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Abstract  

Systemic pseudohypoaldosteronism type-1 (PHA-1) is a severe salt-losing syndrome 

caused by loss-of-function mutations of ENaC characterized by neonatal life-threatening 

hypovolemia and hyperkalemia. Plasma aldosterone reaches very high plasma levels 

under hypovolemic and hyperkalemic challenge, that could respectively lead to either 

increased or decreased sodium reabsorption via the Na+/Cl- co-transporter NCC. We 

generated adult inducible nephron-specific αENaC knockout mice (Scnn1aPax8/LC1) that 

exhibit hyperkalemia and body weight loss when kept under regular salt diet mimicking 

PHA-1. Despite high plasma aldosterone levels, NCC protein expression and 

phosphorylation are downregulated, indicating that NCC is aldosterone-insensitive under 

hyperkalemia. However, although plasma aldosterone level remains significantly 

increased, NCC expression is restored to control levels following high sodium and 

reduced potassium diet (rescue diet), and body weight, plasma and urinary electrolyte 

concentrations and excretion are mostly normalized. Finally, shift to regular diet after 

rescue diet reinstates severe PHA-1 syndrome accompanied by significantly reduced 

NCC phosphorylation. In conclusion, lack of ENaC-mediated sodium transport along the 

nephron cannot be compensated by other sodium channels and/or transporters, but solely 

by high sodium and reduced potassium diet. We conclude that hyperkalemia becomes 

the determining factor to downregulate NCC activity regardless of sodium loss in the 

ENaC-mediated salt-losing PHA-1 phenotype.  
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Introduction 

In case of decrease in volume of blood plasma, the mineralocorticoid hormone 

aldosterone mediates at least in part Na+ retention by activating the Renin-Angiotensin-

Aldosterone System (RAAS) and thus salt transport in the distal nephron. In this condition 

K+ secretion remains unchanged. Aldosterone is also released if plasma K+ is increased, 

allowing K+ secretion in the distal nephron without affecting Na+ reabsorption. This 

mechanism is commonly referred as the “aldosterone paradox” but how aldosterone 

exerts these apparently opposite effects is not yet completely understood 1. Na+ 

reabsorption in the distal nephron occurs through two different means: the electroneutral 

thiazide-sensitive Na+/Cl- co-transporter (NCC) expressed mainly in the DCT1 with lower 

expression in the DCT2, and the amiloride-sensitive epithelial Na+ channel (ENaC) 

expressed in the aldosterone sensitive distal nephron (ASDN) namely the DCT2, CNT 

and CD. Na+ and K+ are the most important cations for the transmembrane potential 

across the plasma membrane, and electrogenic Na+ reabsorption through ENaC 

increases the driving force for K+ transport and thus K+ excretion. ENaC consists of three 

different subunits α, β and γ organized in a heteromultimeric complex. The role of ENaC 

in humans was demonstrated by mutations in the channel causing Mendelian forms of 

hypertension and hypotension, namely Liddle´s syndrome and pseudohypoaldosteronism 

type 1 (PHA-1), respectively 2, 3. PHA-1 is a salt-losing syndrome accompanied by 

hyperkalemia and metabolic acidosis. Systemic PHA-1 is an autosomal recessive form 

characterized by a severe neonatal salt-losing syndrome accompanied by (often lethal) 

hyperkalemia and metabolic acidosis. The majority of the pathogenic mutations map to 

αENaC predicting near-complete truncations of the protein.  
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To define the physiological role of ENaC in vivo, a mouse model with constitutive 

inactivation of the α subunit of ENaC has been generated which leads to death soon after 

birth. αENaC knockout mice display lung fluid clearance failure, hyperkalemia and sodium 

loss 4. The constitutive lack of β and γENaC subunits in mice leads to a milder pulmonary 

phenotype, but the kidney phenotype characterized by hyperkalemia and metabolic 

acidosis is predominant, and accompanied by elevated plasma aldosterone levels. The β 

and γENaC knockouts also die within 48h hours after birth 5, 6. α, β and γ ENaC knockouts 

thus present with renal phenotypes similar to that of humans with PHA type 1, but did not 

allow analysing the consequence of ENaC deletion specifically in the kidney and/or during 

adulthood 4-6. To further dissect the role of ENaC along the nephron, we previously 

reported that mice with αENaC inactivated in the CD are able to maintain sodium and 

potassium balance 7. This suggested that the late DCT and/or the CNT are rather involved. 

