Analytica Chimica Acta 1194 (2022) 339421

Contents lists available at ScienceDirect

Analytica Chimica Acta

journal homepage: www.elsevier.com/locate/aca

Solid-phase extraction of ²²⁵Ac using ion-imprinted resin and ²⁴³Am as a radioactive tracer for internal dosimetry and incorporation measurements

^a Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Rue du Grand-Pré 1, CH-1007, Lausanne, Switzerland ^b CERN, CH-1211, Geneva 23, Switzerland

HIGHLIGHTS

- ²²⁵Ac and ²⁴³Am extracted with equivalent recoveries using an ion-imprinted resin.
- Ion-imprinted resin was used to determine trace amounts of ²²⁵Ac in urine.
- ²⁴³Am was used as a yield tracer to measure ²²⁵Ac with alpha spectrometry.
- A first method enabling incorporation measurements and internal dosimetry of ²²⁵Ac.

ARTICLE INFO

Article history: Received 8 November 2021 Received in revised form 27 December 2021 Accepted 29 December 2021 Available online 1 January 2022

Keywords: Solid-phase extraction ²²⁵Ac ²⁴³Am tracer Ion-imprinted resin Internal dosimetry Incorporation

G R A P H I C A L A B S T R A C T

ABSTRACT

Actinium-225 is a highly radiotoxic alpha-emitting radionuclide, which is currently in the spotlight owing to its promising radiotherapeutic applications in nuclear medicine. Personnel involved in the production and handling of actinium-225 is exposed to a risk of accidental incorporation of this radionuclide. Radiological protection regulations require regular monitoring of incorporation and internal dosimetry assessment for workers manipulating open radioactive sources. Urine is often used as a biological sample for measuring the incorporation of actinides, however it requires a radiochemical separation with a certified metrological tracer to enable quantitative determination. There is no stable, nor sufficiently long-lived radioactive isotopes of actinium to provide a metrological yield tracer. In this article, we propose an application of an ion-imprinted polymer resin to extract actinium-225 from urine employing americium-243 as a radioactive tracer. The radiochemical separation was followed by a quantitative determination with alpha-spectrometry. Solid-phase extraction of both actinides from urine using ion-imprinted polymer resin resulted in good radiochemical yields: 57.7 \pm 16.5% (n = 17) for actinium-225 and $62.8 \pm 18.0\%$ (n = 17) for americium-243. Equivalent recoveries showed that americium-243 is a suitable yield tracer for the determination of actinium-225 with an ion-imprinted polymer resin. Combined with a different measurement technique, this method can be applied for the separation of other isotopes of actinium, such as actinium-227.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Rue du Grand-Pré 1, CH-1007 Lausanne, Switzerland. E-mail address: ruslan.cusnir@chuv.ch (R. Cusnir).

https://doi.org/10.1016/j.aca.2021.339421

0003-2670/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

 225 Ac (actinium-225, $t_{1/2} = 9.9$ days) is an artificial alphaemitting radionuclide that has recently emerged as a promising agent for the targeted alpha therapy in nuclear medicine [1-3]. The decay chain of ²²⁵Ac gives rise to a series of short-lived radionuclides, which rapidly reach secular equilibrium: alpha-emitting ²²¹Fr (francium-221, $t_{1/2} = 4.9$ min), followed by alpha-emitting ²¹⁷At (astatine-217, $t_{1/2} = 32.3$ ms), and beta-emitting ²¹³Bi (bis-muth-213, $t_{1/2} = 45.6$ min) which decays into ²¹³Po (polonium-213, $t_{1/2} = 4.3$ µs), another alpha-emitter. Thus, each decay of ²²⁵Ac results in 4 highly energetic alpha particles [4]. A small amount of ²²⁵Ac is likely to deliver a large radiation dose in case of an internal exposure following an incorporation event [5,6]. The radiological protection regulations in Switzerland require regular monitoring of internal doses of workers with occupational exposure to open radioactive sources [7,8]. In addition, an accidental exposure event involving a potential incorporation of ²²⁵Ac will require investigations in order to estimate the dose received by an individual. A whole-body counter could prove useful to estimate the internal exposure to radiation by detecting gamma-rays of ²²¹Fr (12% at 218 keV) and ²¹³Bi (26% at 440 keV) emitted from the body, however a very inhomogeneous distribution of ²²⁵Ac in the body together with a high detection limit make such measurements rather challenging [9]. Bioassay samples such as urine are widely used to determine contamination by radionuclides, namely by actinides [10.11]. Urine is a suitable biological sample to work with. However, owing to a high content of mineral salts and organic products of nitrogen metabolism, the chemical separation of ²²⁵Ac prior to measurement is indispensable.

A committed effective dose E_{50} of 1 mSv is attained upon inhaling 154 Bq of ²²⁵Ac, or upon ingesting 42 kBq of ²²⁵Ac. The methodology for calculating these thresholds according to the Swiss Radiological Protection Ordinance is described in the Supplementary Information (SI). According to the ICRP biokinetic model for actinium, a major fraction of ²²⁵Ac 24 h after an intake by ingestion or inhalation is found in the alimentary tract (\geq 50%), while urinary excretion is in the order of 0.1% and below [6]. The activity of ²²⁵Ac sufficient to deliver 1 mSv committed effective dose is so low, that the urinary excretion results in concentrations in the order of mBq that have to be measured in a bioassay – not a trivial task for a chemist. For instance, 154 mBq of ²²⁵Ac is equivalent to a specific mass of 7.17 × 10⁻¹⁷ g.

