). To ensure the reliability of the results, these assessments were repeated on a minimum of two 
occasions.  

These data collectively support the notion that low-affinity TCR (OT3) cells possess lower expression levels 
of HPK1, Cbl-b, and NEDD4 upon antigen engagement, along with reduced proliferative capacity and lower 
tumor-killing ability compared to OTI cells, explaining their reduced in vivo antitumor functionality, albeit 
they were engineered to suppress negative TCR regulators.  
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Figure 23: Functional characterization and evaluation of TCR signaling suppressive molecules in OT1 and OT3 cells in the 
context of the B16 OVA tumor model.  
(a) CFSE-based proliferation assessment; left: bar graph of CTV stained unstimulated and B16-, B16 OVA and SIINFEKL peptide 
(10ng/ml for 3 days)-stimulated cells, data shown as mean ± s.e.m. for n = 3. Statistical significance was determined by Two-Way 
ANOVA analysis and post-hoc Tukey analysis; right: representative histogram of CFSE-stained OTI and OT3 cells stimulated with 
SIINFEKL OVA peptide (10 ng/µl for 3 days) and with B16 OVA coculture at ratio E:T=1:1 along with +/-CFSE unstimulated OTI 
and OT3 cells as control and baseline for gating. (b) Line graph indicating CTRL-OTI and -OT3 in vitro cytotoxicity against B16 OVA 
target cells upon coculture at E:T= 2:1 along with non-stimulated CTRL-OTI and -OT3 cells as control presented as dead cells per μm2 

and as mean n = 2. Statistical significance was determined by One-Way ANOVA analysis and post-hoc Tukey analysis, where 
****P<0,0001. (c) left: Tumor growth curve of OTI CTRL cells over time compared to OT3 CTRL cells, data presented as 
mean ± s.e.m. for n = 5 mice/group. Student t test analysis revealed statistical significance between the two groups at day 13 post ACT 
where *P=0,049; right: Probability of survival of OTI CTRL cells over time compared to OT3 CTRL cells, data presented using Kaplan 
Meier analysis of mice survival up to the endpoint, post ACT of n=5 mice /group. No statistical significance was detected among the 
groups, P=0,085. (d) Combined multiple variables graphs depicting relative mRNA expression of HPK1, Cbl-b, NEDD4, CD69, PD-
1, TNFα and IFNγ in OT1 and OT3 cells over time upon coculture with B16 OVA cells at a ratio of E:T=1:1 (data shown are the mean 
of n=2/plotted value). 
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3.3.6. Development of an unbiased high throughput screening approach for identifying inhibitory genes 
in the context of high versus low-affinity CD8+ cells. 

Despite the promising results observed in high-affinity TCR (OTI) cells engineered to downregulate HPK1 
and Cbl-b, which resulted in a tumor growth delay in vivo, the impact on survival enhancement remains modest. 
In an effort to further refine our approach, we sought to introduce an additional TCR downstream perturbation 
by targeting another TCR negative regulator. Our objective was not to be limited to the previously selected 
molecules but also to explore a broader range of potential targets. Thus, we turned to an unbiased and well-
validated high-throughput method, namely the CRISPR screening, to identify potential targets for 
downregulation in combination with the HPK1-Cbl-b KD strategy. This involved the utilization of a small 
TCR library, generated in-house, comprising three to five sgRNAs per gene, aiming to evaluate the effect of 
each gene deletion on one aspect of T-cell function, notably T-cell persistence, within the context of this 
chapter.  

The TCR small CRISPR library included TCR downstream molecules along with positive control genes that 
have been published and widely used in similar approaches as crucial genes for cell survival (essential genes) 
or genes well-known to inhibit T-cell function (suppressor genes) in which their deletion will make T-cells 
persist more in TME. Additionally, a negative control was included, consisting of non-targeting sgRNAs.  

Initially, the TCR CRISPR library was generated by designing three sgRNAs targeting each listed gene using 
the CrisPick algorithm 573 and cloning them in bulk into the pSUPER retroviral vector kindly provided by Prof. 
Ping Chi Ho (Supplementary Figure 4a). However, upon performing a quality control test involving DNA 
isolation from all bacterial clones and next-generation sequencing (NGS), it was observed that the sgRNAs 
were not equally distributed among the clones, as evidenced by the non-gaussian distribution of sgRNA in the 
pool library (Supplementary Figure 4b). As an alternative approach, we opted for manually and individually 
cloning three to five each sgRNA targeting each listed molecule (Figure 25a), including 27 TCR downstream 
molecules, 26 positive control genes, and 20 non-targeting sgRNAs as a total of 222 sgRNAs (the positive and 
negative control sgRNAs were cloned by Dr. Catherine Ronet and Aodrenn Spill).  