More recently, we studied the phenotype of renal CNT/CD-specific αENaC knockout mice. 

Only under low salt diet these mice develop a mild PHA-1 with higher urinary sodium 

excretion accompanied by a higher urinary volume and a lower osmolarity. Under sodium-

deficient diet, a significant lower body weight, a higher urinary sodium excretion and 

hyperkalemia were observed 8. These data thus demonstrate that αENaC deletion in the 

CNT is sufficient to induce clinical symptoms of PHA-1 suggesting that the CNT plays a 

critical role in achieving sodium and potassium balance. The model, however, does not 

recapitulate the severe often lethal phenotype observed in newborns suffering from PHA-

1 with deletion or truncation mutations in the αENaC gene locus 9, 10. 

The aim of the present work was to develop an inducible renal tubule-specific αENaC 

knockout in adulthood to determine whether ENaC-deficiency along the nephron mimics 
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the severe PHA-1 phenotype. Our data clearly demonstrate that (i) αENaC expression is 

indispensable in adult kidney for sodium and potassium regulation, and the mice develop 

a severe pseudohypoaldosteronism that mimics the human PHA-1, (ii) the knockout mice 

can be rescued with high sodium and reduced potassium diet allowing restoration of 

normal sodium and potassium excretion, (iii) a down-regulation of NCC expression and 

phosphorylation occurs when knockout animals are subjected to a normal salt diet. The 

increased sodium delivery to the CNT/CCD may be an attempt to prevent death caused 

by hyperkalaemia. 
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Results 

Generation of inducible nephron-specific Scnn1aPax;LC1 knockout mice  

To induce the deletion of the αENaC (Scnn1a) gene locus in adulthood, we treated 1-

month-old Scnn1aPax8/LC1 triple transgenic animals (carrying the Scnn1alox/lox, Pax8-rtTA 

and LC1 transgenes, respectively) and their control littermates (Scnn1alox/lox;Pax8-rtTA 

and Scnn1alox/lox;LC1, namely Scnn1aPax8 and Scnn1aLC1) with doxycycline. We assessed 

the presence of the deleted Scnn1a allele (Δ) by PCR on genomic DNA extracted from 

kidney, lung, and liver, and identified the Scnn1a Δ allele in kidney and in liver of 

Scnn1aPax8/LC1 mice but not in lung or in Scnn1aPax8, Scnn1aLC1 and Scnn1alox/lox controls 

(Supplementary Fig.1A). Analysis of Scnn1a mRNA transcript expression in kidney by 

real-time PCR demonstrated a significant reduction to 20% of controls in the 

Scnn1aPax8/LC1 knockout mice, whereas the expression of βENaC (Scnn1b) and γENaC 

(Scnn1g) was not affected (Fig.4A). Immunofluorescence on kidneys from animals under 

standard salt diet revealed efficient recombination of the Scnn1a gene locus. In overviews 

on the renal cortex, control mice showed numerous αENaC-positive renal tubules, while 

Scnn1aPax8/LC1 knockout mice revealed only a few remaining αENaC-positive renal 

tubules. In contrast, γENaC was similarly detectable in control and Scnn1aPax8/LC1 

knockout mice (Supplementary Fig.1B). High magnifications revealed that αENaC was 

efficiently deleted in all distal tubule cells that express the Cre protein. Only a few single 

cells in the ASDN did not express Cre and continued to express αENaC (Supplementary 

Fig.1C). Although the recombination of the Scnn1a allele (Δ) occurs also in liver 

(Supplementary Fig.1A), αENaC mRNA and protein expression levels in this organ did 
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not differ between control and Scnn1aPax8/LC1 knockout mice (Supplementary Fig.2A and 

B). 