Radiometric techniques such as alpha spectrometry make possible the measurement of actinides at mBq levels. To enable accurate and quantitative determination of ²²⁵Ac in urine with alpha spectrometry, an internal standard, also called a radiochemical yield tracer is needed in order to monitor the recovery during chemical separation steps. To the best of our knowledge, there is no alpha-emitting metrological tracer of Ac available because all of its alpha-emitting isotopes are short-lived. Current production methods for ²²⁵Ac in accelerators involve the formation of 0.1–0.3% of the beta-emitting ²²⁷Ac (actinium-227, $t_{1/2} = 21.8$ years) impurity, which is even more restrictive in terms of radiation protection owing to its long half-life and high radiotoxicity [4,12,13]. A committed effective dose E_{50} of 1 mSv is attained upon inhaling 1.6 Bq of ²²⁷Ac, or upon ingesting 910 Bq of ²²⁷Ac, which follows the same biokinetic behaviour as ²²⁵Ac [6]. Low-energy beta emissions (at 45 keV and 35.7 keV) challenge the direct determination of ²²⁷Ac in bioassays, however its decay chain includes alpha emitters such as ²²⁷Th (thorium-227, $t_{1/2} = 18.7$ days) which may prove useful for alpha spectrometry measurements once in secular equilibrium.

The alpha-emitting radionuclide ²⁴³Am (americium-243, $t_{1/2}$ = 7360 years) is a standardised metrological tracer used for the

determination of americium isotopes in biological and environmental samples [14]. Solid-phase extraction (SPE) with ionexchange resins is routinely used by radioanalytical chemists in the analysis of actinides by optimising the conditions of chemical separation [15]. Such steps as pre-conditioning the resin and adjusting the chemical composition of the analysed sample prior to extraction, as well as refining the composition of the eluent used to purify or release radionuclides enable to select optimal conditions for the extraction of a targeted radionuclide. Applications of ²⁴³Am tracer for the determination of Cm (curium) isotopes are described in the literature, however slight differences in the chemical behaviour of Am³⁺ and Cm³⁺ require caution while carrying out chemical separations [16,17]. Being actinides with matching chemical properties, [²⁴³Am]Am³⁺ and [²²⁵Ac]Ac³⁺ may prove sufficiently similar to be extracted simultaneously for alpha spectrometry measurements. Ion-imprinted polymer (IIP) resin is a particular case of ionexchange resin that consists of an organic co-polymer and a metalbinding ligand bearing a vinyl functional group [18,19]. Synthesis of IIP involves a step where the metal-binding organic ligand is arranged in the solution around the metal ion template occupying its coordination sphere, thus forming a complex. Once the polymerisation of the organic monomers is complete, the resulting copolymer contains metal complexes, which are covalently bound within the polymer structure. Releasing metal ions with a strong mineral acid provides a polymer resin with structurally defined vacant cavities, available to selectively bind that metal again. An IIP resin synthesised by imprinting with Y^{3+} ion has been successfully used in our laboratory for determining radioactive 90 Sr(90 Y) in environmental and biological samples for a number of years, and it has been reported to effectively bind 3+ lanthanides [20-22]. This polymer has also been successfully used in the resin binding phase of DGT sampling devices for the measurement of bioavailable²⁴¹Am in fresh and seawaters [23].

This study aimed at developing a solid-phase extraction method for determining ultra-trace ²²⁵Ac in urine for internal dosimetry and incorporation measurements using ²⁴³Am as a yield tracer. We tested the suitability of a synthetic polymer resin imprinted with Y^{3+} ion for the extraction of ²²⁵Ac in the presence of ²⁴³Am to enable quantitative determination with alpha spectrometry, providing a metrological traceability of the analytical results. A special focus was placed on ensuring equivalent radiochemical recoveries of ²²⁵Ac and ²⁴³Am. Finally, the developed method was applied to real urine samples spiked with ²²⁵Ac to test the contamination measurement in case of a potential exposure of the personnel.

2. Materials and methods

2.1. Reagents and materials

All reagents used were of analytical grade from Merck, Sigma-Aldrich and Fluka (Switzerland). Deionised water (<0.05 μ S) was produced using UltraPure system (Evoqua Technologies). ²²⁹Th(²²⁵Ac) and ²⁴³Am tracer solutions were obtained from the Metrology Group of the Institute of Radiation Physics with trace-ability to the Isotope Products Laboratories, Burbank, USA (²⁴³Am, cat. no. 7243-1U, source no. 499-50) or AEA Technology Nuclear Science, Harwell, UK (²²⁹Th, batch n_ 90/229/13, TPP10030). Y-imprinted polymer resin was synthesised as described by Froide-vaux et al. [22].

2.2. Instruments

Alpha spectrometry counting was carried out on PIPS detector (450 mm²) in an Alpha Analyst spectrometer with Apex Alpha software (Canberra, France). Energy calibration of PIPS detectors was carried out using a multi-alpha source containing ²⁴²Pu, ²⁴³Am, and ²⁴⁴Cm.