Consequently, using individual sgRNA cloning into the retroviral vector, we could achieve a homogeneous 
distribution of sgRNAs (Supplementary Figure 4c). To establish the conditions for transducing the TCR 
small CRISPR library into OTI and OT3 cells, we first had to determine the proper MOI that would result in 
15-30% TE to allow the integration of one sgRNA per one cell, measured by double positivity for Thy1.1-GFP 
(GFP is a reporter gene for Cas9 in OTI/OT3 CD4Cre Cas9 eGFP cells). Different MOIs were tested, and an 
MOI of 1 or 1.2 was chosen, resulting in TE of 15-20% (Supplementary Figure 4d). The TCR CRISPR 
library was initially tested in vitro using the in vitro exhaustion assay using the OTI model, with the NP 
condition being the input and the RP condition as the output (data not shown). The results were plotted as a 
volcano plot, highlighting the top five suppressor genes (with positive scores) for which OTI cells were 
enriched upon those gene KOs, as well as the top five essential genes with the lowest scores in which their 
deletion-induced cell death (Supplementary Figure 4f). 

For selecting TCR negative regulator candidates in the in vivo context, we implemented the experimental 
setting presented in Figure 25b, in which C57BL/6 cas9+ eGFP mice (n= at least 5-7 mice/group with at least 
2 groups) were initially injected subcutaneously with 0.1M B16 OVA tumor cells, followed by TBI at a dose 
of 5Gy on day 11. On day 12, an ACT was performed using either 5M OTI or OT3 Cas9+GFP+ cells that had 
been transduced with our small TCR CRISPR library (DP for Thy1.1 +Cas9+ GFP expression). At this point, 
a fraction of these cells was reserved for sorting based on the double positivity for Thy1.1 and GFP (Cas9), 
which would serve as our input sample. Subsequently, at 7 days post-ACT, we sorted the TILs that had 
integrated the library (DP for Thy1.1 and GFP (Cas9)), lymph nodes, and spleens as they will constitute our 
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output sample. Genomic DNA was then isolated from both the input and output samples and therefore sent for 
NSG sequencing. The generated sequencing data were analyzed using the MAGeCKFlute CRISPR screening 
Analysis 571. The results were then presented as a volcano plot, where the enriched fraction represents the cells 
that persisted within tumors, and for which deleted genes functioned as suppressive inhibitors within the TCR 
network. Conversely, the negative fraction of the volcano plot comprised genes deemed essential for T-cell 
function. In vivo experiments were conducted at least in two independent experiments with 
(n>=5/group/experiment) for OTI and OT3 cell models (data not shown for OT3 cells).  
 
Besides positive controls, the volcano plot retrieved from the analyzed NGS data of OTI TILs revealed an 
absence of hits that can be potentially targeted via gene silencing to enhance TIL persistence (Figure 25c). 
This suggests that individually inhibiting TCR negative regulators does not improve the persistence of high-
affinity CD8+ cells in vivo. However, there were some genes, namely Peli1, CISH, and Ubash3a, whose 
sgRNA were clearly enriched, although not significant, relative to the input. These genes hold potential for 
targeted inhibition strategies (Figure 25d) and present promising candidates for the combinatorial gene KD 
approach, supplementing the dual downregulation of HPK1 and Cbl-b. 
 

 
Figure 24: Identification of TCR suppressor and essential genes for in vivo T-cell persistence using small TCR CRISPR Library.  
(a) List of genes integrated into the TCR CRISPR library, including positive control and negative control molecules. (b) Schematic 
representation of the in vivo experimental design. (c) Volcano plot highlighting the top ten suppressors and essential genes identified 
in the OTI cell model according to the statistical significance threshold. Data was presented based on two independent in vivo 
experiments. (d) Rank plot based on the fold change of the output (TILs) vs. the input (injected OTI+Cas9+GFP+ cells) identified in 
the OTI cell model according to the statistical significance threshold. Data is presented based on two independent in vivo experiments.  