αENaC expression is crucial to maintain sodium and potassium homeostasis in 

adulthood 

One-month-old Scnn1aPax8/LC1 knockout and control animals were fed with a regular salt 

diet and placed in metabolic cages for four consecutive days to determine their urinary 

and plasma Na+ and K+ concentrations (Supplementary Fig. 3A). Following doxycycline 

treatment control animals kept gaining weight in their growing phase, whereas 

Scnn1aPax8/LC1 knockout mice rapidly lost body weight and manifested severe sickness 

(Fig. 1A and Supplementary Fig. 4). All knockout animals analysed lost more than 10% 

of their initial body weight and were thus sacrificed. Moreover, Scnn1aPax8/LC1 knockout 

mice presented with signs of hyponatremia, and developed a severe hyperkalemia (Fig. 

1B). Creatinine levels did not vary in urine, but were significantly increased in plasma of 

Scnn1aPax8/LC1 knockout mice (Supplementary Fig. 5A and B). Creatinine clearance was 

not significantly different among the two groups, despite an almost 50% reduction in 

knockouts (Supplementary Fig. 5C). During this period, we observed no difference in 

water intake or urine output compared to water intake with the exception of a decrease in 

food intake and in amount of feces at the fourth day following doxycycline induction in 

knockout mice (Supplementary Fig. 6A-D). This was accompanied by significantly 

increased cumulative 24h-urinary sodium and a decreased 24h-urinary potassium 

excretion (Fig. 1C and D). Finally, a significant increase in plasma aldosterone levels 

(controls: 3±1 nM, n=8 versus knockouts: 32±5 nM, n=7; P≤0.001) was detected in the 
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kidney-specific knockout mice mimicking a severe pseudohypoaldosteronism type 1 

phenotype. 

High Na+ and reduced K+ diet restores body weight gain and electrolyte balance in 

Scnn1aPax8/LC1 knockout mice  

The animals were induced by doxycycline during three days under a standard salt diet. At 

the third day of the doxycycline treatment, the diet was changed to high Na+ and reduced 

K+ during two months to compensate for Na+ loss and reduced K+ excretion, and animals 

were analysed during the last three days of high Na+ and reduced K+ treatment 

(Supplementary Fig. 3B). Nephron-specific Scnn1aPax8/LC1 knockout mice displayed 

body weight gain as control animals, and presented with normal natremia and kalemia, 

although plasma K+ of knockouts remained significantly higher than that of controls (Fig. 

2A and B and Supplementary Fig. 4). The cumulative urinary sodium and potassium 

balance in Scnn1aPax8/LC1 knockout mice was re-established in comparison with the 

controls (Fig. 2C and D), and food and water intake, feces amount, urine volume 

compared to water intake became indistinguishable between the two groups 

(Supplementary Fig. 7A-D). These data indicate that the salt-losing phenotype of 

Scnn1aPax8/LC1 knockout mice can be restored by compensating sodium and potassium 

intake, and nearly 80% of the initial Scnn1aPax8/LC1 knockout mice survived (28 out of 36). 

Interestingly, plasma aldosterone levels were 45-fold higher compared to controls 

(0.2±0.03 nM, n=14 in controls and 10±2 nM, n=13 in knockouts, P<0.001).  

The return to a standard diet reinstates a severe type 1 PHA characterized by 

metabolic acidosis 
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When we returned to the standard diet following two months of high Na+ and reduced K+ 

treatment (Supplementary Fig. 3C), Scnn1aPax8/LC1 knockout mice rapidly lost body 

weight (Fig. 3A and Supplementary Fig. 4), and presented with significantly lower 

plasma sodium, but normalized cumulative sodium excretion (Fig. 3B and C) most likely 

because of reduced food intake and thus reduced Na+ input (Supplementary Fig. 8A and 

D) and hyperkalemia accompanied by reduced cumulative potassium excretion (Fig. 3B 

and D). With exception of water intake and urine volume to water intake ratio 

(Supplementary Fig. 8B and C), Scnn1aPax8/LC1 knockout animals significantly reduced 

food intake with consequences on feces output (Supplementary Fig. 8A and D). 

Aldosterone levels stayed significantly increased in knockouts (6±2 nM, n=8 in controls 

and 53±8 nM, n=6 in knockouts, P<0.01). While plasma Ca2+ and Cl- levels were 

comparable between the two groups, blood pH was significantly reduced in knockout mice 

(Table 1). To get insights into acidosis, we analysed pCO2, cBase(Ecf) and cHCO3- in 

blood. While pCO2 did not change, we found a significant decrease in the levels of 

cBase(Ecf) and cHCO3- in Scnn1aPax8/LC1 knockout mice, revealing the inability of these 

animals to excrete acid via the kidney (Table 1). 