2.3. Solid-phase extraction of ²²⁵Ac and ²⁴³Am

To test the suitability of Y-imprinted resin to quantitatively extract ²²⁵Ac and ²⁴³Am, tracer experiments were first carried out using a small column. A column ($\phi = 9$ mm, length = 33 mm) was loaded with 300 mg of Y-imprinted resin in a slurry of H₂O(H⁺) at pH 3 containing 10% of ethanol to improve wetting. The column of approximately 1 mL bed volume was conditioned with 10 mL of $H_2O(H^+)$ at pH 3. Next, 1 mL of ²⁴³Am tracer (25.0 ± 0.6 mBq mL⁻¹ in 1 M HCl) and 1 mL of ²²⁹Th tracer (49.2 ± 1.2 mBq mL⁻¹ in 2 M HNO₃, providing ²²⁵Ac in equilibrium as an *in situ* generator) diluted with H₂O to 10 mL and the pH was adjusted at 3 by titrating with NaOH. The sample was then loaded on column at 1 mL min⁻¹ flow rate, followed by a wash with 10 mL of $H_2O(H^+)$ at pH 3. To obtain the elution profile of ²²⁵Ac and ²⁴³Am as a function of pH in an additional experiment, the column was washed with 10 mL of $H_2O(H^+)$ at pH 2. To elute ²²⁵Ac and ²⁴³Am, the column was washed with 10 mL of 1 M HCl. The column was regenerated by washing with 10 mL of 0.1 M oxalic acid adjusted at pH 4 by addition of NaOH, followed by 30 mL of $H_2O(H^+)$ at pH 3. Oxalate wash enables the removal of any residual cations assuring no interference from previous experiments.

After the preliminary experiments, larger columns of Yimprinted resin were prepared to test the equivalence of 225 Ac and 243 Am extraction. Three columns ($\emptyset = 13 \text{ mm}$, length = 68 mm) containing 2 g of resin in 5 mL bed volume were used in parallel, and the experiment was reproduced twice. To demonstrate that extraction of 225 Ac and 243 Am on Y-

To demonstrate that extraction of ²²⁵Ac and ²⁴³Am on Yimprinted resin was determined by the effect of ion imprinting with Y^{3+} , a batch of polymer resin was synthesised according to the same protocol, but without the addition of Y^{3+} [22]. Identical tracer experiments as above with ²⁴³Am and ²²⁹Th(²²⁵Ac) were carried out on a small column containing 300 mg of this resin providing 1 mL bed volume.

Direct electrodeposition was carried out with 9.8 mBq of 229 Th(225 Ac) and 25 mBq of 243 Am tracers in triplicate (n = 3 technical replicates) in three separate experiments (n = 3 experimental replicates) to determine the yield of electrodeposition of 225 Ac and 243 Am tracers.

2.4. Urine sample preparation

Pre-concentration of actinides in urine was tested by coprecipitation with calcium phosphates or with calcium oxalates. 500 mL urine was used for each single analysis, and each experiment was carried out in triplicate. Each urine sample was acidified by addition of 10% of concentrated HNO₃. Urine was spiked with 49.2 ± 1.2 mBq of 229 Th(225 Ac), providing 225 Ac in secular equilibrium, and 25.0 ± 0.6 mBq of 243 Am as the yield tracer. Samples covered with a watch glass were heated at near boiling for 2–3 h upon stirring to break down organic molecules. Once urine was clarified, heating was stopped and 100 mg of Ca²⁺ was added. To precipitate calcium oxalate, 3 g of oxalic acid dihydrate was added and the pH adjusted between 1.5 and 2 by addition of 32% NaOH solution. To precipitate calcium phosphate, 2 mL of concentrated H₃PO₄ was added, and pH adjusted between 8 and 9 by addition of 32% NaOH solution. The precipitate was left to develop in coarse grains for 30 min at 70 °C upon stirring, then let to settle by gravity overnight. After decantation, the precipitates were transferred to Teflon® vessels and centrifuged at 3000 rpm. Next, the precipitates were solubilised with 5 mL concentrated HNO₃ in the presence of 1 mL of 30% H_2O_2 and submitted to microwave-assisted digestion under pressure at 180 °C for 20 min (MLS Ultraclave IV). Cleared solutions were transferred to glass beakers and diluted with H_2O to 100 mL. The pH of the samples was adjusted to 3 by titrating with NaOH solution, and the final sample volume was adjusted to 120 mL by addition of acidified $H_2O(H^+)$ at pH 3.

To test advanced oxidation of the organic matter in some experiments, 20 mg of Mohr's salt $(HN_4)_2Fe(SO_4)_2 \cdot 6H_2O$ and 20 mL of 30% H_2O_2 was added to urine twice at 1 h interval to initiate the Fenton reaction. When the Fenton reaction was employed to oxidise the organic matter, 100 mg of ascorbic acid was added to the samples after microwave digestion prior to adjusting to pH 3 in order to reduce Fe (III) to Fe (II).

2.5. Solid-phase extraction of ²²⁵Ac and ²⁴³Am from urine

Columns for solid-phase extraction of [²²⁵Ac]Ac³⁺ were prepared by loading a slurry of Y-imprinted polymer resin in H₂O containing 10% of ethanol to improve wetting. Each column ($\emptyset = 13$ mm, length = 68 mm) contained 2 g of Y-imprinted resin providing approximately 5 mL bed volume. Columns were pre-conditioned with 60 mL of H₂O(H⁺) at pH 3. The sample solutions at pH 3 were loaded on columns at 1 mL min⁻¹ flow rate. The columns were washed with 60–90 mL of H₂O(H⁺) at pH 3, followed by elution with 30–60 mL of 1 M HCl. Regeneration of columns was carried out by washing with 30 mL of 0.1 M oxalic acid adjusted to pH 4 by addition of NaOH, followed by 60 mL of H₂O(H⁺) at pH 3. In one experiment employing Fenton reaction for urine pre-treatment, the columns were washed with 60 mL of 10 mM ascorbic acid at pH 3 to test iron removal prior to eluting the actinides.