 

 107 

3.4. Extended data:  

 
Supplementary Figure 1: Evaluation of selected TCR checkpoint inhibitors’ expression levels and their downregulation by 
miRs.  
(a) Bar graphs demonstrating the expression as mean fluorescence intensity (MFI) of AKAP5, Cabin1, 14-3-3z, PTPN3, and PTPN12 
in RP compared to NP condition, data shown as mean ± s.e.m. of n=2. (b) Bar graphs demonstrating the fold change of percentage (%) 
and mean fluorescence intensity (MFI) of expression of targeted intracellular checkpoint inhibitors upon downregulation using 
Transomic miRNAs: miR A, B, and C compared to miR CTRL (CTRL) for each targeted molecule. Data are presented as mean ± s.e.m. 
(n=2 or 3 technical replicates). (c) Bar graphs demonstrating the fold change of percentage (%) and mean fluorescence intensity (MFI) 
of expression of targeted intracellular checkpoint inhibitors upon downregulation using splash miR (sp-miR) A, B, and C compared to 
sp-miR CTRL (CTRL) for each targeted molecule. Data are presented as mean ± s.e.m. (n=single or technical replicates).  
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Supplementary Figure 2: Assessment of HPK1, Cbl-b, and NEDD4 knockdown levels in OTI cells  
(a) KD levels of HPK1, Cbl-b, and NEDD4 measured by relative mRNA expression of selected genes compared to CTRL using single 
miR vectors for transducing OTI cells either as single, double, or triple cell transduction (DT or TT). Total MOI=5 was deployed across 
all conditions, data shown as mean ± s.e.m (n=2). (b) Kinetics of the HPK1 and Cbl-b KD level over time using dual miR targeting 
HPK1-Cbl-b upon B16 OVA stimulation along with B16 as a negative control at ratio E:T=1:1. Data are shown as mean ± s.e.m (n=3) 
and statistical analysis was assessed Two-Way ANOVA and post-hoc Tukey’s multiple comparisons.  
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Supplementary Figure 3: Flow cytometric analysis of HPK1, Cbl-b, and NEDD4 expression in OTI cells stimulated with 
aCD8/aCD28 dynabeads and SIINFEKL peptide.  
(a) Combined multiple variables graphs presenting the percentage of expression of HPK1, Cbl-b, and NEDD4 measured by flow 
cytometry in OT1 and OT3 cells upon culture with increasing concentrations of aCD3/aCD28 along with SIINFEKL peptide 
stimulation at 10µg/ml. 

 
Supplementary Figure 4: Design, implementation, and in vitro evaluation of generated small TCR CRISPR Library using OTI 
cells.  
(a) Vector design of the pSUPER retroviral vector. (b) sgRNA Frequency distribution measured by counts gathered from NSG 
sequencing of isolated DNA from transformed bacteria clones as a pool. (c) sgRNA frequency distribution measured by counts gathered 
from NGS sequencing of transformed bacterial cloned individually so that each clone of bacteria contains one sgRNA before being 
pooled. (d) TE using different MOIs for OTI+Cas9 (GFP) cell transduction by TCR small library determined by DP population for 
Thy1.1 and GFP expression. 
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IV. General discussion and perspectives: 
Gene therapy has emerged as a foundational tool in cancer immunotherapy, with particular emphasis on the 
genetic modification of T-cells to express either CARs or TCRs. These strategies have demonstrated 
considerable potential for the treatment of solid tumors. Nevertheless, there is still ample room for 
improvement in several key areas. Efforts are underway to enhance the ability of engineered T-cells to 
selectively recognize tumor cells while simultaneously bolstering their TCR activation, metabolic profile, 
overall fitness, and cytokine secretion capabilities to reprogram the TME. Moreover, various engineering 
approaches are being pursued to mitigate potential side effects associated with T-cell adoptive therapy, such 
as TCR T-cell cross-reactivities, cytokine release syndrome, and on-target/off-tumor toxicities. These 
approaches involve refining gene-engineering strategies, such as optimizing vector design and ensuring precise 
control over gene cargo expression. These advancements are crucial in meeting the growing demand for 
effective gene therapy strategies in clinical settings.  
 