Downregulation of NCC phosphorylation despite severe salt-losing syndrome 

To analyse whether the expression of β and γENaC subunits changes when αENaC is 

absent, we analysed β and γ mRNA and protein levels under standard diet, under rescue 

diet (high sodium and reduced potassium) and back to standard diet after rescue diet 

(Supplementary Fig. 3A-C). β and γENaC mRNA expression was not modified in all 

three diets (Fig. 4A-C). At the protein level, we observed that γENaC expression did not 

change, but βENaC levels were increased under standard salt diets (Fig. 4D-F) 
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suggesting an attempt to compensate for αENaC absence. The sodium-chloride co-

transporter, also known as thiazide-sensitive sodium-chloride co-transporter NCC 

reabsorbs sodium and chloride ions from the tubular fluids in distal convoluted tubules of 

the nephron, and plays a major role in Na+ balance 11. To verify whether absence of 

αENaC in adult kidney might have any effect on NCC regulation, we analysed NCC mRNA 

transcript and protein expression following induction of αENaC-deficiency under the three 

different diet phases. Total mRNA and protein NCC levels were decreased under standard 

salt diet before the rescue phase, and surprisingly did not vary when back to standard diet 

after the high Na+ and reduced K+ treatment (Fig. 4A-C, and Fig. 5A-C). Despite the 

establishment of a severe PHA-1 phenotype under the standard diets, Scnn1aPax8/LC1 

knockout mice presented with a significantly decreased NCC T53 and T58 

phosphorylation (Fig. 5A-C). In contrast, high Na+ and reduced K+ restored the 

phosphorylated state of NCC to control levels (Fig. 5B). Altogether these data indicate 

that the absence of αENaC in the nephron leads to decreased NCC activity, and that a 

diet rich in Na+ and reduced in K+ is sufficient to restore electrolyte balance and NCC 

phosphorylation. 
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Discussion 

Deletion of αENaC/Scnn1a along the nephron leads to a severe PHA-1 phenotype 

Scnn1aPax8/LC1 knockout mice develop a severe pseudohypoaldosteronism syndrome with 

rapid weight loss, disturbance of plasma Na+/K+ concentrations, significantly increased 

urinary Na+ loss and decreased K+ excretion presenting all clinical features of the human 

PHA-1. The adult phenotype mimics as well that of the newborns with constitutive deletion 

of the αENaC (Scnn1a), βENaC (Scnn1b) and γENaC (Scnn1g) subunits 4-6 (Fig. 1) and 

confirms the critical role of ENaC function within the ASDN. Although we could not asses 

it directly because the animals are too small and sick to be measured, the Scnn1aPax8/LC1 

knockouts are most likely in a severe hypovolemic state that, together with reduced food 

intake, could explain body weight loss. The phenotype observed in Scnn1aPax8/LC1 

knockout mice is more severe than the one with CNT/CD-specific ENaC inactivation 8 and 

closely reproduces the pharmacological inactivation of ENaC by acute administration of 

amiloride in one-week salt-depleted rats 12. Pax8 expression has been described in liver, 

and we observed partial DNA recombination at the Scnn1a gene locus also in this organ 

(Supplementary Fig. 1A). However, αENaC mRNA and protein levels in liver did not 

change between control and knockout animals (Supplementary Fig. 2A and B) and no 

relevant ENaC function has been described so far in liver that is linked to sodium and 

potassium homeostasis. Whole heterozygous mutant αENaC knockout mice maintain 

blood pressure and sodium balance even upon different sodium diets 13. Moreover, no 

DNA recombination at the αENaC (Scnn1a) gene locus was observed in lung 

(Supplementary Fig. 1A) where ENaC function in alveolar fluid clearance is well known 
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14. The results presented in this article clearly demonstrate that ENaC deficiency along 

the nephron cannot be compensated by other sodium-absorbing channels. 