2.6. Electrodeposition and determination of actinides

The fractions from columns loading, washing and elution were evaporated to dryness. Electrodeposition of the actinides was carried out with sulphate buffer, according to Bajo et al. [24]. Briefly, 0.6 mL of 1 M NaHSO₄ and 0.4 mL of concentrated H₂SO₄ was added to each sample and evaporated to dryness, gradually increasing the temperature on hot plate. Once the evolution of white fumes had ceased, the temperature of the hot plate was ramped up to the maximum (~300 °C) and the samples were calcined to dryness, resulting in a white residue. After cooling down, the residue was dissolved in 4.2 mL H₂O and transferred to electrodeposition cell equipped with a platinum wire anode and a stainless-steel disc cathode. Beakers were rinsed with 5.2 mL of 1 M Na₂SO₄ that was added to the cell. Finally, 0.6 mL of 1 M NaHSO₄ was added directly to the cell, resulting in a pH close to 1.9. Electrodeposition was carried out for 1 h 15 min at constant current of 1.2 A. resulting in approximately 10 V.1 min before the end of electrodeposition.1 mL of 32% NH₄OH was added to the cell to avoid re-dissolution of the actinides once the current is interrupted. Stainless steel discs were removed, carefully rinsed with 1% NH₄OH, H₂O, and ethanol, and then annealed on a hot plate. Samples were measured by alpha spectrometry.

To calculate the activity of ²²⁵Ac, counts from ²¹⁷At were used because ²¹⁷At peak is free from isotopic interferences and ²¹⁷At activity is at secular equilibrium with ²²⁵Ac activity. The activity of ²²⁵Ac was decay corrected for the time of counting and for the time elapsed from the moment of radiochemical separation. Samples (n = 3) for alpha spectrometry from one experiment with urine were first counted shortly after radiochemical separation of ²²⁵Ac and ²⁴³Am and stored for 100 days (10 half-lives of ²²⁵Ac) to allow for ²²⁵Ac decay. After 100 days, these samples were recounted to demonstrate the decay of ²²⁵Ac and its progenies in the absence of precursors (*e.g.* ²²⁹Th).

3. Results and discussion

3.1. Electrodeposition of ²²⁵Ac and ²⁴³Am

Electrodeposition of actinides for alpha spectrometry is often carried out in a sulphate buffer [24]. The reduction potential for Ac^{3+} is -2.21 V, and is -2.07 V for Am^{3+} vs standard hydrogen electrode [25]. To verify that the analyte ²²⁵Ac and the tracer ²⁴³Am were electrodeposited identically, we carried out direct electrodeposition of 9.8 mBq of ²²⁵Ac with 25 mBq of ²⁴³Am for 1 h (n = 6) or 1.5 h (n = 3). Average yield of electrodeposition (n = 9) was 100.6 \pm 1.8% for ²²⁵Ac and 95.4 \pm 3.0% for ²⁴³Am (Table 1) with no difference for the duration of electrodeposition. These values are compatible with the 2% uncertainties (k = 2) determined on the initial tracer activities. Direct electrodeposition of ^{225}Ac and ^{243}Am in sulphate buffer showed that no fractionation occurred and that both actinides were electrodeposited quantitatively.

3.2. Tracer experiments

The results displayed in Fig. 1-A show that ²²⁵Ac and ²⁴³Am were both quantitatively extracted at pH 3 with Y-imprinted resin, providing equivalent recoveries: $84.5 \pm 6.5\%$ for 225 Ac and $81.6 \pm 6.2\%$ for 243 Am. Although 225 Ac and 243 Am are both actinide elements in +III oxidation state, their chemical properties slightly differ, challenging the application of ²⁴³Am as a proxy yield tracer for 225 Ac. Ionic radius of Ac^{3+} with coordination number VI is 1.12 Å, slightly larger than the 0.98 Å value of Am³⁺ with the same coordination number. The resin used for the solid-phase extraction was imprinted with Y³⁺, which has an ionic radius of 1.02 Å at a coordination number of VIII, making it a closer match for Am³⁺ than for Ac³⁺. Experiments carried out in identical conditions using the inert resin (Fig. 1-B) showed that only ²⁴³Am was nearly quantitatively (80.9 \pm 10.9%, n = 4) extracted at pH 3, while ²²⁵Ac quantitatively passed through the column from the feed solution at pH 3. These results demonstrate that imprinting with Y^{3+} cation during the resin synthesis is essential for the structural arrangement of dipicolinic ligands that bind Ac^{3+} and Am^{3+} in a coordinating environment of a predefined size and structure. Although stable macrocyclic complexes of Ac³⁺ containing picolinic ligands are known, it is likely that in the absence of ion imprinting, the polymer formed without a predefined structure cannot accommodate Ac^{3+} the largest cation in the periodic table [26-28]. Smaller ionic radius of Am³⁺ enabled its binding to dipicolinic ligands incorporated randomly within the inert resin [29].

The optimal extraction capacity of Y-imprinted resin towards 3+ cations is achieved in the pH range of 2–3 [20–22]. The elution profile of 225 Ac and 243 Am as a function of pH (Fig. 2) showed that

Table 1

Yield of electrodeposition of ²²⁵Ac and ²⁴³Am. Uncertainty for each measurement was calculated by a quadratic summation of relative uncertainties on sample volume, tracer activity, and number of counts determined with alpha spectrometry. SD is one standard deviation.

Yield, %	²²⁵ Ac	²⁴³ Am
al	99.9 ± 7.1	99.4 ± 5.1
	101.3 ± 7.2	95.2 ± 4.9
	101.0 ± 7.2	98.1 ± 5.0
aII	102.6 ± 7.3	94.4 ± 4.9
	99.8 ± 7.1	95.6 ± 4.9
	96.7 ± 7.0	89.8 ± 4.7
^b III	101.4 ± 6.7	98.4 ± 4.4
	102.6 ± 6.8	94.1 ± 4.2
	100.3 ± 6.7	93.6 ± 4.2
Mean \pm SD (n = 9)	100.6 ± 1.8	95.4 ± 3.0

^a Electrodeposition carried out for 1 h.