The primary objective of this dissertation study is to elucidate the regulatory mechanisms of TCR signaling 
and develop effective genetic modification techniques that can be applied in potential clinical settings for 
improved T-cell-based immunotherapy against tumors. To accomplish this objective, this research 
investigation focuses on identifying negative regulators of TCRs and implementing T-cell engineering 
techniques to downregulate their activity, thereby enhancing the antitumor function of T-cells. In parallel, the 
underlying mechanisms responsible for the improved T-cell function are also explored.  

In this regard, careful selection of the appropriate method was undertaken to attenuate the activity of suppressor 
TCR genes, notably to choose between a complete KO or a KD of TCR suppressor genes. In our specific 
context, we opted for gene downregulation by utilizing a synthetic miRNA. This method was preferred due to 
its stability, endogenous processing within cells, and ability to promote constitutive and inducible expression 
using a Pol II or Pol III.  

1. Optimizing lentiviral vector design for dual gene insertion and inducible gene knockdown in 
engineered T-cells for enhanced antitumor activity. 

The primary aim was to exploit the potential of gene downregulation in the context of an inducible expression 
for precise gene regulation, specifically when desiring that the outcome of gene downregulation occurs solely 
upon T-cell engagement with the antigen or subsequent stimulation within the TME. This approach was 
favored to prevent potential cytotoxicity associated with constitutive or overexpression of miRNA expression, 
which could disrupt other genes’ regulatory processes or lead to cytotoxic effects due to a constant lack of 
gene-negative regulators. Moreover, we harbored uncertainty regarding the hyper- or continuous activation of 
T-cells resulting from suppressing the TCR negative feedback. Such activation might lead to early exhaustion 
states and potentially compromise their functionality. 

Subsequently, we endeavored to enhance the antitumor activity of primary human CAR/TCR T-cells by 
incorporating an inducible gene KD strategy. However, the successful implementation of this strategy 
necessitated addressing certain challenges associated with designing a vector construct encompassing both a 
constitutively expressed CAR or TCR for targeted tumor eradication, and an inducible expression of the 
miRNA. In our pursuit to address these issues, we encountered the need to meticulously design a construct 
utilizing lentiviral vectors. Lentiviral vectors have gained prominence in gene therapy due to their safety 
profile, clinical translatability, and ability to efficiently deliver genes, thereby enhancing T-cell function. 
Several vector designs have been developed to enhance co-engineering strategies, taking into consideration 
the challenges associated with standard dual co-gene delivery employing independent promoters.  
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Notably, when using forward-oriented promoters, with the first constitutive and the second inducible, weak 
gene expression for the second gene can occur due to transcriptional interference. An alternative approach 
involves a bidirectional configuration, allowing inducible gene expression without compromising its 
responsiveness to stimulation. However, this approach is undermined by the potential leakiness of the 
constitutive promoter into the inducible one.  
 
Nevertheless, these challenges necessitated the development of a novel dual antisense transfer vector and an 
optimized protocol for T-cell lentiviral transduction. Remarkably, the utilization of the dual antisense 
configuration resulted in the formation of dsRNA during virus production in the packaging cells (293 T-cells) 
due to the simultaneous transcription occurring from both the LTR promoter and the NFAT promoter in the 
transfected cells. dsRNA triggers the intracellular anti-dsRNA response involving DICER and RISK complex, 
which may lead to low titer virus production. To mitigate this issue, we employed the RNAi suppressor protein 
NovB2, previously demonstrated to inhibit Dicer isoforms, thereby preventing the undesirable effects of 
dsRNA formation.   
 
Furthermore, we introduced modifications to the transfer vector by replacing the RSV-based promoter and 
enhancer at the 5' LTR with the complete CMV promoter and enhancer. This strategy was undertaken to 
facilitate the transcription of the entire gene insert by utilizing TNFα, which promotes the expression of the 
CMV promoter containing four NF-κB binding motifs. Consequently, the effect of TNFα in increasing viral 
titers was significant and was further improved when combined with the NovB2 approach. 

In summary, a lentiviral vector design has been developed to facilitate the insertion of two specific genes. One 
of these genes encodes an inducible or constitutive miRNA that promotes gene KD, while the other gene 
induces the expression of a constitutive CAR or TCR in primary human CD4+ and CD8+ T cells, allowing 
targeted tumor antigen recognition. Moreover, an optimized protocol for high-titer viral particle production 
suitable for clinical application has been established to enable efficient genetic modification of these cells. 