Rescue of sodium and potassium homeostasis in Scnn1aPax8/LC1 mice by high 

sodium and reduced potassium diet  

The constitutive mineralocorticoid receptor knockout mice that show impaired ENaC 

activity resembling inborn PHA-1 when untreated, can be rescued by NaCl addition to the 

diet, however retaining sodium-losing defects 15. We thus asked whether Scnn1aPax8/LC1 

knockout mice could compensate sodium loss and hyperkalemia with a high Na+ and 

reduced K+ diet. Indeed, a diet rich in Na+ and reduced in K+ is sufficient to almost 

completely restore body weight and plasma and urinary electrolytes in Scnn1aPax8/LC1 

knockout mice (Fig. 2, Supplementary Fig. 4 and 7) and it would be interesting to explore 

whether high salt alone (with normal potassium) can correct the hyperkalaemia. The 

localization of the mineralocorticoid receptor in the ASDN, and in other renal cell types 16 

and/or a largely aldosterone-independent ENaC function in the DCT2/CNT 17 may 

contribute to the complexity of corticosteroid effects on ASDN function. A crosstalk 

between the angiotensin II membrane receptor and the mineralocorticoid receptor 

signalling pathways is well established, as demonstrated by Shibata et al. and Terker et 

al. 18, 19. Conditional inactivation of the mineralocorticoid receptor in the CD and late CNT 

is only compensated under standard diet, but no longer when sodium supply is limited 20. 

The phenotype is thus comparable to that of late CNT/CD-specific ENaC knockout where 

the same AQP2-Cre transgenic line was used 7. Again, the relatively mild phenotype in 

the CNT/CD ENaC knockout mice can be explained by a compensation of renal ENaC 

activity via the RAAS system in more proximal ENaC-containing nephron segments, like 
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the “early” CNT and “late” DCT. This may point to a crucial mineralocorticoid receptor 

function in more proximal nephron segments, like the DCT1, CTAL, OMTAL independent 

from regular ENaC activity. Interestingly, the return to the standard diet after two months 

of high Na+ and reduced K+ treatment reinstates a PHA type 1 phenotype. Despite sodium 

loss, sodium may be delivered to more distal nephron segments to favour potassium 

excretion (Fig. 3 and Supplementary Fig. 4 and 8). We have recently demonstrated that 

activation of the RAAS system in the kidney can compensate for the absence of αENaC 

in colon in a mouse model of αENaC deletion in intestinal superficial cells 21. Thus the 

intestine of the Scnn1aPax8/LC1 knockout mice may play a compensatory role with the 

attempt to prevent Na+ loss and K+ retention. When αENaC is deleted along the nephron, 

β and γENaC subunits cannot form fully functional channels 22. By contrast, when β or 

γENaC is deleted, the remaining αγ or αβ channels may induce sufficient activity to 

maintain sodium balance. Indeed Knepper and coworkers have shown in vivo that the 

protein abundance of the αENaC subunit was regulated by salt diet and aldosterone, while 

the γENaC was cleaved in response to aldosterone and dietary Na+ 23, 24. In this study we 

observed no difference in the cleaved γENaC subunit in both wild-type and knockout 

animals under the different diets.  

Aldosterone-independent regulation of NCC in Scnn1aPax8/LC1 mice 

Described as an “aldosterone paradox”, aldosterone can trigger differential regulation of 

Na+ and K+ transport between DCT1 and the ASDN 1. Following induction of ENaC 

deletion along the nephron, NCC is significantly less phosphorylated. This finding is 

unexpected, as the Scnn1aPax8/LC1 mice suffer from hyponatremia and hyperkalemia (Fig. 

1) accompanied by high plasma aldosterone levels. The hyperkalemia may trigger the 
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apparent contradictory aldosterone-induced NCC down-regulation. Indeed, a high-K+ diet 

decreases NCC 25, 26. The K+-loading-induced NCC down-regulation may occur rapidly in 

response to both an oral potassium intake and an intravenous potassium infusion 27, 28 is 

aldosterone-independent 29 and was shown to overrule hypovolemic NCC stimulation 30. 

The NCC downregulation may thus improve renal K+ excretion.  