^b Electrodeposition carried out for 1.5 h.

both ²²⁵Ac and ²⁴³Am were effectively extracted on a 1 mL column at pH 3, however they behaved differently at pH 2. A large fraction of ²²⁵Ac (72.8 \pm 11.4%, n = 2) was lost from the column upon washing at pH 2, while the loss of ²⁴³Am at the same pH was only 0.7 \pm 0.2% (n = 2). These results show that pH is an important parameter defining the coordination of ²²⁵Ac and ²⁴³Am by dipicolinic ligands. Therefore, to ensure quantitative extraction of ²²⁵Ac in the presence of ²⁴³Am with Y-imprinted resin, the pH of the feed solution must be maintained at 3 \pm 0.1. We did not investigate the effect of higher pH, however it is reasonable to assume that at higher pH such processes as hydrolysis and precipitation of ²²⁵Ac and ²⁴³Am would complicate the extraction even further. Therefore, all further samples in our experiments with ²²⁵Ac and ²⁴³Am were adjusted to pH between pH 3 and 3.1 prior to solid-phase extraction.

Experiments on larger columns with 2 g of Y-imprinted resin providing 5 mL bed volume at pH 3 showed reproducible and equivalent extraction of ²²⁵Ac and ²⁴³Am with good recovery yields in the range 60–70% (Table 2). Overall recovery for ²²⁵Ac was 68.4 \pm 15.5% (n = 6) and 72.7 \pm 15.2% (n = 6) for ²⁴³Am. Discrepancies observed between different experimental replicates were attributed to uncertainties of B-type, for instance the stacking of the column or the presence of very fine particles of resin in the elution solution, which might prevent quantitative electrodeposition. Nevertheless, these experiments enabled us to consider Y-imprinted resin suitable for further studies with real urine samples.

3.3. Urine sample treatment

Pre-concentration of trace actinides for analytical purposes is often carried out by co-precipitation with alkaline earth phosphates or oxalates [30]. Co-precipitation with calcium phosphates takes advantage of calcium and phosphate present naturally in the analysed urine matrix. However, in our lab, addition of 50-100 mg of Ca²⁺ per sample to ensure thorough and quantitative transfer of precipitate is common practice. Precipitation of calcium phosphates occurs in neutral and basic medium at pH 7-8. In these conditions, actinides are trapped within the matrix of calcium phosphates precipitate. However, the solubility of calcium phosphate is significantly lower ($K_{sp} = 10^{-33}$) than the solubility of calcium oxalate ($K_{sp} = 10^{-8}$). This may become an issue during the later step of solid phase extraction on Y-imprinted columns carried out at pH 3. The pre-concentration of ²²⁵Ac and ²⁴³Am in urine with calcium phosphate yielded varied and irreproducible results in our experiments and was abandoned in favour of oxalate precipitation. Calcium oxalate precipitates already at pH 1 to 2, co-precipitating quantitatively ²²⁵Ac and ²⁴³Am [31]. Other common metal ions, namely Fe³⁺, which occur naturally in urine matrix, do not precipitate with oxalates in these conditions. Fe^{3+} is also extracted by Y-imprinted resin and it is essential to avoid Fe³⁺ interference for quantitative extraction of ²²⁵Ac and ²⁴³Am [20]. Furthermore, microwave-assisted digestion ashed quantitatively the oxalate precipitate to CO₂, resulting in clear acidic solutions containing Ca²⁺ and the actinides, which after dilution and adjustment of pH are ready for the SPE.

Urine is a convenient biological specimen widely used for monitoring the incorporation of radionuclides owing to the ease of sampling and laboratory processing. However, urinary excretion rate of 225 Ac is rather low – in the range of 10^{-3} - 10^{-4} for a 24 h sample, in function of the incorporation mode and chemical form of 225 Ac. In addition, urine samples require a complex work-up and pre-concentration prior to radioanalytical measurements [32]. Organic nitrogen in the form of urea and creatinine is the main concern for sample preparation, as the urea is known to complex some trace metals [33,34]. Acid digestion of urine prior to pre-

Fig. 1. (A and B). Extraction of ²²⁵Ac and ²⁴³Am with Y-imprinted (A) and inert (B) resin. ²²⁹Th(225 Ac) at pH 3 loaded on a column of Y-imprinted resin (n = 1) and on a column of inert resin (n = 4) and washed with H₂O(H⁺) at pH 3. Uncertainty for each measurement was calculated by a quadratic summation of relative uncertainties on sample weight, tracer activity, and number of counts determined with alpha spectrometry.

Fig. 2. Elution profile of ²²⁵**Ac and** ²⁴³**Am on Y-imprinted resin.** ²²⁹Th(²²⁵Ac) at pH 3 loaded on a column of Y-imprinted resin (n = 2), and washed consecutively with $H_2O(H^+)$ at pH 3 and at pH 2. Uncertainty was calculated for each measurement by a quadratic summation of relative uncertainties on sample weight, tracer activity, and number of counts determined with alpha spectrometry.

Table 2

Radiochemical yield of ²⁴³Am and ²²⁵Ac extracted with Y-imprinted resin. Uncertainty for each measurement was calculated by a quadratic summation of relative uncertainties on sample weight, tracer activity, and number of counts determined with alpha spectrometry. SD is one standard deviation.