2. Enhancing primary human T-cell function and antitumor response through HPK1 downregulation 

In continuation of our previous findings, we sought to validate the feasibility of our approach by investigating 
the functionality of CAR/TCR T-cells downregulating a TCR negative regulator using the vector we 
developed. This provided a valuable opportunity to assess the vector's capability in effectively accommodating 
what is commonly referred to as "hard to express gene cargo," exemplified by the miRNA construct used in 
our study. HPK1 was the initial target we have identified for gene silencing. It is noteworthy that extensive 
studies have underscored the role of HPK1 in T-cells by examining HPK1-deficient mice 360 and HPK1 kinase-
dead mice 359,365. These investigations have revealed enhanced proliferation in response to TCR stimulation 
compared to wild-type mice, suggesting the potential of HPK1 inhibition in cancer treatment. Various classes 
of pharmacological small-molecule inhibitors targeting HPK1 have been identified.  

Moreover, in a separate study, CRISPR Cas9 technology was employed to KO HPK1, improving CAR-T-cell-
based immunotherapies' efficacy in diverse preclinical mouse models of hematological and solid tumors 354. 
Therefore, we successfully implemented our developed dual antisense lentiviral vector design to clone the Pz1 
CAR, which recognizes the PSMA prostate cancer antigen. This CAR construct was placed under the 
constitutive expression of the PGK promoter, while the inverted miRNA targeting HPK1 was positioned under 
the inducible NFAT promoter. 

Among the three miRNAs (initially inserted in a commercial plasmid) targeting HPK1, we selected the miRNA 
with the highest KD efficiency (miRNA B) in Jurkat cells to be cloned into our lentiviral vector. Notably, the 
lentiviral vector bearing miRNA B exhibited high transduction efficiency and achieved a downregulation 
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exceeding 90% in CD4+ and CD8+ T-cells. Importantly, HPK1 KD did not compromise cell viability, 
revealing no detrimental impact on the internal cellular system of T cells. Consequently, we could proceed 
with characterizing the impact of HPK1 KD on T-cell function. Notably, our findings showed that HPK1 KD 
specifically enhanced the proliferation of CD8+ T-cells and augmented the expression of IFNγ under the 
influence of intermediate concentrations of immunosuppressive inhibitors typically present in the TME, such 
as PGE2 and the adenosine agonist CADO. However, T-cell cytotoxicity remained unaffected by HPK1 KD 
with or without the use of inhibitors.  

In our subsequent examinations, we shifted our focus to a different tumor-specific targeting model by 
employing the NYESO-1 TCR. We used a sense configuration lentiviral vector to clone the NYESO-1 TCR 
and NGFR reporter gene, expressed under the constitutive PGK promoter. To achieve different levels of KD 
strength, we introduced two miRNAs (miRNA A and B) targeting HPK1, comparing their outcomes to the 
control miRNA (miRNA CTRL) expressed under the constitutive U6 promoter. This exploration allowed us 
to fully understand the impact of HPK1 downregulation in T-cells. 

To ensure optimal vector design, the 3' flank of the miRNA included a polyadenylation site to effectively 
terminate miRNA transcription to avoid transcriptional interference. However, to overcome the potential viral 
titer decrease associated with using the double-stranded hairpin secondary structure of the miRNA, we 
incorporated TNFα to boost the transcription of our gene insert. This modification aimed to enhance viral titer 
and ensure efficient gene transfer. 

Using this vector design, we could achieve high transduction efficiency in both transduced Jurkat cells and 
primary human NYESO-1 CD4+/CD8+ T-cells. However, for an efficient HPK1 KD, the inclusion of a leader 
sequence was imperative to ensure proper miRNA (miR) biogenesis and processing (data not shown). Indeed, 
placing the leader sequence immediately after the U6 promoter enabled us to achieve substantial HPK1 KD 
levels, ranging from 80% to over 90%, using miR A in CD4+ and CD8+ T-cells. On the other hand, the 
downregulation was moderate when utilizing miR B, with KD levels ranging between 45% and 60%. This 
discovery was unexpected, considering that miR B showed the highest KD level in Jurkat cells using the 
commercially available vector, compared to the miR CTRL and other tested miRs. Interestingly, in the case of 
primary Pz1-CAR CD4+ and CD8+ T-cells, miR B exhibited higher KD levels compared to miR CTRL. This 
suggests that the downregulation mechanism may be influenced by the vector or the cell type, indicating that 
the cellular context plays a significant role in determining the level of KD. 
 