This novel animal model points to the DCT2/CNT as crucial aldosterone-sensitive nephron 

segment. However, we do not exclude that the CD may still play an important role under 

challenging conditions, even if ENaC-deletion per se in this segment does not seem to be 

a prerequisite for sodium and potassium balance 7. Indeed, two recent studies unveil an 

ENaC regulation largely independent from aldosterone 17 and likely dependent on 

vasopressin 31 suggesting that sodium, but also potassium handling might be regulated in 

a cell-type and nephron segment-specific manner. In conclusion, Scnn1aPax8/LC1 knockout 

mice fully reproduce the PHA-1 phenotype, and hyperkalemia remains the predominant 

and life-threatening feature to be avoided even at the expense of increased sodium loss.  
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Concise methods 

Generation of inducible nephron-specific αENaC-deficient mice. 

To inactivate the Scnn1a gene in all proximal and distal tubules, and the entire collecting 

duct system of the kidney, we took advantage of Tet-On and Cre-loxP systems. Nephron-

specific αENaC-deficient mice (Scnn1alox/lox;Pax8-rtTAtg/0;TRE-LC1tg/0) and littermate 

controls (Scnn1alox/lox;Pax8-rtTAtg/0, Scnn1alox/lox;TRE-LC1tg/0, and Scnn1alox/lox) were 

obtained by interbreeding Scnn1alox/lox;Pax8-rtTAtg/0 with Scnn1alox/lox;TRE-LC1tg/0 mice. 

Genotyping of the mice was performed by PCR analysis of ear biopsies 32 at the age of 

weaning using the following primers: Pax8-rtTA ST1: 5’-CCATGTCTAGACTGGACAAGA-

3’, Pax8-rtTA ST2: 5’-CTCCAGGCCACATATGATTAG-3’; LC-1 Cre3: 5′-

TCGCTGCATTACCGGTCGATGC-3′; LC-1 Cre4: 5′-

CCATGAGTGAACGAACCTGGTCG-3′. Animals were housed in a temperature- and 

humidity-controlled room with an automatic 12-hour light/dark cycle and had free access 

to food and tap water. Experimental procedures and animal maintenance followed federal 

guidelines and were approved by local authorities, and adhered to the NIH Guide for the 

Care and Use of Laboratory Animals (http://grants.nih.gov/olaw/references/phsol.htm). 

Induction of nephron-specific αENaC-deficient mice. 

We generated inducible renal tubule-specific αENaC knockout mice using the αENaC 

floxed allele (Scnn1alox/lox 32), the Pax8-rtTAtg/0 transgenic mice expressing the reverse 

tetracycline transactivator under control of the Pax8 promoter that is driving the 

expression in all proximal and distal tubular cells along the nephron 33, and the TRE-

LC1tg/0 transgenic mice where the expression of the Cre recombinase and luciferase is 
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under the control of the tetracycline response element (TRE) 34. In the presence of 

doxycycline the reverse tetracycline transactivator binds and activates the tetracycline-

responsive element, thereby triggering Cre recombinase expression. To induce the 

deletion of the Scnn1a gene, 4-week-old Scnn1alox/lox;Pax8-rtTA;LC1 mice and control 

littermates were treated with 2 mg/mL doxycycline and  2% sucrose in the drinking water, 

following 2 days of 2% sucrose in the drinking water. The doxycycline hydrochloride 

(Sigma, Deisenhofen, Germany) was protected from light, and prepared fresh every two 

days. The recombination of the floxed Scnn1a alleles in kidney, lung and liver was 

investigated by DNA-based PCR analysis (using the primers described above) and at the 

mRNA level using TaqMan PCR (Applied Biosystems 7500).  

Quantitative RT-PCR 

Organs were homogenized using Tissue Lyzer (QIAGEN) and RNA was extracted with 

the guanidinium thiocyanate-phenol-chloroform extraction method (QIAzol lysis reagent, 

QIAGEN). 1.5 μg of RNA were reverse transcribed using the PrimeScript™ RT reagent 

Kit with gDNA Eraser (Takara). Quantitative RT-PCR was performed by TaqMan PCR 

using Applied Biosystems 7500. Each measurement was taken in duplicate. 

Quantification of fluorescence was normalized to β-actin. Primer sequences were 

published previously 35. 