Recovery, %	Ι	II	III	$Mean \pm SD (n = 3)$
²⁴³ Am	47.9 ± 4.8	66.2 ± 4.3	99.5 ± 3.8	71.2 ± 26.2
²²⁵ Ac	40.8 ± 4.8	58.2 ± 4.3	87.2 ± 3.8	62.1 ± 23.4
²⁴³ Am	76.6 ± 3.8	73.4 ± 3.8	72.7 ± 3.8	74.2 ± 6.8
²²⁵ Ac	80.7 ± 3.1	76.2 ± 3.2	67.3 ± 3.2	74.2 ± 2.1

concentration of actinides is usually sufficient to break down the bulk of organic components. In addition to the acid digestion of Table 3Radiochemical yield of ²⁴³Am and ²²⁵Ac extracted from urine with Y-imprintedresin. Uncertainty was calculated for each measurement by a quadratic summationof relative uncertainties on sample weight, tracer activity, and number of countsdetermined with alpha spectrometry. SD is one standard deviation.

Recovery, %	I	II	III	$Mean \pm SD \ (n=3)$
²⁴³ Am ²²⁵ Ac	$\begin{array}{c} 44.5 \pm 1.7 \\ 53.0 \pm 2.0 \end{array}$	67.5 ± 2.3 68.6 ± 2.4	70.6 ± 2.4 66.6 ± 2.3	$\begin{array}{c} 60.9 \pm 14.3 \\ 62.7 \pm 8.5 \end{array}$
²⁴³ Am	7.2 ± 0.6	45.91 ± 1.92	55.69 ± 2.16	36.3 ± 25.6
²²⁵ Ac	7.2 ± 0.6	43.04 ± 1.81	53.39 ± 2.08	34.5 ± 24.3
²⁴³ Am	60.4 ± 2.4	62.9 ± 2.5	29.5 ± 1.3	50.9 ± 18.6
²²⁵ Ac	53.8 ± 2.2	58.1 ± 2.3	26.7 ± 1.2	46.2 ± 17.0
²⁴³ Am	44.8 ± 2.2	47.2 ± 2.4	78.1 ± 3.4	56.7 ± 18.6
²²⁵ Ac	39.9 ± 2.0	38.7 ± 1.9	57.7 ± 2.5	45.4 ± 10.6
²⁴³ Am	75.5 ± 2.6	83.5 ± 2.8	84.2 ± 2.8	81.1 ± 4.9
²²⁵ Ac	71.5 ± 2.5	73.0 ± 2.5	73.7 ± 2.5	72.7 ± 1.1
²⁴³ Am	80.8 ± 3.2	91.28 ± 3.50	45.36 ± 2.16	72.5 ± 24.1
²²⁵ Ac	78.4 ± 3.1	86.02 ± 3.34	38.63 ± 1.85	67.7 ± 25.5

urine, in this work we used microwave-assisted digestion of precipitate in concentrated HNO₃ in the presence of H₂O₂ which enabled further advanced decomposition of any remaining organic molecules [35]. Microwave-assisted digestion provided clear acidic solutions, which were ready for solid-phase extraction of ²²⁵Ac and ²⁴³Am after dilution and adjustment of pH.

The Fenton reaction enabled apparent rapid oxidation of the organic matter present in urine. After 2 h of reaction time, the urine samples appeared completely clear and colourless. However, the presence of Fe^{3+} is undesired because Y-imprinted resin also effectively binds Fe^{3+} . Addition of 100–150 mg of ascorbic acid per sample prior to SPE to reduce Fe^{3+} to Fe^{2+} was likely not sufficient to eliminate this interference because the experiments yielded scattered and irreproducible recoveries for both ²²⁵Ac and ²⁴³Am. Therefore, the Fenton reaction was deemed not suitable for the sample preparation for the SPE with Y-imprinted resin.

3.4. Solid-phase extraction of ²²⁵Ac and ²⁴³Am from urine

To enable quantitative determination of ²²⁵Ac in urine of people potentially contaminated or continuously exposed to this

Fig. 3. (A and B). Alpha spectrum of ²²⁵Ac and ²⁴³Am extracted from urine with Y-imprinted resin. Spectrum A obtained by counting the sample shortly after radiochemical separation, spectrum B obtained by repeated counting of the same sample after 100 days to allow for ²²⁵Ac decay.

radionuclide, a certified metrological tracer is required to monitor the chemical recovery of the analyte [36]. All isotopes of Ac are radioactive and short-lived, with exception of ²²⁷Ac that has a halflife of 21.8 years. To the best of our knowledge, there is no certified Ac tracer available for radioanalytical separation of ²²⁵Ac. In this study we proposed to use ²⁴³Am, an actinide with reasonably similar chemical properties, as a proxy yield tracer for the determination of ²²⁵Ac. The results in Table 3 showed that the extraction of ²²⁵Ac and ²⁴³Am from urine using Y-imprinted resin was reproducible with a satisfactory overall yield above 60%. Recoveries of ²²⁵Ac and ²⁴³Am were equivalent within the uncertainty of the measurement, demonstrating that ²⁴³Am can be used as a yield tracer for the determination of ²²⁵Ac using Y-imprinted resin. One may notice the variation of radiochemical yield between different experimental replicates, *e.g.* 7.2 \pm 0.6% for ²²⁵Ac and 7.2 \pm 0.6% for ²⁴³Am in one experiment against 78.4 \pm 3.1 for ²²⁵Ac and 80.8 \pm 3.2 for ²⁴³Am in a different experiment. This variability was attributed to the uncertainty of type B related to the manipulation of the sample and to the inability to control some steps, such as the electrodeposition of the final sample highly sensitive to adventitious contaminations with common metals (*e.g.* Fe^{3+}).