Encouragingly, downregulating HPK1 did not impact the memory and effector phenotypes of CD4+ and CD8+ 
T-cells. This is noteworthy because, while a memory-like phenotype is desirable for ACT due to its advantages, 
we expected the loss of TCR inhibition to result in an effector-like phenotype or terminally differentiated T-
cells after long-term in vitro expansion prior to ACT. Functionally, CD8+ T-cells with HPK1 KD exhibited 
increased proliferation capacity compared to control cells, similar to what was observed in the context of Pz-
1-CAR T-cells. In contrast, within our experimental setup, we did not observe significant differences in IFNγ 
secretion levels upon stimulation with A2+/NY+ target cells (Me275, A375, and Saos2). Nevertheless, in in 
vivo experiments, the highest level of HPK1 KD achieved using miR A significantly improved tumor control, 
leading to significant tumor growth delay and improved survival outcomes. 

3. Combinatorial strategies targeting TCR negative regulators for enhanced functionality in high-affinity 
TCR T-cells 

Following the validation of our vector design and the promising results obtained through HPK1 KD in both 
Pz-1CAR and NYESO-1 TCR T-cells, we aimed to further enhance T-cell functionality and gain a deeper 
understanding of the complex interplay between T-cells and the TME. However, we encountered limitations 
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in conducting comprehensive characterization using a xenograft mouse model. Consequently, we transitioned 
to a syngeneic mouse model, which not only facilitated the investigation of T-cell interaction with TME but 
also allowed us to explore the impact of downregulating negative regulators in a more physiologically relevant 
setting. Initially, we identified twelve relevant molecular targets based on existing literature that demonstrated 
improved T-cell function upon their complete deletion or downregulation. Subsequently, we assessed the 
expression levels of these target molecules upon antigen stimulation, aiming to mimic the conditions that occur 
in vivo within the TME. All evaluated TCR-negative regulators exhibited elevated expression levels upon 
chronic antigen stimulation and during cellular exhaustion. However, upon repeated antigen stimulation, 
certain targets, namely AKAP5, cabin1, 14-3-3ζ, PTPN3, and PTPN12, did not show increased expression. 
Instead, their expression remained similar to the basal level observed in unstimulated cells.  

Next, we carefully selected the miRNAs that resulted in the highest KD levels (based on the percentage and 
the MFI of expression) compared to the miRNA CTRL for each of the chosen targets, namely those targeting 
HPK1, Cbl-b, and NEDD4. These miRNAs were cloned in a retroviral vector available in the lab. It is 
noteworthy that both Cbl-b and NEDD4 are part of the E3 ligases family. They play crucial roles within the 
ubiquitination pathway responsible for the degradation of key components downstream of the TCR signaling 
network.  

As we observed only moderate antitumor effects when using single perturbations downstream of the TCR, we 
decided to combine them as dual and triple combinatorial KD. The chosen miRNAs were then cloned in dual 
and multiple miRNA vectors we have developed, with HPK1 as the primary target, alongside Cbl-b and/or 
NEDD4. The design of these vectors took into consideration several aspects linked to the concomitant miRNA 
delivery, such as the spacing between the miRNA, the positioning, and the length of the miRNA sequences. 
Significant transduction efficiency and high KD levels were observed in high (OTI) and low-affinity (OT3) 
TCR cells using dual and multiple miRNA vectors. Interestingly, the KD levels achieved in OTI cells using 
the dual and multiple miRNA vectors surpassed those achieved through double or triple transduction by single 
miRNA vectors. This highlights the efficacy of the miRNA vectors generated in our study for inducing 
efficient multiple gene silencing. 

Consequently, the dual KD of HPK1 and Cbl-b in OTI cells demonstrated a significant improvement in tumor 
control; however, it did not result in enhanced survival outcomes. Conversely, in the low-affinity TCR model 
represented by OT3 cells, neither the individual nor the combinatorial KD of TCR suppressive molecules led 
to improved tumor control or survival. Upon investigating the reasons behind these observations in OT3 cells, 
we found that HPK1, Cbl-b, and NEDD4 were highly upregulated in OTI cells but not in OT3 cells upon 
antigen encounter and TCR stimulation with B16 OVA target cells over time, and with the SIINFEKL OVA 
peptide. Furthermore, our investigations confirmed previous findings that OT3 cells exhibit lower proliferation 
rates and reduced cytotoxic capacities in vitro and in vivo compared to high-affinity TCR (OTI) cells. These 
observations underscore the intrinsic limitations of low-affinity TCR cells in terms of their basal antitumor 
activity.  
 