Salt diets and metabolic cages 

The diets were given as solid food (pellet, standard cages) or as powder (metabolic 

cages). After 3 days of doxycycline treatment under standard salt diet (0.17% sodium and 

0.97% potassium given as powder, ssniff Spezialdiäten GmbH) mice were fed for 3 days 
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with a diet rich in sodium and low in potassium (3.5% sodium, potassium < 0.1% given as 

powder, ssniff Spezialdiäten GmbH), that was supplemented with 0.2% potassium in 

drinking water during the following 2 months. At the end of this period, mice were fed 

again with a normal salt diet for 3 days (0.17% sodium and 0.97% potassium given as 

powder, ssniff Spezialdiäten GmbH). For the metabolic cage studies, experimental mice 

and controls from the same litter were placed in individual metabolic cages (Tecniplast, 

Buguggiate, Italy) and fed with the different salt diets. The high concentration of plasma 

aldosterone in control animals on the standard salt diet may reflect the choice of a control 

diet relatively lower in Na+ and higher in K+ content than other standard rodent chows. 

During the experiments the animals had free access to food and water. Body weight, food 

and water intake, urine excretion and quantity of feces were monitored once-daily at the 

same time. At the end of the experiments, blood was collected, mice were sacrificed (by 

decapitation), and kidney, lung and liver were collected for molecular analyses.  

Urine and Serum/Plasma Analysis 

Urine and serum/plasma osmolarity as well as sodium, potassium, and bicarbonate 

concentrations were analysed by using a flame photometer (Cole-Parmer). Plasma 

aldosterone levels were measured according to standard procedures using a RIA (Coat-

A-Count RIA kit; Siemens Medical Solutions Diagnostics, Ballerup, Denmark). Mouse 

samples with values >1200 pg/ml were further diluted using a serum pool with a low 

aldosterone concentration (<50 pg/ml). The urinary and plasmatic creatinine 

concentrations were measured by enzyme-linked immunosorbent assay (ELISA) at the 

Zurich Integrative Rodent Physiology (ZIRP) platform.  
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Blood gas analyzes  

The mice were anesthetized with 3% isoflurane and 97% atmospheric air mixture. The 

thorax was opened and the heart was exposed. 150-300 µl of blood was withdrawn from 

the right atrium with a heparin coated syringe (Pico50, Radiometer, Denmark). The blood 

was immediately measured by a blood gas analyzer (ABL800 Flex, Radiometer, 

Denmark). 

Western blot analyzes 

Frozen tissues were homogenized and protein extracted as described 36. Anti-α, β, 

γENaC, NCC and pT53-NCC and pT58-NCC antibodies were obtained and used as 

described 27. Phospho-antibodies were diluted 1/1000. Anti-β-actin antibody (Sigma-

Aldrich) was used as loading control.  

Immunofluorescence on kidney sections 

Kidneys were fixed by vascular perfusion and processed for immunohistochemistry as 

previously described 37. Serial cryosections (5 μm) were incubated overnight at 4°C with 

polyclonal rabbit antisera against either Cre (dilution 1:10’000) 38, α-ENaC (dilution 

1:1’000) 27 , or γ-ENaC (dilution 1:20’000) 39. The primary antibodies were revealed with 

a Cy3-conjugated donkey anti-rabbit IgG (Jackson Immuno Research Labs, West Grove, 

PA) diluted 1:1’000. Moreover, some sections were incubated also with FITC-conjugated 

goat anti-mouse IgG (Jackson Immuno Research Laboratories) diluted 1:100. Images 

were acquired with a Leica DFC 350 FX charge-coupled device camera (Leica, 

Heerbrugg, Switzerland) and processed by Leica Application Suite software before 
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importing into Adobe Photoshop CS3 and Powerpoint for image arrangement and 

labeling. The primary antibodies were omitted in control experiments.  

Statistical analysis 

Results are presented as mean ± SEM. Data between control and Scnn1alox/lox;Pax8-

rTta;LC1 mice were analysed by unpaired t test. P values <0.05 were considered 

statistically significant. 
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Figure legends 

 

Figure 1 Inducible Scnn1a knockout mice develop a PHA type 1 phenotype under 

regular diet.  

(A) Body weight changes (Δ body weight) in percentage of initial body weight monitored 

during four consecutive days following doxycycline administration at day 0. A total of 19 

control (straight line) and 20 Scnn1a knockout mice (Scnn1aPax8/LC1, dashed line) were 

analyzed. (B) Plasma Na+ and K+ measurements (mmol) in control (n=14) and knockout 

mice (n=11). (C) 24h- cumulative urinary sodium and (D) potassium excretion (mmol) of 

control (n=11) and knockout mice (n=10). Results are presented as mean ± SEM and 

data were analysed by unpaired t test. P values <0.05 were considered statistically 

significant. 