A representative alpha spectrum of a urine sample shown in Fig. 3 (A and B) substantiates our assumption that ²²⁵Ac was extracted with Y-imprinted resin in the presence of ²⁴³Am. Fig. 3, A shows ²⁴³Am tracer peak, and ²²⁵Ac peak in equilibrium with its decay products – ²²¹Fr and ²¹⁷At – measured shortly after radio-chemical separation. After the electrodeposited ²²⁵Ac was allowed to decay for 10 half-lives (Fig. 3, B), only ²⁴³Am tracer peak remained unchanged owing to its long half-life. Small residual peaks of ²²⁵Ac and its decay products ²²¹Fr and ²¹⁷At were attributed to the equilibrium with residual ²²⁹Th, which was used in our experiments as an *in-situ* generator of ²²⁵Ac. Small fraction of approximately 5% of ²²⁹Th impurity systematically broke through the Y-imprinted resin in our experiments.

4. Conclusion

In this study, we developed a new method for radiochemical separation of ²²⁵Ac in urine for incorporation measurements and internal dosimetry using ²⁴³Am as a metrological tracer. This was made possible by employing Y-imprinted polymer resin that earlier has demonstrated good outcomes with ⁹⁰Y, Am³⁺ and the lanthanides. The advantage of radiochemical separation of ²²⁵Ac in urine with ²⁴³Am tracer consists in very low (mBq) concentrations of ²²⁵Ac that can be measured in urine with alpha spectrometry. To the best of our knowledge, this is the first method enabling incorporation measurements of ²²⁵Ac in urine samples. Such

incorporation measurements will allow to comply with the Swiss legal requirements in terms of internal dose monitoring and ensure that the committed effective dose E_{50} limit of 1 mSv is respected for workers that handle ²²⁵Ac. The capability of Y-imprinted resin to effectively extract ²²⁵Ac and ²⁴³Am as demonstrated in our experiments can be applied to the study of other isotopes of actinium, *e.g.* ²²⁷Ac which is used as an environmental tracer in ocean research.

CRediT authorship contribution statement

Ruslan Cusnir: Conceptualization, Methodology, experimental, Writing – original draft. **Pascal Froidevaux:** Methodology, Writing – review & editing. **Pierre Carbonez:** problem statement, Funding acquisition, Writing – review & editing. **Marietta Straub:** Funding acquisition, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to express their profound gratitude to Dr Siria Medici of the CERN and to Dr Andreas Pitzschke of the IRA for fruitful discussions on radiation protection and internal dosimetry of radionuclides.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.aca.2021.339421.

References

- A. Morgenstern, F. Bruchertseifer, Development of targeted alpha therapy from bench to bedside, J. Med. Imag. Radiat. Sci. 50 (2019) S18–S20.
- [2] C. Kratochwil, U. Haberkorn, F.L. Giesel, Ac-225-PSMA-617 for therapy of trostate tancer, Semin. Nucl. Med. 50 (2020) 133–140.
- [3] M. Pretze, F. Kunkel, R. Runge, R. Freudenberg, A. Braune, H. Hartmann, U. Schwarz, C. Brogsitter, J. Kotzerke, Ac-EAZY! towards GMP-compliant module syntheses of Ac-225-labeled leptides for clinical application, Pharmaceuticals 14 (2021).
- [4] S. Ahenkorah, I. Cassells, C.M. Deroose, T. Cardinaels, A.R. Burgoyne, G. Bormans, M. Ooms, F. Cleeren, Bismuth-213 for targeted tadionuclide therapy: trom atom to bedside, Pharmaceutics 13 (2021).
- [5] K. Eckerman, J. Harrison, H.-G. Menzel, C.H. Clement, ICRP Publication 119, Compendium of dose coefficients based on ICRP Publication 60, Ann. ICRP 41 (2012) 53.