Collectively, these findings support the notion that downregulating TCR suppressor genes is particularly 
relevant in the context of high-affinity TCR cells, which aligns with previous studies demonstrating various 
advantages of using high-affinity TCR over low-affinity TCR T-cells. This is mainly due to their increased 
tumor infiltration, capacity to effectively eradicate tumors, and ability to sense lower peptide epitope densities, 
in addition to their lower expression of inhibitory molecules, including PD-1, LAG-3, and NKG2A 574,575. 
Moreover, high TCR affinities enhance CD8+ T-cell effector function and have the potential to redirect CD4+ 
T-cells to the tumor 576,577. In contrast, TCRs with nanomolar range affinities may impair T-cell function, 
leading to activation-induced cell death, early exhaustion, or undesired cross-reactivity with self-antigens 



 

 114 

261,578. On the other hand, controversial studies have demonstrated that high-affinity TCR T-cells may be more 
susceptible to exhaustion and negative regulatory mechanisms upon chronic stimulation that limit their long-
term functionality 579 and have also indicated that in vivo selection processes naturally maintain low TCR 
affinities to avoid diminished function and self-peptide cross-reactivity 574,580,581.  

Given the limited outcomes observed thus far regarding the positive effect of the concomitant deletion of 
HPK1 and Cbl-b on the in vitro function in high-affinity TCR T-cells, further research is warranted to 
characterize the impact of these deletions in OTI cells in vitro. Additionally, investigations into the behavior 
of these engineered T-cells within the TME are essential to elucidate the reasons underlying the significant 
tumor control achieved by this specific combination. It is crucial to understand how these engineered T-cells 
interact with immunosuppressive components and inhibitors in the TME, such as PGE2, adenosine, and 
various suppressive immune cells, such as Tregs and myeloid cells. Moreover, comprehensive ex vivo 
characterization studies are necessary to assess the outcomes of these deletions on other critical pathways, 
including apoptosis and metabolic features. A thorough understanding of these mechanisms will provide 
valuable insights into the functionality and behavior of engineered T-cells in complex immunosuppressive 
environments, ultimately informing the development of more effective therapeutic strategies. 

Finally, in order to expand the scope of our approach, we employed a small TCR CRISPR library as a high-
throughput and unbiased method to systematically screen more than 27 TCR suppressor molecules. Through 
this analysis, we were able to confirm that individual deletions of these molecules alone cannot enhance high-
affinity TCR T-cell persistence. Consequently, it became evident that implementing combinatorial strategies 
is necessary to achieve the desired improvements in T-cell function. Of note, when employing the same TCR 
library for CRISPR screening using low-affinity TCR cells in at least two separate experiments, we 
encountered technical challenges due to the limited number of OT3 TILs retrieved from B16 tumors, which 
could have compromised the quality of the analysis. However, the data indicates that OT3 cells are not retained 
in the tumor bed, rendering efforts to enhance low-affinity TCR signaling futile if the cells fail to infiltrate the 
TME and get stimulated by the antigen. This hypothesis could be potentially verified by co-transferring OTI 
and OT3 cells in an ACT with a specific ratio, allowing the evaluation of their respective in vivo persistence 
and the significance of suppressing TCR intracellular checkpoints. 

Several studies have investigated similar questions by targeting different TCR suppressor genes. For instance, 
individual loss of Cbl-b has been shown to enhance T-cell function and increase in vivo antitumoral activity 
upon T-cell stimulation 480,481. In contrast, a study led by Ventura, PMO. et al., (2022) demonstrated in vivo 
that sustained or acute deletion of PTPN6 along with PTPN11 deletion does not improve T-cell-mediated 
tumor control. Furthermore, sustained loss of PTPN6/11 impairs the therapeutic effects of anti-PD1 
treatment582. In this study, in vitro findings revealed that Ptpn6/11-deleted CD8+ T-cells exhibit impaired 
expansion due to a survival defect, and proteomics analyses also highlighted significant alterations, including 
changes in apoptosis-related pathways582. These observations emphasize the need for caution when choosing 
negative regulators for gene inhibition strategies, specifically when considering clinical applications. 
 