 

Figure 2 High Na+ and reduced K+ diet normalizes body weight loss and plasma 

and urinary electrolyte concentration.   

(A) Body weight changes (Δ body weight) in percentage of initial body weight in control 

(n=11) and knockout mice (n=11) at the end of two months of high Na+ and reduced K+ 

diet (rescue diet). (B) Plasma Na+ and K+ concentrations in control (n=6) and knockout 

mice (n=4). (C) 24h-urinary cumulative sodium and (D) potassium excretion (mmol) of 

control (n=11) and knockout mice (n=11). -3, -2, -1 and 0 correspond to the last days of 

the rescue diet. Results are presented as mean ± SEM and data were analysed by 

unpaired t test. P values <0.05 were considered statistically significant. 
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Figure 3 The switch to standard diet reinstates a severe PHA type 1 phenotype. 

(A) Body weight changes (Δ body weight) in percentage of initial body weight in control 

(n=8) and Scnn1aPax8/LC1 knockout mice (n=8) during three days of standard diet after 

two months of high Na+ and reduced K+ diet. (B) Plasma Na+ and K+ concentrations in 

control (n=15) and knockout mice (n=13). (C) 24h-urinary sodium excretion of control 

and knockout mice during three days of standard diet (+1, +2, +3) after two months of 

high Na+ and reduced K+ diet. (D) 24h-urinary potassium excretion of control and 

knockout mice. n= 8 mice per genotype. Results are presented as mean ± SEM and 

data were analysed by unpaired t test. P values <0.05 were considered statistically 

significant. 

 

Figure 4 βENaC protein expression increases in absence of αENaC. 

α, β, γENaC and NCC mRNA transcript expression in the kidney determined by 

quantitative real-time PCR and normalized to β-actin in control (white) and knockout 

(black column) mice (A) under standard diet, (B) following rescue (high sodium and 

reduced potassium) diet and (C) three days following the return to the standard diet, n≥4 

per genotype. (D) Representative Western blot analyses for α, β and γENaC on the 

whole kidney of control and Scnn1aPax8/LC1 knockout mice under standard diet (n=4 per 

genotype), (E) following a high Na+/reduced K+ (rescue) diet (controls: n=7; knockouts 

n=7), and (F) three days following the switch to the standard diet (controls: n=13; 

knockouts n=13). Protein expression was normalized to the amount of β-actin and 

reported relative to control values. Results are presented as mean ± SEM and data were 

analysed by unpaired t test. P values <0.05 were considered statistically significant. 
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Figure 5 NCC phosphorylation is normalized following rescue diet.  

(A) Representative Western blot analyses for total NCC and phosphorylated pT53- and 

pT58-NCC on the whole kidney of control (n=14) and Scnn1aPax8/LC1 knockout mice 

(n=14) under standard diet, (B) following a high Na+/reduced K+ (rescue) diet (controls: 

n=12; knockouts n=11), and (C) three days following the switch to the standard diet 

(controls: n=6; knockouts n=8). Protein expression was normalized to the amount of β-

actin and reported relative to control values. Results are presented as mean ± SEM and 

data were analysed by unpaired t test. P values <0.05 were considered statistically 

significant. 
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Table 1 

Blood parameters of mice after the return to the standard salt diet following two months 

of rescue diet. 

 Control (n=7) 
Experimental group 

(n=6) 

Na+ (mmol.l-1) 145±0,4 137±1,3 *** 

K+ (mmol.l-1) 5±0,2 8±0,5 *** 

Ca2+ (mmol.l-1) 1,3±0,01 1,2±0,01 

Cl- (mmol.l-1) 113±0,9 111±1,2 

pH 7±0,02 7±0,02 * 

pCO2 (mmHg) 41±1,9 40±2,5 

cBase (Ecf) -4±0,8 -8±0,9 *** 

cHCO3- (aP,st) 19±0,6 16±0,5 *** 

Data are average ± SEM. * P <0.05; *** P <0.001. cBase (Ecf): standard base excess. 

cHCO3- (aP,st): standard bicarbonate. 
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