R. Cusnir, P. Froidevaux, P. Carbonez et al.

- [6] F. Paquet, M.R. Bailey, R.W. Leggett, G. Etherington, E. Blanchardon, T. Smith, G. Ratia, D. Melo, T.P. Fell, V. Berkovski, J.D. Harrison, ICRP Publication 141. Occupational intakes of radionuclides: Part 4, Ann. ICRP 48 (2019) 1–514.
- [7] Radiological Protection Ordinance, The Swiss, Federal Council, 2017, 814.501.[8] Ordonnance sur la dosimetrie, Le Departement federal de l'interieur (2017)
- 814.501.43.
 [9] M. Park, M.S. Kim, J. Yoo, M.S. Jo, Validation of the whole-body counting measurement in a radiation emergency, Appl. Radiat. Isot. 168 (2021) 7.
- [10] P. Thakur, A.L. Ward, An overview of analytical methods for in vitro bioassay of actinides, Health Phys. 116 (2019) 694–714.
- [11] X.X. Dai, S. Kramer-Tremblay, An emergency bioassay method for actinides in urine, Health Phys. 101 (2011) 144–147.
- [12] D. Newton, A case of accidental inhalation of actinium-227, Health Phys. 12 (1966) 1129–1138.
- [13] D. Newton, A cade of accidental inhalation of protactinium-231 and actinium-227, Health Phys. 15 (1968) 11–17.
- [14] C.J. da Silva, J.S. Loureiro, J.U. Delgado, R. Poledna, D.S. Moreira, A. Iwahara, L. Tauhata, R.L. da Silva, R.T. Lopes, Standardization of Ho-166m and Am-243/ Np-239 by live-timed anti-coincidence counting with extending dead time, Appl. Radiat. Isot. 70 (2012) 2056–2059.
- [15] S.A. Ansari, P.K. Mohapatra, A review on solid phase extraction of actinides and lanthanides with amide based extractants, J. Chromatogr. A 1499 (2017) 1–20.
- [16] M.Y. Luo, S. Xing, Y.G. Yang, L.J. Song, Y. Ma, Y.D. Wang, X.X. Dai, S. Happel, Sequential analyses of actinides in large-size soil and sediment samples with total sample dissolution, J. Environ. Radioact. 187 (2018) 73–80.
- [17] A. Habibi, R. Le Corre, C.W. Aubert, S. Fleury, P. Hennequet, C. Augeray, K. Galliez, M. Agarande, Quantification of curium isotopes in environmental samples: drawbacks, speciation and specific tracer, J. Radioanal. Nucl. Chem. 329 (2021) 545–554.
- [18] G. Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies, Angew Chem. Int. Ed. Engl. 34 (1995) 1812–1832.
- [19] C. Branger, W. Meouche, A. Margaillan, Recent advances on ion-imprinted polymers, React. Funct. Polym. 73 (2013) 859–875.
- [20] A.S. Chauvin, J.C.G. Bunzli, F. Bochud, R. Scopelliti, P. Froidevaux, Use of dipicolinate-based complexes for producing ion-imprinted polystyrene resins for the extraction of yttrium-90 and heavy lanthanide cations, Chem. A Eur. J. 12 (2006) 6852–6864.
- [21] P. Froidevaux, S. Happel, A.S. Chauvin, Ion-imprinted polymer concept for selective extraction of Y-90 and Eu-152 for medical applications and nuclear power plant monitoring, Chimia 60 (2006) 203–206.
- [22] P. Froidevaux, P.A. Pittet, D. Buhlmann, F. Bochud, M. Straub, Ion-imprinted resin for use in an automated solid phase extraction system for determining

Analytica Chimica Acta 1194 (2022) 339421

Sr-90 in environmental and human samples, J. Radioanal. Nucl. Chem. 330 (2021) 797–804.

- [23] J.D. Chaplin, P.E. Warwick, A.B. Cundy, F. Bochud, P. Froidevaux, Novel DGT configurations for the assessment of bioavailable plutonium, americium, and uranium in marine and freshwater environments, Anal. Chem. 93 (2021) 11937–11945.
- [24] S. Bajo, J. Eikenberg, Electrodeposition of actinides for alpha-spectrometry, J. Radioanal. Nucl. Chem. 242 (1999) 745–751.
- [25] P.D. Schumacher, J.L. Doyle, J.O. Schenk, S.B. Clark, Electroanalytical chemistry of lanthanides and actinides, Rev. Anal. Chem. 32 (2013) 159–171.
- [26] A. Kovacs, Theoretical study of actinide complexes with Macropa, ACS Omega 5 (2020) 26431–26440.
- [27] L. Li, J. Rousseau, M.D. Jaraquemada-Pelaez, X.Z. Wang, A. Robertson, V. Radchenko, P. Schaffer, K.S. Lin, F. Benard, C. Orvig, Ac-225-H(4)py4pa for targeted alpha therapy, Bioconjugate Chem. 32 (2021) 1348–1363.
- [28] P. Comba, U. Jermilova, C. Orvig, B.O. Patrick, C.F. Ramogida, K. Ruck, C. Schneider, M. Starke, Octadentate picolinic acid-based bispidine ligand for radiometal ions, Chem. A Eur. J. 23 (2017) 15945–15956.
- [29] B. Raditzky, S. Sachs, K. Schmeide, A. Barkleit, G. Geipel, G. Bernhard, Spectroscopic study of americium(III) complexes with nitrogen containing organic model ligands, Polyhedron 65 (2013) 244–251.
 [30] N. Vajda, R. Pollanen, P. Martin, C.K. Kim, Alpha spectrometry, in:
- [30] N. Vajda, R. Pollanen, P. Martin, C.K. Kim, Alpha spectrometry, in: M.F. Lannunziata (Ed.), Handbook of Radioactivity Analysis: Vol 1: Radiation Physics and Detectors, fourth ed., Academic Press Ltd-Elsevier Science Ltd, London, 2020, pp. 493–573.
- [31] M.L. Salutsky, H.W. Kirby, Precipitation of actinium oxalate from homogeneous solution, Anal. Chem. 28 (1956) 1780–1782.
- [32] F. Paquet, M.R. Bailey, R.W. Leggett, J. Lipsztein, J. Marsh, T.P. Fell, T. Smith, D. Nosske, K.F. Eckerman, V. Berkovski, E. Blanchardon, D. Gregoratto, J.D. Harrison, ICRP Publication 137. Occupational intakes of radionuclides: Part 3, Ann. ICRP 46 (2017) 1–486.
- [33] C. Rose, A. Parker, B. Jefferson, E. Cartmell, The characterization of feces and urine: a review of the literature to inform advanced treatment technology, Crit. Rev. Environ. Sci. Technol. 45 (2015) 1827–1879.
- [34] T. Theophanides, P.D. Harvey, Structural and spectroscopic properties of metal-urea complexes, Coord. Chem. Rev. 76 (1987) 237–264.
- [35] F. Luisier, J.A.C. Alvarado, P. Steinmann, M. Krachler, P. Froidevaux, A new method for the determination of plutonium and americium using high pressure microwave digestion and alpha-spectrometry or ICP-SMS, J. Radioanal. Nucl. Chem. (2009) 281.
- [36] S.K. Aggarwal, Alpha-particle spectrometry for the determination of alpha emitting isotopes in nuclear, environmental and biological samples: past, present and future, Anal. Methods 8 (2016) 5353–5371.