Intriguingly, the question of combinatorial deletion or loss of TCR negative regulators remains relatively 
unexplored. This may be attributed to the challenges faced when combining multiple miRNAs or shRNAs for 
knocking down multiple genes or concerns regarding off-target effects when using the CRISPR/Cas9 system 
for gene deletion. However, there is apprehension regarding the risk of inducing T-cell exhaustion due to 
overactivation or the potential for cytotoxicity or autoimmune responses resulting from the loss of negative 
regulatory loops in TCR signaling, particularly in high-affinity TCR cells. This recalls the need for introducing 
suicide genes into the vector construct, such as the epidermal growth factor receptor (EGFR), for inducing 
modified T-cell death to encounter cellular cytotoxicity if it occurs. 
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As a perspective of our study, we plan to explore the combination of HPK1-Cbl-b KD with the deletion or 
complete loss of other TCR suppressive molecules, such as Peli1, CISH, and Ubash3a using the syngeneic 
mouse model. We also aim to incorporate cytokines or molecules known to enhance T-cell persistence in vivo, 
such as IL2v or CD40L, or 41BBL which have been developed and utilized in our laboratory. Furthermore, 
we plan to extend the scope of our study beyond the TCR intracellular pathway and include target molecules 
from various regulatory pathways, such as anergy, cAMP, apoptosis, and others. This comprehensive approach 
addresses the regulatory mechanisms governing T-cell function, fitness, and in vivo persistence.  

In the xenograft mouse model, we aim to evaluate the efficacy of the HPK1-Cbl-b KD setting using CAR/TCR 
T-cells. We plan to further enhance our combinatorial KD approach by deploying inhibitory checkpoint 
blockade, considering the upregulation inhibitory checkpoints, such as PD-1, TIM-3, and TIGIT, upon TCR 
engagement with melanoma (Me275 and A375) and sarcoma (Saos2) target cells.  

Looking ahead to our future research directions, we propose developing the CRISPR screening approach to 
explore individual TCR perturbations based on other aspects of T-cell function, such as proliferation, cytokine 
expression, and metabolic fitness. Specifically, we anticipate that focusing on proliferation outcomes in our 
CRISPR screening approach will yield interesting data and reveal potential targets. This prediction is based on 
evidence from our investigations with HPK1 KD on primary human and murine T cells, which showed an 
increase in their proliferative capacity. Notably, HPK1 KD significantly improves primary human CD8+ 
proliferation in vitro in both the Pz1-CAR and NYESO-1 TCR models.  
 
In summary, we have successfully demonstrated the efficacy of our novel antisense configuration lentiviral 
vector and high titer lentiviral production protocol in overcoming the limitations observed with previous vector 
designs and enhancing cell transduction efficiency even when using complex miRNA structures. This vector 
contains two gene cargos; an inducible miRNA targeting HPK1 and the Pz1 CAR or NYESO-1 TCR 
constitutively expressed, allowing for specific T-cell redirection to target cancer cells. This was shown to boost 
CD8+ T cell proliferation, in vivo antitumor control, and survival in the context of human tumor models. 
Additionally, we also explored the effectiveness of a combinatorial gene KD strategy in the syngeneic mouse 
model by inhibiting other TCR negative regulators using a multi-miRNA retroviral vector we developed. This 
retroviral vector enabled constitutive expression of multiple miRNAs targeting different intracellular 
checkpoints downstream of high and low-affinity TCR signaling networks, further enhancing the therapeutic 
potential of engineered T-cells. In particular, simultaneous downregulation of HPK1 and Cbl-b led to a 
significant delay in tumor growth of high-affinity TCR T cells. We also suggest various future strategies to 
improve T cell antitumor activity. Lastly, we highlighted the relevance of using our combinatorial KD strategy 
in the context of high-affinity TCR over the low-affinity TCR T-cells. Furthermore, we used a CRISPR 
screening with a small TCR library to establish that individual deletions of TCR intracellular checkpoints do 
not sufficiently improve T cell persistence, hence, necessitating the combinatorial gene KD approach.  

Overall, this dissertation contributes significantly to cancer immunotherapy by providing new approaches for 
suppressing intracellular T-cell checkpoints for adoptive cell therapy and paving the way for future research 
exploration and development. 
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